Where can buy 2d functional nanomaterials: synthesis, characterization and applications ganesh s. ka

Page 1


2D Functional Nanomaterials: Synthesis, Characterization and Applications Ganesh S. Kamble (Ed.)

Visit to download the full and correct content document: https://ebookmass.com/product/2d-functional-nanomaterials-synthesis-characterizatio n-and-applications-ganesh-s-kamble-ed/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Advanced nanomaterials for catalysis and energy: synthesis, characterization and applications Sadykov

https://ebookmass.com/product/advanced-nanomaterials-forcatalysis-and-energy-synthesis-characterization-and-applicationssadykov/

Amorphous Nanomaterials: Preparation, Characterization and Applications Lin Guo

https://ebookmass.com/product/amorphous-nanomaterialspreparation-characterization-and-applications-lin-guo/

Nanomaterials Synthesis: Design, Fabrication and Applications Yasir Beeran Pottathara

https://ebookmass.com/product/nanomaterials-synthesis-designfabrication-and-applications-yasir-beeran-pottathara/

2D Nanomaterials for Energy Applications: Graphene and Beyond Spyridon Zafeiratos (Editor)

https://ebookmass.com/product/2d-nanomaterials-for-energyapplications-graphene-and-beyond-spyridon-zafeiratos-editor/

Nanowire Energy Storage Devices: Synthesis, Characterization and Applications Liqiang Mai

https://ebookmass.com/product/nanowire-energy-storage-devicessynthesis-characterization-and-applications-liqiang-mai/

Synthesis, Characterization, and Applications of Graphitic Carbon Nitride Sabu Thomas

https://ebookmass.com/product/synthesis-characterization-andapplications-of-graphitic-carbon-nitride-sabu-thomas/

Organic Corrosion Inhibitors: Synthesis,

Characterization, Mechanism, and Applications

https://ebookmass.com/product/organic-corrosion-inhibitorssynthesis-characterization-mechanism-and-applicationschandrabhan-verma/

Bio-Based Nanomaterials : Synthesis Protocols, Mechanisms and Applications Ajay Kumar Mishra

https://ebookmass.com/product/bio-based-nanomaterials-synthesisprotocols-mechanisms-and-applications-ajay-kumar-mishra-2/

Bio-Based Nanomaterials:

Synthesis

Protocols, Mechanisms and Applications Ajay Kumar Mishra

https://ebookmass.com/product/bio-based-nanomaterials-synthesisprotocols-mechanisms-and-applications-ajay-kumar-mishra/

2DFunctionalNanomaterials

2DFunctionalNanomaterials

Synthesis,Characterization,andApplications

Editor

Dr.GaneshS.Kamble

DepartmentofEngineeringChemistry

KolhapurInstituteofTechnology

CollegeofEngineering Kolhapur416234 India

Cover

CoverImage:©theasis/GettyImages

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformationcontained inthesebooks,includingthisbook,tobefreeof errors.Readersareadvisedtokeepinmindthat statements,data,illustrations,proceduraldetailsor otheritemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailablefrom theBritishLibrary.

BibliographicinformationpublishedbytheDeutsche Nationalbibliothek

TheDeutscheNationalbibliothekliststhis publicationintheDeutscheNationalbibliografie; detailedbibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>.

©2022WILEY-VCHGmbH,Boschstr.12,69469 Weinheim,Germany

Allrightsreserved(includingthoseoftranslation intootherlanguages).Nopartofthisbookmaybe reproducedinanyform–byphotoprinting, microfilm,oranyothermeans–nortransmittedor translatedintoamachinelanguagewithoutwritten permissionfromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhennot specificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34677-6

ePDFISBN: 978-3-527-82395-6

ePubISBN: 978-3-527-82394-9

oBookISBN: 978-3-527-82396-3

Typesetting Straive,Chennai,India PrintingandBinding

Printedonacid-freepaper

10987654321

Contents

Foreword xvii

Preface xxi

1GrapheneChemicalDerivativesSynthesisandApplications: State-of-the-ArtandPerspectives 1

MaximK.Rabchinskii,MaksimV.Gudkov,andDinaYu.Stolyarova

1.1Introduction 1

1.2GrapheneOxide:SynthesisMethodsandChemistryAlteration 3

1.3GrapheneOxideReductionandFunctionalization 6

1.4ApplicationsofCMGs 13

1.5ConcludingRemarks 15 Acknowledgments 15 References 16

22D/2DGrapheneOxide-LayeredDoubleHydroxide NanocompositefortheImmobilizationofDifferent Radionuclides 21

PaulmanickamKoilrajandKeikoSasaki

2.1Introduction 21

2.2SynthesisofGO/LDHComposite 22

2.2.1Co-precipitation 22

2.2.2HydrothermalPreparation 23

2.2.3Self-AssemblyofLDHNanosheetswithGONanosheets 24

2.3RemovalofRadionuclides 24

2.3.1U(VI)Removal 24

2.3.2SorptionofEu(III)withthePresenceofGOonLDH 25

2.3.3Co-remediationAnionicSeO4 2 andCationicSr2+ 26

2.4Conclusion 29 References 29

32DNanomaterialsforBiomedicalApplications 31 PolirajuKalluruandRavirajVankayala

3.1Introduction 31

3.1.1PhotothermalandPhotodynamicTherapy 31

3.1.2BioimagingandDrug/GeneDelivery 34

3.1.3Biosensors 37

3.1.4AntibacterialActivity 39

3.1.5TissueEngineeringandRegenerativeMedicine 41

3.2Conclusions 43 References 43

4NovelTwo-DimensionalNanomaterialsforNext-Generation Photodetectors 47 KhurelbaatarZagarzusemandZumuukhorolMunkhsaikhan

4.1Introduction 47

4.22DMaterialsforPDs 49

4.2.1Graphene 49

4.2.2TMDs(TransitionMetalDichalcogenides) 49

4.2.3MXenes(2DTransitionMetalCarbides/Nitrides) 50

4.2.4Xenes(Monoelemental2DMaterials) 50

4.3ThePhysicalMechanismEnablingPhotodetection 50

4.4CharacterizationParametersforPhotodetectors 51

4.4.1Responsivity 51

4.4.2Detectivity 52

4.4.3ExternalQuantumEfficiency 52

4.4.4Gain 52

4.4.5ResponseTime 52

4.4.6NoiseEquivalentPower 52

4.5SynthesisMethodsfor2DMaterials 53

4.5.1MechanicalExfoliation 53

4.5.2LiquidExfoliation 53

4.5.3ChemicalVaporDeposition(CVD) 53

4.6PhotodetectorsBasedon2DMaterials 55

4.6.1PhotodetectorsBasedonGraphene 55

4.6.2PhotodetectorsBasedonMoS2 55

4.6.3PhotodetectorsBasedonBP 55

4.7PhotodetectorsBasedon2DHeterostructures 56

4.8ConclusionsandOutlook 58 References 58

52DNanomaterialsforCancerTherapy 63 NareshKuthala

5.1Introduction 63

5.22DNanomaterialsforCancerTherapy 64

5.2.12DNanomaterialsforCombinationPTTwithPDT 64

5.2.22D-NanomaterialsforCombinationPTTTherapywith Radiotherapy(RT) 68

5.2.32DNanomaterialsforCombinationPTTTherapywithSonodynamic Therapy(SDT) 70

5.2.42DNanomaterialsforCombinationPTTTherapywithImmune Therapy(ImT) 73

5.3SummaryandFuturePerspectives 76 References 76

6GrapheneandItsDerivatives–Synthesisand Applications 81 AmerAl-Nafiey

6.1Introduction 81

6.2Graphite 81

6.2.1Define 81

6.2.2SyntheticGraphite 82

6.2.3CharacterizedandPropertiesofGraphite 82

6.2.3.1Structure 82

6.2.4Applications 84

6.3GrapheneOxide 84

6.3.1Define 84

6.3.2SyntheticofGrapheneOxide 84

6.3.3CharacterizedandPropertiesofGrapheneOxide 84

6.3.3.1Structure 84

6.3.3.2PropertiesofGrapheneOxide 87

6.3.3.3ApplicationsofGrapheneOxide 88

6.3.3.4FewExamples 88

6.4ReducedGrapheneOxide 89

6.4.1Define 89

6.4.2SyntheticofReducedGrapheneOxideorReductionof GrapheneOxide 89

6.4.2.1ThermalReductionofGO 90

6.4.2.2PhotocatalyticMethod 94

6.4.2.3ElectrochemicalMethod 95

6.4.2.4OtherMethods 95

6.4.3Characterized,Structure,andPropertiesofReduced GrapheneOxide 95

6.4.3.1Structure 96

6.4.3.2PropertiesandApplicationsofReducedGrapheneOxide 97

6.5Graphene 98

6.5.1Define 98

6.5.2SynthesisofGraphene 98

6.5.2.1ChemicalVaporDeposition(CVD) 101

6.5.2.2EpitaxialGrowth 102

6.5.2.3MechanicalExfoliation 104

6.5.2.4ChemicalReductionofGrapheneOxide(GO) 105

6.5.3Characterized,Structure,andPropertiesofGraphene 105

6.5.3.1SurfaceProperties 105

6.5.3.2ElectronicProperties 105

6.5.3.3OpticalProperties 106

6.5.3.4MechanicalProperties 107

6.5.3.5ThermalProperties 107

6.5.3.6PhotocatalyticProperties 108

6.5.3.7MagneticProperties 109

6.5.3.8CharacterizationsofGraphene 109

6.5.3.9Morphology(SEM,TEM,andAFM) 109

6.5.3.10RamanSpectroscopy 111

6.5.3.11X-rayPhotoelectronSpectroscopy(XPS) 111

6.5.3.12UV–VisibleSpectroscopy 112

6.5.3.13X-rayDiffraction(XRD) 114

6.5.3.14ThermogravimetricAnalysis(TGA) 114

6.5.3.15FTIRSpectroscopy 115

6.5.4ApplicationofGraphene 116 References 116

7RecentTrendsinGraphene–LatexNanocomposites 125 AnandKrishnamoorthy

7.1Introduction 125

7.2PolymerLattices–AnOverview 125

7.3Graphene–Background 127

7.4PreparationandFunctionalizationofGraphene 128

7.5Graphene–LatexNanocomposites:PreparationPropertiesand Applications 129

7.6Conclusions 137 References 138

8AdvancedCharacterizationandTechniques 141 RajaMurugesan

8.1Introduction 141

8.2CharacterizationTechniques 141

8.2.1OpticalTechniques–DynamicLightScattering(DLS) 141

8.2.2OpticalSpectroscopy 144

8.2.3NMR-NuclearMagneticResonanceSpectroscopy 145

8.2.4InfraredSpectroscopy(IR)andRamanSpectroscopy 145

8.2.5X-RayPhotoelectronSpectroscopy(XPS) 146

8.2.6CharacterizationBasedonInteractionswithElectronsorElectron Microscopy(EM) 147

8.2.6.1ScanningElectronMicroscopy(SEM) 147

8.2.6.2TransmissionElectronMicroscopy(TEM) 149

8.2.6.3ScanningTransmissionElectronMicroscopy(STEM) 150

8.2.6.4ScanningTunnelingMicroscopy(STM) 151

8.2.7AtomicForceMicroscopy(AFM) 151

8.2.8KelvinProbeForceMicroscopy(KPFM) 152

8.2.9X-Ray-BasedTechniques 152 References 154

92DNanomaterials:SustainableMaterialsforCancerTherapy Applications 157 MamtaChaharandSaritaKhaturia

9.1Introduction 157

9.2Typesof2DNanomaterials 158

9.3MethodsfortheSynthesisof2DNanomaterials 160

9.4MechanismofCancerTheranostics 162

9.5Applicationsof2DNanomaterials 163

9.6Conclusion 163 References 169

10RecentAdvancesinFunctional2DMaterialsforFieldEffect TransistorsandNonvolatileResistiveMemories 175 AdnanYounis,JawadAlsaei,BasmaAl-Najar,HaceneManaa,PranayRajan, ElHadiS.Sadki,AichaLoucif,andShamaSehar

10.1Introductionto2DMaterials 175

10.2ElectronicBandStructurein2DMaterials 176

10.3ElectronicTransportPropertiesof2DMaterials 178

10.4Two-DimensionalMaterialsinFieldEffectTransistors 180

10.4.1FieldEffectTransistors 180

10.4.2TheRiseof2DMaterialsResearchinFETs 180

10.4.3Graphene-BasedFieldEffectTransistors 181

10.4.42DTransitionMetalDichalcogenides(TMDCs)inTransistors 183

10.5Two-DimensionalMaterialsasNonvolatileResistiveMemories 184

10.5.1NonvolatileResistiveMemoriesBasedonGrapheneandIts Derivatives 185

10.5.2ResistiveSwitchingMemoriesin2DMaterials“Beyond”Graphene 187

10.5.2.1Solution-ProcessedMoS2 -BasedResistiveMemories 187

10.5.2.2Solution-ProcessedBlackPhosphorousNonvolatileResistive Memories 188

10.5.2.3EmergingNVMBasedonHexagonalBoronNitride(h-BN) 188

10.6ConclusionsandOutlook 189 References 190

x Contents

112DAdvancedFunctionalNanomaterialsforCancer Therapy 199

RajKumar,NaveenBunekar,SunilDutt,PulikantiG.Reddy,AbhishekK. Gupta,KeshawR.Aadil,VivekK.Mishra,ShivendraSingh,andChandrani Sarkar

11.1Introduction 199

11.22DNanomaterialsClassification 202

11.2.1GrapheneFamilyNanomaterials 202

11.2.2TransitionMetalDichalcogenides(TMDs) 203

11.2.3LayeredDoubleHydroxides(LDHs) 205

11.2.4Carbonitrides(MXenes) 206

11.2.5BlackPhosphorus(BP) 206

11.3CancerTherapy 208

11.3.1MechanismofActioninCancerTherapy 212

11.3.1.1ModeofActionof2DNanomaterials 212

11.3.2PhotodynamicTherapyforCancerCellTreatment 215

11.3.2.1MechanismofPhotodynamicTherapy 215

11.3.2.22DNanomaterialsasPhotosensitizerforPDT 217

11.3.2.3Applicationof2DNanomaterialsinPhotodynamicTherapy 217

11.3.32DNanomaterials-CancerDetection/Diagnosis/Theragnostic 218

11.4TissueEngineering 219

11.5Conclusion 220

Acknowledgment 221 References 221

12SynthesisofNanostructuredMaterialsViaGreenandSol–Gel Methods:AReview 235

AnkitS.Bartwal,RahulThakur,SumitRingwal,andSatishC.Sati

12.1Introduction 235

12.2MethodsUsedinNanostructuredSynthesis 236

12.2.1GreenMethodofNanoparticlesSynthesis 236

12.2.2Sol–GelMethodofNanoparticlesSynthesis 236

12.2.3GreenMethodofNanocompositesSynthesis 241

12.2.4Sol–GelMethodofNanocomposites 241

12.3Discussion 241

12.4Conclusion 244 References 244

13StudyofAntimicrobialActivityofZnONanoparticlesUsing LeavesExtractof Ficusauriculata BasedonGreenChemistry Principles 249 GurpreetKour,AnkitS.Bartwal,andSatishC.Sati

13.1Introduction 249

13.2MaterialsandMethods 250

13.2.1Chemicals 250

13.2.2Methodology 250

13.2.3AntimicrobialActivity 251

13.3ResultsandDiscussion 251

13.3.1CharacterizationofSynthesizedZinc-OxideNanoparticles (ZnONPs) 251

13.3.1.1XRDAnalysis 251

13.3.1.2FT-IRAnalysis 252

13.3.1.3SEMAnalysis 254

13.3.1.4TEMAnalysis 254

13.3.2AntibacterialActivity 254

13.4Conclusion 255 Acknowledgments 255 References 255

14PiezoelectricPropertiesofNa1 x Kx NbO3 near x = 0.475, MorphotropicPhaseRegion 257

SurendraSinghandNarayanS.Panwar

14.1Introduction 257

14.2ExperimentalProcedure 259

14.3ResultsandDiscussion 260 References 262

15SynthesisandCharacterizationofSDCNano-Powderfor IT-SOFCApplications 265

BharatiB.Patil

15.1Introduction 265

15.1.1SolidOxideFuelCells(SOFCs) 265

15.1.2IntermediateTemperatureSolidOxideFuelCells(IT-SOFCs) 266

15.1.3WhySamarium-DopedCeria(SDC)Material? 266

15.1.4VariousSynthesisMethodsforSDC 267

15.1.5WhySDCSynthesisbyCombustionProcess? 268

15.1.6WhySDCSynthesisbyGlycineNitrateCombustion Process(GNP)? 268

15.1.7ApplicationsofSDCMaterialRelatedtoIntermediateTemperatureSolid OxideFuelCells 269

15.1.7.1ApplicationsofSDCasSOFCElectrolyte 269

15.1.7.2ApplicationsofSDCtoMakeCompositeAnode 269

15.1.7.3ApplicationsofSDCtoMakeCompositeCathode 270

15.1.7.4ApplicationsofSDCasanInterlayer 270

15.1.7.5ApplicationsofSDCasanAdditionalAnodeLayer 270

15.2Experimental 270

15.2.1PowderSynthesis 270

15.2.2PowderCharacterization 271

15.3ResultsandDiscussion 272

15.3.1TG-DTGStudy 272

15.3.2XRDAnalysis 272

15.3.3PowderMicrostructure 276

15.3.3.1SEMAnalysis 276

15.3.3.2TEMAnalysis 277

15.3.3.3EDAXAnalysis 277

15.3.3.4BETAnalysis 278

15.3.4ElectricalProperties 278

15.4Conclusions 281 Acknowledgments 281 References 282

16Introductionof2DNanomaterialsandTheirPhotocatalytic Applications 285 KallappaRamchandraSanadi

16.1Introduction 285

16.2DefinitionsofNanomaterials 286

16.3HistoryofNanotechnology 286

16.3.1Top-downApproach 286

16.3.2Bottom-upApproach 286

16.4ClassificationofNanomaterials 286

16.4.1Zero-Dimensional(0-D) 287

16.4.2One-Dimensional(1-D) 287

16.4.3Three-Dimensional(3-D) 287

16.4.4Two-Dimensional(2-D) 287

16.4.4.1SyntheticMethods 288

16.5CharacterizationTechniquesfor2DNanomaterials 290

16.6Applicationsof2DNanomaterials 291

16.7PhotocatalyticApplication 291

16.7.1WhyPhotocatalyst? 291

16.7.2BriefHistoryofPhotocatalysis 292

16.7.3PrinciplesofHeterogeneousPhotocatalysis 292

16.7.4PhotocatalyticStudyof2DNanomaterials 293

16.7.5ChallengesBehind2DNanomaterialsasaPhotocatalyst 294 References 294

17GrapheneandItsAnalogous2D-LayeredMaterialsforFlexible PersistentEnergyStorageDevicesinConsumer Electronics 297

HimadriTanayaDas,K.Hariprasad,andT.E.Balaji

17.1Introduction 297

17.2BriefSketchoftheTypesofSCandItsWorkingMechanism 298

17.3EvolutionofElectrodeMaterialsforFlexibleSupercapacitors 300

17.4DevelopingGrapheneElectrodeswithDifferentNanocomposites 304

17.4.1OtherCarbon-BasedNanomaterialswithGraphene 304

17.4.2UsingOrganicCompositeswithGraphene 306

17.4.3ConductivePolymerwithGraphene 306

17.4.4CombiningGraphenewithOtherMetalOxides/Hydroxides 308

17.4.5CombiningGraphenewithOther2D-LayeredMaterials 308

17.5NovelTechnologiestoDevelopFlexibleGraphene-Based Supercapacitors 310

17.6Conclusion 311

17.7FutureAspects 313 References 313

182DDichalcogenides 317

RamS.Singh,VarunRai,andArunK.Singh

18.1Introduction 317

18.1.1WhatAre2DDichalcogenides? 317

18.1.2Properties 318

18.2MethodsofSynthesis 321

18.2.1Top-DownMethod 321

18.2.1.1MicromechanicalExfoliation 321

18.2.1.2LiquidExfoliation 322

18.2.1.3ChemicalIntercalationandExfoliation 322

18.2.1.4ElectrochemicalExfoliation 322

18.2.1.5ThinningbyThermalAnnealing,Laser,andChemicalEtching 323

18.2.2Bottom-UpMethod 323

18.2.2.1ChemicalVaporDeposition 323

18.2.2.2Solvo-Thermal 324

18.2.2.3MolecularBeamEpitaxy 325

18.3ModificationofProperties 325

18.4Applications 327

18.4.1Optoelectronics 327

18.4.2Sensors 329

18.4.3Spintronics 329

18.4.4Photocatalysis 329

18.4.5BiomedicalApplications 330

18.5Conclusion 330 Acknowledgment 330 References 331

19RecentTrendsonGraphene-BasedMetalOxide NanocompositesTowardPhotoelectrochemicalWater SplittingApplication 335 KashinathLellalaandMouniRoy

19.1Introduction 335

19.1.1BasicofPhoto-Anode/Cathode 335

19.1.2PropertiesofPEC 336

19.1.3ImportanceofCatalyst/Electrode 336

19.1.4FundamentalConceptofPhoto-ElectrochemicalWaterSplitting 337

19.1.4.1Light–CatalystInteraction 337

19.1.4.2Electron–HolePair 337

19.1.4.3CarrierTransportation-Separation 338

19.1.4.4WaterSplittingReaction 339

19.1.4.5NatureofElectrolyte 339

19.1.4.6Catalysis 339

19.1.4.7CrystallinityandSize 340

19.1.4.8TemperatureandPressure 340

19.1.4.9HeterogeneousElectronTransfer 340

19.1.4.10pHDependency 340

19.2GrapheneandGraphene-BasedNanocomposites 340

19.2.1Graphene 340

19.2.2Graphene-BasedNanocomposites 341

19.3SynthesisofGraphene-BasedMetalOxideNanocomposites 342

19.4ApplicationofGraphene–MetalOxideCompositesToward PhotoelectrochemicalWaterSplitting 345

19.5SummaryandFuturePerspective 349 References 349

202DMOFsNanosheets 357 ArezouMohammadinezhad

20.1Introduction 357

20.2SyntheticStrategies 357

20.2.1Top-DownMethod 358

20.2.1.1SonicationExfoliation 358

20.2.1.2MechanicalExfoliationMethod 359

20.2.1.3ChemicalExfoliation 359

20.2.1.4Langmuir–BlodgettMethod 359

20.2.1.5Solvent-InducedExfoliation 359

20.2.2Bottom-UpMethod 359

20.2.2.1InterfacialSynthesisMethod 360

20.2.2.2Surfactant-AssistedMethod 360

20.2.2.3TemplateMethod 360

20.2.2.4SonicationSynthesisMethod 360

20.2.3OtherSynthesisMethods 361

20.3Applicationsof2DMOFsNanosheets 361

20.3.1GasSeparation 361

20.3.2EnergyConversionandStorage 361

20.3.3Catalysis 362

20.3.4SensingPlatforms 362

20.3.5Biomedicine 362

20.4Compositesof2DMOFNanosheets 362

20.5Conclusion 363 References 363

21IntroductionandApplicationsof2DNanomaterials 369 AttaU.Rehman,FatimaAfzal,MuhammadT.Ansar,AmnaSajjad,and MuhammadA.Munir

21.1Introduction 369

21.2Applicationsof2DNanomaterials 371

21.2.1Photodetectors 371

21.2.2Phototransistors 371

21.2.3p–nJunctionPhotodetectors 372

21.2.4Field-EffectTransistors 373

21.2.5GasSensors 373

21.2.6Lithium-IonBatteries 374

21.2.7Lithium-IonBatteryAnodes 374

21.2.8Lithium-IonBatteryCathodes 375

21.2.9GrapheneasCurrentCollector 376

21.2.10GrapheneinSupercapacitors 376

21.2.11GrapheneNanocompositeswithDistinctMaterials 377

21.2.12DopingandSurfaceModifications 378

21.2.13GrapheneforGasSensors 379

21.3Conclusion 379 References 380

222DNanomaterialsforPhotocatalysisand Photoelectrocatalysis 383 GubbalaV.Ramesh,N.MahendarReddy,MuvvaD.Prasad,D.Saritha,and KolaRamesh

22.1Introduction 383

22.2PhotocatalyticCO2 Reduction 385

22.3PhotoelectrocatalyticCO2 Reduction 388

22.4PhotocatalyticHydrogenProduction 391

22.5PhotoelectrocatalyticHydrogenProduction 395

22.6PhotocatalyticDyeDegradation 397

22.7Conclusion 401 References 402

Index 413

Foreword

Nanoscalematerialsornanomaterialshaveattractedmuchattentioninthelast fewdecades.Zero-dimensional(0D)fullerenes,semiconductingquantumdots, andmetalnanoparticles,aswellasone-dimensional(1D)nanowiresandcarbon nanotubesstartedthenanomaterialsrevolutionattheendofthelastcentury.In thepastdecade,weobservedashiftfromtraditionalbulkmaterialsproduction anddevicemanufacturingbysubtractiveprocessestoadditivemanufacturing andself-assemblyfromnanoparticles.Iexpectthetwenty-firstcenturytobecome acenturyofnanomaterials,whennanoparticleswillbeassembledinmultiple controlledways(guidedbyartificialintelligence,AI)tocreatematerialswiththe requiredcombinationsofproperties.Andalargeroleinshapingthefuturematerial technologybelongstotwo-dimensional(2D)materials.Separationofgraphene layersanddiscoveryofattractivephysicalpropertiesinsingle-andfew-layer graphenein2004attractedinteresttoother2Dmaterials.Boronnitride,transition metaldichalcogenides,andoxides/hydroxideswereproducedin2Dstatefrom widelyavailableprecursorswithweakvanderWaalsbondingbetweenthelayers. Moreover,newmaterialsthatdon’thaveweaklybondedlayeredprecursors,suchas 2Dsilicon,germanium,tin,phosphorus,boron,andothers,weresynthesized.Even metal–organicframeworks(MOFs)havebeenproducedin2Dstate.Transition metaldichalcogenides,andmorerecentlydiscoveredcarbidesandnitrides,known asMXenes,formverylargefamiliesof2Dmaterialswithdozensofwell-defined stoichiometricstructures,butalsoavirtuallyinfinitenumberofsolidsolutions. Finetuningofpropertiesispossiblebyformingthose“2Dalloys.”Ultrathin2D materialsoffer:

● Electronicpropertiesrangingfrommetallictosemiconductingtoinsulating;

● Subnanometerthicknessleadingtomechanicalflexibilityandopticaltransparency;

● Highsurfaceareaavailableforadsorption,catalysis,andreversiblesurfaceredox reactionsusedinenergystorage.

However,themostvaluablefeatureof2Dmaterialscomparedtoallothernanoparticlesistheirabilitytobeassembledintodenseandstrongheterostructuresbyusing flatlayersasbuildingblocks–thinkofbuildingahouseusingavarietyofbricks orassemblingtoysusingLegoblocks.Whilegrapheneattractedmuchattentionin

thepast15years,theworldismovingfromexploitingasingle“wondermaterial” toutilizationofdozensandhundredsof2Dbuildingblockswithrichchemistry toassemblematerialsanddevicesforfutureadvancedtechnologies.Thisapproach allows:

● Assemblyofhybridmaterialswithcombinationsofpropertiesthatnoconventional(single)materialcanprovide;

● Buildinghybridandcompositematerialsbyself-assemblyoradditivemanufacturingtechniquesanddeviceassemblywithoutwaste;

● Creatingextremelyanisotropicmaterials;

● Complexshapesandintegrationwith0Dand1Dmaterialsintothree-dimensional (3D)materialsandstructures;

● Buildingentiredevices,e.g.bycombiningmaterialswithsemiconducting,metallic,andinsulatingproperties.

Nanomaterialsmadeofprecise2Dstructurescanhaveremarkableproperties, buttocreatefunctionaldevicesonealsoneedsdiverseandtunableproperties.For example,matchingworkfunctionsofmaterialsallowscontrolofjunctionsinelectronicsandsolarcells.Manyapplicationsrequirematerialsthatoffercombinations ofproperties,suchas:

● Conductivity + redoxability = energystorage;

● Conductivity + catalyticability = electrocatalysts;

● Conductivity + transparency + color = opticaldevices;

● Plasmonresonanceinnear-IRrange + biocompatibility = photothermaltherapy.

Effortsofmaterialchemistsarecurrentlydirectedtowardsynthesisofnew2D materialswiththerequiredstructureandproperties.Also,chemicalfunctionalizationofsurfacesallowsfurthertuningof2Dnanosheets.Materialscientistsandengineersassemblethemintofilms,fibers,complexshapes,anddevicesthatcanperform certainfunctions.The2Dmaterialsalreadyfindapplicationsinenergyconversion andstorage,electronics,medicine(includingdrugdeliveryandtheranostics),environmentclean-up,catalysis(includingelectrocatalysisandphotocatalysis),sensing, andmanyotherfields.

Thisbookincludesmorethan20chapterscoveringthesynthesis,modification, characterization,andapplicationsof2Dandrelatednanomaterials.Graphene anditsderivatives,suchasgrapheneoxide,metaloxides,doublehydroxides, dichalcogenides,MOFs,aswellastheirhybridsandnanocomposites,havededicatedchapters.Someothermaterialsaredescribedinchaptersdealingwith biomedical,photonic,photocatalytic,energystorage,andelectronicapplications of2Dmaterials.Since2Dmaterialsandstructuresexpandtoagreatlengthinto chemistry,physics,medicine,andmanyengineeringdisciplines,nosinglebookcan provideacompletecoverage.Still,thisbookcoversmanyrepresentativematerials andimportanttopics,withafocusonchemistryandchemicalapplicationsof2D materials.Itwillbeofinteresttostudentsandresearchersnotonlyinchemistry butalsoinotheradjacentfields,astheimportanceof2Dmaterialsinphysics,

Foreword xix medicine,environmentalscience,andengineeringissteadilyincreasingandtheir applicationsarequicklyexpanding.

Philadelphia,April3,2021

CharlesT.andRuthM.Bach

DrexelUniversity Philadelphia,PA,USA

Preface

Inthetwenty-firstcentury,two-dimensional(2D)nanomaterialsarewidelyconsideredtoconstitutethebasisofthenexttechnologicalrevolutionwhichholdsagreat potentialinadvancingscienceandtechnology.The2Dnanomaterialhasmadean insightfulimpactonthesociety;itiscloselyassociatedtothewell-beingofhuman kind.Therateofadvancementsin2Dnanomaterialissohighthatprospectusdeveloperscontinuouslylookforstrategiestohackitwiththeseadvancements.More recently,the2Dcrystallineallotropeofcarbon,i.e.graphene,hasbroughtanew cheeringintocarbonnanomaterialswhichgreatlyprogresspracticalapplications. Therefore,theworldwideresearcherscanbemotivatedtobethefutureleaderswho wouldmakefundamentalcontributions.Thepresentbookisasincereattemptin thisdirection.

Theemergingdevelopmentinthefieldof2Dnanomaterialsanditsdevicesare playingavitalroleinmotivatingthegrowthofanation’seconomybecauseofits impendingcontributiontomanufacturingprocessesandinventiveproducts.Thus, theaimsofdeveloping2Dfunctionalizednanomaterialistoextendbroadapplicationstowardenergystoragedevices,cancercellapplications,photocatalysts,and photoelectrocatalyst,etc.,ingrowingharmonywiththeprinciplesofGreenChemistry,andmorebroadlyGreenEngineeringandTechnology.

TheBook“2DFunctionalNanomaterials”summarizesthescientificcontributionsoftheadvancementinfabricationsandapplicationsof2Dnanomaterials, reportedfromdifferentveinsofchemistryandtheotherrelatedtechnologiesover thelastdecade.Thecontributionshavebeenmadebydifferentresearchersand distinguishedscientistsfromallovertheworld.Thebookincludedthevarious2D nanomaterialsandtheiruniquepropertieswiththeirwiderangeofapplications. Thechaptersincludevariousmostup-to-dateandnoteworthytopicssuchas synthesisandpropertiesofgraphene;grapheneoxide-basedLDHnanocomposite; graphene-latexnanocomposites;novel2Dnanomaterials;2Ddichalcogenides;2D metal–organicframeworksanditsvariousapplicationssuchascancertherapy; energystoragedevices;photocatalysis–photoelectrocatalysisandelectronicdevices andalotsmore.Inresponsetotheincreaseddemandsforthevariousapplications, thisbookisdesignedtoupdatethelatestadvancementsintheresearchand developmentofnanomaterialswithfocusonthetechnologiesforthesynthesisand characterizationof2Dmaterials.Thisbookiscontributedbyagroupofleading

scientists,researchers,andprofessorswhoaredirectlyworkingonthesubjected areas.Allchaptersincludefundamentalsofthe2Dnanomaterialsinvestigated thatwillofferstudents,researchers,andacademicianstheopportunitytoevaluateandselectthetechnologiesthatleadtobenefitrelatedtotheapplicationof nanotechnologiesforcleanenergyandenvironmentconservation.

Webelievethatthisbookisextremelyusefulfortheresearcherswhoworkinthe 2Dnanomaterialapplicationsandalsoservesanexcellenttextbookandreference fortheresearchscholars,college/universityundergraduates,andgraduateswhoare interestedintheareasofmaterials,energy,andcancertherapyapplications.

IamindebtedtomyPh.D.ResearchGuideDr.MansingA.Anuse,Ex.Professor, andHeadofDepartmentofChemistry,ShivajiUniversity,Kolhapur,forhisconstant encouragementandsupport.IamthankfultomySummerResearchFellowship mentorProfessor,SrinivasanKannan,Director,CouncilofScientificandIndustrial Research-CentralSaltandMarineChemicalsResearchInstitute(CSIR-CSMCRI), Bhavnagar,Gujarat,India,forencouragement.IamgratefultomyPostDoctoral ResearchAdvisorProfessor,Yong-ChienLing,DepartmentofChemistry,National TsingHuaUniversity,Taiwan,forhisongoingsupportandencouragement.

IamalsohighlygratefulandIdedicatethisbooktoProf.C.N.R.Rao,Director, JawaharlalNehruCentreforAdvancedScientificResearch(JNCASR),Bangalore, India,bywhomIreallyinspiredofhisdistinguishedcontributioninChemistry.

IamalsogratefultoProf.YuryGogotsi,Director,A.J.DrexelNanomaterials Institute,DrexelUniversity,Philadelphia,Pennsylvania,USA,forgivingavaluable “Foreword”forthisbook.

Iwouldliketoexpressmygratitudetoallchapterauthorsfortheirenthusiasticand collaborativecontributions.Itcouldnotbepossibletoundertakethischallenging workandenablingmetoaccomplishitwithouttheirsupportandtimelyresponse. Allthecontributorshavejustifiedtheirinvolvementinthisbookbypresentingthe workonlatestareasof2Dnanomaterialsandtheirapplications.

IamverymuchthankfultotheWiley-VCHforacceptingourbookproposaland IalsowishtosincerelythankDr.LifenYang,ProgramManager,andMs.Katherine Wong,SeniorManagingEditoroftheWiley-VCH,fortheirkindsupport,valuable suggestions,motivation,andco-operationduringthepreparationofthisbook,withoutwhichitwouldhavebeenextremelydifficulttocompletethistaskontime.I admiretheirdistinguishedhelpingnature.

ItgivesmegreatpleasuretoacknowledgeShivajiUniversity,Kolhapur,andKolhapurInstituteofTechnology’s,CollegeofEngineering(Autonomous),Kolhapur, fortheirencouragement.

Mostofall,Icouldnotpossiblyfinishwithoutthankingmyfamilyfortheirpersistentlove,continuoussupport,andforbearanceduringthewritingofthisbook.They havebeenaconstantsourceofinspiration.Ialsothankmywonderfulson“Takshil” foralwaysmakingmehappyandforcooperatingmewiththeunderstandingwhen Iwasworkingforthisbookinsteadofplayinggameswithhim.Ihopethatinfuture hewillreadthisbookandrealizewhyIusedtosparesomuchtimeinfrontofmy computer.

Preface xxiii

Asaneditor,Iwouldliketoreceivesuggestionsandopinionforthebookat ganeshchemistry2010@gmail.com

14April,2021

Dr.GaneshS.Kamble DepartmentofEngineeringChemistry KolhapurInstituteofTechnology CollegeofEngineering Kolhapur416234,India

GrapheneChemicalDerivativesSynthesisandApplications: State-of-the-ArtandPerspectives

MaximK.Rabchinskii 1 ,MaksimV.Gudkov 2 ,andDinaYu.Stolyarova 3

1 IoffeInstitute,CentreofNanoheterostructurePhysics,26Politekhnicheskaya,194021SaintPetersburg, Russia

2 RussianAcademyofSciences,N.N.SemenovFederalResearchCenterforChemicalPhysics,Departmentof PolymerandCompositeMaterials,4KosyginaStreet,Building1,119991,Moscow,Russia

3 NRC“KurchatovInstitute”,ComplexofNBICSTechnologies,1AkademikaKurchatovapl.,123182,Moscow, Russia

1.1Introduction

Afteritsrediscoveryin2004byGeimandNovoselov[1],graphenehasprovided astunningscientificandtechnologicalexcitementforresearchersinvarious disciplines,becomingthefirsttwo-dimensional(2D)crystalbroadlystudied[2,3]. However,afterthefirstdecadeofextensiveresearch,anexplosionofinteresthas beenfollowedbythefadeofenthusiasm.Suchashiftisduetoseveralreasons. Firstly,alargesetofnew2Dmaterials,suchashexagonalboronnitride(h-BN), molybdenumdisulfide(MoS2 ),silicene,etc.,hasbeenisolatedandwidelyinvestigated,demonstratingtohavenewunprecedentedproperties,differingfromthose ingraphene[4,5].Secondly,despitealargenumberoftechniquesdevelopedfor thegraphenesynthesis,ithasappearedthattransitionfromobtainingasingleideal laboratorysampletolarge-scaleproductionofhigh-qualitygraphenestillexhibiting itsuniquepropertiesisamajorchallenge,stillnotresolved[6].Thislimitstherealizationoftheproposedrevolutionaryapplicationsofgraphene.Finally,thanksto greatattentionattractedatthestart,duringalmosttwodecadesofgraphenehistory thekeyfeaturesofitsphysicshasbeenthoroughlystudied,leaving,asseemed,only detailsandquestionsofitsfurtherintegrationintopracticalapplications.

Giventhesefacts,themainfocuswithinthefieldofgrapheneresearchhasprogressivelyshiftedtoanotherkeyfeatureofthismaterial–versatilechemistryand itsinfluenceonthepropertiesofgraphene.Apartfrombeinga2Dcrystalderived fromthegraphitestructure,grapheneatthesametimerepresentsaquasi-infinite π-conjugatedpolyaromatichydrocarbonmacromolecule[7].Thismeansgraphene canundergoalargesetofchemicalreactionsfromorganicsynthesisandchemistry ofaromaticcompounds,eventhoughseverallimitationsduetothedifferencein theoverallreactivityhavetobeconsidered.Usingthesereactions,variousorganic

2DFunctionalNanomaterials:Synthesis,Characterization,andApplications,FirstEdition. EditedbyGaneshS.Kamble. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

1GrapheneChemicalDerivativesSynthesisandApplications:State-of-the-ArtandPerspectives groups,containinghalogens(Br,Cl,F,I),chalcogens(O,S),pnictogens(N,P, Sb,Bi),orsiliconaswellasmorecomplexfunctionalities,suchasalkylandaryl hydrocarbons,canbecovalentlyattachedtoedgesorbasalplaneofgraphene[8,9]. Furthermore,substitutionalmodificationofgraphene,duringwhichcarbon atomsarereplacedbyatomslikenitrogen,phosphorous,sulfur,orboron,canbe performedaswell(dopingprocess)[10].

Inturn,theintroductionoffunctionalgroupsordopingprovidesthereconfigurationofthe π-conjugatedelectroncloudduetothepartialconversionof sp2 -hybridizedcarbonatomsintosp3 -hybridizedones,aswellastotheelectronwithdrawingorelectron-donatingeffectofthemodifyingmoieties[11].Accordingly,anintriguingopportunitytotailortheelectronicstructureofthegraphene layerand,thus,itsphysicalandchemicalproperties,arises.Graphenetransport characteristicsandbandstructure,opticalabsorptionandluminescence,field emission,magnetic,andthermalpropertiescanbetunedinadesirablemannervia modificationofgraphenechemistry[8,9,12].Inotherwords,chemicalderivatizationallowstorenderthephysicsofgraphenesignificantlymorevariable,altering theintrinsicpropertiesofgrapheneandgivingrisetonewinspiringfeatures,not observableinpristinegraphene.Theintroductionoforganicgroupstographene edgesorbasalplanealsoprovidesanopportunitytocontrollablymodifythe reactivityofmaterial,itschemiresistive,andwettingproperties[13].Thisextends theperformanceofgrapheneinvariousapplicationsduetotheadjustmentofits characteristicsforcertainconditions.

Hence,itisnotasurprisethatalargefamilyofgraphenechemicalderivatives, chemicallymodifiedgraphenes(CMGs)orfunctionalizedgraphenes(FGs),has appearedduringthelastdecades,displacingpristinegraphenefromthepositionof acentralresearchsubjectwithinthefieldofnanocarbonscience.Stoichiometric CMGs(C1 X1 ,whereX–modifyingfunctionality),suchasfluorographeneand graphane,havebeensynthesizedaswellasalargenumberofnon-stoichiometric (C1 X<1 )graphenederivativeshasbeensynthesized.Speakingaboutgraphenefunctionalization,onecannotcircumventgrapheneoxide(GO)–graphenelayer,which basalplaneandedgesarecovalentlyfunctionalizedwithasetofoxygen-containing groups[14].Startingasjustaprecursorforthegraphenesynthesis,GOpromptly appearedtobeafacilestartingplatformfortheCMGsynthesis.Thisfeature arisesfromtheeaseoflarge-scaleproductionofGOvialiquid-phaseexfoliationof graphiteandthepresenceofoxygenicgroups[15],whichcanbesubstitutedwith otherorganicgroupsviasimplemethodsfromorganicchemistry.Thisisincontrast tothefunctionalizationofpristinegraphene,whichrequiresspecialreactivespecies thatcanformcovalentadductswiththesp2 carbonstructuresingraphene[16].

Asaresult,themodificationofGOhasgivenrisetonumerousCMGsandupto dateisakeyapproachforthesynthesisofthefunctionalizedgraphenes[8].

Despitetheprogressmadewithinthefieldofgraphenederivatization,theresearch onCMGssynthesisandcharacterizationisstillfarfromover.Thedetailedunderstandingontheeffectsofmodifyingfunctionalitiesonthephysicalpropertiesof CMGsstillnotachieved[17].Particularly,theoriginofopticalabsorbanceorfluorescenceinGOorfluorographeneisstillunderdiscussionwithmanycontroversial

1.2GrapheneOxide:SynthesisMethodsandChemistryAlteration 3

modelssuggestedtoexplaintheparticularroleoffunctionalizationparametersin thisquestion[18,19].NewmethodsforthesynthesisofnewstoichiometricCMGs apartfromfluorographeneandgraphaneaswellasforthepreciseintroductionof asinglecertaintypeoffunctionalgroupinthedesiredconcentrationarestillunder development.Thissectionsummarizesandcomparestherecentresultswithinthe fieldofgraphenechemicalderivatives,startingfromfeaturesofGOsynthesisand concludingbysomeremarksontheperspectivesofCMGsapplications.

1.2GrapheneOxide:SynthesisMethodsandChemistry Alteration

ThehistoryofGObeganlongbeforetheterm“graphene”wasproposed.Itstarted withgraphiteoxide,thesynthesisofwhichwasproposedbackin1859byBrodie[20]. Theproductwasnamedgraphiticacidorgraphiteoxideandwasmoderatelystudied forover150years[21].Theboomaroundgrapheneamongotherthingshasrevived theinterestofthescientificcommunitytographiteoxide.Itwasdiscoveredthatupon anincreaseinpHfromacidictoneutralgraphiteoxideexfoliatestomonolayerGO sheetsduetotheCoulombrepulsionofsimilarlychargeddissociatingfunctional groups.

HereitmustbeemphasizedthatGOandgraphiteoxidearedistinctmaterials, althoughthesenamesareoftenusedassynonyms.Theformeroneisasingle graphenelayercovalentlymodifiedwithoxygenmoieties,whereasthelatterone isastackofnon-exfoliatedGOsheets.Generallyspeaking,thenomenclaturefor two-dimensionalcarbonsandCMGsisstillnotalignedwell,withimproperand arbitrarynamingofgraphenederivatives.Thistopicisfinelydiscussedbythe Carbon editorialboardintherecentarticlebyBiancoetal.[22].

GOisanon-stoichiometricgraphenederivativewithageneralformulaofthetype Cx Hy Oz withtheamountofhydrogenonaverageestimatedas y = 0.8,whereasthe carbon-to-oxygenratio(so-calledoxidationdegree,C/O)canvaryfrom1.5to2.5 [23].GOcarriesalargesetofoxygen-containingfunctionalgroups,suchashydroxyls,epoxides,carboxyls,carbonyls,esterandlactolstructures,peroxides,etc.Numerousmodels,rangingfromtheHofmannandRuessmodelstoLerf–Klinowskiand Dekanyones[24,25],havebeenbeingprogressivelydevelopedtodescribethechemistryofGO,reflectingtheevolutionofthesynthesisprotocolsandmethodsapplied forthestudyingofGO.Thisprocesshaspointedoutthattheoxidationdegree,defectivenessofgraphenelayer,andthespecificcompositionofoxygenicgroupscanbe controlledbythechoiceofacertainmethodofsynthesisandparameterswithinit.

Particularly,theBrodiemethodbasedontheheatingofgraphiteat60 ∘ Cforfew days(threetofourdays)inthemixtureofKClO3 andHNO3 resultsinGOwithahigh C/Oratioofapproximately2.5–2.7withanintroductionofN-containingfunctionalities,particularlynitrates.ApplicationofthemodificationsoftheBrodiemethod byStaudenmaier(additionofconcentratedH2 SO4 andportionedintroductionof KClO3 )andHofmann(theuseofnon-fumingnitricacid)resultsinanalmostequal C/Oratioandfunctionalizationpredominantlybybasal-planeepoxideswithlow

1GrapheneChemicalDerivativesSynthesisandApplications:State-of-the-ArtandPerspectives contentofedge-locatedcarboxylsandcarbonyls(lessthan1at.%)[26,27].Atthe sametime,theelementalanalysisoftheGOsynthesizedbythesemethodshasindicatedtheabsenceofsulfurandnitrogenspeciesinthematerial.

Higheroxidationdegreeandintroductionofasubstantialamountofcarboxyland carbonylsisachievedbytheGOsynthesisviathemethodproposedbyHummers andOffermanwiththereplacementofKClO3 andfumingHNO3 byKMnO4 and KNO3 inconcentratedH2 SO4 [28].ThishasallowedtoreducetheC/Oratioof thesynthesizedGOtotwoandlesswithsimultaneousincreaseinthecontentof carbonyls/carboxylsbyalmostthreetimestoapproximately3–4at.%[29].However, theHummersmethodalsoresultsintheappearanceofthetracesofsulfurand nitrogeninGO(upto6at.%)[30],likelytobeduetothecovalentlybondedsulfates andnitratesoradsorbedsulfuricandnitricacids[31].Thiseffect,despiteintuitive beingadisadvantagefortheGOsynthesis,canbeappliedforthedopingand chemicalmodificationofGO,whichwillbediscussedfurther.

Noteworthy,inthecaseoflargegraphiteflakes >50 μm,theproductofthe Hummersmethodinevitablycontainsunder-oxidizedparticleswithagraphitecore andanoxidizedshell,carryingoxygenicgroups.Moreover,thematerialsproduced byBrodie,Staudenmaier,orHummersmethodshaveshownadefectivestructureof thegraphenelayerwiththepresenceofholes,rips,andwrinklesduetotheoxidation reaction[32].AsolutionfortheseproblemswasforthefirsttimeproposedbyKovtyukhovabasedonthepre-expansionofgraphiteinaconcentratedH2 SO4 ,K2 S2 O8 , andP2 O5 forseveralhoursat80 ∘ S [33].Thisincreasedtheyieldofthefullyoxidized graphiteflakes.AnotherapproachwasproposedbyMarcanoetal.[15],which hasbecomethemostpopularamongothervariationsoftheHummersmethod andisknownasaTourmethod.TheauthorsproposedusingamixtureofH2 SO4 andH3 PO4 (9:1)insteadofconcentratedsulfuricacidaswellassixequivalentsof KMnO4 insteadofthreeaccordingtothestandardHummersprocedureandexcludingNaNO3 fromthereaction.ThishasresultedinthefurtherreductionoftheC/O ratioto1.7–1.9,anincreaseintheconcentrationoftheedge-locatedoxygenmoieties (carbonyls/carboxyls)[29],andamoreregularstructurewithfewerdefectsinthe basalplanecomparedtotheothermethods.However,thevolumeofacidsrequired fortheprocedureaccordingtotheproposedmethodisincrediblyhigh(400mlper 3gofgraphitevs.69mlinthestandardHummersmethod),whichisasignificant drawbackthathinderstoapplythisprocessforthemassproductionofGO.

Substantialalterationintherelativecontentofbasal-planeandedge-locatedoxygenicgroupscanbeachievedbythegraphiteoxidationusingK2 Cr2 O7 intheH2 SO4 solutioninthepresenceofNaNO3 firstproposedin2010[34].Itturnedoutthatthe GOobtainedbythismethodhasalowoxidationdegree[35,36],C/O = 2.8–3.1, duetotheminornumberoftheintroducedbasal-planehydroxylsandepoxides. Atthesametime,theoverallconcentrationsofcarboxylsandcarbonylsappeartobe higherthanthoseintheGOproducedbytheconventionalHummersorTourmethods,reachingupto7at.%aswasdemonstratedbyX-rayphotoelectronandX-ray absorptionspectra(Figure1.1).Nevertheless,thematerialisfairlystableinaqueoussolutions,andGOplateletshavealateralsizeof10–100 μm.Asaresult,this methodprovidesanintriguingopportunitytoobtainpartiallyoxidizedGOwitha

290288286284282

280285290295300305

Figure1.1 (a)C1sX-rayphotoelectronand(b)CKedgeX-rayabsorptionspectraofGO samples,synthesizedviaHummersandK2 Cr2 O7 oxidationmethods.

highnumberofchemicallyreactivecarboxylgroupswithouttheneedforadditional stepsofGOtreatment.Furthermore,itcanbesuggestedthatoxidationofgraphite withthemixofK2 Cr2 O7 andKMnO4 introducedindifferentrelativeconcentrations canbeperformed,allowingonetomanagetheoxidationdegreeofGOand,more importantly,therelativecontentofcarboxyls,carbonyls,andhydroxyls/epoxides. Besidesthechoiceofthespecificmethodofgraphiteoxidation,thechemistryof GOcanbetunedalsobytheadjustmentofthewateramount,temperatureanddurationofthereaction,typeofthegraphiteused,andexclusionofacertainreagent. Chenetal.haveshownthatacarefulcontrolofthewateraddedduringtheoxidationallowsonetomodulatethecontentofhydroxylandepoxidegroupsonGOsheets withoutsacrificingtheirstructuralintegrity[37].Atthesametime,theincreaseof thetemperatureupto95 ∘ Cinthelackofwaterresultsintheselectiveformation ofcarboxylgroups.Recently,wehaveshownthattheincreaseintheintercalation timeinthemodifiedHummersmethodfromseveralhourstoaboutaweekwith theuseofNaNO3 leadstofirstnitrationandthendopingofGOwithintroductionofupto5at.%ofnitrogen,predominantlyinthegraphiticform[38].Atthe sametime,covalentattachmentofsulfuricacidestersduringtheHummersoxidationwiththeirretentionuponthewashinginorganicsolventswasdemonstratedby Dimievetal.[39]andfurtherdiscussedbyGrovemanetal.[40].Thisdemonstrates thatapartfromoxygenicgroups,otherfunctionalgroupscanbeintroducedtoGO duringitssynthesisforvariouspracticalpurposeseventhoughatfirstsighttheycan beregardedascontaminatingimpurities.

Nevertheless,despitetheseachievements,GOsynthesisviavariousmethodsof liquid-phaseexfoliationgivesonlylimitedopportunitiesintheadjustmentofthe

1GrapheneChemicalDerivativesSynthesisandApplications:State-of-the-ArtandPerspectives chemistryofGOanditsderivatives.Theexactprinciplesandmechanismslying behindthegraphiteoxidationarestillnotwellunderstoodandareunderdiscussion, restrictingthedevelopmentofnewstrategiesfortheGOsynthesiswitharequired setofoxygenicorotherorganicgroups[41].Giventhis,electrochemicalsynthesis ofGOhasbeguntoberegardedasafacilestrategyforthispurpose.Electrochemicallysynthesizedgrapheneoxide(EGO)havingaC/Oratioof1.7,lowerthanthat inGOobtainedvialiquid-phaseexfoliation,canbeobtainedinhighyieldwithfew defects[42,43].However,thepoweroftheelectrochemicalsynthesismethodsisnot onlytheproductionofhighlyoxidizedGObutthesynthesisofvariousfunctionalizedgraphenelayers.Owingtothepossibilityofusingvariouselectrolytes,such asammonium,chloride,hydroxide,phosphate,nitrate,bromicandchloricacid, etc.,onecanobtaingraphenelayersfunctionalizedbynitrogen,sulfur,orhalogen (Cl,Br,I)containingorganicgroups.Moreover,onceobtainedEGOcanbeagainsubjectedtotheelectrochemicaloxidationorreductionusinganotherelectrolyte,allowingcomplexfunctionalizationofthegraphenelayerwithvarioustypesoforganic moieties.Thankstothisandsimplicityofthemethod,thepossibilityofre-usingof theelectrolytes,andabsenceofnecessityofexcessivewashing,theelectrochemical methodsareregardedasanextstepinthelarge-scalesynthesisofGOandCMGs withacontrollablechemistry[44].

1.3GrapheneOxideReductionandFunctionalization

TheveryfirststrategyproposedforthefurtherGOprocessingwasitsconversion intopristinegraphenebytheso-calledreductionprocess–eliminationofalloxygenicgroupstorestorethe π-conjugatedgraphenenetwork.Expectationswerethat suchanapproachwouldbeafacileroutetolarge-scaleandlow-costproductionof graphenewithdozensofvariousreductionmethodsproposed[23,45].However, theobtainedmaterial,reducedgrapheneoxide(rGO),appearedtobefarfromboth thetheoreticallyinvestigatedidealgrapheneandpristinegraphenesynthesizedvia mechanicalcleavageofgraphiteorchemicalvapordeposition(CVD)method[46]. Thisisduetotheincompleteremovaloftheoxygenicgroupsandtheintroduction ofstructuraldefectsduringthereductionprocesswhichevermethodisapplied.The contaminationofGOwiththeresidualsofthereducingagentappearedtobeanother significantproblem.ThetypicalvaluesoftheC/OratioreachedupontheGOreductionareabout12–40[23],typicallyoneorderofmagnitudelowercomparedtoCVD graphene.TheonlymethodforGOreductiondemonstrateduptodatetoprovidethe C/O > 75andaminornumberofstructuraldefectsishigh-temperatureannealing at1000–1100 ∘ Cintheinertatmosphere–aprocesscomparablebyitscomplexity andyieldwithCVDgrowthofgraphenewiththestillworsestructuralqualityofthe material.Apparently,theGOreductionhasentrenchedinthegraphenecommunity asasecondratemethodtomanufacturegrapheneforseveralapplicationswhere thequalityofgrapheneisnotthedeterminingfactor.Despitealargenumberofnew eco-friendly,facile,andhigh-yieldmethodsforGOreductionarestillbeingdevelopeduptodate,thisstrategyforthesynthesisofpristinegraphene,demonstrating suchdesiredphysicalproperties,becomesregardedasadeadend.

However,allchangesifweproceedfromconsideringGOreductionasjustaroute toobtainpristinegraphenetoregardingitasaversatilemethodforthesynthesis ofgraphenelayerfunctionalizedwithvariousorganicgroups.Withinthisconcept, theinitialpresenceofoxygenicgroupsinGO,theirtendencytoretainorbeingsubstitutedbyothermoieties,andincorporationofotherelementsintothegraphene networkuponreductiondrasticallytransformfromaproblemintoanadvantageous feature.ThegoaloftheGOprocessingshiftstothealterationofthetype,number,andspatialdistributionofmodifyingmoieties,takingthecontrolonthe π-conjugationrateandlocalelectronicstructureofgraphenelayersalongwiththeir chemicalreactivity(Figure1.2)[8,9,11].Theintroductionofdefectsalsocanbe translatedintoabeneficialfeaturewithinthisconcept,owingtotheirinfluenceon theelectronicstructureandpropertiesofgraphene.

Note,GOinheritsthisversatilityinfurthermodificationfromitsinitialchemistry, whereaspristinegrapheneischemicallyinert,withchemicalmodificationrequiring eithercomplicatedradiativemethodsorradicalchemistry[16,47].

TwogenerallinescanbedistinguishedintheconversionofGOintoCMGwith thecovalentlyattachedfunctionalgroups:(i)selectivereductionoroxidationof GOwiththeretentionorincreaseinconcentrationofacertainoxygenicgroup; (ii)substitutionalmodificationofGOwiththeremovalandpartialreplacement oftheoxygen-containingfunctionalitiesbyotherorganicgroups.Synthesisof carboxyl-richCMGsiswidelydisseminatedwithintheselectiveGOreduction. Suchaninterestarisesfromthewell-establishedchemistryofcarboxylicacid derivativesinorganicsynthesisandefficiencyofcarboxylsasanchoringpoints forthefurthercovalentmodificationwithbiomolecules,polymers,etc.Typically, selectivereductionofGOwiththepreservationofcarboxylscanbeperformedby low-temperatureannealingat150–200 ∘ C,whichislowerthanthetemperature

Figure1.2 TwostrategiesfortheGOprocessing:reductionandfunctionalization.Inthe formercase,thedesiredpristinegraphenecannotbeobtainedduetotheretainedoxygenic moieties,contaminationofgraphenelayer,andformationsofdefects.Oppositely,these featuresbecomeadvantageousinthecaseofgraphenefunctionalizationtosynthesize graphenechemicalderivatives.Source:AdaptedfromRefs.[8,9,11].

8

1GrapheneChemicalDerivativesSynthesisandApplications:State-of-the-ArtandPerspectives oftheirdissociation[48]or,chemically,byusingNaBH4 [49],thioureadioxide, orhydrazine[50,51].However,theconcentrationofcarboxylsintheinitialGOis low,varyingfrom2to4at.%withtheonlyexceptionofGOsynthesizedviaaforementionedoxidationwithpotassiumdichromate,whichcontainsupto6at.%of carboxyls[29,35].Thus,reductionmethodsthatadditionallyincreasethenumber ofcarboxylsareactivelydevelopednowadays,althoughonlyfewwerepresented. Pumeraetal.havesynthesizedcarboxyl-enrichedgraphenefromGOusingthe Kolbe–Schmittreaction[52],resultinginupto11at.%ofcarboxylgroupswitha negligibleamountofotheroxygenicgroups.Anotherapproachwassuggestedby Jankovskyetal.byrepetitiveoxidationofGOwithpotassiumpermanganatein anacidicenvironment[53].Theappliedmethodallowstoreachthecontentof carboxylsofupto11–15at.%,althoughalargenumberofhydroxylsarealsopresent inthematerial.Acarefultreatmentwithacombinationofhydrogenperoxideand ammoniaoranotherbasecanbeappliedtoobtaincarboxylatedgraphene,although thismethodalsoprovidescuttingofgraphenelayertonanoflakes[54].Apartfrom theliquidchemistrymethods,thephotochemicalsynthesisofthecarboxylated graphenecanbeperformed.Particularly,wehaveshownthatconcentrationof carboxylscanbeengineeredwithintherangeof3–11at.%withsimultaneous reductionofbasal-planegroupsviatheUVirradiationofGOfilmsintheargon atmosphere(Figure1.3)[55,57].Theproposedmethodiscompatiblewiththe lithographytechniques,butitsyieldissufficientlylowercomparedtoliquid-phase carboxylationprotocols.

Lessattentionisgainedtothecarbonylatedgraphenederivatives,although carbonylgroupscanactascentersforthenon-covalentcoordinationbondingandcontributetothereversiblepseudocapacitanceorbondingofmetal cations[58–60].Carbonylsaremorestablethancarboxyls,andbasal-plane

Figure1.3 (a)C1s,(b)O1sX-rayphotoelectron,and(c)CKedgeX-rayabsorptionspectra oftheinitialGO,carbonylatedgraphene(C-ny),carboxylatedgraphene(C-xy)synthesized accordingtothemethodsdescribedinRefs.[55,56].Source:AdaptedfromRabchinskii etal.[55,56].

functionalities[48]easilyretainintheGOuponitsreductionviasoftreducing agentsorlow-temperatureannealing.Theproblemis,analogouslytothecaseof carboxyls,thelowinitialcontentofcarbonyls–ofabout2–3at.%.Toovercome this,GOreductionmethods,inducingtheeliminationofhydroxylsaccordingto theE1cBmechanismwiththeprogressiveformationofcarbonyls,canbeapplied. Recently,wehaveshownthatsuchaprocessproceedsinthecaseofGOreduction usingsodiumsilicate[61],resultinginthecarbonylatedgraphenewithupto9at.% ofcarbonyls(Figure1.3).Almostatthesametime,Yuetal.havepresentedan alternativewaytosynthesizecarbonylatedgraphenecoveredbyupto6at.%via theGOtreatmentwiththediluteH3 PO4 andNaH2 PO4 solutions[62].Inboththe synthesizedCMGs,carbonylisthepredominantoxygenicgroup,withnegligible contentofotherfunctionalities.

CarboxylatedandcarbonylatedCMGsarerelativelystablegraphenederivatives regardinglow-temperatureheating,andotherexternaleffectsmaybeappliedduring theirapplication.However,thedrawbackiseitherperforationofthegraphenelayer ordisruptionofgrapheneflakestosmalleroneduringthesynthesissincecarboxyls andcarbonylslocateattheedgesofthegraphenenetwork(Figure1.4),requiring theincreaseofitsextenttoappearinlargenumbers[54,55,57].Carboxylscanbe attachedtotheGObasalplaneaswell[63],butinalowernumberandbeingless stable.Thus,structuralmodificationofthegraphenelayeruponcarboxylationand carbonylationandcorrespondingalterationofthegraphenechargetransportmust beconsidered.Ontheotherhand,performedinacontrollableway,thisfeature expandstheapplicationofCMGswithinthefieldofdesalination,considering theperforatedstructureofcarboxylated/carbonylatedgraphenewithchemically activeedgesofholes.

ApartfromthesetwooxygenicCMGs,preferentialfunctionalizationbyhydroxylsorepoxidesisdemonstratedtobeperformed.Onesuchtypeofreactionis hydroborationwhichcangiveGOwithanalmoststoichiometriccomposition (a) 100 nm50 nm (b)

Figure1.4 Transmissionelectronmicroscopyimagesofthe(a)carbonylatedgrapheneand (b)carboxylatedgrapheneplateletsobtainedaccordingtothemethoddiscussedinRefs. [55,56].Source:Rabchinskiietal.[55,56].

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.