High power microwave sources and technologies using metamaterials 1st edition john w. luginsland (ed

Page 1


High Power Microwave Sources and Technologies Using Metamaterials 1st Edition John W.

Luginsland (Editor)

Visit to download the full and correct content document: https://ebookmass.com/product/high-power-microwave-sources-and-technologies-usi ng-metamaterials-1st-edition-john-w-luginsland-editor/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Wideband Microwave Materials Characterization John W. Schultz

https://ebookmass.com/product/wideband-microwave-materialscharacterization-john-w-schultz/

High Power Impulse Magnetron Sputtering: Fundamentals, Technologies, Challenges and Applications 1st Edition Daniel Lundin

https://ebookmass.com/product/high-power-impulse-magnetronsputtering-fundamentals-technologies-challenges-andapplications-1st-edition-daniel-lundin/

The load-pull method of RF and microwave power amplifier design 1st Edition John Sevic

https://ebookmass.com/product/the-load-pull-method-of-rf-andmicrowave-power-amplifier-design-1st-edition-john-sevic/

The Load-pull Method of RF and Microwave Power Amplifier Design John F. Sevic

https://ebookmass.com/product/the-load-pull-method-of-rf-andmicrowave-power-amplifier-design-john-f-sevic/

Using Predictive Analytics to Improve Healthcare Outcomes 1st Edition John W. Nelson

https://ebookmass.com/product/using-predictive-analytics-toimprove-healthcare-outcomes-1st-edition-john-w-nelson/

Power Electronics 1st Edition Daniel W. Hart

https://ebookmass.com/product/power-electronics-1st-editiondaniel-w-hart/

Electrochemical Power Sources: Fundamentals, Systems, and Applications Tom Smolinka

https://ebookmass.com/product/electrochemical-power-sourcesfundamentals-systems-and-applications-tom-smolinka/

The High Stakes Rescue: A K9 Handler Romance (Disaster City Search and Rescue, Book 29) 1st Edition Jenna Brandt

https://ebookmass.com/product/the-high-stakes-rescuea-k9-handler-romance-disaster-city-search-and-rescue-book-29-1stedition-jenna-brandt/

Solving Urban Infrastructure Problems Using Smart City Technologies: Handbook on Planning, Design, Development, and Regulation 1st Edition John R. Vacca

https://ebookmass.com/product/solving-urban-infrastructureproblems-using-smart-city-technologies-handbook-on-planningdesign-development-and-regulation-1st-edition-john-r-vacca/

HighPowerMicrowaveSourcesandTechnologiesUsingMetamaterials

JónAtliBenediktsson AnjanBose DavidAlanGrier ElyaB.Joffe

IEEEPress

445HoesLane Piscataway,NJ08854

IEEEPressEditorialBoard EkramHossain, EditorinChief

XiaoouLi LianYong AndreasMolisch SaeidNahavandi

JeffreyReed DiomidisSpinellis SarahSpurgeon AhmetMuratTekalp

HighPowerMicrowaveSourcesandTechnologies UsingMetamaterials

JohnLuginsland ConfluentSciences,LLC Ithaca,NewYork

JasonA.Marshall NavalResearchLaboratory Washington,DC

ArjeNachman

AirForceOfficeofScientificResearch Arlington,VA

EdlSchamiloglu UniversityofNewMexico Albuquerque,NM

IEEEPressSeriesonRFandMicrowaveTechnology

Copyright©2022byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.

PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyany means,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection 107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,or authorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222 RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com. RequeststothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons, Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/ go/permission.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparing thisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontents ofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategies containedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate. Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhen thisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorshallbeliableforanylossofprofitor anyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomer CareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317) 572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationDataappliedfor : Hardback:9781119384441

CoverDesign:Wiley

CoverImage:©SaritaPrasad&SabahattinC.Yurt

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India 10987654321

Contents

EditorBiographies xi

ListofContributors xiii

Foreword xvii

Preface xix

1IntroductionandOverviewoftheBook 1

RebeccaSeviour

1.1Introduction 1

1.2ElectromagneticMaterials 2

1.3Effective-MediaTheory 4

1.4HistoryofEffectiveMaterials 4

1.4.1ArtificialDielectrics 4

1.4.2ArtificialMagneticMedia 5

1.5DoubleNegativeMedia 7

1.5.1DNGRealization 9

1.6BackwardWavePropagation 9

1.7Dispersion 10

1.8ParameterRetrieval 12

1.9Loss 13

1.10Summary 14 References 14

2MultitransmissionLineModelforSlowWaveStructuresInteractingwith ElectronBeamsandMultimodeSynchronization 17 AhmedF.Abdelshafy,MohamedA.K.Othman,AlexanderFigotin,andFilippoCapolino

2.1Introduction 17

2.2TransmissionLines:APreview 18

2.2.1MultipleTransmissionLineModel 18

2.3ModelingofWaveguidePropagationUsingtheEquivalentTransmission LineModel 20

2.3.1PropagationinUniformWaveguides 21

2.3.2PropagationinPeriodicWaveguides 22

2.3.3Floquet’sTheorem 24

2.4PierceTheoryandtheImportanceofTransmissionLineModel 25

2.5GeneralizedPierceModelforMultimodalSlowWaveStructures 28

2.5.1MultitransmissionLineFormulationWithoutElectronBeam:“ColdSWS” 28

2.5.2MultitransmissionLineInteractingwithanElectronBeam:“HotSWS” 30

2.6PeriodicSlow-WaveStructureandTransferMatrixMethod 32

2.7MultipleDegenerateModesSynchronizedwiththeElectronBeam 34

2.7.1MultimodeDegeneracyCondition 34

2.7.2DegenerateBandEdge(DBE) 34

2.7.3SuperSynchronization 35

2.7.4ComplexDispersionCharacteristicsofaPeriodicMTLInteractingwith anElectronBeam 38

2.8GiantAmplificationAssociatedtoMultimodeSynchronization 39

2.9LowStartingElectronBeamCurrentinMultimodeSynchronization-Based Oscillators 42

2.10SWSMadebyDualNonidenticalCoupledTransmissionLinesInsideaWaveguide 46

2.10.1DispersionEngineeringUsingDualNonidenticalPairofTLs 47

2.10.2BWODesignUsingButterflyStructure 49

2.11Three-EigenmodeSuperSynchronization:ApplicationsinAmplifiers 50

2.12Summary 53 References 54

3GeneralizedPierceModelfromtheLagrangian 57 AlexanderFigotinandGuillermoReyes

3.1Introduction 57

3.2MainResults 59

3.2.1LagrangianStructureoftheStandardPierceModel 59

3.2.2MultipleTransmissionLines 60

3.2.3TheAmplificationMechanismandNegativePotentialEnergy 60

3.2.4BeamInstabilityandDegenerateBeamLagrangian 61

3.2.5FullCharacterizationoftheExistenceofanAmplifyingRegime 61

3.2.6EnergyConservationandFluxes 62

3.2.7NegativePotentialEnergyandGeneralGainMedia 62

3.3Pierce’sModel 63

3.4LagrangianFormulationofPierce’sModel 65

3.4.1TheLagrangian 65

3.4.2GeneralizationtoMultipleTransmissionLines 67

3.5HamiltonianStructureoftheMTLBSystem 68

3.5.1HamiltonianFormsforQuadraticLagrangianDensities 68

3.5.2TheMTLBSystem 70

3.6TheBeamasaSourceofAmplification:TheRoleofInstability 71

3.6.1SpaceChargeWaveDynamics:EigenmodesandStabilityIssues 71

3.7AmplificationfortheHomogeneousCase 74

3.7.1AsymptoticBehavioroftheAmplificationFactoras �� → 0andas �� → ∞ 77

3.8EnergyConservationandTransfer 77

3.8.1EnergyExchangeBetweenSubsystems 78

3.9ThePierceModelRevisited 80

3.10MathematicalSubjects 82

3.10.1EnergyConservationviaNoether’sTheorem 82

3.10.2EnergyExchangeBetweenSubsystems 83

3.11Summary 84 References 84

4DispersionEngineeringforSlow-WaveStructureDesign 87 UsheChipengo,NiruK.Nahar,JohnL.Volakis,AlanD.R.Phelps,andAdrianW.Cross

4.1Introduction 87

4.2MetamaterialComplementarySplitRingResonator-BasedSlow-WaveStructure 88

4.2.1ComplementarySplitRingResonatorPlate-LoadedMetamaterialWaveguide: Design 89

4.2.2ComplementarySplitRingResonatorPlate-LoadedMetamaterialWaveguide: FabricationandColdTest 92

4.3BroadsideCoupledSplitRingResonator-BasedMetamaterialSlow-WaveStructure 94

4.3.1Broadside-CoupledSplitRing-LoadedMetamaterialWaveguide:Design 94

4.3.2Broadside-CoupledSplitRing-LoadedMetamaterialWaveguide:Fabricationand ColdTest 97

4.4IrisRing-LoadedWaveguideSlow-WaveStructurewithaDegenerateBandEdge 97

4.4.1IrisLoaded-DBESlow-WaveStructure:Design 100

4.4.2Iris-LoadedDBESlow-WaveStructure:FabricationandColdTest 102

4.5Two-DimensionalPeriodicSurfaceLattice-BasedSlow-WaveStructure 102

4.5.1Two-DimensionalPeriodicSurfaceLatticeSlow-WaveStructure:Design 104

4.5.2Two-DimensionalPeriodicSurfaceLatticeSlow-WaveStructure:Fabricationand ColdTest 106

4.6CurvedRing-BarSlow-WaveStructureforHigh-PowerTravelingWaveTube Amplifiers 107

4.6.1CurvedRing-BarSlow-WaveStructure:Design 108

4.6.2CurvedRing-BarSlow-WaveStructure:FabricationandColdTesting 112

4.7ACorrugatedCylindricalSlow-WaveStructurewithCavityRecessionsandMetallic RingInsertions 114

4.7.1DesignofaCorrugatedCylindricalSlow-WaveStructurewithCavityRecessionsand MetallicRingInsertions 116

4.7.2FabricationandColdtestingofaHomogeneous,CorrugatedCylindricalSlow-Wave StructurewithCavityRecessionsandMetallicRingInsertions 119

4.7.3InhomogeneousSWSdesignbasedontheCorrugatedCylindricalSWSwithCavity RecessionsandMetallicRingInsertions:FabricationandColdTesting 121

4.8Summary 123 References 123

5PerturbationAnalysisofMaxwell’sEquations 127

RobertLipton,AnthonyPolizzi,andLokendraThakur

5.1Introduction 127

5.2GainfromFloatingInteractionStructures 129

5.2.1AnisotropicEffectivePropertiesandtheDispersionRelation 130

5.2.2APierce-LikeApproachtoDispersion 133

5.3GainfromGroundedInteractionStructures 133

5.3.1ModelDescription 134

5.3.2PhysicsofWaveguidesandMaxwell’sEquations 134

5.3.3PerturbationSeriesforLeadingOrderDispersiveBehavior 137

5.3.4LeadingOrderTheoryofGainforHybridSpaceChargeModesforaCorrugatedSWS withBeam 138

5.3.4.1HybridModesinBeam 140

5.3.4.2ImpedanceCondition 141

5.3.4.3ColdStructure 141

5.3.4.4PierceTheory 142

5.4ElectrodynamicsInsideaFinite-LengthTWT:TransmissionLineModel 142

5.4.1SolutionoftheTransmissionLineApproximation 145

5.4.2DiscussionofResults 145

5.5CorrugatedOscillators 148

5.5.1OscillatorGeometry 148

5.5.2SolutionsofMaxwell’sEquationsintheOscillator 149

5.5.3PerturbationExpansions 151

5.5.4LeadingOrderTheory:TheSubwavelengthLimitoftheAsymptoticExpansions 151

5.5.5DispersionRelationfor ���� 152

5.6Summary 154 References 154

6SimilarityofthePropertiesofConventionalPeriodicStructureswith MetamaterialSlowWaveStructures 157 SabahattinYurt,EdlSchamiloglu,RobertLipton,AnthonyPolizzi,andLokendraThakur

6.1Introduction 157

6.2Motivation 157

6.3Observations 159

6.3.1AppearanceofNegativeDispersionforLow-OrderWaves 159

6.3.2EvolutionofWaveDispersioninUniformPeriodicSystemswithIncreasing CorrugationDepth 160

6.3.2.1SWSwithSinusoidalCorrugations 161

6.3.2.2SWSwithRectangularCorrugations 164

6.4AnalysisofMetamaterialSurfacesfromPerfectlyConductingSubwavelength Corrugations 168

6.4.1Approach 169

6.4.2ModelDescription 169

6.4.2.1PhysicsofWaveguidesandMaxwell’sEquations 170

6.4.2.2Two-ScaleAsymptoticExpansions 172

6.4.2.3LeadingOrderTheory:TheSubwavelengthLimitoftheAsymptoticExpansions 172

6.4.2.4NonlocalSurfaceImpedanceFormulationforTimeHarmonicFields 173

6.4.2.5EffectiveSurfaceImpedanceforHybridModesinCircularWaveguides 174

6.4.3MetamaterialsandCorrugationsasMicroresonators 175

6.4.4ControllingNegativeDispersionandPowerFlowwithCorrugationDepth 177

6.4.5Summary 182 References 182

7GroupTheoryApproachforDesigningMTMStructuresforHigh-Power MicrowaveDevices 185

HamideSeidfaraji,ChristosChristodoulou,andEdlSchamiloglu

7.1GroupTheoryBackground 185

7.1.1SymmetryElements 186

7.1.2SymmetryPointGroup 187

7.1.3CharacterTable 187

7.2MTMAnalysisUsingGroupTheory 188

7.2.1SplitRingResonatorBehaviorAnalysisUsingGroupTheory 189

7.2.1.1PrinciplesofGroupTheory 189

7.2.1.2BasisCurrentinSSRs 191

7.3InverseProblem-SolvingUsingGroupTheory 194

7.4DesigninganIdealMTM 195

7.5ProposedNewStructureUsingGroupTheory 195

7.6DesignofIsotropicNegativeIndexMaterial 197

7.7MultibeamBackwardWaveOscillatorDesignusingMTMandGroupTheory 199

7.7.1IntroductionandMotivation 199

7.7.2MetamaterialDesign 200

7.7.3TheoryofElectronBeamInteractionwithMetamaterialWaveguide 203

7.7.4HotTestParticle-in-CellSimulations 204

7.8Particle-in-CellSimulations 204

7.9Efficiency 207

7.10Summary 208 References 209

8Time-DomainBehavioroftheEvolutionofElectromagneticFieldsin MetamaterialStructures 211

MarkGilmore,TylerWynkoop,andMohamedAzizHmaidi

8.1Introduction 211

8.2ExperimentalObservations 212

8.2.1BandstopFilter(BSF)System 215

8.2.2BandpassFilter(BPF)System 217

8.3NumericalSimulations 224

8.3.1BandstopSystem(BSF) 225

8.3.2BandpassFilterSystem(BPF) 226

8.3.3Experiment-ModelComparison 227

8.4AttemptsataLinearCircuitModel 229 References 230

9MetamaterialSurvivabilityintheHigh-PowerMicrowaveEnvironment 233 RebeccaSeviour

9.1Introduction 233

9.2SplitRingResonatorLoss 234

x Contents

9.3CSRRLoss 237

9.4ArtificialMaterialLoss 239

9.5Disorder 241

9.6Summary 242 References 244

10ExperimentalHotTestofBeam/WaveInteractionswithMetamaterialSlow WaveStructures 245

MichaelA.Shapiro,JasonS.Hummelt,XueyingLu,andRichardJ.Temkin

10.1First-StageExperimentatMIT 246

10.1.1MetamaterialStructure 246

10.1.2ExperimentalResults 247

10.1.3SummaryofFirst-StageExperiments 251

10.2Second-StageExperimentatMIT 251

10.3MetamaterialStructurewithReverseSymmetry 252

10.4ExperimentalResultsonHigh-PowerGeneration 255

10.5FrequencyMeasurementinHotTest 257

10.6SteeringCoilControl 262

10.7UniversityofNewMexico/UniversityofCaliforniaIrvineCollaborationonaHigh PowerMetamaterialCherenkovOscillator 264

10.8Summary 264 References 265

11ConclusionsandFutureDirections 267

JohnLuginsland,JasonA.Marshall,ArjeNachman,andEdlSchamiloglu References 268

Index 271

EditorBiographies

JohnLuginsland –Dr.JohnLuginslandisaseniorscientistatConfluentSciences,LLCandan adjunctprofessoratMichiganStateUniversity.Previously,heworkedatAFOSRservingasthe plasmaphysicsandlasersandopticsprogramofficer,aswellasinvarioustechnicalleadership roles.Additionally,heworkedforSAICandNumerEx,aswellasthedirectedenergydirectorateof theAirForceResearchLaboratory(AFRL).HeisafellowoftheIEEEandAFRL.Hereceivedhis BSE,MSE.,andPhDinnuclearengineeringfromtheUniversityofMichiganin1992,1994,and 1996,respectively.

JasonA.Marshall –Dr.JasonA.Marshallistheassociatesuperintendent,PlasmaPhysics Division,NavalResearchLaboratory.Priortothis,hewasaprincipalscientistwiththeAir ForceOfficeofScientificResearchresponsibleformanagementandexecutionoftheAirForce basicresearchinvestmentsinPlasmaandElectro-energeticPhysics.HereceivedBSdegreesin anthropologyandchemistryfromEasternNewMexicoUniversityin1994and1995,respectively; anMSdegreeinchemistryfromWashingtonStateUniversityin1998;andaPhDinchemical physicsfromWashingtonStateUniversityin2002.

ArjeNachman –Dr.ArjeNachmanistheprogramofficerforelectromagneticsatAFOSR.He hasworkedatAFOSRsince1985.Beforethat,hewasonthemathematicsfacultyofTexasA&M andOldDominionUniversity,andaseniorscientistatSouthwestResearchInstitute(SwRI).Dr. NachmanreceivedaBSincomputerscienceandappliedmathematicsin1968fromWashington University(St.Louis)andaPhDinMathematicsin1973fromNYU.

EdlSchamiloglu –Dr.EdlSchamilogluisadistinguishedprofessorofelectricalandcomputer engineeringattheUniversityofNewMexico,wherehealsoservesasassociatedeanforresearch andinnovationintheSchoolofEngineering,andspecialassistanttotheProvostforLaboratory Relations.HeisafellowoftheIEEEandtheAmericanPhysicalSociety.HereceivedhisBSand MSfromColumbiaUniversityin1979and1981,respectively,andhisPhDfromCornellUniversity in1988.

ListofContributors

AhmedF.Abdelshafy DepartmentofElectricalEngineeringand ComputerScience,TheUniversityof CaliforniaatIrvine Irvine,CA USA

FilippoCapolino DepartmentofElectricalEngineeringand ComputerScience,TheUniversityof CaliforniaatIrvine Irvine,CA USA

UsheChipengo AnsysInc. Canonsburg,PA USA

ChristosChristodoulou DepartmentofElectricalandComputer Engineering,UniversityofNewMexico Albuquerque,NM USA

AdrianW.Cross DepartmentofPhysics UniversityofStrathclyde Glasgow,Lanarkshire UK

AlexanderFigotin DepartmentofMathematics,TheUniversityof CaliforniaatIrvine Irvine,CA USA

MarkGilmore DepartmentofElectricalandComputer Engineering,UniversityofNewMexico Albuquerque,NM USA

MohamedAzizHmaidi Luxoft

FarmingtonHills,MI USA

JasonS.Hummelt DiamondFoundry SantaClara,CA USA

RobertLipton DepartmentofMathematics,LouisianaState University

BatonRouge,LA USA

XueyingLu NorthernIllinoisUniversity DeKalb,IL USA

JohnLuginsland ConfluentSciences,LLC Albuquerque,NM USA

JasonA.Marshall NavalResearchLaboratory Washington,DC USA

ArjeNachman AirForceOfficeofScientificResearch Arlington,VA USA

NiruK.Nahar ElectroscienceLaboratory,TheOhioState University Columbus,OH USA

MohamedA.K.Othman SLACNationalAcceleratorLaboratory, StanfordUniversity MenloPark,CA USA

AlanD.R.Phelps DepartmentofPhysics UniversityofStrathclyde Glasgow,Lanarkshire UK

AnthonyPolizzi SynovusFinancial Columbus,GA USA

GuillermoReyes DepartmentofMathematics,Universityof SouthernCalifornia LosAngeles,CA USA

EdlSchamiloglu DepartmentofElectricalandComputer Engineering,UniversityofNewMexico Albuquerque,NM USA

HamideSeidfaraji MicrosoftCorporation Kirkland,WA USA

RebeccaSeviour SchoolofComputingandEngineering, UniversityofHuddersfield Huddersfield UK

MichaelA.Shapiro PlasmaScienceandFusionCenter,MIT Cambridge,MA USA

RichardJ.Temkin PlasmaScienceandFusionCenter,MIT Cambridge,MA USA

LokendraThakur MIT-HarvardBroadInstitute Cambridge,MA USA

JohnL.Volakis

CollegeofEngineeringandComputing, FloridaInternationalUniversity Miami,FL

USA

TylerWynkoop BAESystems,Inc. Minneapolis,MN USA

SabahattinYurt

QualcommTechnologies,Inc.

SanDiego,CA USA

Foreword

Sinceitsinceptionin1985,theDepartmentofDefense’sMultidisciplinaryUniversityResearchInitiative(MURI)programhasconvenedteamsofinvestigatorswiththehopethatcollectiveinsights drawnfromresearchacrossmultipledisciplinescouldfacilitatetheadvancementofnewlyemergingtechnologiesandaddressthedepartment’suniqueproblemsets.Developedincollaboration betweenthemilitaryservicesandtheOfficeoftheSecretaryofDefense,MURItopicsandthe teamschosentoexecutetheresearchrepresentadedicatedsourceofinnovationforscienceand technologysolutionstohardnationalsecurityproblems.Thesehighlycompetitiveawardscomplementandaugmentthetraditionalbasicresearchinitiativesthatsupportsingle-investigatorgrants withresearchprogramsthatcandrawonawiderangeofresearchersanddisciplines.Furthermore, longerperiodsofperformanceallowtheseMURIstostartnewresearchareasattheintersectionof multiplefieldsofstudy.Thecombinationofsignificantandsustainedsupportinareascriticalto NationalSecurityandtheDepartmentofDefense’smissionprovidethepotentialforgamechanging advancementinscienceandtechnology.

Thisvolume,editedbyDrs.JohnLuginsland,JasonA.Marshall,ArjeNachman,andEdl Schamiloglu,summarizestheaccomplishmentsoftheFY12MURIconsortium,whichwas awardedanAFOSRgrantonTransformationalElectromagnetics.Drs.Luginsland,Marshall,and Nachman(AFOSR)wereprogramofficersforthisMURI,andDr.Schamiloglu(UniversityofNew Mexico)wastheconsortiumPI.TheotherPIsonthisMURIwereDr.RichardTemkin(MIT),Dr. JohnVolakis(TheOhioStateUniversityandtowardtheendFloridaInternationalUniversity), Dr.AlexanderFigotin(UCIrvine),andDr.RobertLipton(LouisianaStateUniversity).The contributorstothisvolumewerethefaculty,staff,andgraduatestudentsinvolvedinperforming theresearch.

ThesuccessofthisMURIisaresultofthehardworkandinternationallyrecognizedexpertiseofthesponsoredresearchers.Asaplasmaphysicistmyself,Icertainlyappreciatethechallengesinadvancingthestate-of-the-artindirectedenergymicrowavesources.Thefiveuniversities, guidedbytheMURI’sAdvisoryBoardwithmembersfromtheAirForceResearchLaboratory,Los AlamosNationalLaboratory,andindustry,haveadvancedtheunderstandingofanewgeneration ofdirectedenergymicrowavecapabilitythatintroducesmetamaterialsintotheirbeam-waveinteractionstructures.Conventionalmicrowavevacuumelectronicshasadvancedenormouslyfrom continuousresearchfornearlyacentury.Metamaterial-baseddeviceshavebeenexploredforless thanadecade,soonecanonlyimaginewhatadvanceswillberealizedinthefuture.

IcommendtheAFOSRprogramofficersforsuccessfullycreatingsuchaMURItopic,andI commendthePIandhisteamforsuccessfullyexecutingthisaward.Thisisanexampleofhow multidisciplinaryteamsaccelerateresearchthroughcross-fertilizationofideas.Sucheffortsalso hastenthetransitionofbasicresearchfindingstopracticalapplicationsand,importantly,trainthe

nextgenerationofthescienceandengineeringworkforceinareasofparticularimportancetothe U.S.DoD.

Insummary,Iamverypleasedtohavethisvolumeasanarchivalrecordofthissuccessful five-yeareffort.Theeditorshavedoneamasterfuljobofworkingwiththeresearcherstocollate thishugemassofvaluableinformationintoaconsistentwhole.Thisvolumeisawonderfulwayof disseminatingtheadvancesfromthisMURItonewstudents,andalsotopractitioners,inthefield seekingtounderstandhowmetamaterialscanbeexploitedtodesignanewgenerationofintense microwavesources.

2004–2010

BrendanB.Godfreyisretiredfromacareerofresearchmanagementingovernmentandindustry, mostrecentlyaspartoftheSeniorExecutiveService(SES).Heisafull-timevolunteer,notonlyprincipallyforIEEE-USA,butalsoforIEEE-NuclearandPlasmaSciencesSociety,theNationalAcademies, LawrenceBerkeleyNationalLaboratory,andArsLyricaHouston.Hehasledorganizationswithas manyas1500peopleandbudgetsaslargeasUS$500million.HewasdirectoroftheAirForceOffice ofScientificResearchfrom2004to2010.Hispersonalresearchcentersonintense-chargedparticle beams,high-powermicrowavesources,andcomputationalplasmamethods.HeisanIEEEFellow andAmericanPhysicalSocietyFellow,andholdsaPhDfromPrincetonUniversity.

Preface

Aristotleidentifiedadistinctionbetweennaturalandartificialthings.Heascribedthedifference tomotionandchange.Naturalthingshaveasourceofmotionorchangewithinthem.Artificial thingsdon’thaveanysourceofchangeinthem,sotheyneedanexternalcause.Inthisbook,we explorethechangeinartificialmaterialscausedbyhigh-powerelectromagneticradiation.

Thisbookpresentsasnapshotintimeofthestatusofresearchonhigh-powermicrowave(HPM) sourcesandtechnologiesusingmetamaterials circa 2021.Thefocusofthisbookisonresearchthat resultedfromanFY2012AirForceOfficeofScientificResearch(AFOSR)MultidisciplinaryUniversityResearchInitiative(MURI)awardonTransformationalElectromagneticsthatwasfunded foroverUS$7.5millionandforoverfiveyears.Theawardwasalsosupplementedwithsubstantial DefenseUniversityResearchInstrumentationProgram(DURIP)grants.ThisMURIawardbuilds ondecadesofAFOSRsupportforHPMresearch.TheexplorationofmetamaterialsessentiallydoublesthespaceofmaterialsthatcanbeexploitedinthedesignofHPMsources,aspacepreviously occupiedbyonlyconventionalmetals.

Oneoftheeditors(ES)wastheleadPrincipalInvestigator(PI)ontheawardandtheremaining editors(JL,JAM,andAN)servedasprogramofficersforpartoralloftheaward.

TheteamofuniversityresearcherswasledbytheUniversityofNewMexico(ES)andincluded MIT(RichardTemkin,PI),theOhioStateUniversity(JohnVolakis,PI),theUniversityofCaliforniaatIrvine(AlexFigotin,PI),andLouisianaStateUniversity(RobertLipton,PI).Thetitleof theirproposalwas InnovativeUseofMetamaterialsinConfining,Controlling,andRadiatingIntense MicrowavePulses.

SupportingthisMURIteamwerecollaboratorsattheAirForceResearchLaboratory’s(AFRL’s) DirectedEnergy(DE)Directorate(Dr.RobertE.Peterkin,ChiefScientistforAFRL’sDirectorateat thetime).Inaddition,anesteemedgroupofscientistsservedastheadvisoryboardforthisMURI, providingfeedbackandguidance.MembersoftheAdvisoryBoardwere:

● Dr.DaveAbe,NavalResearchLaboratory,Washington,DC

● Dr.RichardAlbanese,ADEDCo.,SanAntonio,TX

● Dr.CarterArmstrong,L-3CommunicationsEDD,SanCarlos,CA

● Dr.BruceCarlsten,LosAlamosNationalLaboratory,LosAlamos,NM

● Mr.CharlesChase,LockheedMartin,Palmdale,CA

● Mr.ChuckGilman,SAIC,Albuquerque,NM(Retired)

● Dr.JohnPetillo,LeidosCorp.,Billerica,MA

● Dr.DonSullivan,Raytheon,Albuquerque,NM

● Dr.JeffreyP.Tate,RaytheonSpaceandAirborneSystems,ElSegundo,CA

● Dr.PravitTulyathan,Boeing,HuntingtonBeach,CA(Retired)

Chapter1,writtenbyRebeccaSeviour,presentsanintroductiontometamaterialsandthescope ofthebook.Chapter2,ledbyAhmedF.Abdelshafy,presentsamultitransmissionlinemodelfor beam/waveinteractionstructures.Chapter3,ledbyAlexFigotin,presentsageneralizedPierce modelfromtheLagrangian.Chapter4,ledbyUshemadzoroChipengo,reviewsdispersionengineeringforslow-wavestructuredesign.Chapter5,ledbyRobertLipton,presentsaperturbation analysisofMaxwell’sequations.Chapter6,ledbySabahattinYurt,presentsacomparisonofthe propertiesofconventionalperiodicstructureswithdeepcorrugationwiththoseofmetamaterials. Chapter7,ledbyHamideSeidfaraji,presentsagrouptheoryapproachfordesigningmetamaterial structuresforHPMdevices.Chapter8,ledbyMarkGilmore,describesthetemporalevolution ofmicrowaveelectromagneticfieldsinmetamaterialstructures.Chapter9,writtenbyRebecca Seviour,discussesmetamaterialsurvivabilityintheHPMenvironment.Chapter10,ledbyMichael A.Shapiro,presentshottestresultsofbeam/waveinteractionwithmetamaterialsstructures. Finally,Chapter11,writtenbytheeditorspresentstheconclusionsandfuturedirections.

TheproceedsfromthesalesofthisbookwillbedirectedtotheSUMMAFoundation,aphilanthropicorganizationthatsupportsscholarshipsforstudentsstudyingandscientificworkshopson thesubjectofhigh-powerelectromagnetics(http://ece-research.unm.edu/summa/).

Finally,specialthanksgotoDustinFisherforconvertingoriginalWorddocumentstoLATEX. WealsothankDr.BrendanGodfreyforgraciouslyagreeingtocontributetheForewordtothis book.SpecialthanksalsogotoMaryHatcher,TeresaNetzler,andVictoriaBradshawatWileyfor supportingthisprojectandpatientlyawaitingcompletionofthemanuscript.

JohnLuginsland

Albuquerque,NM JasonA.Marshall ArjeNachman EdlSchamiloglu

IntroductionandOverviewoftheBook

RebeccaSeviour

UniversityofHuddersfield,SchoolofComputingandEngineering,Queensgate,HuddersfieldHD13DH,UK

1.1Introduction

High-powermicrowaves(HPMs),ordirectedenergyRF,isanevolutionofvacuumelectrondevices (VEDs)thatseekstogeneratethehighestpeakpowerlevelsinthefrequencyrangeof100sMHz through100GHz(andevenhigherfrequencies)inshortpulses(10–100snsinduration)thatcan berepetitivelypulsed[1,2].Theycameontothesceneinthelate1960sfollowingtheadventof pulsedpowerdriversthatnotonlyprovidedhigh-energyelectronbeams(intheorderofaMeV andhigher),butconcomitantlyprovidedhighcurrentsaswell(1–10’skA)[3].SimilartoVEDs,the electronbeamisthepowersourcefromwhichthemicrowavesgrow.UnlikeVEDs,HPMsources havemuchless-stringentvacuumandmaterialrequirementssincetheirapplicationstendtobe limitedinscopewithshortmissiontimes.

Thestate-of-the-artinthepracticeofHPMsourceshasbeenledbyintensebeam-drivenoscillatorswhoseoutputscaleas Pf 2 ,where P isthepeakoutputmicrowavepowerand f istheoperating frequency[2,4].ThisistheFigure-of-Merit(FOM)forHPMoscillators.TheequivalentFOMfor HPMamplifiersis Pf Δf where Δf isthebandwidth(BW).Untilrecently,conventionalwisdomsuggestedthatforemergingdefenseapplications,thehighestpowerontarget(highestintensityfield) wasofgreatestutility.However,recentadvancesintheunderstandingoftheinteractionofintense microwavefieldswithcomponentsandcircuitsarguethatatailoredwaveformsynthesizedatlow powerandamplifiedtoveryhighpower,mightprovideevensuperiorcapabilities.Thisistermed waveformdiversity.Consideracomparisonofthestate-of-the-artoscillatorandamplifierinterms oftheFOM:(i)theITER/DIII-D’splasma-heatinggyrotronoscillatorat110GHz,1MW(10spulse), 1.1MHzBW,hasaFOM1.2 × 1012 W-GHz2 andessentiallynoBW.(ii)Haystackradar’sgyrotron amplifierat94GHz,55kWoutputpower(5.5kWaverage),1600MHzBWyieldsaFOM8.3 × 106 W-GHz2 .Thus,thereisa2order-of-magnitudeopportunitytoadvancetheFOMinhigh-power amplifierswithconsiderableBW.

Interestinmetamaterials(MTMs)grewrapidlyfollowingthepublicationofPendry[5]and itspracticalimplementationbySmithafterwards[6].Asdiscussedinthischapter,thehistoryof MTMsdatesbacktothenineteenthcenturywithnumerouscontributors,manyofwhomhaveonly recentlybeenrediscovered.Thishistoryhasbeenreviewedinseveralbooks[7,8]andcontinues tobeunraveled.

WhilenumerousbookshavebeenwrittenontheEMpropertiesofMTMs,alloftheapplicationsthathavebeendescribedinthesebooksto-dateareatlow-powerlevels.Inthisbook,we HighPowerMicrowaveSourcesandTechnologiesUsingMetamaterials,FirstEdition. EditedbyJohnLuginsland,JasonA.Marshall,ArjeNachman,andEdlSchamiloglu. ©2022TheInstituteofElectricalandElectronicsEngineers,Inc.Published2022byJohnWiley&Sons,Inc.

bringtogetheradvancesthathavebeenmadeinstudyingMTMsasslow-wavestructures(SWSs) foractiveelectronbeam-drivenHPMdevices.WediscussstructuresthatsatisfyWasler’sdefinition ofaMTM(seeSection1.2),andwealsodescribeperiodicSWSswithdegeneratebandedges(DBEs) thatdonotsatisfythisdefinition,yetdooffernovelengineereddispersionrelationsthatarerelevanttoouroverallgoal-seekingtodiscovernovelbeam/waveinteractionsthatcanbeexploitedfor newHPMamplifiers.

1.2ElectromagneticMaterials

InmanyVEDs,theparticlewaveinteractionismediatedinpartviaamaterial,wherethefunctionalityofthematerialmanipulatestheelectromagnetic(EM)waveinacontrolledfashion.The creativityofengineerstoconstructnewdevicesislargelylimitedbytheEMpropertiesofavailablematerialsandtheabilitytoprecisionengineergeometriesfromthesematerials.Ofcourse, wearenotrestrictedtonaturallyoccurringmaterials;fordecades,RFengineershaveusedmaterialssynthesizedatthemolecularlevelwithpeculiarRFproperties,suchasPolytetraflufoethylene (TeflonTM )andHfO2 .ThesemolecularsynthesizedmaterialscanbeusedinVEDstomodifythe behaviorofanEMwaveinausefulmanner.Inasimplisticform,thisbehaviorbetweenwaveand materialisdescribedviatheconstitutiverelations:

D(k,��)= �� (k,��)E(k,��) B(k,��)= �� (k,��)H(k,��

Herethepermittivity(�� )andthepermeability(�� )arethecomplexaveragedEMresponsefunctionsofthemoleculesthatmakeupthematerialduetotheinteractionwiththeelectricandmagneticcomponentsofanincidentwave.Themoleculesinthematerialrespondtotheincident EMwavebyformingdipoles,andtheseindividualresponsesareaveragedoverallmoleculesina volume ≈ ��3 toyieldthepermittivityandpermeability.Thisaveragingprocessdiscussedfurtherin Section1.3evenholdsforgasesasthenumberofmoleculesisstilllargeenoughthattheparameters �� and �� accuratelydescribetheinteractionofanEMwavewellintoultravioletfrequencies.

As �� and �� aretheprimaryparametersthatdefineamaterialsresponsetoanEMwaveitisusefultocategorizematerialsbasedontherealcomponentsofthesetwoparameters,asshownin Figure1.1.MaterialsintheupperrightquadrantofFigure1.1areoftentermedDoublePositive Media(DPM),commondielectricmaterials,suchasPolytetraflufoethylene,Al2 O3 .Theupper-left andlower-rightquadrantsofFigure1.1arethesinglenegativemedia,suchasplasmasormetals withanegativepermittivityandnegativepermeabilitymaterialssuchas“wet”icecrystals.Unlike theDPMthesesingle-negativemediaonlyallowevanescentwavetransport.Thelower-leftquadrantofFigure1.1representsaspecialcaseofmaterialswherebothpermittivityandpermeability aresimultaneouslynegative.TheseDoubleNegativematerials(DNGs)liketheirdouble-positive counterpartssupportwavepropagationthoughthemedia.ThekeydifferencebetweentheDNG quadrantandtheotherthreeisthatsingle-negativeanddouble-positivemediaalloccurnaturally, whereasweareyettofindanaturallyoccurringDNGmedia.

Althoughpresentingfantasticopportunities,molecularsynthesizedmaterialsarelimitedinthe rangeofRFpropertiestheycanproduceduetothenatureoftheEMinteractionwiththemolecules ofthematerial.Aninteractionwherethelight-massnegativelychargedelectronssurroundingthe relativelylarge-masspositivelychargednucleusoftheatomsmoveinresponsetoanEMwave formingadipole.Thisresponseisfixedbyboththefundamentalproperties(charge,mass)and thechemicalbondsformedinthematerial,limitingtheavailableparameterrange �� and �� these

Figure1.1 Broadcategorizationofmaterials basedontherealcomponentsofthepermittivity andpermeability.

ENG

Electric NeGative media (ENG)

i.e. Plasmas, metals

DNG

Double NeGative media (DNG)

i.e. Metamaterials

Normal materials

Double Positive Media (DPM)

MNG

Magnetic NeGative media (MNG)

i.e. wet ice crystals

materialscanaccess.Theselimitationshaveledscientistsandengineerstocreatearangeofartificialcompositestructureswithperiodicsubwavelengthfunctionalinclusions.Althoughtheseinclusionsaremanyordersofmagnitudelargerthanthemoleculesoftheconstitutivematerials,theyare stillmuchsmallerthattheEMwavelengthofinterest.Inthiscase,toanincidentEMwave,these inclusionsrespondnodifferentlythangiantmoleculeswithaverylargepolarizability.Thisenables theinteractionsbetweenwaveandthecollectivestructurestobedescribedintermsofthe“homogenized”abstractedbulkmaterialparameterspermittivityandpermeability.Treatingthecollective periodicstructuresinthishomogenizedmanneriscalledan“effective”mediumormaterial.This approachintheoryallowstheengineertofabricateartificialeffectivematerialswithspecificengineeredEMproperties,mostnotableofwhichisthecreationoftheaboveDNGmaterials.Thereare ofcourserestrictionsonachievablephysicalmaterialpropertiesthatareimpossibletoengineer, suchasthecreationofmediawherewavespropagatewithgroupvelocitiesgreaterthanthespeed oflightinvacuum.

Around20yearsago,theword“MTM”enteredthelexicontorefertocertaintypesofeffective media.Eventhoughalargenumberofpeer-reviewedpapersusingtheword“MTM”havebeen publishedanagreeddefinitionofwhataMTMisremainselusive.Theoriginoftheword“meta” fromtheGreek“beyond”impliesinsomesensethat“metamaterials”areaformofmaterial beyondconventionalmaterials.Sourcessuggesttheterm“MTM”wasfirstcoinedbyRodger Walserin1999[9],whodefinedaMTMas;“... macroscopiccompositeshavingman-made,threedimensional,periodiccellulararchitecturedesignedtoproduceanoptimizedcombination,not availableinnature,oftwoormoreresponsestospecificexcitation.”WhereastheMetamorphose Networkdefinesametamaterialas“... anarrangementofartificialstructuralelements,designed toachieveadvantageousandunusualelectromagneticproperties”[10].

ThislaterdefinitionalthoughencompassingtheWalserdefinitioncouldbeconsideredtoo “broad,”as,forexampleitdoesnotrecognizethecriticaldifferencesbetweenMTMs,photonics structures,andotherman-madestructuressuchasmulti-input,multi-output(MIMO)antenna arrays.ToquoteCaiandShalaev[8];“Metamaterialsare,aboveall,man-madematerials.Thestructuralunitsofametamaterial,knownasmeta-atomsormetamolecules,mustbesubstantiallysmaller thanthewavelengthbeingconsidered,andtheaveragedistancebetweenneighboringmetaatoms isalsosubwavelengthinscale.Thesubwavelengthscaleoftheinhomogeneitiesinametamaterial

makesthewholematerialmacroscopicallyuniform,andthisfactmakesametamaterialessentiallya materialinsteadofadevice.Thescaleoftheinhomogeneitiesalsodistinguishesmetamaterialsfrom manyotherelectromagneticmedia.”TheselasttwosentencesfromWeiarecriticalindefiningthe underlayingphysicsthatenablesustoconsiderMTMsas“effectivemedia.”Forexamplesome definitionswouldallowtheeyeofalobstertobedefinedasaMTM,eventhoughthestructureof thelobster’seyeworksonreflectionwithaperiodicityof ≈10 μm[11],manytimeslargerthanthe wavelengthoflightenteringthelobstereyemeaningthatthesystemcannotreallybetreatedasan effectivemedia.

1.3Effective-MediaTheory

Effectivemediatheorybuildsuponthetheoreticalframeworkdevelopedinthenineteenthcentury byMossitti[12]andClausius[13]onthehomogenizationofmaterials.Forexampleconsidera systemofsmall,subwavelength,particlesarrangedintoalattice.Iftheparticlesaresmallenough, thentheresponseofthesystemtoanEMwaveisthesameasifthesystemwereacollectionof moleculeswithalargepolarizability,i.e.ifthescaleoftheinhomogeneitiesissmallcomparedto theincidentwavelength,thenthesystemappearshomogeneoustothewave.Thishomogenization approachallowsustopredicttheEMbehaviorofaheterogeneoussystembyevaluatingtheeffectivepermittivityandpermeabilityofamacroscopicallyhomogeneousmedium.Wheretheeffective permittivityandpermeabilityofthebulkmaterialisfoundintermsofthepermittivities,permeabilities,andgeometryoftheindividualconstituentsofthesystem.Thisapproachisthebasisfor many“effectivemedia”theories,Lakhtakia[14]presentsacomprehensivereviewoftheearlywork oneffectivemediatheoriesandareviewofmoremodernworkcanbefoundinthepaperbyBelov andSimovski[15]thatalsodiscussesthehomogenizationofMTMsincludingaradiationterm.

Twocommonlyusedeffectivemediatheoriesthatillustratethegeneralapproacharethe Maxwell–Garnett[16]andtheBruggeman[17]approach.Eachapproachisbaseduponslightly differentassumptionsaboutthetopologyandmaterialpropertiesoftheconstituentmaterials.In theMaxwell–Garnettapproachitisassumedthattheinclusionsarewell-definedspheressparsely scatteredacrossthehostmedium.TheBruggemanapproachisessentiallyapercolationapproach, wherethetwomediumsareequallyintermingled.Theseexampleshighlightakeypointabout effective-mediatheories.Astheeffective-permittivity/permeabilityareaverageddifferentlyin eachmodel,differenteffective-mediatheoriescannotbedirectlycomparedtoeachothereven whenthesamesubwavelengthconfigurationisconsidered.

1.4HistoryofEffectiveMaterials

1.4.1ArtificialDielectrics

Therealizationofartificialmaterialsbeganahundredyearsbeforetheterm“metamaterial”was introduced,withtheworkofRayleighandBoseinthe1890s.Rayleighproposedasystemofsmall scatterersasanequivalentcontinuousmedium[18],andBoseproducedanartificialchiralmaterial bytwisting“jute”root[19].Thisworkwasextendedin1914byLindmanwhoconsideredsmallwire helicesembeddedintoahostmediumtocreateanartificialchiralmaterial[20].Thefirstpractical applicationsdidnotappearuntilthe1940swiththepioneeringworkofKock[21].Kockcreated ArtificialDielectricsfromarraysofsubwavelengthmetallicstructures(spheres,rods,andplates)

Figure1.2 Kock’sartificialdielectriclens,consistingof conductingspheresembeddedinalowindexfoam,taken from[21].Source:Kock[21]/withpermissionofJohnWiley &Sons,Inc.

toformDielectricLenses[21]oftheformshowninFigure1.2,withtheaimtodeveloplightweight RFlenscomparedtotheirmetalcounterparts.

In1953Brown[22]extendedtheworkofKock,consideringalatticeofthinmetallicwires,showingthesystemcouldbeconsideredtohaveaplasmafrequency.Browndemonstratedthatthe systemformedanartificialplasmaandcouldbeconsideredaneffectivemediumwithnegative permittivity.Inthecaseoflosslesswires,thewirearraycanbemodeledasanarrayofinductors withinductance L.Inthiscase,theeffectivepermittivity(��eff )ofthesystembecomes

Importantly,KharadlyandJackson[23]generalizedthisworktoconsidereffectivemediaformed fromlatticesofmetalellipsoids,disks,androds,withtheassumptionthatthefrequencyofoperationislowandtheRayleighquasi-staticrestrictionholds.Interestinthistypeofeffectivemedium grewasthepossibilitiesforexploitationwererealized,mostcomprehensivelybyRotman[24],who exploredtheseartificialmaterialsasplasmaanalogstoinvestigatetheeffectofplasmasonantenna systems.Thistypeofwirearraymediahavebeenturnedintoan“active”materialbytheinclusionofdiodesenablingthemediatobeactivelyswitchedfromanegativetoapositivepermittivity medium.Progresswiththistypeofmediaresultedinthematerialbecomingcommerciallyavailable inthe1970s[25].Eventodaywire-arraybasedmediaarestillattractinginterestassubwavelength elementsforepsilonnegative(ENG)andDNGmaterials.Also,especially,inconfigurationsthat exhibitspatialdispersion(i.e.adependenceofthepermittivityorpermeabilityonthewavevector, �� (��, k) and �� (��, k))[26–28].

1.4.2ArtificialMagneticMedia

ResearchintoartificialmagneticmediadatesbacktotheworkofSchelkunoffandFriis[29]in the1950sandtheproposedSplitRingResonator(SRR).Engineeredhigh-permeabilitymaterials areespeciallyinterestingasmostconventionalmaterialsofthemagneticfieldcomponentofthe EMwavecouplesonlyweaklytothematerial[30].Magnetismwithoutmagneticmaterialshasbeen knownforsometime,suchas“wet”icecrystals,wherethewaterinthesystemcausesadiamagnetic behavior,althougheveninthesesystems,therelativepermeabilityislow.Today,theSRRremains themagneticmeta-atomofchoiceforresearchers,althoughmultipleresearchershaveexamined theSRRindepth(seeforexample[31,32]),thebasicgeometryremainsthesameasthatoriginally proposedbySchelkunoffin1950.

Figure1.3 (a)DoubleSRRgeometrybuildingblock,and(b)AnarrayofSRRs.(c)Theequivalentcircuit diagramfromtheSRRshownin(a).

DuetothesignificanceoftheSRR,itispertinenttoreviewthekeyaspectsofitsfunctionand behavior.ConsiderthegeometryshowninFigure1.3,adoubleSRRformedfromconcentricmetallictrackssimilartothedesignofPendryetal.[33].WeconsiderthecasewherethisSRRmeta-atom ismuchsmallerthanthewavelengthofinterestallowingasystemofmultipleSRRstobedescribed byeffectivemediumtheory.Atthelevelofanindividualmeta-atom,theincidentwaveuponaSRR producesamagneticfluxtoopposetheincidentfield.Withoutthesplit,thisinteractionwould bepurelyaninductivenonresonantphenomena,resultinginaweaklydiamagneticsystem.The splitpreventsthecurrentcirculatingcausingacollectionofchargeatthesplitedgecreatinga capacitance.

Ameta-atomwithasingleSRRwillaccumulatechargeatthegapcreatingalargeelectricdipole momentthatinmostcasesdominateoverthemagneticdipolemoment.AsecondconcentricSRR wherethe“gaps”oftheSRRsareoppositeeachotherofferscontroloverthecapacitanceofthe meta-atom,allowingtheelectricdipolemomentoftheinnerringtosuppresstheelectricdipole momentoftheouterring,allowingthemagneticmomenttodominatethesystem.

TheresultingSRRconfigurationcanbemodeledasanequivalentsubwavelengthquasi-static LCRcircuit,showninFigure1.3.Thiscircuitalthoughacrudefirstapproximationcanpresent greatinsightsintothesystem’sresponseandbehavioroftheartificialmaterialoverall.Theinductiveelementsoftheequivalentcircuitarerelativelyeasytodetermine,estimatedby L ≈ 2��0 r .The Ohmiclossinthesystemcanbeestimatedas R ≈ �� r ∕c���� .Determiningthecapacitanceistricky asinadditiontothecapacitiveeffectsofthesplit“gaps,”thereisalsothecapacitancefromthegap thatseparatesthetwoSRRs.AnanalysisconductedbyBaenaetal.[34]approximatesthecapacitanceofthedoubleSRRsystemby C ≈ �� r ��0 t∕2d,where t isthecombinedwidthoftheringsand d theseparationbetweentherings.Thisenablestheresonantfrequencyofthemeta-atomtobe estimatedas ��0 = √1∕(L + R∕j��0 )C.Usingtheresonantfrequency,wecanestimate,tofirstorder, themagneticmoment mh ofanindividualmeta-atominresponsetoanincidentwaveofmagnetic field, H [35]:

UsingEq.(1.3)onecanthendeterminetheeffectivepermeability[35](��eff )ofanartificialmaterial formedfromalatticeofindividualsubwavelengthSRRs:

V istheunit-cellvolumeforanindividualmeta-atom.Thisapproachisofcourserathercrudeand doesnottakeintoaccountelectriccouplingorthebianisotropicnatureofthematerial.Although itdoesenableus,atleasttofirstorder,togainusefulinsightsintohowengineeredchangestothe unit-cellgeometrywillaltertheeffectivepermeabilityofourartificialmaterial.

1.5DoubleNegativeMedia

Althoughseveralresearchershaveconsideredmaterialswithsimultaneousnegativepermittivity andpermeability(DNGmaterials)[36],andmaterialswithanegativeindexofrefraction[37]prior to1965.ThefirstsystematicstudyofthegeneralpropertiesofahypotheticalDNGmediumwith anegativerefractiveindexisattributedtotheseminal1967paperbyVeselago[38].Inthispaper, Veselagoexaminedplane-wavepropagationinamaterialwithsimultaneousnegativepermittivityandpermeability.Histheoreticalstudyshowedthatamonochromaticuniformplanewave propagatinginsuchamediuminthedirectionofthePoyntingvectorwouldbeantiparallelto thedirectionofthephasevelocity,contrarytothecaseofplanewavepropagationinconventional simplemedia.Veselagothenconsideredthepossibilityofalensconstructedfromthismaterial. Therefractiveindex(n)isoneofthemostimportantparametersusedtodescribethepropagation ofEMwavesacrossamedium,whereingeneral n hasacomplexfrequencydependentform n = n′ + jn′′ .Therealcomponentrelatestothephasevelocityofthewaveandtheimaginary componenttheextinctioncoefficientofthemedium.Wheretherefractiveindexisrelatedtothe constitutiverelationsby

= √����. (1.5)

Ifweconsiderthecaseofsimultaneousnegativepermittivity(�� =−1 + ja)andpermeability (�� =−1 + jb),thenEq.(1.5)yields

n =± [1 j(a + b)] . (1.6)

Topreservecausality,theimaginarycomponentof n mustbegreaterthanzero,butthereisno restrictiononthesignoftherealcomponent.Hence,inthecaseofbothpermittivityandpermeabilityarenegative,therefractiveindexisalsonegative.Materialswheretherealcomponentofthe refractiveislessthanzeroareoftenreferredtoasNegative-IndexMaterials(NIMs).ThemostobviousimpactofaNIMistheeffectonSnell’slaw (n1 sin ��1 = n2 sin ��2 ),whereanEMwaveincident onaNIMisrefractedtothesameside,ofthenormaltotheinterface,totheincidentEMwave,as seeninFigure1.6(B)c.Toconsidertheimpactofamediumconsistingofsimultaneousnegative permittivityandpermeabilityVeselagoconsideredtheeffectdirectlyfromMaxwell’sequations:

∇× H = j���� E

∇× E =−j���� H (1.7)

Assumingaplanewaveoftheformexp j(k r ��t) propagatingthroughthemediumthenfrom Eq.(1.7)wehave

Theimpactofasimultaneousnegative �� and �� onboth H and E,andonthewavevector k canbe seenfromEq.(1.8).As k givesthedirectionofthephasevelocity ��p = n∕c = ��∕k,andthePoynting vector (E × B) givesthedirectionofthegroupvelocity ��g .Hence,inthecaseofsimultaneous negative �� and �� ,the“energy”propagatesintheoppositedirectionto k.Veselagocoinedtheterm “Left-HandedMaterials(LHMs)”forsuchmediabecausethefieldvectors E, H ,andwavevector k forma“left-handedsystem,”asopposedtothe“right-handedsystem”formedbyconventional materials.Althoughweknowthis“left-handed”propertyisknowntooccurinmultiplesystems notjustinDNGmedia.

Veselago[38]alsodiscussedseveralremarkablepropertiesthatwouldderivefromaDNG medium,suchasthereversedDopplereffect,whereadetectorinaDNGmediummovingtoward

Figure1.4 (a)CerenkoveffectinaDPM,(b)ThesameeffectinaDNGmaterial.Where �� istheparticle velocity, S thePoyntingvector,and k thewavevector.

asourcewhichemitsafrequency ��0 willdetectafrequency �� thatissmallerthan ��0 ,notlargeras wouldbethecaseinaright-handedmedium.Althoughoneofthemostinterestingphenomena, fromthepointofviewofHPMVEDs,isthereversedVavilov–Cerenkoveffect.Aparticlemoving thoughamediumwithspeed �� inastraightline,asshowninFigure1.4,willemitEMradiation accordingtoexp i(kz z + kr r ��t) kz isthewavevectorcomponentinthedirectionofthebeam, and kr isthewavevectorcomponentperpendiculartothebeam.ThewavevectoroftheemittedEM radiationfromthemovingparticleis k′ = kz ∕ cos �� andisinthegeneraldirectionoftheparticle velocity ��.Wherethe kr componentismedia-dependentandgivenby

ThechoiceofsigninEq.(1.9)ensuresthattheenergymovesawayfromtheradiatingparticleto infinityandtheangle �� oftheCherenkovradiationconeisgivenbycos �� =(n�� ) 1 ,where �� is thenormalizedparticlevelocity.Hence,foraDNGwith n < 0theCherenkovradiationwillbe “backward”astheangle �� isobtuse,asshowninFigure1.4.

TheseminalpaperbyPendry[5]in2000markedaturningpointforartificialmaterialsandcanbe saidtobethekeydriverforthetremendousincreaseininterestandresearchofartificialmaterials sincethebeginningofthetwenty-firstcentury.ThekeyaspectofPendry’spaperwastoreconsidertheVeselagolensusingtransformativeopticsandpresentingthemechanismthatallowsthe diffractionlimittobebeaten.PendrypointedouthowevanescentwavespropagatinginaDNG materialcanberedistributedinspacesothatthewavesaretransportedfarfromthesource[5]. ImportantlyinearlierworkPendryetal.[33]presentedanddiscussedthekeysubwavelengthelementsthatcouldbeusedtoconstructaDNGmaterialunit-cell.Theseelementswerethedouble SRRtocontrolthepermeabilityandwirearraytocontrolthepermittivity.

ThefirstrealizationsofDNGmaterialscamefromtheworkbySmithandSchultzwhoconstructedthefirstDNGmediain2000–2001.Thebasicformrealizedwasamaterialwithanegative refractiveindexinonedirectionofpropagation[39].Thisworkwasquicklyfollowedbythefamous two-dimensionalNIMpaper[6],whereeachsubwavelengthunitcellconsistsoftwobasicelements, adoubleSRRsupportedonadielectricsubstrate(FR4)withaCutrack(wire)placeduniformly betweenthesplitringsontheoppositesideoftheFR4.Thesubwavelengthcomponentelements weretailoredtogiveaspecificEMresponseoveracertainfrequencyrange,thewirearraywasused togiveaneffectivenegativepermittivityandtheSRRtogiveanegativeeffectivepermeability.In thepaper[6],SmithsgroupdemonstratedtheNIMbehavioroftheabovematerialbyperforming anexperimentalmeasurementusingSnell’slaw,wherethematerialswereshapedintoawedgeto formaprism.Theexperimentwasperformedat10.5GHzwiththeRFpropagatinginparallelplate systemwithmicrowaveabsorberoneachsidetoproduceplanewavesincidentontothebackofthe

Figure1.5 (a)ElectricfieldlinesintheSRRatresonance.(b)MagneticfieldlinesinthedualCSRR.(c)CSRR andtheequivalent-circuitmodels,greyrepresentthemetalareas.Diagramstakenfromthepaper[41]. prism.TheresultsshowedthattheEMwavepropagatingthroughtheDNGmediawasrefracted thoughanangleof 61∘ ,correspondingtoamaterialwitharefractiveindexof 2.7.

1.5.1DNGRealization

OneofthemostcommonapproachestorealizingaDNGmediaisacombinedmeta-atomconsisting ofanSRRtogivethenegativepermeabilityresponse,andaconductingwirestripactingasashunt inductance,creatingawirearraythroughoutthematerialthatpresentsanegativepermittivity. Thisconfigurationdoesrequireawaytosupportthetwoelementselectricalsuccinctfromeach otherusuallyachievedbyusingadielectricsubstratebetweenwirestriplineandSRR.Although, ofcourse,theuseofadielectricsubstratedoesleadtoadditionallossintheunitcellwhichin aVEDcanhavedevastatingimpact.AnalternativeapproachdevelopedbyFalconeetal.[40]is toderiveaplanarnegativeoftheSRRinmetal,thiscomplementarySRRorCSRRisshownin Figure1.5,wherethegapscuttingintothemetalarethecomplementoftheSRRtracks.Interms ofoperation,thecapacitancesoftheSRRarereplacedbyinductorsintheCSSR.Theresultisthat theCSSRpresentsanegativepermittivityresponsetoanincidentEMwave.TheCSRRexhibitsan electromagneticbehaviorwhichisalmostthedualofthatoftheSRR.Recentlyarangeofother geometrieshavebeenusedtoconstructDNGunit-cells,suchastheelectromagneticallyinduced transparencygeometries[42].

1.6BackwardWavePropagation

Theconceptofbackwardwavepropagationinmaterialsandstructuresisofcoursewellknownto microwaveengineersthroughthetheoryofbackward-waveVEDsdevelopedbyBrillouin[43]and Pierce[44]inthelate1940s.Pierce’stheoryoftraveling-waveinteractionsassumesaslow-wave circuitinwhichtwowavespropagate,oneforwardwaveandonebackwardwave.Thisinteractioncanbemodeledviaanequivalentcircuitmodelofseries-capacitance/shunt-inductance[44]. Thisresearchsparkedavastbodyofworkaround1Dstructuresasslow-waveperiodicsystemsfor applicationsinVEDs[45],andthisapproachisthecornerstoneofmanycommercialdevices.

Thepossibilityandconsequencesofmaterialswithnegativegroupvelocityhasbeenconsidered byresearchersasfarbackas1904intheworkofSchusterandLamb[37,46].Schusterdiscussed

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
High power microwave sources and technologies using metamaterials 1st edition john w. luginsland (ed by Education Libraries - Issuu