Electrochemical systems fourth edition john newman 2024 scribd download

Page 1


Electrochemical Systems Fourth Edition John Newman

Visit to download the full and correct content document: https://ebookmass.com/product/electrochemical-systems-fourth-edition-john-newman/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Electrochemical Power Sources: Fundamentals, Systems, and Applications Tom Smolinka

https://ebookmass.com/product/electrochemical-power-sourcesfundamentals-systems-and-applications-tom-smolinka/ United States History (Teacher Resource) 4th Edition

John J. Newman

https://ebookmass.com/product/united-states-history-teacherresource-4th-edition-john-j-newman/

Sociology: A Global Introduction, Fourth adaptation ed. Fourth Adaptation Edition John J. Macionis

https://ebookmass.com/product/sociology-a-global-introductionfourth-adaptation-ed-fourth-adaptation-edition-john-j-macionis/

AMSCO® Advanced Placement® United States History, 4th Edition John J Newman

https://ebookmass.com/product/amsco-advanced-placement-unitedstates-history-4th-edition-john-j-newman/

Networks (Second Edition) Mark Newman

https://ebookmass.com/product/networks-second-edition-marknewman/

Electrochemical Power Sources: Fundamentals, Systems, and Applications: Metal-Air Batteries: Present and Perspectives Hajime Arai

https://ebookmass.com/product/electrochemical-power-sourcesfundamentals-systems-and-applications-metal-air-batteriespresent-and-perspectives-hajime-arai/

John Henry Newman and the English Sensibility: Distant Scene Jacob Phillips (Editor)

https://ebookmass.com/product/john-henry-newman-and-the-englishsensibility-distant-scene-jacob-phillips-editor/

Electrochemical power sources: fundamentals, systems, and applications : hydrogen production by water electrolysis / 1st Edition Edited By Tom Smolinka

https://ebookmass.com/product/electrochemical-power-sourcesfundamentals-systems-and-applications-hydrogen-production-bywater-electrolysis-1st-edition-edited-by-tom-smolinka/

Lighting for digital video and television Fourth Edition John Jackman

https://ebookmass.com/product/lighting-for-digital-video-andtelevision-fourth-edition-john-jackman/

ELECTROCHEMICAL SYSTEMS

THEELECTROCHEMICALSOCIETYSERIES

TheElectronMicroprobe

EditedbyT.D.McKinley,K.F.J.Heinrich,andD.B.Wittry

ChemicalPhysicsofIonicSolutions

EditedbyB.E.ConwayandR.G.Barradas

High-TemperatureMaterialsandTechnology

EditedbyIvorE.CampbellandEdwinM.Sherwood

AlkalineStorageBatteries

S.UnoFalkandAlvinJ.Salkind

ThePrimaryBattery(inTwoVolumes) VolumeI

EditedbyGeorgeW.HeiseandN.CoreyCahoon VolumeII

EditedbyN.CoreyCahoonandGeorgeW.Heise

Zinc-SilverOxideBatteries

EditedbyArthurFleischerandJ.J.Lander

Lead-AcidBatteries

HansBode

TranslatedbyR.J.BroddandKarlV.Kordesch

ThinFilms-InterdiffusionandReactions

EditedbyJ.M.Poate,M.N.Tu,andJ.W.Mayer

LithiumBatteryTechnology

EditedbyH.V.Venkatasetty

QualityandReliabilityMethodsforPrimaryBatteries

P.BroandS.C.Levy

TechniquesforCharacterizationofElectrodesandElectrochemicalProcesses

EditedbyRaviVarmaandJ.R.Selman

ElectrochemicalOxygenTechnology

KimKinoshita

SyntheticDiamond:EmergingCVDScienceandTechnology

EditedbyKarlE.SpearandJohnP.Dismukes

CorrosionofStainlessSteels,SecondEdition A.JohnSedriks

SemiconductorWaferBonding:ScienceandTechnology

Q.-Y.TongandU.Göscle

FundamentalsofElectrochemistry,SecondEdition V.S.Bagotsky

FundamentalsofElectrochemicalDeposition,SecondEdition MilanPaunovicandMordechaySchlesinger

Uhlig’sCorrosionHandbook,ThirdEdition

EditedbyR.WinstonRevie

FuelCells:ProblemsandSolutions

VladimirS.Bagotsky

LithiumBatteries:AdvancedTechnologiesandApplications

EditedbyB.Scrosati,K.M.Abraham,W.A.vanSchalkwijk,andJ.Hassoun

ModernElectroplating,FifthEdition

EditedbyMordechaySchlesingerandMilanPaunovic

ElectrochemicalPowerSources:Batteries,FuelCells,andSupercapacitors

ByV.S.Bagotsky,A.M.Skundin,andY.M.Volfkovic

MolecularModelingofCorrosionProcesses:ScientificDevelopmentandEngineeringApplications

EditedbyC.D.TaylorandP.Marcus

AtmosphericCorrosion,SecondEdition ChristoferLeygraf,IngerOdnevallWallinder,JohanTidblad,andThomasGraedel

ElectrochemicalImpedanceSpectroscopy,SecondEdition MarkE.OrazemandBernardTribollet

ElectrochemicalSystems,FourthEdition JohnNewmanandNitashP.Balsara

ELECTROCHEMICAL SYSTEMS

FourthEdition

JOHNNEWMANandNITASHP.BALSARA UniversityofCalifornia,Berkeley

Thiseditionfirstpublished2021 ©2021JohnWiley&SonsInc.

EditionHistory “JohnWiley&SonsInc.(3e,2004)”.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorby anymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowtoobtain permissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofJohnNewmanandNitashP.Balsaratobeidentifiedastheauthorsofthisworkhasbeenassertedinaccordance withlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsinstandard printversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowof informationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatethe informationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment,reagent,ordevicefor,among otherthings,anychangesintheinstructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisher andauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties,includingwithoutlimitationany impliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representatives,writtensalesmaterials,orpromotionalstatementsforthiswork.Thefactthatanorganization,website,or productisreferredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisher andauthorsendorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendationsitmay make.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadvice andstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate. Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthiswork waswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData HardbackISBN:9781119514602

CentralCoverImage:RedrawnfromFigure22.12byHeeJeungOh,withpermissionfromTheElectrochemicalSociety CoverImage:CourtesyofJohnNewman,NitashP.Balsara,andHeeJeungOh

Setin10/12ptNimbusRombySPiGlobal,Chennai,India 10987654321

CONTENTS

PREFACETOTHEFOURTHEDITIONxv

PREFACETOTHETHIRDEDITIONxvii

PREFACETOTHESECONDEDITIONxix

PREFACETOTHEFIRSTEDITIONxxi

1INTRODUCTION1

1.1Definitions / 2

1.2ThermodynamicsandPotential / 3

1.3KineticsandRatesofReaction / 6

1.4Transport / 8

1.5ConcentrationOverpotentialandtheDiffusionPotential / 15

1.6OverallCellPotential / 18

Problems / 20

Notation / 21

PARTATHERMODYNAMICSOFELECTROCHEMICALCELLS23

2THERMODYNAMICSINTERMSOFELECTROCHEMICALPOTENTIALS25

2.1PhaseEquilibrium / 25

2.2ChemicalPotentialandElectrochemicalPotential / 27

2.3DefinitionofSomeThermodynamicFunctions / 30

2.4CellwithSolutionofUniformConcentration / 36

2.5TransportProcessesinJunctionRegions / 39

2.6CellwithaSingleElectrolyteofVaryingConcentration / 40

2.7CellwithTwoElectrolytes,OneofNearlyUniformConcentration / 44

2.8CellwithTwoElectrolytes,BothofVaryingConcentration / 47

2.9Lithium–LithiumCellWithTwoPolymerElectrolytes / 49

2.10StandardCellPotentialandActivityCoefficients / 50

2.11PressureDependenceofActivityCoefficients / 58

2.12TemperatureDependenceofCellPotentials / 59 Problems / 61 Notation / 68 References / 70

3THEELECTRICPOTENTIAL71

3.1TheElectrostaticPotential / 71

3.2IntermolecularForces / 74

3.3OuterandInnerPotentials / 76

3.4PotentialsofReferenceElectrodes / 77

3.5TheElectricPotentialinThermodynamics / 78 Notation / 79

References / 80

4ACTIVITYCOEFFICIENTS81

4.1IonicDistributionsinDiluteSolutions / 81

4.2ElectricalContributiontotheFreeEnergy / 84

4.3ShortcomingsoftheDebye–HückelModel / 87

4.4BinarySolutions / 89

4.5MulticomponentSolutions / 92

4.6MeasurementofActivityCoefficients / 94

4.7WeakElectrolytes / 96 Problems / 99 Notation / 103

References / 104

5REFERENCEELECTRODES107

5.1CriteriaforReferenceElectrodes / 107

5.2ExperimentalFactorsAffectingSelectionofReferenceElectrodes / 109

5.3TheHydrogenElectrode / 110

5.4TheCalomelElectrodeandOtherMercury–MercurousSaltElectrodes / 112

5.5TheMercury–MercuricOxideElectrode / 114

5.6Silver–SilverHalideElectrodes / 114

5.7PotentialsRelativetoaGivenReferenceElectrode / 116 Notation / 119 References / 120

6POTENTIALSOFCELLSWITHJUNCTIONS121

6.1NernstEquation / 121

6.2TypesofLiquidJunctions / 122

6.3FormulasforLiquid-JunctionPotentials / 123

6.4DeterminationofConcentrationProfiles / 124

6.5NumericalResults / 124

6.6CellswithLiquidJunction / 128

6.7ErrorintheNernstEquation / 129

6.8PotentialsAcrossMembranes / 131

6.9ChargedMembranesImmersedinanElectrolyticSolution / 131 Problems / 135 Notation / 138 References / 138

PARTBELECTRODEKINETICSANDOTHERINTERFACIAL PHENOMENA141

7STRUCTUREOFTHEELECTRICDOUBLELAYER143

7.1QualitativeDescriptionofDoubleLayers / 143

7.2GibbsAdsorptionIsotherm / 148

7.3TheLippmannEquation / 151

7.4TheDiffusePartoftheDoubleLayer / 155

7.5CapacityoftheDoubleLayerintheAbsenceofSpecificAdsorption / 160

7.6SpecificAdsorptionatanElectrode–SolutionInterface / 161 Problems / 161 Notation / 164 References / 165

8ELECTRODEKINETICS167

8.1HeterogeneousElectrodeReactions / 167

8.2DependenceofCurrentDensityonSurfaceOverpotential / 169

8.3ModelsforElectrodeKinetics / 170

8.4EffectofDouble-LayerStructure / 185

CONTENTS

8.5TheOxygenElectrode / 187

8.6MethodsofMeasurement / 192

8.7SimultaneousReactions / 193

Problems / 195

Notation / 199

References / 200

9ELECTROKINETICPHENOMENA203

9.1DiscontinuousVelocityatanInterface / 203

9.2Electro-OsmosisandtheStreamingPotential / 205

9.3Electrophoresis / 213

9.4SedimentationPotential / 215

Problems / 216

Notation / 218

References / 219

10ELECTROCAPILLARYPHENOMENA221

10.1DynamicsofInterfaces / 221

10.2ElectrocapillaryMotionofMercuryDrops / 222

10.3SedimentationPotentialsforFallingMercuryDrops / 224

Notation / 224

References / 225

PARTCTRANSPORTPROCESSESINELECTROLYTIC SOLUTIONS227

11INFINITELYDILUTESOLUTIONS229

11.1TransportLaws / 229

11.2Conductivity,DiffusionPotentials,andTransferenceNumbers / 232

11.3ConservationofCharge / 233

11.4TheBinaryElectrolyte / 233

11.5SupportingElectrolyte / 236

11.6MulticomponentDiffusionbyEliminationoftheElectricField / 237

11.7MobilitiesandDiffusionCoefficients / 238

11.8ElectroneutralityandLaplace’SEquation / 240

11.9ModeratelyDiluteSolutions / 242

Problems / 244

Notation / 247

References / 247

12CONCENTRATEDSOLUTIONS249

12.1TransportLaws / 249

12.2TheBinaryElectrolyte / 251

12.3ReferenceVelocities / 252

12.4ThePotential / 253

12.5ConnectionwithDilute-SolutionTheory / 256

12.6ExampleCalculationUsingConcentratedSolutionTheory / 257

12.7MulticomponentTransport / 259

12.8Liquid-JunctionPotentials / 262

Problems / 263

Notation / 264

References / 266

13THERMALEFFECTS267

13.1ThermalDiffusion / 268

13.2HeatGeneration,Conservation,andTransfer / 270

13.3HeatGenerationatanInterface / 272

13.4ThermogalvanicCells / 274

13.5ConcludingStatements / 276

Problems / 277

Notation / 279

References / 280

14TRANSPORTPROPERTIES283

14.1InfinitelyDiluteSolutions / 283

14.2SolutionsofaSingleSalt / 283

14.3MixturesofPolymersandSalts / 286

14.4TypesofTransportPropertiesandTheirNumber / 295

14.5IntegralDiffusionCoefficientsforMassTransfer / 296

Problem / 298

Notation / 298

References / 299

15FLUIDMECHANICS301

15.1MassandMomentumBalances / 301

15.2StressinaNewtonianFluid / 302

15.3BoundaryConditions / 303

15.4FluidFlowtoaRotatingDisk / 304

15.5MagnitudeofElectricalForces / 307

15.6TurbulentFlow / 310

15.7MassTransferinTurbulentFlow / 314

15.8DissipationTheoremforTurbulentPipeFlow / 316 Problem / 318 Notation / 319 References / 321

PARTDCURRENTDISTRIBUTIONANDMASSTRANSFERIN

16FUNDAMENTALEQUATIONS327

16.1TransportinDiluteSolutions / 327

16.2ElectrodeKinetics / 328 Notation / 329

17CONVECTIVE-TRANSPORTPROBLEMS331

17.1SimplificationsforConvectiveTransport / 331

17.2TheRotatingDisk / 332

17.3TheGraetzProblem / 335

17.4TheAnnulus / 340

17.5Two-DimensionalDiffusionLayersinLaminarForcedConvection / 344

17.6AxisymmetricDiffusionLayersinLaminarForcedConvection / 345

17.7AFlatPlateinaFreeStream / 346

17.8RotatingCylinders / 347

17.9GrowingMercuryDrops / 349

17.10FreeConvection / 349

17.11CombinedFreeandForcedConvection / 351

17.12LimitationsofSurfaceReactions / 352

17.13BinaryandConcentratedSolutions / 353 Problems / 354 Notation / 359 References / 360

18APPLICATIONSOFPOTENTIALTHEORY365

18.1SimplificationsForPotential-TheoryProblems / 366

18.2PrimaryCurrentDistribution / 367

18.3SecondaryCurrentDistribution / 370

18.4NumericalSolutionbyFiniteDifferences / 374

18.5PrinciplesofCathodicProtection / 375

Problems / 389

Notation / 396

References / 397

19EFFECTOFMIGRATIONONLIMITINGCURRENTS399

19.1Analysis / 400

19.2CorrectionFactorforLimitingCurrents / 402

19.3ConcentrationVariationofSupportingElectrolyte / 404

19.4RoleofBisulfateIons / 409

19.5ParadoxeswithSupportingElectrolyte / 413

19.6LimitingCurrentsforFreeConvection / 417 Problems / 423

Notation / 424

References / 426

20CONCENTRATIONOVERPOTENTIAL427

20.1Definition / 427

20.2BinaryElectrolyte / 429

20.3SupportingElectrolyte / 430

20.4CalculatedValues / 430 Problems / 431

Notation / 432 References / 433

21CURRENTSBELOWTHELIMITINGCURRENT435

21.1TheBulkMedium / 436

21.2TheDiffusionLayers / 437

21.3BoundaryConditionsandMethodofSolution / 438

21.4ResultsfortheRotatingDisk / 440 Problems / 444 Notation / 446 References / 447

22POROUSELECTRODES449

22.1MacroscopicDescriptionofPorousElectrodes / 450

22.2NonuniformReactionRates / 457

22.3MassTransfer / 462

22.4BatterySimulation / 463

22.5Double-LayerChargingandAdsorption / 477

22.6Flow-ThroughElectrochemicalReactors / 478

Problems / 482

Notation / 484

References / 486

23SEMICONDUCTORELECTRODES489

23.1NatureofSemiconductors / 490

23.2ElectricCapacitanceattheSemiconductor–SolutionInterface / 499

23.3Liquid-JunctionSolarCell / 502

23.4GeneralizedInterfacialKinetics / 506

23.5AdditionalAspects / 509

Problems / 513

Notation / 514

References / 516

24IMPEDANCE517

24.1FrequencyDispersionataDiskElectrode / 519

24.2ModulatedFlowWithaDiskElectrode / 522

24.3PorousElectrodesforBatteries / 526

24.4Kramers–KronigRelation / 528

Problems / 530

Notation / 531

References / 532

PREFACETOTHEFOURTHEDITION

Electrochemicalsystemsprovidethebasisformanytechnologicallyimportantapplications,suchas batteriesandfuelcells,productionandrefiningofmetalsandchemicals,fabricationofelectronic materialsanddevices,andoperationofsensors,includingthoseregulatingtheair/fuelratioin automobileengines.Therechargeablelithium-ionbatteryhasemergedasavitalelementoftheemerging clean-energylandscape.Inbiologicalsystems,nerveactioninvolveselectrochemicalprocesses.While applicationscontinuetoevolve,thefundamentalsneedonlyminorrevisiontotrainandguidepeople inadaptingtonewapplications.Electrochemicalsystemsinvolvemanysimultaneouslyinteracting phenomena,drawnfrommanyaspectsofchemistryandphysics,andrequireadisciplinedlearning process.Thebookprovidesacomprehensivecoverageofelectrochemicaltheoriesastheypertaintothe understandingofelectrochemicalsystems.Itdescribesthefoundationsofthermodynamics,chemical kinetics,andtransportphenomenaincludingtheelectricpotentialandchargedspecies.

Thisfourtheditionincorporatesfurtherimprovementsdevelopedovertheyearsinteachingboth graduateandadvancedundergraduatestudents.Chapter2hasexpandedtoincludecellswithpolymer electrolytes.Chapter6nowincludesadiscussionofequilibrationofachargedpolymermaterialandan electrolyticsolution(Donnanequilibrium).ThediscussionoftheoxygenelectrodeinChapter8now includesinsightfromrecentcomputersimulations.Theapplicationofconcentratedsolutiontheoryto polymerelectrolytesisaddedtoChapters12and14.Thenumberoftransportpropertiesdescribing differentsystemsisnowclearlystated.Chapter15presentsamethodforpredictingturbulenceby meansofdissipation.Chapter15presentsamethodforpredictingturbulencebymeansofdissipation. Finally,impedancemeasurementsinelectrochemicalsystemsareimportantbecauseexperimental implementationiseasyanddiagnosticinformationisobtainedwithoutdestroyingthesystem.Anew chapteronthissubject,Chapter24,isadded.

Wehavemuchgratitudeforthemanystudentsandcolleagueswhohavedoneexperimentsand calculationsthatarereportedinthebook,andtoourfamiliesfortheircontinualsupport.WethankSaheli Chakraborty,YoungwooChoo,LouiseFrenck,MichaelGalluzzo,KevinGao,LorenaGrundy,David Halat,DarbyHickson,AlecHo,ZachHoffman,WhitneyLoo,JacquelineMaslyn,EricMcShane, HeeJeungOh,MorganSeidler,GurmukhSethi,DeepShah,NeelShah,andIruneVillaluenga,who patientlycorrectedmanydraftsofthismanuscript.NPBthanksJNforthehonorofworkingwithhim onthefourtheditionandforbeinghismentorformorethanadecade.

April27,2020

Berkeley,California

NITASH P.BALSARA Berkeley,California

JOHN NEWMAN

PREFACETOTHETHIRDEDITION

Thisthirdeditionincorporatesvariousimprovementsdevelopedovertheyearsinteaching electrochemicalengineeringtobothgraduateandadvancedundergraduatestudents.Chapter1has beenentirelyrewrittentoincludemoreexplanationsofbasicconcepts.Chapters2,7,8,13,18,and 22andAppendixChavebeenmodified,tovaryingdegrees,toimproveclarity.Illustrativeexamples takenfromrealengineeringproblemshavebeenaddedtoChapters8(kineticsofthehydrogen electrode),18(cathodicprotection),and22(reaction-zonemodelandflow-throughporouselectrodes). SomeconceptshavebeenaddedtoChapters2(Pourbaixdiagramsandthetemperaturedependenceof thestandardcellpotential)and13(expandedtreatmentofthethermoelectriccell).Theexponential growthofcomputationalpoweroverthepastdecade,whichwasmadepossibleinpartbyadvancesin electrochemicaltechnologiessuchassemiconductorprocessingandcopperinterconnects,hasmade numericalsimulationofcouplednonlinearproblemsaroutinetooloftheelectrochemicalengineer.In realizationoftheimportanceofnumericalsimulationmethods,theirdiscussioninAppendixChas beenexpanded.

Asdiscussedintheprefacetothefirstedition,thescienceofelectrochemistryisbothfascinating andchallengingbecauseoftheinteractionamongthermodynamic,kinetic,andtransporteffects.Itis nearlyimpossibletodiscussoneconceptwithoutreferringtoitsinteractionwithotherconcepts.We advisethereadertokeepthisinmindwhilereadingthebook,inordertodevelopfacilitywiththebasic principlesaswellasamorethoroughunderstandingoftheinteractionsandsubtleties.

Wehavemuchgratitudeforthemanygraduatestudentsandcolleagueswhohaveworkedonthe examplescitedandproofreadchaptersandforourfamiliesfortheircontinualsupport.KETthanksJN forthehonorofworkingwithhimonthisthirdedition.

June1,2004

PREFACETOTHESECONDEDITION

Amajorthemeof ElectrochemicalSystems isthesimultaneoustreatmentofmanycomplex,interacting phenomena.Thewideacceptanceandoverallimpactofthefirsteditionhavebeengratifying,and mostofitsfeatureshavebeenretainedinthesecondedition.Newchaptershavebeenaddedonporous electrodesandsemiconductorelectrodes.Inaddition,over70newproblemsarebasedonactualcourse examinations.

ImmediatelyaftertheintroductioninChapter1,somemayprefertostudyChapter11ontransportin dilutesolutionsandChapter12onconcentratedsolutionsbeforeenteringthecomplexitiesofChapter 2.Chapter6providesalessintense,lessrigorousapproachtothepotentialsofcellsatopencircuit. ThoughthesubjectsfoundinChapters5,9,10,13,14,and15maynotbecoveredformallyina one-semestercourse,theyprovidebreadthandabasisforfuturereference.

Theconceptoftheelectricpotentialiscentraltotheunderstandingoftheelectrochemicalsystems. Toaidincomprehensionofthedifferencebetweenthepotentialofareferenceelectrodeimmersed inthesolutionofinterestandtheelectrostaticpotential,thequasi-electrostaticpotential,orthecavity potential—sincethecompositiondependenceisquitedifferent—Problems6.16andFigure12.1have beenaddedtothenewedition.Thereaderwillalsobenefitbytheunderstandingofthepotentialasit isusedinsemi-conductorelectrodes.

June10,1991

PREFACETOTHEFIRSTEDITION

Electrochemistryisinvolvedtoasignificantextentinthepresent-dayindustrialeconomy.Examples arefoundinprimaryandsecondarybatteriesandfuelcells;intheproductionofchlorine,caustic soda,aluminum,andotherchemicals;inelectroplating,electromachining,andelectrorefining;andin corrosion.Inaddition,electrolyticsolutionsareencounteredindesaltingwaterandinbiology.The decreasingrelativecostofelectricpowerhasstimulatedagrowingroleforelectrochemistry.The electrochemicalindustryintheUnitedStatesamountsto1.6percentofallU.S.manufacturingandis aboutonethirdaslargeastheindustrialchemicalsindustry.[1]

Thegoalofthisbookistotreatthebehaviorofelectrochemicalsystemsfromapracticalpointof view.Theapproachisthereforemacroscopicratherthanmicroscopicormolecular.Anencyclopedic treatmentofmanyspecificsystemsis,however,notattempted.Instead,theemphasisisplacedon fundamentals,soastoprovideabasisforthedesignofnewsystemsorprocessesastheybecome economicallyimportant.

Thermodynamics,electrodekinetics,andtransportphenomenaarethethreefundamentalareas whichunderliethetreatment,andtheattemptismadetoilluminatetheseinthefirstthreepartsof thebook.Theseareasareinterrelatedtoaconsiderableextent,andconsequentlythechoiceofthe propersequenceofmaterialisaproblem.Inthiscircumstance,wehavepursuedeachsubjectinturn, notwithstandingthenecessityofcallinguponmaterialwhichisdevelopedindetailonlyatalaterpoint. Forexample,theopen-circuitpotentialsofelectrochemicalcellsbelong,logicallyandhistorically, withequilibriumthermodynamics,butacompletediscussionrequirestheconsiderationoftheeffect ofirreversiblediffusionprocesses.

Thefascinationofelectrochemicalsystemscomesingreatmeasurefromthecomplexphenomena whichcanoccurandthediversedisciplineswhichfindapplication.Consequencesofthiscomplexity arethecontinualrediscoveryofoldideas,thepersistenceofmisconceptionsamongtheuninitiated, andthedevelopmentofinvolvedprogramstoanswerunanswerableorpoorlyconceivedquestions.We havetried,then,tofollowastraightforwardcourse.Althoughthistendstobeunimaginative,itdoes provideabasisforeffectiveinstruction.

Thetreatmentofthesefundamentalaspectsisfollowedbyafourthpart,onapplications,inwhich thermodynamics,electrodekinetics,andtransportphenomenamayallenterintothedeterminationof thebehaviorofelectrochemicalsystems.Thesefourmainpartsareprecededbyanintroductorychapter inwhicharediscussed,mostlyinaqualitativefashion,someofthepertinentfactorswhichwillcome

intoplaylaterinthebook.Theseconceptsareillustratedwithrotatingcylinders,asystemwhichis moderatelysimplefromthepointofviewofthedistributionofcurrent.

Thebookisdirectedtowardseniorsandgraduatestudentsinscienceandengineeringandtoward practitionersengagedinthedevelopmentofelectrochemicalsystems.Abackgroundincalculusand classicalphysicalchemistryisassumed.

WilliamH.Smyrl,currentlyoftheUniversityofMinnesota,preparedthefirstdraftofChapter2,and Wa-SheWong,formerlyattheGeneralMotorsScienceCenter,preparedthefirstdraftofChapter5. TheauthoracknowledgeswithgratitudethesupportofhisresearchendeavorsbytheUnitedStates AtomicEnergyCommission,throughtheInorganicMaterialsResearchDivisionoftheLawrence BerkeleyLaboratory,andsubsequentlybytheUnitedStatesDepartmentofEnergy,throughthe MaterialsSciencesDivisionoftheLawrenceBerkeleyLaboratory.

REFERENCE

1.G.M.Wenglowski,“AnEconomicStudyoftheElectrochemicalIndustryintheUnitedStates,”in J.O’M.Bockris,ed., ModernAspectsofElectrochemistry,no.4(London:Butterworths,1966),pp.251–306.

December20,1972

Berkeley,California

CHAPTER1

INTRODUCTION

Electrochemicaltechniquesareusedfortheproductionofaluminumandchlorine,theconversion ofenergyinbatteriesandfuelcells,sensors,electroplating,andtheprotectionofmetalstructures againstcorrosion,tonamejustafewprominentapplications.Whileapplicationssuchasfuelcellsand electroplatingmayseemquitedisparate,inthisbookweshowthatafewbasicprinciplesformthe foundationforthedesignofallelectrochemicalprocesses.

ThefirstpracticalelectrochemicalsystemwastheVoltapile,inventedbyAlexanderVoltain1800. Volta’spileisstillusedtodayinbatteriesforavarietyofindustrial,medical,andmilitaryapplications. Voltafoundthatwhenhemadeasandwichofalayerofzincmetal,papersoakedinsaltwater,and tarnishedsilverandthenconnectedawirefromthezinctothesilver,hecouldobtainelectricity(see Figure1.1).Whatishappeningwhenthewireisconnected?Electronshaveachemicalpreferenceto beinthesilverratherthanthezinc,andthischemicalpreferenceismanifestasavoltagedifference thatdrivesthecurrent.Ateachelectrode,anelectrochemicalreactionisoccurring:zincreactswith hydroxideionsinsolutiontoformfreeelectrons,zincoxide,andwater,whilesilveroxide(tarnished silver)reactswithwaterandelectronstoformsilverandhydroxideions.Hydroxideionstravelthrough thesaltsolution(theelectrolyte)fromthesilvertothezinc,whileelectronstravelthroughtheexternal wirefromthezinctothesilver.

Weseefromthisexamplethatmanyphenomenainteractinelectrochemicalsystems.Drivingforces forreactionaredeterminedbythethermodynamicpropertiesoftheelectrodesandelectrolyte.The rateofthereactionattheinterfaceinresponsetothisdrivingforcedependsonkineticrateparameters. Finally,massmustbetransportedthroughtheelectrolytetobringreactantstotheinterface,and electronsmusttravelthroughtheelectrodes.Thetotalresistanceisthereforeacombinationofthe effectsofreactionkineticsandmassandelectrontransfer.Eachofthesephenomena—thermodynamics, kinetics,andtransport—isaddressedseparatelyinsubsequentchapters.Thischapterdefinesbasic terminologyandgivesanoverviewoftheprincipalconceptsthatarederivedinsubsequentchapters. ElectrochemicalSystems,FourthEdition.JohnNewmanandNitashP.Balsara. ©2021JohnWiley&Sons,Inc.Published2021byJohnWiley&Sons,Inc.

Figure1.1 Volta’sfirstbatterycomprisedofasandwichofzincwithitsoxidelayer,saltsolution,andsilver withitsoxidelayer.WhiletheoriginalVoltapileusedanelectrolyteofNaClinwater,modernbatteriesuse aqueousKOHtoincreasetheconductivityandtheconcentrationofOH

1.1DEFINITIONS

Everyelectrochemicalsystemmustcontaintwoelectrodesseparatedbyanelectrolyteandconnected viaanexternalelectronicconductor.Ionsflowthroughtheelectrolytefromoneelectrodetotheother, andthecircuitiscompletedbyelectronsflowingthroughtheexternalconductor.

An electrode isamaterialinwhichelectronsarethemobilespeciesandthereforecanbeusedtosense (orcontrol)thepotentialofelectrons.Itmaybeametalorotherelectronicconductorsuchascarbon,an alloyorintermetalliccompound,oneofmanytransition-metalchalcogenides,orasemiconductor.In particular,inelectrochemistryanelectrodeisconsideredtobeanelectronicconductorthatcarriesout anelectrochemicalreactionorsomesimilarinteractionwithanadjacentphase.Electronicconductivity generallydecreasesslightlywithincreasingtemperatureandisoftheorder102 to104 S/cm,wherea siemens(S)isaninverseohm.

An electrolyte isamaterialinwhichthemobilespeciesareionsandfreemovementofelectrons isblocked.Ionicconductorsincludemoltensalts,dissociatedsaltsinsolution,andsomeionicsolids. Inanionicconductor,neutralsaltsarefoundtobedissociatedintotheircomponentions.Theterm species referstoionsaswellasneutralmolecularcomponentsthatdonotdissociate.Ionicconductivity generallyincreaseswithincreasingtemperatureandisoftheorder10 4 to10 1 S/cm,althoughitcan besubstantiallylower.

Inadditiontothesetwoclassesofmaterials,somematerialsare mixedconductors,inwhichcharge canbetransportedbybothelectronsandions.Mixedconductorsareoccasionallyusedinelectrodes, forexample,insolid-oxidefuelcells.

Thusthekeyfeatureofanelectrochemicalcellisthatitcontainstwoelectrodesthatallowtransport ofelectrons,separatedbyanelectrolytethatallowsmovementofionsbutblocksmovementof electrons.Togetfromoneelectrodetotheother,electronsmusttravelthroughanexternalconducting circuit,doingworkorrequiringworkintheprocess.

Theprimarydistinctionbetweenanelectrochemicalreactionandachemicalredoxreactionisthat, inanelectrochemicalreaction,reductionoccursatoneelectrodeandoxidationoccursattheother, whileinachemicalreaction,bothreductionandoxidationoccurinthesameplace.Thisdistinctionhas severalimplications.Inanelectrochemicalreaction,oxidationisspatiallyseparatedfromreduction. Thus,thecompleteredoxreactionisbrokenintotwo half-cells.Therateofthesereactionscanbe controlledbyexternallyapplyingapotentialdifferencebetweentheelectrodes,forexample,withan externalpowersupply,afeatureabsentfromthedesignofchemicalreactors.Finally,electrochemical

reactionsarealwaysheterogeneous;thatis,theyalwaysoccurattheinterfacebetweentheelectrolyte andanelectrode(andpossiblyathirdphasesuchasagaseousorinsulatingreactant).

Eventhoughthehalf-cellreactionsoccuratdifferentelectrodes,theratesofreactionarecoupled bytheprinciplesofconservationofchargeand electroneutrality.AswedemonstrateinSection3.1, averylargeforceisrequiredtobringaboutaspatialseparationofcharge.Therefore,theflowof currentiscontinuous:allofthecurrentthatleavesoneelectrodemustentertheother.Attheinterface betweentheelectrodeandtheelectrolyte,theflowofcurrentisstillcontinuous,buttheidentityofthe charge-carryingspecieschangesfrombeinganelectrontobeinganion.Thischangeisbroughtabout byacharge-transfer(i.e.,electrochemical)reaction.Intheelectrolyte,electroneutralityrequiresthat therebethesamenumberofequivalentsofcationsasanions:

wherethesumisoverallspecies i insolution,and ci and zi aretheconcentrationandthecharge numberofspecies i,respectively.Forexample, zZn2+ is +2, zOH is 1,and zH2 O is0.

Faraday’slaw relatestherateofreactiontothecurrent.Itstatesthattherateofproductionofa speciesisproportionaltothecurrent,andthetotalmassproducedisproportionaltotheamountof chargepassedmultipliedbytheequivalentweightofthespecies:

where mi isthemassofspecies i producedbyareactioninwhichits stoichiometriccoefficient is si and n electronsaretransferred, Mi isthemolarmass, F isFaraday’sconstant,equalto96,487C/mol, andthetotalamountofchargepassedisequaltothecurrent I multipliedbytime t.Thesignofthe stoichiometriccoefficientisdeterminedbytheconventionofwritinganelectrochemicalreactionin theform

where Mi isthesymbolforthechemicalformulaofspecies i.Forexample,forthereaction

sZnO is 1, sOH is2,and n is2.

Followinghistoricalconvention,currentisdefinedastheflowofpositivecharge.Thus,electrons moveinthedirectionoppositetothatoftheconventionforcurrentflow. Currentdensity isthefluxof charge,thatis,therateofflowofpositivechargeperunitareaperpendiculartothedirectionofflow. Thebehaviorofelectrochemicalsystemsisdeterminedmorebythecurrentdensitythanbythetotal current,whichistheproductofthecurrentdensityandthecross-sectionalarea.Inthistext,thesymbol i referstocurrentdensityunlessotherwisespecified.

Owingtothehistoricaldevelopmentofthefieldofelectrochemistry,severaltermsareincommon use. Polarization referstothedepartureofthepotentialfromequilibriumconditionscausedbythe passageofcurrent. Overpotential referstothemagnitudeofthispotentialdropcausedbyresistanceto thepassageofcurrent.Later,wediscussdifferenttypesofresistancesthatcauseoverpotential.

1.2THERMODYNAMICSANDPOTENTIAL

Ifoneplacesapieceoftarnishedsilverinabasinofsaltwaterandconnectsthesilvertoapieceof zinc,thesilverspontaneouslywillbecomeshiny,andthezincwilldissolve.Why?Anelectrochemical

reactionisoccurringinwhichsilveroxideisreducedtosilvermetalwhilezincmetalisoxidized.It isthethermodynamicpropertiesofsilver,silveroxide,zinc,andzincoxidethatdeterminethatsilver oxideisreducedspontaneouslyattheexpenseofzinc(asopposedtoreducingzincoxideattheexpense ofthesilver).Thesethermodynamicpropertiesarethe electrochemicalpotentials.Letusarbitrarily callonehalf-celltherightelectrodeandtheothertheleftelectrode.Theenergychangeforthereaction isgivenbythechangeinGibbsfreeenergyforeachhalf-cellreaction:

where G istheGibbsfreeenergy, �� i istheelectrochemicalpotentialofspecies i,and si isthe stoichiometriccoefficientofspecies i,asdefinedbyequation1.3.If ΔG forthereactionwithour arbitrarychoiceofrightandleftelectrodesisnegative,thentheelectronswillwanttoflowspontaneously fromtheleftelectrodetotherightelectrode.Therightelectrodeisthenthemorepositiveelectrode, whichistheelectrodeinwhichtheelectronshavealowerelectrochemicalpotential.Thisisequivalent tosayingthat ΔG isequaltothefreeenergyoftheproductsminusthefreeenergyofthereactants.

Nowimaginethatinsteadofconnectingthesilverdirectlytothezinc,weconnectthemviaa high-impedancepotentiostat,andweadjustthepotentialacrossthepotentiostatuntilnocurrentis flowingbetweenthesilverandthezinc.(A potentiostat isadevicethatcanapplyapotential,while a galvanostat isadevicethatcancontroltheappliedcurrent.Ifthepotentiostathasahighinternal impedance(resistance),thenitdrawslittlecurrentinmeasuringthepotential.)Thepotentialatwhich nocurrentflowsiscalledthe equilibrium or open-circuit potential,denotedbythesymbol U.This equilibriumpotentialisrelatedtotheGibbsfreeenergyby

(1.6)

Theequilibriumpotentialisthusafunctionoftheintrinsicnatureofthespeciespresent,aswellas theirconcentrationsand,toalesserextent,temperature.

Whilenonetcurrentisflowingatequilibrium,randomthermalcollisionsamongreactantand productspeciesstillcausereactiontooccur,sometimesintheforwarddirectionandsometimesinthe backwarddirection.Atequilibrium,therateoftheforwardreactionisequaltotherateofthebackward reaction.Thepotentialoftheelectrodeatequilibriumisameasureoftheelectrochemicalpotential(i.e., energy)ofelectronsinequilibriumwiththereactantandproductspecies.Electrochemicalpotentialis definedinmoredetailinChapter2.Inbrief,theelectrochemicalpotentialcanberelatedtothemolality mi andactivitycoefficient �� i ,by

where ���� isindependentofconcentration, R istheuniversalgasconstant(8.3143J/mol⋅K),and T is temperatureinkelvin.Ifoneassumesthatallactivitycoefficientsareequalto1,thenequation1.5 reducestotheNernstequation

whichrelatestheequilibriumpotentialtotheconcentrationsofreactantsandproducts.Inmanytexts, oneseesequation1.8withoutthe“left”term.Itisthenimpliedthatoneismeasuringthepotentialof therightelectrodewithrespecttosomeunspecifiedleftelectrode.

Byconnectinganelectrodetoanexternalpowersupply,onecanelectricallycontroltheelectrochemicalpotentialofelectronsintheelectrode,therebyperturbingtheequilibriumanddrivinga reaction.Applyinganegativepotentialtoanelectrodeincreasestheenergyofelectrons.Increasingthe electrons’energyabovethelowestunoccupiedmolecularorbitalofaspeciesintheadjacentelectrolyte willcausereductionofthatspecies(seeFigure1.2).Thisreductioncurrent(flowofelectronsintothe electrodeandfromthereintothereactant)isalsocalleda cathodic current,andtheelectrodeatwhich itoccursiscalledthe cathode.Conversely,applyingapositivepotentialtoanelectrodedecreases theenergyofelectrons,causingelectronstobetransferredfromthereactantstotheelectrode.The electrodewheresuchanoxidationreactionisoccurringiscalledthe anode.Thus,applyingapositive potentialrelativetotheequilibriumpotentialoftheelectrodewilldrivethereactionintheanodic direction;thatis,electronswillberemovedfromthereactants.Applyinganegativepotentialrelativeto theequilibriumpotentialwilldrivethereactioninthecathodicdirection.Anodiccurrentsaredefined aspositive(flowofpositivechargesintothesolutionfromtheelectrode)whilecathodiccurrentsare negative.Commonexamplesofcathodicreactionsincludedepositionofametalfromitssaltand evolutionofH2 gas,whereascommonanodicreactionsincludecorrosionofametalandevolutionof O2 orCl2 .

Notethatonecannotcontrolthepotentialofanelectrodebyitself.Potentialmustalwaysbe controlledrelativetoanotherelectrode.Similarly,potentialscanbemeasuredonlyrelativetosome referencestate.Whileitiscommoninthephysicsliteraturetousethepotentialofanelectronina vacuumasthereferencestate(seeChapter3),electrochemistsgenerallyusea referenceelectrode,an electrodedesignedsothatitspotentialiswell-definedandreproducible.Apotentialiswell-defined ifbothreactantandproductspeciesarepresentandthekineticsofthereactionissufficientlyfast thatthespeciesarepresentintheirequilibriumconcentrations.Sincepotentialismeasuredwitha high-impedancevoltmeter,negligiblecurrentpassesthroughareferenceelectrode.Chapter5discusses commonlyusedreferenceelectrodes.

Electrochemicalcellscanbedividedintotwocategories: galvaniccells,whichspontaneously producework,and electrolyticcells,whichrequireaninputofworktodrivethereaction.Galvanic applicationsincludedischargeofbatteriesandfuelcells.Electrolyticapplicationsincludecharging batteries,electroplating,electrowinning,andelectrosynthesis.Inagalvaniccell,connectingthe positiveandnegativeelectrodescausesadrivingforceforchargetransferthatdecreasesthepotential ofthepositiveelectrode,drivingitsreactioninthecathodicdirection,andincreasesthepotentialof thenegativeelectrode,drivingitsreactionintheanodicdirection.Conversely,inanelectrolyticcell,a positivepotential(positivewithrespecttotheequilibriumpotentialofthepositiveelectrode)isapplied

Figure1.2 Schematicoftherelativeenergyoftheelectroninreductionandoxidationreactions.Duringa reductionreaction,electronsaretransferredfromtheelectrodetothelowestunoccupiedenergylevelofareactant species.Duringoxidation,electronsaretransferredfromthehighestoccupiedenergylevelofthereactanttothe electrode.

tothepositiveelectrodetoforcethereactionintheanodicdirection,whereasanegativepotential isappliedtothenegativeelectrodetodriveitsreactioninthecathodicdirection.Thus,thepositive electrodeistheanodeinanelectrolyticcellwhileitisthecathodeinagalvaniccell,andthenegative electrodeisthecathodeinanelectrolyticcellandtheanodeinagalvaniccell.

1.3KINETICSANDRATESOFREACTION

Imaginethatwehaveasystemwiththreeelectrodes:azincnegativeelectrode,asilverpositive electrode,andanotherzincelectrode,allimmersedinabeakerofaqueousKOH(seeFigure1.1). Wepasscurrentbetweenthenegativeandpositiveelectrodes.Forthemoment,letusjustfocusonone electrode,suchasthezincnegativeelectrode.Sinceitisourelectrodeofinterest,wecallitthe working electrode,andtheotherelectrodethroughwhichcurrentpassesistermedthe counterelectrode.The secondzincelectrodewillbeplacedinsolutionandconnectedtotheworkingelectrodethrougha high-impedancevoltmeter.Thissecondzincelectrodeisinequilibriumwiththeelectrolytesinceno currentispassingthroughit.Wecanthereforeusethiselectrodeasareferenceelectrodetoprobe changesinthepotentialintheelectrolyterelativetothepotentialoftheworkingelectrode.

Asmentionedabove,adrivingforceisrequiredtoforceanelectrochemicalreactiontooccur. Imaginethatweplaceourreferenceelectrodeinthesolutionadjacenttotheworkingelectrode.Recall thatourworkingandreferenceelectrodesareofthesamematerialcomposition.Sincenocurrentis flowingatthereferenceelectrode,andapotentialhasbeenappliedtotheworkingelectrodetoforce currenttoflow,thedifferenceinpotentialbetweenthetwoelectrodesmustbethedrivingforcefor reaction.Thisdrivingforceistermedthe surfaceoverpotential andisgiventhesymbol �� s .Therateof reactionoftencanberelatedtothesurfaceoverpotentialbythe Butler–Volmerequation,whichhasthe form

Apositive �� s producesapositive(anodic)current.ThederivationandapplicationoftheButler–Volmer equation,anditslimitations,arediscussedinChapter8.Asmentionedabove,randomthermalcollisions causereactionstooccurinboththeforwardandbackwarddirections.Thefirstterminequation1.9 istherateoftheanodicdirection,whilethesecondtermistherateofthecathodicdirection.The differencebetweentheseratesgivesthenetrateofreaction.Theparameter i0 iscalledthe exchange currentdensity andisanalogoustotherateconstantusedinchemicalkinetics.Inareactionwithahigh exchangecurrentdensity,boththeforwardandbackwardreactionsoccurrapidly.Thenetdirectionof reactiondependsonthesignofthesurfaceoverpotential.Theexchangecurrentdensitydependsonthe concentrationsofreactantsandproducts,temperature,andalsothenatureoftheelectrode–electrolyte interfaceandimpuritiesthatmaycontaminatethesurface.Eachofthesefactorscanchangethevalue of i0 byseveralordersofmagnitude. i0 canrangefromover1mA/cm2 tolessthan10 7 mA/cm2 .The parameters �� a and �� c ,called apparenttransfercoefficients,areadditionalkineticparametersthatrelate howanappliedpotentialfavorsonedirectionofreactionovertheother.Theyusuallyhavevalues between0.2and2.

Areactionwithalargevalueof i0 isoftencalledfastorreversible.Foralargevalueof i0 ,alarge currentdensitycanbeobtainedwithasmallsurfaceoverpotential.

TherelationshipbetweencurrentdensityandsurfaceoverpotentialisgraphedinFigures1.3and 1.4.InFigure1.3,weseethatthecurrentdensityvarieslinearlywith �� s forsmallvaluesof �� s ,and fromthesemiloggraphgiveninFigure1.4weseethatthecurrentdensityvariesexponentiallywith �� s forlargevaluesof �� s .ThelatterobservationwasmadebyTafelin1905,andFigure1.4istermeda

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.