Get Spectroscopic techniques for polymer characterization: methods, instrumentation, applications yu

Page 1


Spectroscopic Techniques for Polymer Characterization: Methods, Instrumentation, Applications Yukihiro

Ozaki

Visit to download the full and correct content document: https://ebookmass.com/product/spectroscopic-techniques-for-polymer-characterizatio n-methods-instrumentation-applications-yukihiro-ozaki/

products digital (pdf, epub, mobi) instant download maybe you interests ...

Polymer Electrolytes: Characterization and Applications

Arof https://ebookmass.com/product/polymer-electrolytescharacterization-and-applications-arof/

Spectroscopic Methods for Nanomaterials

Characterization. A volume in Micro and Nano Technologies 1st Edition Edition Sabu Thomas

https://ebookmass.com/product/spectroscopic-methods-fornanomaterials-characterization-a-volume-in-micro-and-nanotechnologies-1st-edition-edition-sabu-thomas/

Nanomaterial and Polymer Membranes. Synthesis, Characterization, and Applications 1st Edition Tawfik Abdo Saleh

https://ebookmass.com/product/nanomaterial-and-polymer-membranessynthesis-characterization-and-applications-1st-edition-tawfikabdo-saleh/

Polymer science and innovative applications materials, techniques, and future developments Deepalekshmi Ponnamma

https://ebookmass.com/product/polymer-science-and-innovativeapplications-materials-techniques-and-future-developmentsdeepalekshmi-ponnamma/

Characterization Techniques for Perovskite Solar Cell Materials Meysam Pazoki

https://ebookmass.com/product/characterization-techniques-forperovskite-solar-cell-materials-meysam-pazoki/

Experimental methods and instrumentation for chemical engineers Second Edition Patience

https://ebookmass.com/product/experimental-methods-andinstrumentation-for-chemical-engineers-second-edition-patience/

Applications

of

Polymer Nanofibers Anthony L. Andrady

https://ebookmass.com/product/applications-of-polymer-nanofibersanthony-l-andrady/

Reinforced polymer composites processing, characterization and post life cycle assessment WileyVch

https://ebookmass.com/product/reinforced-polymer-compositesprocessing-characterization-and-post-life-cycle-assessment-wileyvch/

Advanced nanomaterials for catalysis and energy: synthesis, characterization and applications Sadykov

https://ebookmass.com/product/advanced-nanomaterials-forcatalysis-and-energy-synthesis-characterization-and-applicationssadykov/

SpectroscopicTechniquesforPolymerCharacterization

SpectroscopicTechniquesforPolymer Characterization

Methods,Instrumentation,Applications

EditedbyYukihiroOzakiandHarumiSato

Editors

ProfessorYukihiroOzaki KwanseiGakuinUniversity SchoolofBiologicaland EnvironmentalSciences 2-1Gakuen,Sanda 669-1337Sanda,Hyogo Japan

ProfessorHarumiSato KobeUniversity GraduateSchoolofHuman DevelopmentandEnvironment 3-11Tsurukabuto,Nada-ku 657-8501Hyogo,Kobe Japan

CoverImage: ©HarumiSato

Allbookspublishedby WILEY-VCH arecarefully produced.Nevertheless,authors,editors,and publisherdonotwarranttheinformation containedinthesebooks,includingthisbook, tobefreeoferrors.Readersareadvisedtokeep inmindthatstatements,data,illustrations, proceduraldetailsorotheritemsmay inadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-PublicationData Acataloguerecordforthisbookisavailable fromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailedbibliographic dataareavailableontheInternetat <http://dnb.d-nb.de>.

©2022WILEY-VCHGmbH,Boschstr. 12,69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).Nopartof thisbookmaybereproducedinanyform–by photoprinting,microfilm,oranyother means–nortransmittedortranslatedintoa machinelanguagewithoutwrittenpermission fromthepublishers.Registerednames, trademarks,etc.usedinthisbook,evenwhen notspecificallymarkedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34833-6

ePDFISBN: 978-3-527-83030-5

ePubISBN: 978-3-527-83032-9

oBookISBN: 978-3-527-83031-2

Typesetting Straive,Chennai,India

Printedonacid-freepaper

10987654321

Contents

ListofContributors xiii

Preface xvii

GeneralIntroduction xix

PartIRecentProgressonSpectroscopicTechniques 1

1PolymerSpectroscopy–SpectroscopyfromtheFar-Ultraviolet toFar-Infrared/TerahertzandRamanSpectroscopy 3 YukihiroOzakiandHarumiSato

1.1IntroductiontoPolymerSpectroscopy 3

1.1.1OutlineofPolymerSpectroscopy 3

1.1.2BriefHistoryofPolymerSpectroscopy 5

1.2OverviewofMolecularSpectroscopyfromtheFar-Ultravioletto Far-Infrared/TerahertzandRamanSpectroscopyinPolymer Research 6

1.2.1IRandRamanSpectroscopyAnalyses 6

1.2.2FIR/TerahertzandLow-FrequencyRamanSpectroscopy 8

1.2.3Near-Infrared(NIR)Spectroscopy 8

1.2.4SERSandTERSSpectroscopy 9

1.2.5FUVSpectroscopy 9

1.3SpecificExamplesofMolecularSpectroscopyStudiesofPolymers 10

1.3.1Infrared,Raman,andNIRSpectroscopicEvidencefortheCoexistenceof HydrogenBondTypesinPoly(AcrylicAcid) 10

1.3.2Low-FrequencyVibrationalModesofNylon-6StudiedbyUsingIRand RamanSpectroscopiesandDensityFunctionalTheoryCalculations 16

1.3.3NIRSpectraofLinearLow-DensityPolyethyleneandTheir ChemometricsAnalysis 21

1.3.4StudyoftheCrystallizationBehaviorofAsymmetricPLLA/PDLABlend byIRandRamanSpectroscopyandRamanImaging 23

1.3.53DSERSImagingUsingChemicallySynthesizedHighlySymmetric NanoporousSilverMicroparticles 28

1.3.6Tip-EnhancedRamanScatteringSpectroscopyStudyofLocal InteractionsattheInterfaceofStyrene–ButadieneRubber/Multiwalled CarbonNanotubeNanocomposites 34

1.4PerspectivesforPolymerSpectroscopy 39 References 41

2FTIRSpectroscopyandSpectroscopicImagingfortheAnalysis ofPolymersandMulticomponentPolymerSystems 45 HuiqiangLu,AndrewV.Ewing,andSergeiG.Kazarian

2.1InvestigationofPolymersUsingFTIRSpectroscopyandSpectroscopic Imaging 45

2.1.1InvestigationofMiscibilityinPolymerBlends 46

2.1.2InvestigationofIntermolecularInteractions 47

2.1.2.1InvestigationofPartiallyMisciblePMMA–PEGBlendsUsing Two-DimensionalDisrelationMapping 48

2.1.3InvestigationofCrystallizationinPolymers 51

2.1.3.1InvestigationofSolvent-InducedCrystallizationinPolymers 51

2.1.3.2InvestigationoftheCrystallizationProcessofPHB,PLLA,andTheir Blends 53

2.2InvestigationofPolymersSubjectedtoHigh-PressureorSupercritical CO2 UsingFTIRSpectroscopyandFTIRSpectroscopicImaging 55

2.2.1MorphologyofPolymericMaterialsUnderHigh-Pressureor SupercriticalCO2 56

2.2.2InvestigationofInteractioninPolymersUnderHigh-Pressureor SupercriticalCO2 59

2.2.2.1InvestigationoftheEffectofHigh-PressureCO2 ontheH-Bondingin PEG–PVPBlends 60

2.2.2.2InvestigationoftheMechanismofInteractionBetweenCO2 and PolymersThroughtheThermodynamicParametersProducedfromIn SituATR–FTIRSpectroscopy 61

2.2.3InvestigationofCrystallizationinPolymersUnderHigh-Pressureor SupercriticalCO2 61

2.2.4TheInvestigationofStructuralChangesandCrystallizationKineticsof PolymersExposedtoHigh-PressureCO2 ThroughInSituHigh-Pressure FTIRandFT-RamanSpectroscopy 64

2.2.5InvestigationofSwellingandCO2 SorptionintothePolymersUnder High-PressureorSupercriticalCO2 65

2.3Conclusion 67 References 68

3InterfacesinPolymerNanocompositesCharacterizedby SpectroscopicTechniques 75 LilianeBokobza

3.1Introduction 75

3.2TypesofInteractionsattheInterface 76

3.3CharacterizationoftheInterfaces 80

3.3.1FluorescenceSpectroscopy 82

3.3.2Solid-StateNMRSpectroscopy 85

3.3.3VibrationalSpectroscopy 88

3.3.3.1InfraredSpectroscopy 89

3.3.3.2RamanSpectroscopy 91

3.4Conclusions 95 References 96

4Far-Infrared/TerahertzandLow-FrequencyRaman SpectroscopiesinPolymers 107 HarumiSato

4.1Introduction 107

4.2IntermolecularHydrogenBondsintheLow-FrequencyRegionofPHB byQCCs 108

4.3SeveralTypesofIntermolecularHydrogenBondsinPCL 109

4.4Stress-InducedCrystalTransitionofPolybutyleneSuccinate(PBS) 113

4.5TheDifferencesinIntermolecularHydrogenBondingBetweenPETand PBT 115

4.6THzImagingofPolymerFilm 117

4.7Conclusions 120 References 120

5Near-InfraredSpectroscopyandImagingofPolymers 125 DaitaroIshikawa,YutaHikima,andYukihiroOzaki

5.1IntroductiontoNIRSpectroscopy 125

5.1.1PrinciplesofNIRSpectroscopy 125

5.1.2CharacteristicsandAdvantagesofNIRSpectroscopy 126

5.1.3AnalysisofNIRSpectra 126

5.2ApplicationstoPolymerScienceandEngineeringofNIR Spectroscopy 128

5.2.1PolarizedNIRSpectroscopyStudiesofMolecularOrientationof Polymers 128

5.2.2IsothermalCrystallizationKineticsofPoly(3-hydroxybutyrate) 134

5.2.3CrystallizationofPoly(3-hydroxybutyrate-co-3-hydroxyhexanoate) DuringMeltExtrusionPromotedbyResidualCrystals 140

5.2.3.1OutlineofOnlineNIRAnalysisandOnlineNIRMonitoringofthe ResidualCrystalAmountattheExtruderOutletNozzle 140

5.2.3.2AmountofResidualCrystalsattheExtruderOutlet 141

5.2.3.3CrystallizationofExtrudedStrands 145

5.2.3.4AnalysisofExtrudedStrandCrystallizationUsingtheAvrami Equation 146

5.3NIRImagingforPolymerSciences 148

5.3.1Introduction 148

5.3.2TheoryofNIRImaging 148

5.3.2.1AcquisitionofHypercube 148

5.3.2.2DataTransferandMapping 149

5.3.2.3FeatureofNIRImagingDevices 150

5.3.3ApplicationsofNIRImaging 151

5.3.3.1MonitoringofCrystalEvolutionCombinedwithChemometrics 151

5.3.3.2QualityEvaluationPotentialforWideArea 153

5.3.3.3DiffusionProcessMonitoring 153

5.3.3.4DegradableProcessMonitoringofBiodegradablePolymer 154

5.3.3.5RapidEvaluationoftheWaterContentinPLAPellets 156

5.3.3.6NondestructiveDetectionofDegradedPolylacticAcidMoldings 157 References 160

6FarUltravioletSpectroscopyforPolymers 165

YusukeMorisawaandNamiUeno

6.1Introduction 165

6.2MeasurementofATR–FUVSpectraofPolymer 166

6.3ATR–FUVSpectraofNylons 167

6.4ATR–FUVSpectraofPoly(3-hydroxybutyrate)(PHB)andItsGraphene Nanocomposites 172

6.5ATR–FUVStudyofPoly(ethyleneglycol)(PEG)andItsComplexwith LithiumIon(Li+ ) 176

6.6Summary 181 References 181

7Synchrotron-BasedUVResonanceRamanSpectroscopyfor PolymerCharacterization 183

BarbaraRossi,MariagraziaTortora,SaraCatalini,AlessandroGessini,and ClaudioMasciovecchio

7.1BasicPrinciplesofRamanandUVResonanceRamanSpectroscopy 183

7.1.1MolecularVibrationsandRamanEffect 183

7.1.2ResonanceRaman(RR)Scattering 191

7.1.3FundamentalApplicationsofUVResonanceRamanSpectroscopy 193

7.2Synchrotron-BasedUVResonanceRaman:BasicPrinciplesand Instrumentation 193

7.2.1Synchrotron-BasedUVRRSetuponIUVS@Elettra 194

7.3SR-UVRRCharacterizationofBiopolymers 197

7.4UVResonanceRamanStudiesonPolymericHydrogels 203

7.4.1WaterConfinementinPolysaccharideHydrogels 204

7.4.2PhaseTransitioninThermo-SensitivePolysaccharideHydrogels 208

7.4.3WaterandPolymerDynamicsinpH-ResponsivePolysaccharide Hydrogels 212

7.5Conclusions 215 Acknowledgment 217 References 217

8SumFrequencyGenerationSpectroscopyforUnderstanding thePolymerDynamicsatBuriedInterfaces 227 DaisukeKawaguchiandKeijiTanaka

8.1Introduction 227

8.2Principle 228

8.3Examples 230

8.3.1NonsolventInterface 230

8.3.1.1Polystyrene 230

8.3.2SolidInterface 238

8.3.2.1Polystyrene 238

8.3.2.2Polyisoprene 240

8.3.2.3Poly(styrene-co-butadiene)Rubber[89] 244

8.4Conclusions 250

Acknowledgements 251

References 251

9ApplicationofTwo-DimensionalCorrelationSpectroscopy (2D-COS)inPolymerStudies 259 YeonjuPark,IsaoNoda,andYoungMeeJung

9.1Introduction 259

9.2Theory 260

9.2.1Background 260

9.2.2Propertiesof2D-COS 260

9.3Applicationsof2D-COSinPolymerStudies 261

9.3.1ApplicationsofConventional2D-COS 261

9.3.1.1BiodegradablePolymers 261

9.3.1.2Thermo-ResponsivePolymers 262

9.3.22DHetero-SpectralCorrelationAnalysis 267

9.3.3Two-Dimensional(2D)Gradient-MappingMethod 269

9.3.4ChemometricTechniquesCombinedwith2D-COS 270

9.3.5SmoothFactorAnalysis 272

9.3.6Projection2D-COS 275

9.3.72D-COSforHyperspectralImaging 278

9.4Conclusions 284

References 284

10MolecularDynamicsinPolymerScience 297 MateuszZ.Brela,MarekBoczar,andMarekJ.Wójcik

10.1Introduction 297

10.2HistoricalandTheoreticalBackground 299

10.3Applications 302

10.3.1VibrationalSpectraofHydrogen-BondedPolymers 303

10.3.2StudiesofInteractionsBetweenPolymersandWater 304

10.3.3MechanicalPropertiesofPolymers 306

10.3.4InterphaseInteractions 307

x Contents

10.4SummaryandPerspectives 309 Acknowledgment 311 References 311

11SpectroscopicAnalysisofStructuralTransformations AssociatedwithPoly(lacticacid) 317 ShawL.HsuandXiaozhenYang

11.1Introduction 317

11.2SpectroscopicTools 319

11.2.1VibrationalFeaturesofPLACrystals 321

11.2.2AnalysisofDisorderedPLAChains 323

11.2.3DescriptionofAnisotropicPLA–PolarizedSpectra 327

11.3SimulationStudiesforBothOrderedandDisorderedStructures 329

11.4AnalysisofConformationalChangesinPLADuringDeformation 334

11.5AgingBehaviorinPLA 338

11.6Conclusion 340 Acknowledgment 340 References 340

PartIITopicalPolymersStudiedbySpectroscopy 345

12ProbingMolecularEventsinSelf-HealablePolymers 347 QianhuiLiu,LeiLi,andMarekW.Urban

12.1Introduction 347

12.2MicrophaseSeparation 349

12.3EntropicallyDrivenSelf-Healing 353

12.3.1FreeRadicalandCationicRecombination 355

12.3.2VanderWaalsInteractions 360

12.3.3ChemicalSensingofDamage–RepairCycle 361 Acknowledgments 365 References 365

13RecentApplicationofVibrationalSpectroscopytoConjugated ConductingPolymers 367 YukioFurukawa

13.1Introduction 367

13.2Carriers 369

13.3OpticalAbsorptionSpectraUponChemicalDoping 371

13.3.1P3HT 371

13.3.2Poly(2,5-bis(3-hexadecylthiophene-2-yl)thieno[3,2-b]thiophene) (PBTTT-C16) 372

13.4RamanSpectraofPositivePolaronsandBipolaronsGeneratedUpon ChemicalDoping 374

13.4.1P3HT 374

13.4.2PBTTT-C16 375

13.5CarriersandElectricalPropertiesBasedonILGTs 377

13.5.1ILGTs 377

13.5.2RamanSpectraofILGTsFabricatedwithP3HT 378

13.5.3RamanSpectraofILGTsFabricatedwithPBTTT-C16 380

13.6CarrierMobilities 383

13.7RamanImagesintheChannelRegion 383

13.8CarrierDynamicsinBulkHeterojunctionFilms 386

13.8.1PhotoexcitationDynamicsonFemto-andPicosecondTimeScales 386

13.8.2MicrosecondRecombinationDynamicsofLong-LivedCarriers 387

13.9Conclusions 388

References 388

14VibrationalSpectroscopyforFluoropolymersand Oligomers 393

TakeshiHasegawa

14.1Perfluoroalkyl-ContainingCompounds 393

14.1.1MolecularConformationonPhaseDiagram 393

14.1.2MolecularVibrationofanRf Group 396

14.1.3TheSDAtheory 400

14.2SpectroscopyforRf Compounds 402

14.2.1ROAanalysisofRf Compounds 402

14.2.2SurfaceModesofPhononandPolariton 405

14.2.3SummaryandPerspective 408

References 409

15ProbingStructuresofConductivePolymerswithVibrational Spectroscopy 413

JianmingZhangandYuanYuan

15.1Introduction 413

15.2ApplicationofVibrationalSpectroscopy 413

15.2.1ChainPacking/AggregateModeIdentification 413

15.2.2Conformation-SensitiveBandsIdentification 414

15.2.3Doping-SensitiveBandsIdentification 415

15.2.4ThermallyInducedPhaseTransitions 417

15.2.5StructuralDynamics 418

15.2.6ChemicalComposition/MorphologyAnalysisin Conductive-Polymer-BasedBlends 420

15.2.7Surface/InterfaceMolecularOrientation 423

15.2.8StructureandDynamicsofChargeCarriers 425

15.2.9Electric-Field-InducedStructuralChanges 429

15.3Conclusion 431 References 431

Contents

16WeakHydrogenBondinginBiodegradablePolymers 435 HarumiSato

16.1Introduction 435

16.2WeakHydrogenBondinginPoly(3-hydroxybutyrate) 436

16.3ComparisonBetweenWeakandStrongHydrogenBonds 438

16.4DifferenceintheSideChainLength;PHBandPHV 439

16.5PolyhydroxyalkanoateCopolymers 442

16.6CrystallizationProcessofPHB 443

16.7OtherKindsofCH OHydrogenBonding 443

16.8Conclusions 447

References 449

Index 453

ListofContributors

MarekBoczar JagiellonianUniversity FacultyofChemistry Gronostajowa2,Krakow30-387 Poland

LilianeBokobza FormerProfessoratESPCI 92200Neuilly-Sur-Seine France

MateuszZ.Brela JagiellonianUniversity FacultyofChemistry

Gronostajowa2,Krakow30-387 Poland

SaraCatalini

EuropeanLaboratoryforNon-Linear Spectroscopy,LENS 50019Sesto Fiorentino,Firenze Italy

AndrewV.Ewing ImperialCollegeLondon,South KensingtonCampus DepartmentofChemicalEngineering LondonSW72AZ

UK

YukioFurukawa WasedaUniversity GraduateSchoolofAdvancedScience andEngineering,Departmentof ChemistryandBiochemistry Shinjuku-ku,Tokyo169-8555

Japan

AlessandroGessini ElettraSincrotroneTrieste Trieste34149

Italy

TakeshiHasegawa KyotoUniversity InstituteforChemicalResearch Uji,Kyoto611-0011

Japan

YutaHikima KyotoUniversity GraduateSchoolofEngineering Nishikyo-ku,Kyoto615-8510

Japan

ShawL.Hsu UniversityofMassachusetts(Amherst) DepartmentofPolymerScience andEngineering Amherst,MA01003

USA

xiv ListofContributors

DaitaroIshikawa FukushimaUniversity FacultyofFoodand AgriculturalSciences 1Kanayagawa,Fukushima960-1296

Japan

YoungMeeJung KangwonNationalUniversity Chemistry,InstituteforMolecular ScienceandFusionTechnology Chuncheon24341

Korea

DaisukeKawaguchi KyushuUniversity DepartmentofAppliedChemistry 744Motooka,Nishi-ku,Fukuoka 819-0395

Japan

SergeiG.Kazarian ImperialCollegeLondon,South KensingtonCampus DepartmentofChemicalEngineering LondonSW72AZ

UK

LeiLi ClemsonUniversity DepartmentofMaterialsScienceand Engineering Clemson29634

USA

QianhuiLiu ClemsonUniversity DepartmentofMaterialsScience andEngineering Clemson29634

USA

HuiqiangLu ImperialCollegeLondon,South KensingtonCampus DepartmentofChemicalEngineering LondonSW72AZ

UK

ClaudioMasciovecchio ElettraSincrotroneTrieste Basovizza,Trieste34149

Italy

YusukeMorisawa KindaiUniversity SchoolofScienceandEngineering DepartmentofChemistry Higashi-Osaka577-8502

Japan

IsaoNoda UniversityofDelaware DepartmentofMaterialsScienceand Engineering Newark,DE19716

USA

YukihiroOzaki KwanseiGakuinUniversity SchoolofBiologicalandEnvironmental Sciences,2-1Gakuen Sanda,Hyogo669-1337

Japan

YeonjuPark KangwonNationalUniversity KangwonRadiationConvergence ResearchSupportCenter Chuncheon24341

Korea

BarbaraRossi ElettraSincrotroneTrieste Basovizza,Trieste34149

Italy

HarumiSato

KobeUniversity GraduateSchoolofHuman DevelopmentandEnvironment Nada,Kobe657-8501

Japan

KeijiTanaka KyushuUniversity DepartmentofAppliedChemistry FacultyofEngineering 744Motooka,Nishi-ku,Fukuoka 819-0395

Japan

MariagraziaTortora ElettraSincrotroneTrieste S.S.114km163.5,Basovizza,Trieste 34149

Italy

NamiUeno UniversityofInnsbruck InstituteofAnalyticalChemistryand Radiochemistry Innrain80-82,6020Innsbruck,Austria

MarekW.Urban ClemsonUniversity DepartmentofMaterialsScienceand Engineering Clemson29634

USA

ListofContributors xv

MarekJ.Wójcik

JagiellonianUniversity FacultyofChemistry Gronostajowa2,Krakow30-387

Poland

XiaozhenYang InstituteofChemistry ChineseAcademyofSciences

Beijing100080

China

YuanYuan

QingdaoUniversityofScience& Technology,KeyLaboratoryof Rubber-Plastics MinistryofEducation/Shandong ProvincialKeyLaboratoryof Rubber-plastics SchoolofPolymerScienceand Engineering

53ZhengzhouRoad,Qingdao266042

China

JianmingZhang

QingdaoUniversityofScience& Technology,KeyLaboratoryof Rubber-Plastics MinistryofEducation/Shandong ProvincialKeyLaboratoryof Rubber-plastics SchoolofPolymerScienceand Engineering

53ZhengzhouRoad,Qingdao266042

China

Preface

Itwasourgreathonorandpleasuretopublishthisbook onthespecialoccasionof the101stanniversaryofthepolymerhypothesisofHermanStaudinger Polymerspectroscopyhasahistoryof80yearsorso.ProfessorShawLingHsuof theUniversityofMassachusettskindlyprovidedageneralintroductiontopolymer spectroscopyforthisbook.

Recently,polymerspectroscopyhasdemonstratedremarkableprogressinmany aspects.Forexample,acoupleofnewspectroscopiesjoinedthefamilyofpolymer spectroscopy,includingfar-ultraviolet(FUV)spectroscopy,tip-enhancedRaman scattering(TERS),andterahertz(THz)spectroscopy.Nowadays,spectroscopic techniquesofpolymersrangefromFUVtofar-infrared/THzandRamanspectroscopy.IR,Raman,near-infrared(NIR),andFIR/THzspectroscopyhaveallmade significantprogress.Youcanfindtheprogressofthesespectroscopiesdetailedin thisbook.OfparticularinterestisthedevelopmentofimagingtechniquesinIR, Raman,NIR,andTHzspectroscopies.Three-dimensionalimagingalsoemerged. Spectralanalysisanddatatreatmentmethodshavealsoadvancedsignificantly.It isnotedthatthequantumchemistryapproachhasbeenintroducednotonlyto polymervibrationalspectroscopybutalsopolymerelectronicspectroscopy.

Currently,severalimportanttextbooksonspectroscopictechniquesforpolymers areavailable;theyareallimportantbooks,butsomeofthemarenotnew.We thoughttherewasstrongdemandforastate-of-the-arttextbookonpolymer spectroscopy.Therefore,wehavedecidedtoprepareamodernbookonpolymer spectroscopyforawidevarietyofreaders.Wehaveaimedatwritingabook,which willfindaplaceinhistory.Thisbookconsistsoftwomajorparts:RecentProgress onSpectroscopicTechniquesandTopicalPolymersStudiedbySpectroscopy.The firstpartstartswithanoverviewofpolymerspectroscopyandthenintroduces sevenkindsofmodernspectroscopictechniquesforpolymercharacterization. Twospectralanalysismethods,two-dimensionalcorrelationspectroscopyand moleculardynamicsarealsoreviewed.Inthesecondpart,wehavesixreviews onpolymersstudiedbyspectroscopictechniques,whichcurrentlyreceivekeen interest:biodegradablepolymers,self-healablepolymers,conductingpolymers, andfluoropolymers.Weattemptedtoprepareabookthatiswellbalancedbetween basicscienceandapplications.Oneofthegoalsofthisbookistomakeastrong

xviii Preface

bridgebetweenspectroscopists,polymerscientists,andengineersinacademiaand industry.

Wesucceededininvitingactivefrontrunnersinmodernspectroscopictechniques forpolymersfrommanycountries.Thisbookisusefulforscientists,engineers,and graduatestudentsinnumerousareasofscienceandengineering.Onecanusethis bookasatext,forexample,atagraduateschoolseminar.

Wehopethatmanyreaderscanlearnmuchaboutspectroscopictechniquesfor polymersfromthisbook,andthatthisbookcaninspirereaderstoutilizevarious kindsofspectroscopiesforavarietyofnovelinvestigations.

Lastbutnotleast,wewouldliketothankMs.QuraishiSakeenaofWileyVCH forhercontinuouseffortsinpublishingthisexcitingbook.

July2021

GeneralIntroduction

Onthespecialoccasionofthe101thanniversaryofthePolymerTheoryby HermannStaudinger.

2020marksonehundredyearsofrecognitionofpolymersasabranchofthematerialsdiscipline.Duringthisperiod,polymershavemovedfromanamorphousconceptfirstenunciatedbyHermannStaudingertooneofthemostimportantplatforms fortechnologydevelopment.Coincidingwiththedevelopmentofpolymerscience andengineeringaremarkedadvancementsinourunderstandingofthephysicsof spectroscopictransitionsandincredibledevelopmentsofassociatedinstrumentations.Thisbookshowshowasegmentofthesespectroscopicadvanceshavesupportedtheadvancementofpolymerscienceasawhole.Itintendstohighlightthe contributionsofvibrationalspectroscopytotheadvancesofpolymerdevelopment. Thereislittledoubtthatvibrationalspectroscopyhasdevelopedintooneofthe mostcrucialcharacterizationtools,complementingothertechniques.Spectroscopy startedwithWilliamHerscheldiscoveryofinfraredin1800,longbeforeanyconceptofquantummechanicswasestablished,andevenbeforetherecognitionof molecularvibrationaltransitionsintheearly1900s.Itisdifficulttoimaginethe incredibledevelopmentsofinfraredspectroscopysincethereviewfirstpublished byR.BowlingBarnesandLymanG.Bonnerin1936.EvenwhenIwenttoUniversityofMichigantostudypolymerspectroscopywithProfessorSamKrimmin thelate1960s,Irememberlookingincredulouslyatthelargebracketsoutsidethe RandallPhysicsLaboratorythatwereusedtoholdthelensguidingsunlightinto thebasementasexcitationforinfraredspectroscopy.Nowadaysalmostalllaboratorieshaveaveryreliableandaccurateinfraredspectrometertoanalyzechemical compositionsandpolymericstructures.WenowalsotreattheincredibleFourier transformtechniqueasbeinganinherentpartofanyinfraredinstrument.Thespeed withwhichwegatherdatahasalsoimprovedtremendously,allowingforroutine kineticsexperimentswithtemporalresolutioninmillisecondsorfaster.Thereare numerousattachments,whichmakepolymersurfaceanalysisrathermundanein nature.Itcanbesaidifthereisaneed,infraredspectroscopycanfulfillit.

Ramanspectroscopyhasashorterhistory,sincetheRamaneffectwasnot reporteduntil1928whenChandrasekharaVenkataRamandid,alsousingfocused sunlight.Theeffectofhavingscatteredradiationdifferentfromtheexcitation frequencywasfirstpredictedbytheoreticianAdolfSmekalin1923.Afteralullof

severaldecades,therewasatremendoussurgeofinterestinthissectorofspectroscopyduetothedevelopmentin1964ofalaserthatcouldprovideintenseand polarizedradiationforexcitation.OnlythencouldtheRamaneffectbeobserved expedientlywiththeuseofmultipliertubes.Furthermore,theobservationand developmentsofvariousRaman-associatedphenomena,suchassurface-enhanced spectroscopy,coherentanti-Stokesspectroscopy(namedforSirGeorgeGabriel Stokes,anineteenth-centuryBritishphysicist),andtheFouriertransformmultiplex advantage,havemadeRamanspectroscopyacommontechniqueinmanylaboratories,alongwithinfraredspectroscopy.TheweakRamanscatteringassociatedwith watermakesstructuralanalysisofbiologicalsamplesquiteroutineinnature.

Itisnotanexaggerationtostatethatvibrationalspectroscopy,includinginfrared absorptionandRamanscattering,isnowoneofthemostwidelyusedcharacterizationtechniquesinpolymerstudies.Thisbookcomprisesstudiesthatdescribe variousapplicationsthathavebenefittedsignificantlyfromtheuseofvibrational spectroscopy.Thesespectroscopicstudiesfocusonexamplessuchasmolecular interpretationofadhesiveproperties,measurementofcrystallinedomainsize, analysisofphase-separatedstructuresandtheirformationkinetics,aging/phase transformationofpolymers,surfacestudies,orientationbehaviorofpolymers, andexamplesinwhichimagingpropertieshaveproventobecrucial.Inthelast onehundredyears,advancesinsynthesishaveprovidednumerousfascinating newstructuresthatneedtobecharacterized.Polymersconfinedtointerfaceor interphasethatdominatephysicalpropertiesneedtobedifferentiatedfromthe onesinthethree-dimensionalstate.Theconformationandorientationofdeformed polymersinprocessedgoodsneedtobeelucidated.Theagingbehaviorandchanges inphysicalpropertiesofpolymershaveoftenbeendefinedusingmacroscopic techniques.Vibrationalspectroscopyisaversatileandappropriatetoolforthe analysisofpolymersundergoingchangesasafunctionoftime,temperature,and environment.Chemicalandphysicalsystemsundergoingchangedisplayspectral signaturesfromtheradiofrequencytotheX-rayregionoftheelectromagnetic spectrum.Thishasledtothedevelopmentoftime-resolvedtetrahertz(THz) spectroscopy,whichhasaddedtothemeasurementsoftransientphenomenainthe subpicosecondrange.Thesedevelopmentsaredescribedfurtherinlaterchapters.

Theastronomicalincreaseincomputationalpowerjustinthelastfiftyyearshas changedthelandscapeofvibrationalspectroscopysignificantly.Intheearlierdays, theuseoffinitegroupstoanalyzeequilibriummolecularstructuresnotonlyclarified theopticalactivitiesofRamanandinfraredtransitions,butalsoprovidedameansto calculatenormalcoordinates.Thisformedabasisforanalyzingtheactivevibrations. Wilsonandhiscoworkersprovidedtherigorous,eleganttreatmentofthemathematicsinvolvedindetailedvibrationalanalysesofpolyatomicmoleculesthatisstill beingpracticedtodaywithmuchhigherspeed.Becauseoftheenormouscomputationalcapabilitiescommonlyavailablenowadays,thoseearlierstudiessolvingthe diagonalizationofseculardeterminantshaveevolvedintosophisticatedcalculations capableofanalyzingnotonlytheopticalactivitiesbutalsothequantummechanical calculationsnecessarytodeterminethefrequencyandintensitiesofopticaltransitions.Someofthoseadvancesinmoleculardynamicsanddensity-functionaltheory

calculationswillbedescribedinthisbook.Thelower-lyingtransitionscannow alsobeusedtoanalyzethethermalpropertiesofpolymers.Thesecomputational developmentshavealsoenhancedthecapabilitiesoftwo-dimensionalcorrelation spectroscopy,allowingforabetterunderstandingoftheintermolecularinteractions.

Thedetailedanalysisofthemagnitudeandspecificityofintermolecularinteractionsinpolymericsystemsisextremelyimportant.Thoughtheseinteractionsare weakinnature,theyareimportantbecauseallmoleculesinthecondensedstate possesssuchpairwiseinteractions.Theirchangesasafunctionoftemperatureand timeareessentialindeterminingchangesinthephysicalpropertiesofmacroscopic polymers.Fewexplicitspectroscopicfeaturesareexplicitlyassociatedwiththe condensedstate.However,whenthesefeaturesarefound,vibrationalspectroscopy providesthemolecularinterpretationoftheseintermolecularinteractions,whether theyarehydrogenbonding,electroscopic,dipolar,orvanderWaalsinteractions. Itistheseinteractionsthatdeterminemiscibilitybehaviorinblends,adhesive behaviorassociatedwithinterface,engineeringmodulusorimpactstrength,and otherproperties.Ontheotherextremeoffrequencyspaceassociatedwithlow-lying intermolecularvibrationsarethehigh-frequency,moreisolatednear-infrared spectroscopy(NIR)bands.TheseNIRvibrationshaveprovenusefultofollow chemicalreactions,permeationbehaviorofmoistureintopolymers,andchemical compositionanalysis.

Anareaofgreatinterestinpolymerstudiesistheapplicationofvibrationalspectroscopy,particularlyRaman,totheanalysisofdisorderedchains,whichinclude polymersinsolutionandmelt,aswellasamorphouspolymersinthecondensed state.Asvirtuallyallcommercialpolymersarecarbon-based,thechangeinpolarizabilityalongthebackboneislarge.Ramanscatteringis,therefore,particularlysuitableforthecharacterizationofpolymerbackboneconformation.Disorderedchains lacklong-rangeorderbutmaycontainshortorderedsequencesbecauseofsignificantdifferencesintherelativeenergyofdifferentrotationalisomericstatesalongthe polymerchain.Fordisorderedstructures,thevibrationalspectraobservedmaybe complexduetochangesinbothbandfrequencyandshape.Inthesecases,thevibrationalmodecanbequitecomplicatedbecausethecontributionofvariousinternal coordinatestothevibration(thecharacterofthevibration)maychangesignificantly, unlikethatofanorderedcrystallinechain.Inaddition,thesedisorderedchainsmay adoptaspecificconformationaldistributiondependingongeometricconstraints suchassurfaces,clathrates,orinterfaces.Amorphouschainsthusrequireacompletelydifferenttreatment.Changingthefrequencyandcharacterofseveralvibrationsprovidestremendousinsightintothestructureofpolymersinsolutionormelt, orthedisorderedregionsofsemicrystallinepolymers.Ratherthananalyzingone specificchainconformationforanorderedchain,theanalysisofvibrationalspectra arisingfromdisorderedchainsrequiresthevibrationalspectrumofaconformationaldistribution.Anextremelylargenumberofpossibleconformersexist,each withauniquespectrumoftenonlyslightlydifferentfromoneanother.However,the isotropicRamanspectrumforthedisorderedstatecanbesimulatedasacomposite ofcontributionsfromtheensembleofchainsgeneratedbyaMonteCarloprocedure

thatassignsbothaconformationandatotalprobabilityforeachchain.Thesecalculationscanonlybecarriedoutusingthemoderncomputationaltechniques.

Inmanycases,itisimportanttoassessthespatialdistributionofvariouschemicalspeciesormorphologicalstructuresinpolymers.Basedontheirspectroscopic features,infraredandRamantechniquesareusefulformappingthedistribution ofstructuralvariationswithinpolymersamples.Thisinformationisquitedifferentfromtheexactatomicplacementsavailablefromtechniquessuchasscanning electronmicroscopy.However,inmanyapplications,suchasinpolymerblendsand composites,vibrationalspectroscopyprovidesvaluableinformationregardingthe spatialdistributionofindividualcomponentsthatsimplycannotbeobtainedusing othertechniques.Sincethemappingcapabilityofspectroscopictechniquesdepends onspecificsignalsfrommolecularentities,eventhedistributionoffunctionalgroups canbedifferentiatedwithineachsample,incontrasttotechniqueslikemicroscopy. Inadditiontothedifferentiationofchemicalspecies,itisalsopossibletoassessother differences,suchassegmentalorientationordifferentdegreesofcrystallinityinvariouspolymersamples.Imagingcapabilityisneededinmanypolymerapplications wheremultilayeredthinfilmsarenecessary.Mappingthestructureofindividual layerscanbeaccomplishedusingaconfocaltechnique.Differentsegmentalorientationsasafunctionofcoolingprofile(surfaceversusbulk)canbedifferentiated usingvibrationalspectroscopy.Thus,thefractureofcompositescanbeanalyzed. Itshouldbenotedthatthespatialresolutionoftraditionalspectroscopictechniquesdependsonthewavelengthoftheprobingradiation.Ramanexcitationgenerallyuseslasersinthevisiblerange(400–800nm).Incontrast,infraredgenerallyuses radiationinthemicronrange.BasedontheRayleighcriterion,thespatialresolutionachievableusingRamanwillbesignificantlyhigherthantheresolutionachievableusinginfrared.Inthisbook,wewillreviewthevariousapplicationsinwhich traditionalimagingtechniqueshaveplayedavaluablerole.TheconfocalcapabilityofaspectroscopictechniquewillbediscussedusingonlyRamanscatteringas anexample.Althoughquitedifferentincapability,infraredspectroscopyhasbeen usedextensivelytodifferentiatebetweensurfacefunctionalitiesandbulkstructure usingreflectancetechniquessuchasattenuatedtotalreflectance(ATR)ormorespecializedexternalreflectancespectroscopy.Inthesecases,thespatialresolutionisa fractionofthatachievablebyRaman.Insomespecializedcases,Ramantechnique canprovideexceptionalresolutionsbecausethesignal-to-noiseratiocanbelarge duetoaresonanceeffect.Inthesecases,clearlyidentifiableRamansignals(backbonestretchingvibrations)canbeusedtoanalyzetheperfectionofgrapheneused invariousprocesses.SpecializedRamantechniqueshavebeendevelopedforsurfaceanalysis.Surface-enhancedRamanspectroscopy(SERS)hasprovenusefulfor analyzingmonolayersofadsorbedmoleculesontometallicsurfaces.Thestudyof adsorbedmoleculesonmetalsurfacesusingRamanspectroscopy,atonetimean almostimpossibletask,hasrapidlydevelopedintoanareaofinterestinrecentyears. SERShasdevelopedalimitedbuttotallydifferentaudienceandhasprovenuseful fortheanalyticalcharacterizationofvariouspolymers,withapplicationsranging fromfoodpackagingtoanalysisofwaterquality.Thedevelopmentofhybridtechniquesinvolvingsharpprobingtips,asinatomicforcemicroscopy(ATM),overcame

GeneralIntroduction xxiii thelimitedspatialresolutionusuallyassociatedwithtraditionalspectroscopicimagingtechniques.Thesenewdevelopmentscanbeusedtomeasuredistributionof chemicalfeaturesdowntoascaleoflessthanahundrednanometers.Vibrational spectroscopyisnowusedbroadlyinalmostallpolymerscienceandengineering laboratories,duetoitsabilitytocharacterizemorphologicalfeaturesonallscales, fromthesmallesttoonesinthehundredsofnanometers.

January2021

ShawL.Hsu

RecentProgressonSpectroscopicTechniques

PolymerSpectroscopy–Spectroscopyfromthe Far-UltraviolettoFar-Infrared/TerahertzandRaman Spectroscopy

YukihiroOzaki 1,2 andHarumiSato 3

1 KwanseiGakuinUniversity,SchoolofBiologicalandEnvironmentalSciences,2-1Gakuen,Sanda,Hyogo, 669-1337,Japan

2 ToyotaPhysicalandChemicalResearchInstitute,Nagakute,Aichi,480-1192,Japan

3 KobeUniversity,GraduateSchoolofHumanDevelopmentandEnvironment,Higashi-Nada,Kobe, 659-8501,Japan

1.1IntroductiontoPolymerSpectroscopy

Polymerspectroscopyhasplayedaveryimportantroleintheinvestigationofthe structure,physicalandchemicalproperties,andreactionsofpolymersinthelasthalf century[1–9].Asananalyticaltechnique,polymerspectroscopywasbornjustbefore WorldWarIIandgraduallybecamemorecommonplaceinthe1950s.Throughout the1950sand1960s,polymerspectroscopydevelopedsignificantlyinparallelwith thedevelopmentofinfrared(IR)spectroscopy,althoughRamanspectroscopywas alsousedinthatperiod[1–4].Thebriefhistoryofpolymerspectroscopyisdescribed inPrefaceandthischapterlater.

Thepurposeofthischapteristoprovideanoverviewofpolymerspectroscopy.This chapterconsistsofanoutlineofpolymerspectroscopy,abriefhistoryofpolymer spectroscopy,anoverviewofmolecularspectroscopyforpolymerresearch,anda reviewofexamplesofstudiesbasedonpolymerspectroscopy.Inthelastpartofthis chapter,wedescribetheperspectivesforpolymerspectroscopy.

1.1.1OutlineofPolymerSpectroscopy

Polymerspectroscopyislargelybasedonopticalspectroscopy,whichinvolves spectroscopyintheultraviolet(UV),visible(Vis),andIRregions.TheUVregion rangesfrom10to380nmandmaybedividedintofourregions:vacuumultraviolet (VUV,10–120nm),far-ultraviolet(FUV,120–200nm),deepultraviolet(DUV, 200–300nm),andUV(300–380nm)[10].SpectroscopyintheUVregionisimportantbecauseitprovidestheelectronicspectraofmolecules.However,compared withIRspectroscopy,UVspectroscopyhasrarelybeenusedforpolymerresearch. Further,recently,amongtheUVregions,FUVspectroscopyhasbeenappliedto polymerstoinvestigatetheelectronicandmolecularstructureandintermolecular SpectroscopicTechniquesforPolymerCharacterization:Methods,Instrumentation,Applications, FirstEdition.EditedbyYukihiroOzakiandHarumiSato. ©2022WILEY-VCHGmbH.Published2022byWILEY-VCHGmbH.

Figure1.1 Theregionofelectromagneticwavefrom200nmto1mm.

interactionsofpolymers[11–14].InChapter6,FUVstudiesofpolymersare introduced.Inaddition,UVresonanceRamanspectroscopyhasalsobeenusedto investigatepolymerstructureandfunctionsandwillbereviewedinChapter7.

TheIRregion(800nmto1mm,12500to10cm 1 )issowideintermsofenergy thatitisdividedintothreeregions:near-infrared(NIR,800–2500nm)[15–17], IR(ormid-infrared;MIR,4000to400cm 1 )[18–20],andfar-infrared(FIR,400 to10cm 1 )[21,22],asshowninFigure1.1.Spectroscopictechniquesinthese regionshavedevelopedindependentlyovertheyears,althoughthedevelopments ofNIRandFIRspectroscopiesgenerallyremainedfarbehindthoseofIR(MIR) spectroscopy.However,inthelastthreedecades,remarkabledevelopmentshave beenmadeinNIRspectroscopy[15–17].Recently,advancesinFIRspectroscopy havealsobeenmade.Forexample,terahertzspectroscopywasinitiatedattheend ofthe1990sbecauseofdevelopmentsinnewlightsourcesanddetectorsintheFIR region[23–25].

IR,NIR,andFIR/terahertzspectroscopiesarebasicallyvibrationalspectroscopic techniques[26].IRspectroscopyisconcernedmainlywithfundamentalvibrational modes[18–20],NIRspectroscopyisthespectroscopyofovertonesandcombinationsoffundamentals[15–17],andFIR/terahertzspectroscopytreatslow-frequency vibrationalmodessuchasskeletalvibrations,torsionalvibrations,andlatticevibrations[23–25].Crucially,IRspectroscopyalsoinvolvestheovertonesandtheir combinations,NIRspectroscopyisconcernedwithelectronicspectroscopy,and FIR/terahertzspectroscopyinvolvesrotationalspectroscopy.Thus,thereisaclear borderbetweenIRandNIRspectroscopybecauseNIRspectroscopyisnotrelated tothefundamentals;incontrast,theborderbetweenIRandFIRisnotalwaysclear. However,IR,NIR,andFIRspectroscopiesarenotthreesisters;rather,IRisthe motherofNIRspectroscopybecausetheovertonesandcombinationsoriginate fromthefundamentals.

Visiblespectroscopyistypicallyonlyusedasanancillarytoolinpolymerstudies, forexample,tostudytheelectronicstructureofconductivepolymers(Chapter13). Asanopticalspectroscopictechnique,fluorescencespectroscopyisalsousedfor polymerresearchbutisnotconsideredinthisbook.Inadditiontotheaboveoptical spectroscopies,Ramanspectroscopyisveryimportantinpolymerstudies[27–30]. Thisisoneofthekeyspectroscopictechniquesinpolymerresearch.Inthisbook, normalRamanspectroscopy,resonanceRamanspectroscopy,UV-resonanceRaman

1.1IntroductiontoPolymerSpectroscopy 5 spectroscopy,surface-enhancedRamanscattering(SERS)[31–33],tip-enhanced Ramanscattering(TERS)[31–33],andRamanimaging[34]areintroducedas importanttoolsforpolymerscience.Inaddition,thereisnodoubtthatnuclear magneticresonance(NMR)spectroscopyisveryimportantinpolymerspectroscopy, butitisbeyondthescopeofthisaccount.

1.1.2BriefHistoryofPolymerSpectroscopy

Inthesecondpartofthischapter,weprovideanoverviewofthehistoryofpolymer spectroscopyinrelationtothe100thanniversaryofpolymertheoryin2020.Just beforeWorldWarII,studiesofpolymersvibrationalspectroscopystarted[18–20]. Forexample,Kirkwood[35]andWhitcombetal.[36]performednormalvibrational calculationsonpolyethylene.AfterWorldWarII,developmentsinIRspectroscopy progressedsignificantlybecauseofadvancesinitslightsources,spectrometers,and detectors.Therefore,eveninthe1940s,manypolymerscientistsstartedusingIR spectroscopyforpolymerstudies.Forexample,Shimanouchietal.[37]reported normalvibrationalcalculationsofpolyethylene.ManypioneeringpapersonIRstudiesofpolymerswerepublishedinthe1950s.Shimanouchi[38],Krimm[39],Eliot [40],andHummel[41]conductedsystematicstudiesonthevibrationalspectraof polymers.Ofcourse,thereweremanyotherscientistswhoadvancedpolymerspectroscopyinthe1950s.Inparticular,severalimportantbooksconcerningtheIRspectraofpolymerswerepublishedinthisperiod[5].Eliot[40]wroteaveryimportant reviewofpolymerspectroscopyin1960,and,inthe1960s,manyresearchgroups wereinvolvedinIRstudiesonthecharacterizationofpolymers[4].

Inthe1960s,SchachtschneiderandSnyder[42]conductednormalvibrational calculationsonpolyethylene;TasumiandShimanouchi[43]studiedthevibrationalspectroscopyofpolyethyleneusingthemodifiedUrey–Bradleyforcefield; andMiyazawaandcoworkers[44]reportedIRstudiesofpolyoxymethylene, polyethyleneglycol,polypropylene,andpolyethyleneandalsointroducedneutron scatteringinthesestudies[45].Tadokoroandcoworkers[46]investigatedtheIR spectraofpolyoxycyclobutane,polyamides,andotherpolymersinthe1960s.They alsopublishedseveralpapersonFIRstudiesofpolymers,suchaspolyamidesand polyesters[47].KrimmandBank[48]alsoreportedFIRstudiesonpolyethylene.

Incontrast,Ramanspectroscopystudiesofpolymersstartedwiththoseof long-chain n-alkanes.Forexample,MizushimaandShimanouchi[49]reportedthe Ramanspectrumof n-paraffinin1949,andHendra[50],Koenig[51],andothers wereinvolvedinRamanstudiesofpolymersinthe1960s.Sincetheintroductionof laserstoRamanspectroscopyattheendofthe1960s,Ramanstudiesofpolymers haveshownenormousprogress[4,5].Forexample,thelongitudinalmodes(LAM) ofpolymerswereinvestigatedusingRamanspectroscopybyMizushimaand Shimanouchi[49]andlaterbySchaufeleandShimanouchi[52]foraseriesof n-alkanes.StudiesonLAMhavebeenconductedinseveraldirections,including theinvestigationoftheeffectsofinteractionsatthelamellainterfaceontheLAM frequencies.StrobleandEckel[53]andHsuandKrimm[54]madeprominent contributionstothesestudies.

1PolymerSpectroscopyfromtheFar-UltraviolettoFar-Infrared/TerahertzandRamanSpectroscopy

Inthelatterhalfofthe1950sand1960s,severalinterestingNIRstudiesofpolymerswerereported[4].Forexample,in1956,MillerandWillis[55]usedanNIR methodfortheanalysisofbutadiene–styrenecopolymersbasedontheevaluation ofthearomaticandaliphaticCHcombinationbandsat4580and4250cm 1 , respectively.Takeuchietal.[56a]usedNIRspectroscopytopredicttheacrylonitrile contentinstyrene–acrylonitrilecopolymers.Tosi[56b]foundacorrelationbetween thefrequencyofthefirstovertoneoftheCH2 stretchingmodeat5800cm 1 and thecopolymercompositionandinterpretedtheresultsintermsofthemethylene sequencelengthsoftheethylene–propenecopolymerspreparedusingdifferent catalysts.ManyresearchershaveemployedNIRspectroscopyfortheinvestigation ofpolymericstructuresandanalyticalpurposes[4].

Inthisreport,wedonotdescribethehistoryofvibrationalspectroscopyof polymerssincethe1970sbecausemanyresearchgroupshavepublishedexcellent studies.However,itisimportanttomentiontworenaissancesofvibrational spectroscopythatoccurredinandafterthe1970s.Oneistheintroductionof laserstoRamanspectroscopy[28–30].ThismadeRamanexperimentsmucheasier andenabledvariouskindsofRamanspectroscopy,suchasresonanceRaman spectroscopy,SERS,Ramanmicroscopy,andtime-resolvedRamanspectroscopy. AnotheristhedevelopmentofFouriertransform(FT)IRinthe1970sand1980s [18,19].ThismadeIRmeasurementsmucheasierandmoreprecise.Moreover, variouskindsofIRspectroscopywerebornbecauseofthedevelopmentofFTIR spectroscopy;forexample,micro-IR,time-resolvedIR,andphotoacousticIR. Thesetworenascencesweretrulygreateventsthatopenedthedoorsforcurrent vibrationalspectroscopy.

1.2OverviewofMolecularSpectroscopyfrom

theFar-UltraviolettoFar-Infrared/TerahertzandRaman SpectroscopyinPolymerResearch

Inthischapter,becausethecharacteristicsandapplicationsofIRandRamanspectroscopyinpolymerresearcharereportedinmanychaptersofthisbookandhave beendiscussedinmanyotherstudies,weonlyprovideabriefoverview[4–9].We describethecharacteristicsandapplicationsofFIR/terahertz/low-frequencyRaman spectroscopy,NIR,FUV,SERS,andTERSinpolymerstudies.Althoughapplications ofFIR/terahertz/low-frequencyRamanspectroscopy,NIR,andFUVareintroduced inChapters4–6,respectively,adescriptionofthemispresentedinthischapter.

1.2.1IRandRamanSpectroscopyAnalyses

IR[18–20]andRamanspectroscopy[28–30]arekeyvibrationalspectroscopies. Theyaremainlyconcernedwithfundamentalvibrationalmodes,althoughsome bandsarisingfromovertonesandcombinationsoffundamentalsalsoappearinboth spectra.IRandRamanspectroscopyareoftencomplementary,andthedifferences betweenIRandRamanspectroscopylieintheirselectionrules.Oneofthetwo selectionrulesinIRspectroscopyisthatavibrationalmodethatexperiencesa

1.2OverviewofMolecularSpectroscopyinPolymerResearch 7 changeinthedipolemomentduringamolecularvibrationisIRactive,whereas thatofRamanspectroscopyisthatavibrationalmodewithachangeinmolecular polarizabilityduringavibrationalmodeisRamanactive.Ingeneral,asymmetric vibrationsyieldstrongIRabsorptions,whereassymmetricvibrationsgiveriseto intenseRamanbands.InIRspectra,bandsarisingfromthestretchingmodesof polarfunctionalgroupssuchasC = O,OH,andC = Nandbandsarisingfromlocal vibrations,suchastheCH2 scissoringmode,areintense,whereasbandsderived fromawholemoleculeoralargepartofthemoleculeareweak.InRamanspectra, bandsarisingfromthestretchingmodesofheavyatoms,suchasS–S,C–S,andC–Cl stretching,arestrong.Inaddition,bandsoriginatingfromthestretchingmodes ofmultiplebonds,suchasthosearisingfromC = C,N = N,andC≡Nstretching modes,arestrong,andin-phasevibrationsderivedfromawholemoleculeoralarge partofthemoleculeproduceintensebandsinRamanspectra.Thering-breathing modeofthebenzeneringandtheaccordionvibrationsoflong-chainmoleculesare goodexamplesofthese.

IRspectroscopyusesIRabsorption,aswellasIRreflection(e.g.attenuated totalreflectance[ATR],externalreflection,reflection–absorption[RA],diffuse reflectance[DR],emission,andphotoacousticspectroscopy)[18–20].Amongthem, ATRandRAspectroscopiesareparticularlyusefulforpolymerresearch.AnIR spectrometercanalsobeconnectedtoopticalmicroscopy(micro-IR,Chapter2) andatomicforcemicroscopy-infrared(AFM-IR)equipment,aswellasotherinstruments.ThepolarizedIRspectraofstretchedpolymersareusefulforinvestigating themolecularandcrystalstructuresofpolymers,particularlytheirorientation [4,5,7,8].IRspectroscopyisalsousefulforstudyingthecrystallinity,andso-called crystallization-sensitivebandscanbeusedasindicatorsofcrystallinity[4,5,7,8]. Thesymmetrypropertiesofpolymerscanbeusedtoanalyzetheirvibrational spectra.

Ramanspectroscopyisanondestructiveanalyticaltoolthatenablestheinsitu analysisofasampleinitsoriginalform,anditispossibletousefiberopticsfor theRamanmeasurements.TherearevariouskindsofRamanspectroscopy[28–30]; amongthem,normalRaman,Ramanmicroscopy,Ramanimaging,SERS,andTERS areoftenusedforpolymerstudies.ResonanceRamanspectroscopyhasbeenused tostudyconductivepolymers(Chapter13).UVresonanceRamanspectroscopyhas recentlybeenemployedtostudypolymers(Chapter7),andpolarizedRamanspectroscopyisusefulformolecularorientationstudies.Inthischapter,wewilldemonstrateexamplesofnormalRamanspectroscopy,Ramanimaging,andTERS.

Inpolymerresearch,IRandRamanspectroscopiesyieldinformationaboutthe chemicalnatureandphysicalproperties[4–8].Concerningthechemicalnature, eachspectroscopicmethodisuseful,forexample,fortheidentificationofpolymers andtheinvestigationofstructuralunitsandthetypeanddegreeofbranching.Itis alsopossibletoidentifyadditivesandimpurities.Asforthelatter,bothspectroscopic techniquesgiverisetoinformationaboutstereoregularity,conformationalorder, polymerorientation,hydrogenbonding,intermolecularinteractions,lamellar thickness,andstateofordersuchascrystallineandamorphous(AMP)phases. PolymerreactionscanalsobemonitoredusingbothIRandRamanspectroscopies.

1.2.2FIR/TerahertzandLow-FrequencyRamanSpectroscopy

Thelow-frequencyregionisofgreatinterestinthestudiesofthestateoforderof polymersbecauselow-frequencymodesoftenreflectthestructureofthebackbone andtheintermolecularinteractionsofthepolymers[4,5].Inthelow-frequency region,thefollowingtypesofvibrationsareobserved.

1.Stretchingvibrationsofheavyatoms,e.g.I–Istretchingmode.

2.Bendingvibrationsofthepolymerskeletons.

3.LAM.

4.Torsionalvibrations.

5.Latticevibrations(intermolecularvibrationsbetweenadjacentchainswithina crystallographicunitcell).

Inrecentyears,low-frequencyvibrationalspectroscopyhasbecomeasubjectof keeninterestbecauseofthemarkedprogressinterahertztime-domainspectroscopy (THz–TDS)[23–25]andlow-frequencyRamanspectroscopyusingvolumeBragg notchfilters.Currently,high-qualitylow-frequencyspectra(FIR,THz–TDS,Raman) ofvariousmaterialscanbeobtained,allowingtheinvestigationofhigh-orderconformations,crystalpolymorphism,intermolecularinteractionsincludinghydrogen bonds,andthedynamicsofvarioussystems.Astargetsofthesetechniques,polymersareparticularlyinterestingbecausetheirlow-frequencyvibrationalmodescan sharplyreflecttheinterchaininteractionsandhigher-orderpolymerconformations [57](Chapter4).Inthischapter,wewillintroduceanFIR,low-frequencyRaman, andquantumchemicalcalculationsofnylon-6indetail[57d].Moreover,Chapter4 reportsthelow-frequencyvibrationalspectroscopyofpolymers.

1.2.3Near-Infrared(NIR)Spectroscopy

TheapplicationsofNIRspectroscopytopolymerstudiesbeganwithquantitative analysisofpolymers,suchasthedeterminationofthehydroxylnumber,water content,andresidualcarbon–carbondoublebonds[4].Sincechemometricsand opticallightfiberswereintroducedtotheanalysisoftheNIRregion,theusefulness ofNIRspectroscopyinpolymerresearchandanalysishasdramaticallyincreased (Chapter5andthischapter).Currently,NIRspectroscopyiswidelyusedasanondestructiveandinsituanalyticalandstructuralprobeofpolymers[4,15,16].One ofthemostactiveapplicationsofNIRspectroscopytopolymersisonlineanalysis andqualitycontrolusingNIRlight-fiberopticspectroscopy[58,59],althoughthere aremanyotherapplications,someofwhicharedescribedinChapter5.

AlthoughthepracticalapplicationsofNIRspectroscopyinthepolymerindustry areextensive,anunderstandingoftheprinciplesbehindtheiranalysisremains insufficient.Recently,effortstounravelcomplicatedNIRspectramoreclearlyand tointerpretthechemometricsmodelsinvolvedhavetakenseveraldirections[15]. OneisthesystematicstudyoftheNIRspectraofvariouspolymersfromthe perspectiveofbasicstudiessuchasthoseofhydrogenbonding[60].Another directionisthetheoreticalstudyoftheassignmentofbandsarisingfromovertones andcombinationsintheNIRspectraofmoleculesusingdensityfunctionaltheory (DFT)calculations[61].

SERSissensitivetosinglemoleculesandismolecule-specificand,thus,hasbeen usedinmaterialsscience,biomedicalscience,surfacescience,environmentalanalysis,andbeyond[31–33].TheenormousenhancementofSERSsignalsarisesmainly fromtwomechanisms:electromagnetic(EM)andcharge-transfer(CT)effects.EM enhancementstemsfromlocalizedsurfaceplasmonresonanceonametalsubstrate, whereasCTenhancementisaresonance-likeprocessinwhichtheCTresonance dependsontheenergydifferencebetweentheFermilevelofametalsubstrateand themolecularorbitalsofanadsorbate.

RecentrapidprogressinTERShasresultedfromdevelopmentsinnanotechnology [33],whichhasenabledspectralmeasurementswithaspatialresolutionbelow 10nmandcontrolatthesingle-moleculelevel.Currently,innanotechnology, measurementsarefrequentlybasedonscanningtunnelingmicroscopy(STM), scanningelectronmicroscopy(SEM),andtransmissionelectronmicroscopy (TEM),butthesemethodscannotprovideinformationaboutmolecularstructure. Ontheotherhand,TERShasveryhighspatialresolutionand,atthesametime, allowsonetoexploremolecularstructure.TERSistheproductoftheorganic integrationofscanningprobemicroscopy(SPM)techniquesandaplasmonenhancedeffect.

SERSsuffersfromalimitedspatialresolutionofhundredsofnanometersowingto thediffractionoflight.Therefore,theinformationobtainedfromSERSistheaverageoflargeamountsofdifferentsurfacesites.Ontheotherhand,TERSisanewly developedRamantechniquewithspatialresolutionbeyondthediffractionlimitof light;itcanprovidesite-specificinformationandcanbeperformedonanymaterial surfaceregardlessofmorphology.TERScanbeappliedinvariousenvironments, suchasambientair,ultrahighvacuum,solutionsandliquids,andelectrochemical environments.AnexampleofaTERSstudyisreviewedinthischapter.

1.2.5FUVSpectroscopy

FUVspectroscopyisconcernedwithelectronictransitions,asinthecaseofDUV andUVspectroscopy,butFUVspectroscopyisclearlydifferentfromtheotherUV spectroscopies[10–12].First,incontrasttotheDUVandUVregions,whichare freefromoxygenabsorption,theFUVregionrequireseitheravacuumevaporation systemoranitrogen-gas-purgingsystem.IntheDUVandUVregions,absorption bandsoriginatingfromvarioustypesoflower-energyelectronictransitions,such as π–π*andn–π*transitions,canbeobserved,buthigher-energyn–σ*transitions andRydbergtransitionsdonotappear,whereasintheFUVregion,inadditionto thebandsarisingfrom π–π*transitions,thosefromn–σ*and σ-Rydbergtransitions areobserved[10–12].ComparedwiththatofDUVspectroscopy,thedevelopment ofFUVspectroscopyofthecondensedphasehasmadeveryslowprogress.The mainreasonforthisistheveryhighabsorptivityofmoleculesintheFUVregion [10–12].Toovercomethisdifficulty,weintroducedtheATRtechniquetotheFUV region[10–12].TheATRtechniqueallowsthemeasurementofspectrasimilarto thoseoftransmittancespectrawithaveryshortopticalpathlength.ThedevelopmentofATR–FUVspectrometershasenabledthemeasurementofthespectraof

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.