Full download Algebra and applications 1: non-associative algebras and categories 1st edition makhlo

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/algebra-and-applications-1-non-associative-algebrasand-categories-1st-edition-makhlouf/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Linear Algebra and Its Applications, Global Edition Lay

https://ebookmass.com/product/linear-algebra-and-itsapplications-global-edition-lay/

Elementary abstract algebra: examples and applications

Hill

https://ebookmass.com/product/elementary-abstract-algebraexamples-and-applications-hill/

Linear Algebra and Its Applications 5th Edition, (Ebook PDF)

https://ebookmass.com/product/linear-algebra-and-itsapplications-5th-edition-ebook-pdf/

Intermediate Algebra: Concepts and Applications 10th Edition, (Ebook PDF)

https://ebookmass.com/product/intermediate-algebra-concepts-andapplications-10th-edition-ebook-pdf/

Linear Algebra and Its Applications 4th Edition, (Ebook PDF)

https://ebookmass.com/product/linear-algebra-and-itsapplications-4th-edition-ebook-pdf/

Metal Oxides for Non-volatile Memory: Materials, Technology and Applications Panagiotis Dimitrakis

https://ebookmass.com/product/metal-oxides-for-non-volatilememory-materials-technology-and-applications-panagiotisdimitrakis/

Optimizations and Programming: Linear, Non-linear, Dynamic, Stochastic and Applications with Matlab Abdelkhalak El Hami

https://ebookmass.com/product/optimizations-and-programminglinear-non-linear-dynamic-stochastic-and-applications-withmatlab-abdelkhalak-el-hami/

Financial Algebra: Advanced Algebra with Financial Applications 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/financial-algebra-advanced-algebrawith-financial-applications-2nd-edition-ebook-pdf/

Many-Sorted Algebras for Deep Learning and Quantum Technology 1st Edition Giardina Ph.D.

https://ebookmass.com/product/many-sorted-algebras-for-deeplearning-and-quantum-technology-1st-edition-giardina-ph-d/

Algebra and Applications 1

SCIENCES

Mathematics, Field Director – Nikolaos Limnios

Algebra and Geometry, Subject Head – Abdenacer Makhlouf

Algebra and Applications 1

Non-associative Algebras and Categories

Coordinated by

Abdenacer Makhlouf

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

John Wiley & Sons, Inc.

27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA

www.iste.co.uk

www.wiley.com

© ISTE Ltd 2020

The rights of Abdenacer Makhlouf to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2020938694

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 978-1-78945–017-0

ERC code:

PE1 Mathematics

PE1_2 Algebra

PE1_5 Lie groups, Lie algebras

PE1_12 Mathematical physics

Foreword .......................................xi

AbdenacerM AKHLOUF

Chapter1.JordanSuperalgebras ......................1

ConsueloM ARTINEZ andEfimZ ELMANOV

1.1.Introduction.................................1

1.2.Tits–Kantor–Koecherconstruction.....................4

1.3.Basicexamples(classicalsuperalgebras).................5

1.4.Brackets....................................8

1.5.Cheng–Kacsuperalgebras.........................10

1.6.FinitedimensionalsimpleJordansuperalgebras.............11

1.6.1.Case F isalgebraicallyclosedand char F =0 ............11

1.6.2.Case char F = p> 2,theevenpart J0 issemisimple........11

1.6.3.Case char F = p> 2,theevenpart J0 isnotsemisimple......13

1.6.4.Non-unitalsimpleJordansuperalgebras................13

1.7.Finitedimensionalrepresentations.....................14

1.7.1.Superalgebrasofrank ≥ 3 .......................16

1.7.2.Superalgebrasofrank ≤ 2 .......................17

1.8.Jordansuperconformalalgebras......................21

1.9.References..................................23

Chapter2.CompositionAlgebras ......................27 AlbertoE LDUQUE

2.1.Introduction.................................27

2.2.Quaternionsandoctonions.........................28

2.2.1.Quaternions...............................28

2.2.2.Rotationsinthree-(andfour-)dimensionalspace..........31

2.2.3.Octonions.................................33

2.3.Unitalcompositionalgebras........................35

2.3.1.TheCayley-Dicksondoublingprocessandthegeneralized Hurwitztheorem................................37

2.3.2.IsotropicHurwitzalgebras.......................41

2.4.Symmetriccompositionalgebras......................43

2.5.Triality....................................50

2.6.Concludingremarks.............................54

2.7.Acknowledgments..............................55

2.8.References..................................55

Chapter3.Graded-DivisionAlgebras ....................59 YuriB AHTURIN ,MikhailK OCHETOV andMikhailZ AICEV

3.1.Introduction.................................59

3.2.Backgroundongradings..........................62

3.2.1.Gradingsinducedbyagrouphomomorphism............62

3.2.2.Weakisomorphismandequivalence..................63

3.2.3.Basicpropertiesofdivisiongradings.................63

3.2.4.Gradedpresentationsofassociativealgebras.............64

3.2.5.Tensorproductsofdivisiongradings.................68

3.2.6.Loopconstruction............................70

3.2.7.Anotherconstructionofgraded-simplealgebras...........72

3.3.Graded-divisionalgebrasoveralgebraicallyclosedfields........75

3.4.Realgraded-divisionassociativealgebras.................77

3.4.1.Simplegraded-divisionalgebras....................77

3.4.2.Pauligradings..............................80

3.4.3.Commutativecase............................80

3.4.4.Non-commutativegraded-divisionalgebraswith one-dimensionalhomogeneouscomponents.................82

3.4.5.Equivalenceclassesofgraded-divisionalgebraswith one-dimensionalhomogeneouscomponents.................84

3.4.6.Graded-divisionalgebraswithnon-central two-dimensionalidentitycomponents....................90

3.4.7.Graded-divisionalgebraswithfour-dimensionalidentity components...................................94

3.4.8.Classificationofrealgraded-divisionalgebras,upto isomorphism...................................95

3.5.Realloopalgebraswithanon-splitcentroid...............96

3.6.Alternativealgebras.............................98

3.6.1.Cayley–Dicksondoublingprocess...................99

3.6.2.Gradingsonoctonionalgebras.....................100

3.6.3.Graded-simplerealalternativealgebras................101

3.6.4.Graded-divisionrealalternativealgebras...............102

3.7.Gradingsoffields..............................106

3.8.References..................................107

Chapter4.Non-associative C∗ -algebras ..................111 ÁngelR ODRÍGUEZ PALACIOS andMiguelC ABRERA G ARCÍA

4.1.Introduction.................................111

4.2. JB-algebras..................................111

4.3.Thenon-associativeVidav–PalmerandGelfand–Naimarktheorems..116

4.4. JB∗ -triples..................................128

4.5.Past,presentandfutureofnon-associative C ∗ -algebras.........141

4.6.Acknowledgments..............................145

4.7.References..................................145

Chapter5.Structureof H -algebras .....................155 JoséAntonioC UENCA M IRA

5.1.Introduction.................................155

5.2.Preliminaries:aspectsofthegeneraltheory................156

5.3.Ultraproductsof H -algebras........................164

5.4.Quadratic H -algebras............................166

5.5.Associative H -algebras...........................167

5.6.Flexible H -algebras............................173

5.7.Non-commutativeJordan H -algebras..................175

5.8.Jordan H -algebras.............................178

5.9.Moufang H -algebras............................182

5.10.Lie H -algebras...............................184

5.11.TopicscloselyrelatedtoLie H -algebras................188

5.12.Two-graded H -algebras.........................190

5.13.Othertopics:beyondthe H -algebras..................194

5.14.Acknowledgments.............................194

5.15.References.................................194

Chapter6.Krichever–NovikovTypeAlgebras:Definitions andResults .....................................199 MartinS CHLICHENMAIER

6.1.Introduction.................................199

6.2.TheVirasoroalgebraanditsrelatives...................201

6.3.Thegeometricpicture............................204

6.3.1.ThegeometricrealizationsoftheWittalgebra............204

6.3.2.Arbitrarygenusgeneralizations....................204

6.3.3.Meromorphicforms...........................206

6.4.Algebraicstructures.............................209

6.4.1.Associativestructure..........................209

6.4.2.LieandPoissonalgebrastructure...................210

6.4.3.ThevectorfieldalgebraandtheLiederivative............210

6.4.4.Thealgebraofdifferentialoperators..................211

6.4.5.Differentialoperatorsofalldegrees..................212

6.4.6.Liesuperalgebrasofhalfforms....................213

6.4.7.Jordansuperalgebra...........................213

6.4.8.Highergenuscurrentalgebras.....................214

6.4.9.KN-typealgebras............................215

6.5.Almost-gradedstructure..........................215

6.5.1.Definitionofalmost-gradedness....................215

6.5.2.SeparatingcycleandKNpairing....................216

6.5.3.Thehomogeneoussubspaces......................217

6.5.4.Thealgebras...............................219

6.5.5.Triangulardecompositionandfiltrations...............221

6.6.Centralextensions..............................221

6.6.1.Centralextensionsandcocycles....................222

6.6.2.Geometriccocycles...........................223

6.6.3.Uniquenessandclassificationofcentralextensions.........226

6.7.Examplesandgeneralizations.......................229

6.7.1.Thegenuszeroandthree-pointsituation...............229

6.7.2.Genuszeromultipointalgebras–integrablesystems........231

6.7.3.Deformations...............................232

6.8.Laxoperatoralgebras............................232

6.9.FermionicFockspace............................235

6.9.1.Semi-infiniteformsandfermionicFockspacerepresentations...235

6.9.2. b – c systems...............................237

6.10.Sugawararepresentation..........................237

6.11.Applicationtomodulispace........................240

6.12.Acknowledgments.............................240

6.13.References.................................240

Chapter7.AnIntroductiontoPre-LieAlgebras .............245 ChengmingB AI

7.1.Introduction.................................245

7.1.1.Explanationofnotions.........................245

7.1.2.Twofundamentalproperties......................246

7.1.3.Somesubclasses.............................247

7.1.4.Organizationofthischapter......................248

7.2.Someappearancesofpre-Liealgebras...................249

7.2.1.Left-invariantaffinestructuresonLiegroups:ageometric interpretationof“left-symmetry”.......................249

7.2.2.Deformationcomplexesofalgebrasandright-symmetric algebras.....................................250

7.2.3.Rootedtreealgebras:freepre-Liealgebras..............251

7.2.4.ComplexstructuresonLiealgebras..................251

7.2.5.SymplecticstructuresonLiegroupsandLiealgebras,phase spacesofLiealgebrasandKählerstructures.................252

7.2.6.Vertexalgebras..............................254

7.3.Somebasicresultsandconstructionsofpre-Liealgebras........255

7.3.1.Somebasicresultsofpre-Liealgebras................255

7.3.2.Constructionsofpre-Liealgebrasfromsomeknownstructures..258

7.4.Pre-LiealgebrasandCYBE........................261

7.4.1.Theexistenceofacompatiblepre-LiealgebraonaLiealgebra..261

7.4.2.CYBE:unificationoftensorandoperatorforms...........262

7.4.3.Pre-Liealgebras, O-operatorsandCYBE...............264

7.4.4.Analgebraicinterpretationof“left-symmetry”:construction fromLiealgebrasrevisited...........................265

7.5.Alargerframework:LieanaloguesofLodayalgebras..........266

7.5.1.Pre-Liealgebras,dendriformalgebrasandLodayalgebras.....266

7.5.2.L-dendriformalgebras.........................267

7.5.3.LieanaloguesofLodayalgebras....................269

7.6.References..................................271

Chapter8.Symplectic,ProductandComplexStructureson3-Lie Algebras .......................................275

YunheS HENG andRongTANG

8.1.Introduction.................................275

8.2.Preliminaries.................................278

8.3.Representationsof3-pre-Liealgebras...................280

8.4.Symplecticstructuresandphasespacesof 3-Liealgebras........282

8.5.Productstructureson 3-Liealgebras....................288

8.6.Complexstructureson 3-Liealgebras...................295

8.7.Complexproductstructureson 3-Liealgebras..............304

8.8.Para-Kählerstructureson 3-Liealgebras.................308

8.9.Pseudo-Kählerstructureson 3-Liealgebras................315

8.10.References.................................317

Chapter9.DerivedCategories .........................321

BernhardK ELLER

9.1.Introduction.................................321

9.2.Grothendieck’sdefinition..........................322

9.3.Verdier’sdefinition.............................323

9.4.Triangulatedstructure............................326

9.5.Derivedfunctors...............................331

9.6.DerivedMoritatheory............................332

9.7.Dgcategories.................................334

9.7.1.Dgcategoriesandfunctors.......................334

9.7.2.Thederivedcategory..........................336

9.7.3.Derivedfunctors.............................337

9.7.4.Dgquotients...............................338

9.7.5.Invariants.................................340

9.8.References..................................342

Foreword

IRIMAS-DepartmentofMathematics,UniversityofHauteAlsace,Mulhouse,France

Wesetouttocompileseveralvolumespertainingto AlgebraandApplications in ordertopresentnewresearchtrendsinalgebraandrelatedtopics.Thesubjectof algebrahasgrownspectacularlyoverthelastseveraldecades;algebrareasoningand combinatorialaspectsturnouttobeveryefficientinsolvingvariousproblemsin differentdomains.Ourobjectiveistoprovideaninsightintothefastdevelopmentof newconceptsandtheories.Thechaptersencompasssurveysofbasictheorieson non-associativealgebras,suchasJordanandLietheories,usingmoderntoolsin additiontomorerecentalgebraicstructures,suchasHopfalgebras,whicharerelated toquantumgroupsandmathematicalphysics.

Weprovideself-containedchaptersonvarioustopicsinalgebra,eachcombining someofthefeaturesofbothagraduate-leveltextbookandaresearch-levelsurvey. Theyincludeanintroductionwithmotivationsandhistoricalremarks,thebasic concepts,mainresultsandperspectives.Furthermore,theauthorsprovidecomments ontherelevanceoftheresults,aswellasrelationstootherresultsandapplications.

Thisfirstvolumedealswithnon-associativeandgradedalgebras(Jordan algebras,Lietheory,compositionalgebras,divisionalgebras,pre-Liealgebras, Krichever–Novikovtypealgebras, C ∗ -algebrasand H ∗ -algebras)andprovidesan introductiontoderivedcategories.

Iwouldliketoexpressmydeepgratitudetoallthecontributorsofthisvolumeand ISTELtdfortheirsupport.

AlgebraandApplications1, coordinatedbyAbdenacerM AKHLOUF .©ISTELtd2020.

JordanSuperalgebras

ConsueloM ARTINEZ 1 andEfimZ ELMANOV 2

1 DepartmentofMathematics,UniversityofOviedo,Spain

2 DepartmentofMathematics,UniversityofCaliforniaSanDiego,USA

1.1.Introduction

Superalgebrasappearedinaphysicalcontextinordertostudy,inaunifiedway, supersymmetryofelementaryparticles.Jordanalgebrasgrewoutofquantum mechanicsandgainedprominenceduetotheirconnectionstoLietheory.Inthis chapter,wesurveyJordansuperalgebrasfocusingontheirconnectionstoother subjects.Inthissectionweintroducesomebasicdefinitionsandinsection1.2we givetheTits–Kantor–KoecherconstructionthatshowsthewayinwhichLieand Jordanstructuresareconnected.Insection1.3,weshowexamplesofsomebasic superalgebras(theso-calledclassicalsuperalgebras).Section1.4isaboutthenotion ofbracketsandexplainshowtoconstructsuperalgebrasusingdifferenttypesof brackets.Section1.5explainsCheng–Kacsuperalgebras,animportantclassof superalgebrasthatappearedforthefirsttimeinthecontextofsuperconformal algebras.TheclassificationofJordansuperalgebrasisexplainedinsection1.6,andit includesthecasesofanalgebraicallyclosedfieldofzerocharacteristics,thecaseof primecharacteristic,bothforJordansuperalgebraswithsemisimpleevenpartand withnon-semisimpleevenpart,andthecaseofnon-unitalJordansuperalgebras. Finally,insection1.7,wegivesomegeneralideasaboutJordansuperconformal algebras.Throughoutthechapter,allalgebrasareconsideredoverafield F , charF =2

D EFINITION 1.1.– A(linear)Jordanalgebraisavectorspace J withalinearbinary operation (x,y ) → xy satisfyingthefollowingidentities:

(J1) xy = yx (commutativity);

(J2) (x2 y )x = x2 (yx) ∀x, y ∈ J (Jordanidentity).

Insteadof(J2)wecanconsiderthecorrespondinglinearizedidentity:

(J’2) (xy )(zu)+(xz )(yu)+(xu)(yz )=((xy )z )u +((xu)z )y +((yu)z )x ∀x, y , z , u ∈ J

R EMARK 1.1.–ALiealgebra L isavectorspacewithalinearbinaryoperation (x,y ) → [x,y ] satisfyingthefollowingidentities:

(L1) [x,y ]= [y,x] (anticommutativity);

(L2) [[x,y ],z ]+[[y,z ],x]+[[z,x],y ]=0 forarbitraryelements x, y , z ∈ J (Jacobiidentity).

E XAMPLE 1.1.–If A isanassociativealgebra,then (A(+) , ·),where a · b = ab + ba is aJordanalgebra,and (A( ) , [ , ]),where [a,b]= ab ba isaLiealgebra.Both A(+) and A( ) havethesameunderlyingvectorspaceas A.

D EFINITION 1.2.– Asuperalgebra A isanalgebrawitha Z/2Z-grading.So A = A0 + A1 isadirectsumoftwovectorspacesand

Elementsof A0 ∪ A1 arecalledhomogeneouselements.Theparityofa homogeneouselement a,denoted |a|,isdefinedby |a| =0 if a ∈ A0 and |a| =1 if a ∈ A1

Elementsin A0 arecalledevenandelementsin A1 arecalledodd.

Notethat A0 isasubalgebraof A,but A1 isnot,insteaditcanbeseenasa bimoduleover A0

E XAMPLE 1.2.–If V isavectorspaceofcountabledimension,then G = G(V ) denotestheGrassmann(orexterior)algebraover V ,thatis,thequotientofthetensor algebraovertheidealgeneratedbythesymmetrictensors v ⊗ w + w ⊗ v , v , w ∈ V . Thisalgebra G(V ) is Z/2Z-graded.Indeed, G(V )= G(V )0 + G(V )1 ,wherethe “evenpart”isthelinearspanofalltensorsofevenlengthandthe“oddpart” G(V )1 isthelinearspanofalltensorsofoddlength.

G(V ) isanexampleofasuperalgebra.

D EFINITION 1.3.– Consideravarietyofalgebras V definedbyhomogeneous identities(seeJacobson(1968)orZhevlakov etal.(1982)).Wesaythata superalgebra A = A0 + A1 isa V-superalgebraiftheevenpartof A ⊗F G(V ) lies inthevariety,thatis

D EFINITION 1.4.– Thealgebra A0 ⊗ G(V )0 + A1 ⊗ G(V )1 iscalledtheGrassmann envelopeofthesuperalgebra A andwillbedenotedas G(A)

Letusconsider V thevarietyofassociative,commutative,anticommutative,Jordan orLiealgebras,respectively.Thenweget:

E XAMPLE 1.3.–Asuperalgebra A = A0 + A1 isanassociativesuperalgebraifand onlyifitisa Z/2Z-gradedassociativealgebra.

E XAMPLE 1.4.–Asuperalgebra A = A0 + A1 isacommutativesuperalgebraifit satisfies:

xy =( 1)|x||y | yx

forany x, y homogeneouselementsof A.

E XAMPLE 1.5.–Asuperalgebra A isananticommutativesuperalgebraif

xy = ( 1)|x||y | yx

forevery x, y homogeneouselementsof A

E XAMPLE 1.6.–AJordansuperalgebraisasuperalgebrathatiscommutativeand satisfiesthegradedidentity: (xy )(zu)+( 1)|

foreveryhomogeneouselements x, y , z , u ∈ A0 ∪ A1 .

E XAMPLE 1.7.–Ananticommutativesuperalgebra A isaLiesuperalgebraifit satisfies:

forevery x, y , z ∈ A0 + A1 .

D EFINITION 1.5.– If J = J0 + J1 isaJordansuperalgebraand x, y , z ∈ J0 ∪ J1 , thentheirtripleproductisdefinedby: {x,y,z } =(xy )z + x(yz ) ( 1)|x||y | y (xz ).

Notethateveryalgebraisasuperalgebrawiththetrivialgrading,thatis, A = A0 .

1.2.Tits–Kantor–Koecherconstruction

Tits(1962,1966)madeanimportantobservationthatrelatesLieandJordan structures.Let L beaLiesuperalgebrawhoseevenpart L0 containsan sl2 -triple {e,f,h},thatis, [e,f ]= h, [h,e]=2e, [h,f ]= 2f.

D EFINITION 1.6.– An sl2 -triple e, f , h issaidtobe“good”if ad(h): L → L is diagonalizableandtheeigenvaluesareonly 2, 0, 2.

Insuchacase, L = L 2 + L0 + L2 decomposesasadirectsumofeigenspaces. Wecandefineanewproductin L2 by:

Withthisnewproduct, J =(L2 , ◦) becomesaJordansuperalgebra.

Moreover,(Tits1962,1966;Kantor1972)and(Koecher1967)showedthatevery Jordansuperalgebracanbeobtainedinthisway.ThecorrespondingLiesuperalgebra isnotunique,butanytwosuchLiesuperalgebrasarecentrallyisogenous,thatis, theyhavethesamecentralcover.Letusrecalltheconstructionof L =TKK(J ),the universalLiesuperalgebrainthisclass(seeMartinandPiard(1992)).

C ONSTRUCTION .–Consider J aunitalJordansuperalgebra,and {ei }i∈I abasisof J . Let

DefineaLiesuperalgebra K bygenerators {x+ j ,xj }j ∈I andrelations

[x+ i ,x+ j ]=0=[xi ,xj ],

[[x+ i ,xj ],x+ k ]= t γ t ijk x+ t ,

[[xi ,x+ j ],xk ]= t γ t ijk xt , forevery i,j,k ∈ I.

ThisLiesuperalgebrahasashortgrading K = K 1 + K0 + K1 where K 1 = F (xi )i∈I ,K1 = F (x+ i )i∈I ,K0 = F ([xi ,x+ j ])i,j ∈I .

K istheuniversalTits–Kantor–KoecherLiesuperalgebraoftheunitalJordan superalgebra J :

K =TKK(J ).

1.3.Basicexamples(classicalsuperalgebras)

Let A = A0 + A1 beanassociativesuperalgebra.Thenewoperationinthe underlyingvectorspace A givenby: a ◦ b = 1 2 (ab +( 1)|a||b| ba) ∀a,b

definesastructureofaJordansuperalgebraon A thatisdenoted A(+) .

D EFINITION 1.7.– ThoseJordansuperalgebrasthatcanbeobtainedassubalgebras ofasuperalgebra A(+) ,with A anassociativesuperalgebra,arecalledspecial. Superalgebrasthatarenotspecialarecalledexceptional.

R EMARK 1.2.–Ifweconsiderintheoriginalassociativesuperalgebrathenewproduct givenby:

wegetaLiesuperalgebrathatisdenotedas A( ) .

D EFINITION 1.8.– Asuperalgebra A issimpleifitdoesnothavenon-trivialgraded ideals.Agradedidealisanideal I A suchthatforevery a = a0 + a1 ∈ I ,it followsthat a0 , a1 ∈ I .Soeverygradedideal I satisfies I =(A

Wall(1963,1964)provedthatanarbitrarysimplefinitedimensionalsuperalgebra overanalgebraicallyclosedfieldisisomorphictooneofthefollowingtwotypes:

I) A = Mm+n (F )= A0 + A1 ,A0 = ∗ 0 0 ∗ m n ,A1 =

II) A = Q(n)= ab ba a,b ∈ Mn (F ) ≤ Mn+n (F ).

Consequently,wecaneasilygetthefirstexamplesofsimplefinitedimensional Jordansuperalgebrasasexplainedabove.

E XAMPLE 1.8.– J = M (+) m+n (F ), m ≥ 1, n ≥ 1

E XAMPLE 1.9.– J = Q(n)(+) , n ≥ 2.

D EFINITION 1.9.– Let A beanassociativesuperalgebra.Amap ∗ : A → A isa superinvolutionifitsatisfies:

i) (a∗ )∗ = a, ∀a ∈ A; ii) (ab)∗ =( 1)|a||b| b∗ a∗ , ∀a,b ∈ A0 ∪ A1

If ∗ : A → A isasuperinvolutionoftheassociativesuperalgebra A,thenthesetof symmetricelements H (A, ∗) isaJordansuperalgebraof A(+) .Similarly,thesubspace ofskew-symmetricelements K (A, ∗)= {a ∈ A | a∗ = a} isaLiesubsuperalgebra of A( ) .

Thefollowingtwosubsuperalgebrasof M (+) m+n areofthistype.

E XAMPLE 1.10.–Let In , Im betheidentitymatricesandlet t bethetransposition. Letusdenote U = 0 Im Im 0 .

Then U t = U 1 = U ,and ∗ : Mn+2m (F ) → Mn+2m (F ) givenby ab cd ∗ = In 0 0 U at ct

isasuperinvolution.

Thesuperalgebras

ospn,2m = K (Mn+2m (F ), ∗) and Jospn,2m (F )= H (Mn+2m (F ), ∗) aretheLieandJordanorthosymplecticsuperalgebras,respectively.

E XAMPLE 1.11.–Theassociativesuperalgebra Mn+n (F ) hasanother superinvolutiongivenby:

ab cd σ = dt bt ct at .

TheLieandJordansuperalgebras(respectively)thatconsistofskew-symmetric andsymmetricelements,respectively,aredenotedas Pn (F ) and JPn (F ) (andare alsocalled“strangeseries”).

E XAMPLE 1.12.–Thethree-dimensionalKaplanskysuperalgebra K3 = Fe +(Fx + Fy ) withmultiplicationtable:

e 2 = e,ex = 1 2 x,ey = 1 2 y,x 2 = y 2 =0,x · y = y · x = e isasimpleJordansuperalgebra.Notethat K3 isnotunital.

E XAMPLE 1.13.–Theone-parametricfamilyoffour-dimensionalsuperalgebras D (t) definedas D (t)=(Fe1 + Fe2 )+(Fx + Fy ) withtheproduct e 2 i = ei ,e1 e2 =0,ei x = 1 2 x,ei y

Thesuperalgebra D (t) issimpleif t =0.Inthecase t = 1,thesuperalgebra D ( 1) isisomorphicto M1+1 (F )(+) .

E XAMPLE 1.14.–Let V beavectorspacethatis Z/2Z-graded, V = V0 + V1 ,and hasasuperform ( | ): V × V → F ,whichissymmetricon V0 ,skew-symmetricin V1 and (V0 |V1 )=0=(V1 |V0 ).Then J = F 1+ V =(F 1+ V0 )+ V1 isaJordan superalgebra,wheretheproductoftwoarbitraryelements α1+ v and β 1+ w in J is givenby (α1+ v ) (β 1+ w )= αβ 1+(v |w )1+(αw + βv )

forarbitrary v , w ∈ V

Wewillreferto J asthesuperalgebraofasuperform.

J issimpleifandonlyiftheform ( | ) isnon-degenerate.

E XAMPLE 1.15.–Kac(1977a)introduceda 10-dimensionalJordansuperalgebra J whoseevenparthasdimension 6 andsplitsasthedirectsumofasuperalgebraofa superformandaone-dimensionalalgebra.Thus, J0 =(Fe + 1≤i≤4 Fvi ) ⊕ Ff hasthe multiplicationgivenby:

andanyotherproductoftwobasicelementsis 0

Theoddpart J1 hasabasis {x1 ,x2 ,y1 ,y2 } andthefollowingmultiplicationtable:

Finally,theactionof J0 over J1 isgivenby:

v1 xj =0,v1 y1 = x2 ,v1 y2 = x1 ,v2 yj =0,v2 x1 = y2 ,v2 x2 = y1

v3 x1 =0= v3 y2 ,v3 x2 = x1 ,v3 y1 = y2 , v4 x2 =0= v4 y1 ,v4 x1 = x2 ,v4 y2 = y1 .

Thissuperalgebraissimpleif char F =3.Incaseof char F =3,ithasanideal ofdimension 9 thatisspannedby e, vi , 1 ≤ i ≤ 4, xj , yj , 1 ≤ j ≤ 2.Itiscalled degeneratedKacsuperalgebraandisdenotedby K9

InMedvedevandZelmanov(1992),itisprovedthattheKacsuperalgebra K10 is notahomomorphicimageofaspecialJordansuperalgebra.

BenkartandElduque(2002)realized K10 asthespaceof K3 ⊗ K3 +F 1 (witha newproduct)where K3 istheKaplanskysuperalgebra.

Another(octonionic)constructionof K10 wassuggestedinRacineandZelmanov (2015).

1.4.Brackets

D EFINITION 1.10.– Let A beanassociativecommutativesuperalgebra.Abinarymap { , } : A × A → A iscalledaPoissonbracketif 1) (A, { , }) isaLiesuperalgebra;

2) {ab,c} = a{b,c} +( 1)|b||c| {a,c}b forarbitrary a,b,c ∈ A0 ∪ A1 .

E XAMPLE 1.16.–Let F [p1 ,...,pn ,q1 ,...,qn ] beapolynomialalgebrain 2n variables.TheclassicalHamiltonianbracket:

f,g } =

isaPoissonbracket.

E XAMPLE 1.17.–Let

G(n)= ξ1 ,...,ξn betheGrassmannalgebraoveran n-dimensionalvectorspace V .Thenthebracket

forarbitrary f,g ∈ G(V )0 ∪ G(V )1 isaPoissonbracket.

D EFINITION 1.11.– Given A = A0 + A1 anassociativecommutativesuperalgebra, abilinearmap { , } : A × A → A iscalledacontactbracketif:

i) (A, { , }) isaLiesuperalgebra; ii) {ab,c} = a{b,c} +( 1)|b||c| {a,c}b + abD (c) forarbitraryhomogeneous elements a, b, c in A.

NotethataPoissonbracketisacontactbracketwith D =0.

E XAMPLE 1.18.–Let F [t] bethepolynomialalgebra.Thenthebracket {f (t),g (t)} = f (t)g (t) f (t)g (t) isacontactbracket.

E XAMPLE 1.19.–Let Λ(1: n) bethepolynomialsuperalgebrainone(even)Laurent variableand n (odd)Grassmannvariables ξ1 ,...,ξn , Λ(1: n)= F [t,t 1 ,ξ1 ,...,ξn ].Consider D = ∂ ∂t or D = t ∂ ∂t aderivationof F [t,t 1 ].The bilinearmapdefinedongeneratorsof Λ(1: n) by:

[t,ξi ]= 1 2 ξi D (t), [ξi ,ξj ]= δij , 1 ≤ i,j ≤ n

canbeextendedtoacontactbracketon Λ(1: n).

D EFINITION 1.12.– [Kantordouble]Let A beanassociativecommutative superalgebrawithabilinearmap { , } : A × A → A.Assumethat {Ai ,Aj }⊆ Ai+j .Consideradirectsumofvectorspaces KJ(A, { , })= A + Av where |v | =1.Defineanewproductin J (A, { , }) thatcoincideswiththeoriginal onein A andisgivenby:

a(bv )=(ab)v, (bv )a =( 1)|a| (ba)v, (av )(bv )=( 1)|b| {a,b}

Thesuperalgebra KJ(A, { , }) iscalledtheKantordoubleof (A, { , }).

Kantor(1990)provedthatifthebracket { , } isaPoissonbracket,then KJ(A, { , }) isaJordansuperalgebra.

D EFINITION 1.13.– Thebilinearmap { , } iscalledaJordanbracketonthe superalgebra A if KJ(A, { , }) isaJordansuperalgebra(seeKingandMcCrimmon (1992)).

CantariniandKac(2007)showedthatthereisa 1-1 correspondencebetween Jordanbracketsandcontactbrackets.Indeed,if [a,b] isacontactbracketwith derivation D , D (a)=[a, 1],thenthenewbracket

{a,b} =[a,b]+ 1 2 (D (a)b aD (b))

isaJordanbracket.

Applyingthistoexample1.19,wegetthefollowing:

E XAMPLE 1.20.–Thevalues {ξi ,t} =0, {ξi ,ξj } = δij for 1 ≤ i,j ≤ n extendto aJordanbracketof Λ(1: n).ApplyingtheKantordoubleprocesstothisbracket,we getJordansuperalgebras Jn =KJ(Λ(1: n), { , }).

1.5.Cheng–Kacsuperalgebras

Givenanarbitraryunitalassociativecommutative(super)-algebrawithan(even) derivation d : Z → Z ,MartínezandZelmanovconstructed(MartínezandZelmanov 2010)aJordansuperalgebra JCK(Z,d) namedtheCheng–KacJordansuperalgebra.

Theevenpartof JCK(Z,d) isarank 4 freemoduleover Z withbasis {1,w1 ,w2 ,w3 }, J0 = Z + 3 i=1 wi Z ,andmultiplicationgivenby wi wj =0 if 1 ≤ i = j ≤ 3, w 2 1 =1= w 2 2 , w 2 3 = 1.Theoddpartofthissuperalgebraisalsoa rank 4 freemoduleover Z withbasis {x,x1 ,x2 ,x3 }, J1 = xZ + 3 i=1 xi Z .

Theactionoftheevenpartontheoddpartandtheproductsoftwoelements, respectively,aregivenbythefollowingmultiplicationtables:

Thesuperalgebra JCK(Z,d) issimpleifandonlyif Z is d-simple,thatis, Z does notcontainproper d-invariantideals(seeMartínezandZelmanov(2010)).

Letusremarkthatfor Z = C[t,t 1 ] theaboveconstructionleadstotheCheng–Kacsuperconformalalgebra,thatis, CK(6)=TKK(JCK(6)),where

JCK(6)=JCK(C[t,t 1 ],D ) with D = ∂ ∂t (seesection1.8).

1.6.FinitedimensionalsimpleJordansuperalgebras

1.6.1. Case F isalgebraicallyclosedand char F =0

Letusassumenowthat F isalgebraicallyclosedand char F =0.Kacderived theclassificationoffinitedimensionalsimpleJordan F -superalgebrasfromhis classificationofsimplefinitedimensionalLiesuperalgebrasviathe Tits–Kantor–Koecherconstruction.

T HEOREM 1.1(seeKac(1977a)andKantor(1990)).–Let J = J0 + J1 beasimple Jordansuperalgebraoveranalgebraicallyclosedfield F , char F =0.Then J is isomorphictooneofthesuperalgebrasinexamples1.8,1.9and1.10–1.15oritisthe KantordoubleofthePoissonbracketinexample1.17.

R EMARK 1.3.–Wewillassumealwaysinthissectionthat J1 =(0).

1.6.2. Case char F = p> 2,theevenpart J0 issemisimple

Letusassumenextthat char F = p> 2 andtheevenpart J0 isasemisimple Jordanalgebra.

RecallthatasemisimpleJordanalgebraisadirectsumoffinitelymanysimple ideals.

ThiscasewasaddressedinRacineandZelmanov(2003)andtheclassification essentiallycoincideswiththeoneofzerocharacteristic,expectofsomedifferencesif char F =3

E XAMPLE 1.21.–Let H3 (F ), K3 (F ) denotethesymmetricandskew-symmetric 3 × 3 matricesover F , char F =3.Consider J0 = H3 (F ) and J1 = K3 (F ) ⊕ K3 (F ) the sumoftwocopiesof K3 (F ).WehaveaJordansuperalgebrastructureon J = J0 + J1 via a · b = a b in M3 (F )+ if a, b ∈ H3 (F ),thatis,

a · b = ab + ba,

c · d = cd + dc ∈ H3 (F ) for c,d ∈ K3 (F ),

K3 (F ) · K3 (F )=(0)= K3 (F ) · K3 (F ), and ac = ac + ca,ac = ac + ca if a ∈ H3 (F ),c ∈ K3 (F ).

Thissuperalgebraissimple.

E XAMPLE 1.22.–Let B = B0 + B1 with B0 = M2 (F ), B1 = Fm1 + Fm2 ,where F isafield, char F =3.Theproductin B1 isgivenby: m 2 1 = e21 ,m 2 2 = e12 ,m1 m2 = e11 ,m2 m1 = e22 .

Theactionof B0 over B1 isdefinedasfollows: e11 m1 = m1 ,e11 m2 =0= m1 e11 ,m2 e11 = m2 , m1 e22 = m1 ,e22 m1 =0= m2 e22 ,e

,

.

Shestakov(1997)provedthat B isanalternativesuperalgebraandhasanatural involution ∗ givenby (a + m)∗ =¯ a m, a ∈ B0 ,where a → a isthesymplectic involution,and m ∈ B1

If H3 (B, ∗) denotesthesymmetricmatriceswithrespecttotheinvolution ∗,then H3 (B, ∗) isasimpleJordansuperalgebra.Itis i-exceptional,thatis,itisnota homomorphicimageofaspecialJordansuperalgebra.

T HEOREM 1.2(RacineandZelmanov(2003)).–Let J = J0 + J1 beafinite dimensionalcentralsimpleJordansuperalgebraoveranalgebraicallyclosedfield F

of char F = p> 2.If J1 =(0) and J0 issemisimple,then J isisomorphictooneof thesuperalgebrasinexamples1.8,1.9,1.10–1.14or char F =3 and J isthe nine-dimensionaldegenerateKacsuperalgebra(seeexample1.15)or J isisomorphic tooneofthesuperalgebrasinexamples1.21and1.22.

1.6.3. Case char F = p> 2,theevenpart J0 isnotsemisimple

ThiscaseshowssimilaritieswithinfinitedimensionalsuperconformalJordan algebras(seesection1.8)incharacteristic 0

Letusdenote B (m)= F [a1 ,...,am | ap i =0] thealgebraoftruncated polynomialsin m variables.Let B (m,n)= B (m) ⊗ G(n) bethetensorproductof B (m) withtheGrassmannalgebra G(n)= 1,ξ1 ,...,ξn .Then B (m,n) isan associativecommutativesuperalgebra.

T HEOREM 1.3(MartínezandZelmanov(2010)).–Let J = J0 + J1 beafinite dimensionalsimpleunitalJordansuperalgebraoveranalgebraicallyclosedfield F of characteristic p> 2.Iftheevenpart J0 isnotsemisimple,thenthereexistintegers m, n andaJordanbracket { , } on B (m,n) suchthat J = B (m,n)+ B (m,n)v =KJ(B (m,n), { , }) isaKantordoubleof B (m,n) or J isisomorphictoaCheng–KacJordansuperalgebra JCK(B (m),d) forsome derivation d : B (m) → B (m).

1.6.4. Non-unitalsimpleJordansuperalgebras

Finally,letusconsidernon-unitalsimpleJordansuperalgebras.Aswehaveseen, K3 thethree-dimensionalKaplanskysuperalgebraand K9 thenine-dimensional degenerateKacsuperalgebraareexamplesofsuchsuperalgebras.

E XAMPLE 1.23.–Let Z beaunitalassociativecommutativealgebra, D : Z → Z a derivation.Assumethat Z is D -simpleandthattheonlyconstantsareelements α1, α ∈ F .

Letusconsiderin Z thebracket { , } givenby: {a,b} =(aD )b a(bD ) ∀a,b ∈ Z.

TheabovebracketisaJordanbracket,sotheKantordouble V (Z,D )= Z + Zv = KJ(Z, { , }) isasimpleunitalJordansuperalgebra.

Nowwewillchangetheproductin V (Z,D ),modifyingonlytheactionofthe evenpartontheoddpartandpreservingtheproductoftwoeven(respectively,two

odd)elements.Denotewithjuxtapositiontheproducton V (Z,D ).Let a, b ∈ Z .We definethenewproduct · by:

a · b = ab,a · bv = 1 2 (ab)v,av · bv = {a,b} =(av )(bv )

Inthisway,wegetanotherJordansuperalgebra V1/2 (Z,D ) thatissimplebutnot unital.

ItwasprovedinZelmanov(2000)that:

T HEOREM 1.4.–Let J beafinitedimensionalsimplecentralnon-unitalJordan superalgebraoverafield F .Then J isisomorphictooneofthesuperalgebrason thelist:

i)theKaplanskysuperalgebra K3 (example1.12);

ii)thefield F hascharacteristic 3 and J isthedegenerateKacsuperalgebra (example1.15);

iii)asuperalgebra V1/2 (Z,D ) (example1.23).

D EFINITION 1.14.– Let A beaJordansuperalgebraandlet N beitsradical,that is,thelargestsolvableidealof A.Thesuperalgebra A issaidtobesemisimpleif N =(0)

E XAMPLE 1.24.–Let B beasimplenon-unitalJordansuperalgebraandlet H (B )= B + F 1 beitsunitalhull.Then H (B ) isasemisimpleJordansuperalgebrathatisnot simple.

T HEOREM 1.5(Zelmanov(2000)).–Let J beafinitedimensionalJordan superalgebra.Then J issemisimpleifandonlyif

J ∼ = s i=1 (Ji1 ⊕···⊕ Jiri + Ki 1)+ J(1) ⊕···⊕ J(t) where J(1) ,...,J(t) aresimpleJordansuperalgebrasandforevery i =1,...,s,the superalgebras Jij aresimplenon-unitalJordansuperalgebrasoverthefieldextension Ki of F .

1.7.Finitedimensionalrepresentations

Jacobson(1968)developedthetheoryofbimodulesoversemisimplefinite dimensionalJordanalgebras.

Inthissection,wediscussrepresentations(bimodules)offinitedimensionalJordan superalgebras.

D EFINITION 1.15.– TherankofaJordansuperalgebra J isthemaximalnumberof pairwiseorthogonalidempotentsintheevenpart.

Unlessotherwisestatedwewillassume char F =0

D EFINITION 1.16.– Let V bea Z/2Z-gradedvectorspacewithbilinearmappings V × J → V , J × V → V .Wecall V aJordanbimoduleifthesplitnullextension V + J isaJordansuperalgebra.

Recallthatinthesplitnullextensionthemultiplicationextendsthemultiplication on J ,products V · J and J · V aredefinedviathebilinearmappingsaboveand V · V =(0).

Let V = V0 + V1 beaJordanbimoduleover J .Considerthevectorspace V op = V op 1 + V op 0 ,where V op i isacopyof Vi withdifferentparity.Definetheactionof J on V op via av op =( 1)|a| (av )op ,v op a =(va)op

Then V op isalsoaJordanbimoduleover J .Wecallittheoppositemoduleof V .

Let V bethefreeJordan J -bimoduleononefreegenerator.

D EFINITION 1.17.– Theassociativesubsuperalgebra U (J ) of EndF V generatedby alllineartransformations RV (a): V → V , v → va, a ∈ J ,iscalledtheuniversal multiplicativeenvelopingsuperalgebraof J .

EveryJordanbimoduleover J isarightmoduleover U (J )

D EFINITION 1.18.– Abimodule V over J iscalledaone-sidedbimoduleif {J,V,J } =(0).

Let V (1/2) bethefreeone-sidedJordan J -bimoduleononefreegenerator.

D EFINITION 1.19.– Theassociativesubsuperalgebra S (J ) of EndF V (1/2) generatedbyalllineartransformations RV (1/2) (a): V (1/2) → V (1/2), v → va, a ∈ J ,iscalledtheuniversalassociativeenvelopingalgebraof J

Everyone-sidedJordan J -bimoduleisarightmoduleover S (J )

Finally,let J beaunitalJordansuperalgebrawiththeidentityelement e.Let V (1) denotethefreeunital J -bimoduleononefreegenerator.Theassociative subsuperalgebra U1 (J ) of EndF V (1) generatedby {RV (1/2) (a)}a∈J iscalledthe universalunitalenvelopingalgebraof J .

ForanarbitraryJordanbimodule V ,thePeircedecomposition

V = {e,V,e}⊕{e,V, 1 e}⊕{1 e,V, 1 e}

isadecompositionof V intoadirectsumofunitalandone-sidedbimodules.Hence U (J ) ∼ = U1 (J ) ⊕ S (J )

1.7.1. Superalgebrasofrank ≥ 3

Inthissection,weconsiderJordanbimodulesoverfinitedimensionalsimple Jordansuperalgebrasofrank ≥ 3,thatis,superalgebras M (+) m+n , m + n ≥ 3; Josp(n, 2m), n + m ≥ 3; Q(n)(+) , n ≥ 3; JP(n), n ≥ 3.

Inthiscase,theuniversalmultiplicativeenvelopingsuperalgebra U (J ) isfinite dimensionalandsemisimple(MartinandPiard1992).HenceeveryJordanbimodule iscompletelyreducible,asinthecaseofJordanalgebras.

Thesuperalgebras Josp(n, 2m) and JP(n) areofthetype

H (A, ∗)= {a ∈ A | a ∗ = a} where A isasimplefinitedimensionalassociativesuperalgebraand ∗ isaninvolution.

E XAMPLE 1.25.–Anarbitraryrightmoduleover A isaone-sidedmoduleover H (A, ∗).

E XAMPLE 1.26.–Thesubspace K (A, ∗)= {k ∈ A | k ∗ = k } withtheaction k · a = ka + ak ; k ∈ K (A, ∗), a ∈ H (A, ∗) isaunital H (A, ∗)-bimodule.

T HEOREM 1.6(MartinandPiard(1992)).–AnarbitraryirreducibleJordanbimodule over Josp(n, 2m), n + m ≥ 3,or JP(n), n ≥ 3,isabimoduleofexamples1.25and 1.26ortheregularbimodule.

Thesuperalgebras M (+) m+n , Q(n)(+) areofthetype A(+) ,where A isasimple finitedimensionalassociativesuperalgebra.

E XAMPLE 1.27.–Everyrightmoduleover A givesrisetoaone-sidedJordan bimoduleover A(+) .

Supposenowthatthesuperalgebra A isequippedwithaninvolution ∗.

E XAMPLE 1.28.–Thesubspaces H (A, ∗) and K (A, ∗) becomeJordan A(+)bimoduleswiththeactions:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.