Buy ebook Power flow control solutions for a modern grid using smart power flow controllers kalyan k

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/power-flow-control-solutions-for-a-modern-grid-usingsmart-power-flow-controllers-kalyan-k-sen/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Plant Flow Measurement and Control Handbook 1st Edition

Swapan Basu

https://ebookmass.com/product/plant-flow-measurement-and-controlhandbook-1st-edition-swapan-basu/

Mechanics of Flow-Induced Sound and Vibration Volume 2_ Complex Flow-Structure Interactions 2nd Edition William

K. Blake

https://ebookmass.com/product/mechanics-of-flow-induced-soundand-vibration-volume-2_-complex-flow-structure-interactions-2ndedition-william-k-blake/

Loose Leaf for Modern Compressible Flow: With Historical Perspective 4th Edition John Anderson

https://ebookmass.com/product/loose-leaf-for-modern-compressibleflow-with-historical-perspective-4th-edition-john-anderson/

Advanced Control of Power Converters Hasan Komurcugil

https://ebookmass.com/product/advanced-control-of-powerconverters-hasan-komurcugil/

Modern Compressible Flow With Historical 4th Edition

John D. Anderson Jr

https://ebookmass.com/product/modern-compressible-flow-withhistorical-4th-edition-john-d-anderson-jr/

Flow Analysis for Hydrocarbon Pipeline Engineering

Alessandro Terenzi

https://ebookmass.com/product/flow-analysis-for-hydrocarbonpipeline-engineering-alessandro-terenzi/

Power Plant Engineering R. K. Hegde

https://ebookmass.com/product/power-plant-engineering-r-k-hegde/

Energy Storage for Modern Power System Operations

Sandeep Dhundhara

https://ebookmass.com/product/energy-storage-for-modern-powersystem-operations-sandeep-dhundhara/

Investigation of oil flow in a ball bearing using Bubble Image Velocimetry and CFD modeling Ujjawal Arya

https://ebookmass.com/product/investigation-of-oil-flow-in-aball-bearing-using-bubble-image-velocimetry-and-cfd-modelingujjawal-arya/

IEEEPress

445HoesLane Piscataway,NJ08854

IEEEPressEditorialBoard EkramHossain, EditorinChief

JónAtliBenediktssonXiaoouLiJeffreyReed AnjanBoseLianYongDiomidisSpinellis DavidAlanGrierAndreasMolischSarahSpurgeon ElyaB.JoffeSaeidNahavandiAhmetMuratTekalp

KalyanK.Sen,PhD,PE,MBA,FIEEE

MeyLingSen,MEE,MIEEE

SenEngineeringSolutions,Inc.

Copyright©2022byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans, electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection107or108 ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,orauthorization throughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive, Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requeststothe PublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111River Street,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission.

LimitofLiability/DisclaimerofWarranty: Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthis book,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthis bookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.No warrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategies containedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate. Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetween whenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorshallbeliableforanylossofprofitor anyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomerCare DepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317) 572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationData

Names:Sen,KalyanK.,author.|Sen,MeyLing,author.

Title:PowerflowcontrolsolutionsforamoderngridusingSMARTpower flowcontrollers/KalyanK.Sen,PhD,PE,MBA,FIEEE,MeyLingSen, MEE,MIEEE,SenEngineeringSolutions,Inc.

Description:Firstedition.|Hoboken,NewJersey:JohnWiley&Sons, Inc.,[2021]|Series:IEEEpressseriesonpowerengineering|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2021031547(print)|LCCN2021031548(ebook)|ISBN 9781119824350(hardback)|ISBN9781119824367(adobepdf)|ISBN 9781119824381(epub)

Subjects:LCSH:Electriccurrentregulators.|Electricpower systems–Control.|Smartpowergrids.|ElectricpowerTransmission.

Classification:LCCTK2851.S482021(print)|LCCTK2851(ebook)|DDC 621.31–dc23

LCrecordavailableathttps://lccn.loc.gov/2021031547

LCebookrecordavailableathttps://lccn.loc.gov/2021031548

CoverDesign:Wiley

CoverImages:(Center)CourtesyofKalyanSen;(top)©SamRobinson/GettyImages Setin9.5/12.5ptSTIXTwoTextbyStraive,Pondicherry,India 10987654321

Toourfamily,friends, andallourguruswhobroughtustothispoint.

Contents

Authors’ Biographies xiii

Foreword xv

Nomenclature xix

Preface xxv

Acknowledgments xxix

AbouttheCompanionWebsite xxxi

1SmartControllers 1

1.1WhyisaPowerFlowControllerNeeded? 1

1.2TraditionalPowerFlowControlConcepts 5

1.3ModernPowerFlowControlConcepts 14

1.4CostofaSolution 22

1.4.1DefiningaCost-EffectiveSolution 22

1.4.2PaybackTime 24

1.4.3EconomicAnalysis 24

1.5IndependentActiveandReactivePFCs 26

1.6SMARTPowerFlowController(SPFC) 39

1.6.1ExampleofanSPFC 40

1.6.2Justification 41

1.6.3AdditionalInformation 41

1.7Discussion 42

2PowerFlowControlConcepts 45

2.1PowerFlowEquationsforaNaturalorUncompensatedLine 60

2.2PowerFlowEquationsforaCompensatedLine 63

2.2.1Shunt-CompensatingVoltage 67

2.2.1.1PowerFlowattheModifiedSendingEndwithaShunt-CompensatingVoltage 70

2.2.1.2PowerFlowattheReceivingEndwithaShunt-CompensatingVoltage 73

2.2.1.3ExchangedPowerbyaShunt-CompensatingVoltage 79

2.2.1.4RepresentationofaShunt-CompensatingVoltageasaShunt-Compensating Impedance 79

2.2.2Series-CompensatingVoltageasanImpedanceRegulator,VoltageRegulator,andPhase AngleRegulator(Asymmetric) 80

2.2.2.1PowerFlowattheSendingEndwithaSeries-CompensatingVoltage 92

2.2.2.2PowerFlowattheReceivingEndwithaSeries-CompensatingVoltage 95

2.2.2.3PowerFlowattheModifiedSendingEndwithaSeries-CompensatingVoltage 100

2.2.2.4ExchangedPowerbyaSeries-CompensatingVoltage 109

2.2.2.5AdditionalSeries-CompensatingVoltages 126

2.2.2.5.1PhaseAngleRegulator(Symmetric) 126

2.2.2.5.2ReactanceRegulator 129

2.2.2.5.2.1ReactanceControlMethod 137

2.2.2.5.2.2VoltageControlMethod 139

2.2.2.6RepresentationofaSeries-CompensatingVoltageasaSeries-Compensating Impedance 145

2.2.2.6.1EquivalentImpedanceofaVoltageRegulator(VR) 152

2.2.2.6.2EquivalentImpedanceofaPhaseAngleRegulator(Asymmetric) 154

2.2.2.6.3EquivalentImpedanceofaPhaseAngleRegulator(Symmetric) 157

2.2.2.6.4EquivalentImpedanceofaReactanceRegulator 160

2.2.3ComparisonBetweenSeries-andShunt-CompensatingVoltages 165

2.3ImplementationofPowerFlowControlConcepts 168

2.3.1VoltageRegulation 168

2.3.1.1DirectMethod 168

2.3.1.2IndirectMethod 170

2.3.2PhaseAngleRegulation 173

2.3.2.1Single-corePhaseAngleRegulator 173

2.3.2.2Dual-corePhaseAngleRegulator 176

2.3.3SeriesReactanceRegulation 178

2.3.3.1DirectMethod 178

2.3.3.2IndirectMethod 178

2.3.4ImpedanceRegulation 179

2.3.4.1UnifiedPowerFlowController(UPFC) 181

2.3.4.2SenTransformer(ST) 183

2.4InterlinePowerFlowConcept 185

2.4.1Back-to-BackSSSC 186

2.4.2MultilineSenTransformer(MST) 188

2.4.3Back-to-BackSTATCOM 192

2.4.4GeneralizedPowerFlowController 194

2.5FigureofMeritsAmongVariousPFCs 196

2.5.1VR 196

2.5.2PAR(sym) 196

2.5.3PAR(asym) 198

2.5.4RR 202

2.5.5IR 204

2.5.6 RPI, LI,and APR ofaPFC 206

2.6ComparisonBetweenShunt-CompensatingReactanceandSeries-Compensating Reactance 228

2.6.1Shunt-CompensatingReactance 230

2.6.1.1RestorationofVoltageattheMidpointoftheLine 230

2.6.1.2RestorationofVoltageattheOne-ThirdandTwo-ThirdPointsoftheLine 232

2.6.1.3RestorationofVoltageattheOne-Fourth,Half,andThree-FourthPointsofthe Line 233

2.6.1.4RestorationofVoltageat n PointsoftheLine 235

2.6.2Series-CompensatingReactance 239

2.7Calculationof RPI, LI,and APR foraPAR(sym),aPAR(asym),aRR,andanIRinaLossy Line 242

2.7.1PAR(sym) 245

2.7.2PAR(asym) 246

2.7.3RR 248

2.7.4IR 249

2.8 SenIndex ofaPFC 253

3ModelingPrinciples 255

3.1TheModelinginEMTP 255

3.1.1ASingle-Generator/Single-LineModel 259

3.1.2ATwo-Generator/Single-LineModel 264

3.2VectorPhase-LockedLoop(VPLL) 277

3.3TransmissionLineSteady-StateResistanceCalculator 280

3.4SimulationofanIndependentPFC,IntegratedinaTwo-Generator/Single-LinePower SystemNetwork 281

4Transformer-BasedPowerFlowControllers 297

4.1Voltage-RegulatingTransformer(VRT) 297

4.1.1VoltageRegulatingTransformer(Shunt-SeriesConfiguration) 298

4.1.2Two-WindingTransformer 315

4.2PhaseAngleRegulator(PAR) 322

4.2.1PAR(Asymmetric) 322

4.2.2PAR(Symmetric) 332

5Mechanically-SwitchedVoltageRegulatorsandPowerFlowControllers 341

5.1ShuntCompensation 341

5.1.1Mechanically-SwitchedCapacitor(MSC) 341

5.1.2Mechanically-SwitchedReactor(MSR) 353

5.2SeriesCompensation 354

5.2.1Mechanically-SwitchedReactor(MSR) 354

5.2.2Mechanically-SwitchedCapacitor(MSC)withaReactor 363

5.2.3SeriesReactanceEmulator 369

6SenTransformer 375

6.1ExistingSolutions 377

6.1.1VoltageRegulation 383

6.1.2PhaseAngleRegulation 385

6.2DesiredSolution 386

6.2.1STasaNewVoltageRegulator 389

6.2.2STasanIndependentPFC 392

6.2.3ControlofST 394

6.2.3.1ImpedanceEmulation 395

6.2.3.2ResistanceEmulation 396

6.2.3.3ReactanceEmulation 396

6.2.3.4Closed-LoopPowerFlowControl 397

6.2.3.5Open-LoopPowerFlowControl 398

6.2.4SimulationofSTIntegratedinaTwo-Generator/One-LinePowerSystemNetwork 425

Contents

6.2.5SimulationofSTIntegratedinaThree-Generator/Four-LinePowerSystem Network 439

6.2.6TestingofST 453

6.2.7Limited-AngleOperationofST 485

6.2.8STUsingLTCswithLowerCurrentRating 498

6.2.9STwithaTwo-CoreDesign 501

6.3ComparisonAmongtheVRT,PAR,UPFC,andST 510

6.3.1PowerFlowEnhancement 510

6.3.2SpeedofOperation 511

6.3.3Losses 512

6.3.4SwitchRating 512

6.3.5MagneticCircuitDesign 513

6.3.6OptimizationofTransformerRating 513

6.3.7HarmonicInjectionintothePowerSystemNetwork 515

6.3.8OperationDuringLineFaults 515

6.4MultilineSenTransformer 516

6.4.1BasicDifferencesBetweentheMSTandBTB-SSSC 519

6.5FlexibleOperationoftheST 520

6.6STwithaShunt-CompensatingVoltage 522

6.7LimitedAngleOperationoftheSTwithShunt-CompensatingVoltages 526

6.8MSTwithShunt-CompensatingVoltages 531

6.9GeneralizedSenTransformer 532

6.10Summary 533

AppendixAMiscellaneous 535

A.1Three-PhaseBalancedVoltage,Current,andPower 535

A.2SymmetricalComponents 538

A.3SeparationofPositive-,Negative-,andZero-SequenceComponentsinaMultiple FrequencyCompositeVariable 544

A.4Three-PhaseUnbalancedVoltage,Current,andPower 547

A.5d-qTransformation(3-PhaseSystem,Transformedintod-qaxes;d-axisIsthe ActiveComponentandq-axisIstheReactiveComponent) 551

A.5.1ConversionofaVariableContainingPositive-,Negative-,andZero-Sequence Componentsintod-qFrame 556

A.5.2CalculationofInstantaneousPowerintod-qFrame 560

A.5.3CalculationofInstantaneousPowerintod-qframeforaThree-Phase,Three-Wire System 560

A.6FourierAnalysis 566

A.7Adams-BashforthNumericalIntegrationFormula 569

AppendixBPowerFlowEquationsinaLossyLine 571

B.1PowerFlowEquationsforaNaturalorUncompensatedLine 575

B.2PowerFlowEquationsforaCompensatedLine 582

B.2.1Shunt-CompensatingVoltage 583

B.2.1.1PowerFlowattheModifiedSendingEndwithaShunt-Compensating Voltage 584

B.2.1.2PowerFlowattheReceivingEndwithaShunt-CompensatingVoltage 587

B.2.1.3ExchangedPowerbyaShunt-CompensatingVoltage 590

B.2.1.4RepresentationofaShunt-CompensatingVoltageasaShunt-Compensating Impedance 590

B.2.2Series-CompensatingVoltageasanImpedanceRegulator,VoltageRegulator, andPhaseAngleRegulator(Asymmetric) 591

B.2.2.1PowerFlowattheSendingEndwithaSeries-CompensatingVoltage 596

B.2.2.2PowerFlowattheReceivingEndwithaSeries-CompensatingVoltage 600

B.2.2.3PowerFlowattheModifiedSendingEndwithaSeries-Compensating Voltage 606

B.2.2.4ExchangedPowerbyaSeries-CompensatingVoltage 615

B.2.2.5AdditionalSeries-CompensatingVoltages 624

B.2.2.5.1PhaseAngleRegulator(Symmetric) 624

B.2.2.5.2ReactanceRegulator 628

B.2.2.6RepresentationofaSeries-CompensatingVoltageasaSeries-Compensating Impedance 631

B.2.2.6.1EquivalentImpedanceofaVoltageRegulator(VR) 635

B.2.2.6.2EquivalentImpedanceofaPhaseAngleRegulator(Asymmetric) 636

B.2.2.6.3EquivalentImpedanceofaPhaseAngleRegulator(Symmetric) 638

B.2.2.6.4EquivalentImpedanceofaReactanceRegulator 640

B.2.2.7 RPI, LI,and APR ofaPFC 640

B.3DescriptionsoftheExamplesinChapter2 644

AppendixCModelingoftheSenTransformerinPSS®E 647

C.1SenTransformer 647

C.2ModelingwithTwoTransformersinSeries 648

C.3RelatingtheSenTransformerwiththePSSE®EModel 649

C.4ChileanCaseStudy 650

C.5Limitations – PSS®ETwo-TransformerModel 654

C.6Conclusion 655

References 657

Index 669

Authors’ Biographies

KalyanK.Sen wasborninBankura,WestBengal,India. HereceivedBEE(firstclasshonors,1982),MSEE(1983),andPhD degrees(1987),allinElectricalEngineering,from Jadavpur University (India), TuskegeeUniversity (USA),and WorcesterPolytechnicInstitute (USA),respectively.HealsoreceivedanMBA (2012)from RobertMorrisUniversity (USA).HeisthePresident andChiefTechnologyOfficerofSenEngineeringSolutions,Inc. (www.sentransformer.com).From1987to1990,hewasanAssistant ProfessoratPrairieViewA&MUniversity.From1990to2020,he workedmostlyatWestinghouseanditssuccessorcompaniesin theUnitedStates,exceptduring1999–2001whenheworkedat ABBinSweden.HewasakeymemberoftheFlexibleAlternatingCurrentTransmissionSystems (FACTS)developmentteamatWestinghouseScience&TechnologyCenterforwhichhebecamea WestinghouseFellowEngineer.Hecontributedtotheconceptdevelopment,simulation,design, andcommissioningofFACTSprojectsatWestinghousesincetheirinceptionsinthe1990s.He conceivedsomeofthebasicconceptsinpowerflowcontroltechnologyforwhichhewaselevated totheInstituteofElectricalandElectronicsEngineers(IEEE)Fellowgradewiththecitation: for thedevelopmentandapplicationofpowerflowcontroltechnology

Kalyanhasauthoredorcoauthoredmorethan25peer-reviewedpublications,8issuedpatents,2 books,and3bookchaptersintheareasofpowerflowcontrolandpowerelectronics.Heisthe coauthorofthebooktitled, IntroductiontoFACTSControllers:Theory,Modeling,andApplications , IEEEPressandJohnWiley&Sons,Inc.2009,whichisalsopublishedinChineseandIndian (English)paperbackeditions.Thisbookisusedinuniversitiesandindustriesworldwide.Hisinterestsareinpowerconverters,controlsystems,electricalmachines,andpowersystemsimulations andstudies.HeisalicensedProfessionalEngineerinPennsylvaniaandNewYork.Healsoserved asaFulbrightSpecialist(sponsoredbytheU.S.Government)andGlobalInitiativeofAcademic Networks(GIAN)Scholar(sponsoredbytheGovernmentofIndia).Heisanindividualmember ofCIGRE.

Kalyanhasservedmanyorganizations.HehasbeenservingasanIEEEPower&EnergySociety (PES)DistinguishedLecturersince2002.Inthatcapacity,hehasgivenpresentationsonpowerflow controltechnologymorethan150timesin15countries.HeisanAdComMemberofthePower ElectronicsSociety(PELS)andservesasthePELSRegions1-6Chair.HeistheIEEEDivisionII RepresentativetotheBoardofGovernorsofSocietyonSocialImplicationsofTechnology(SSIT) andservesastheChaptersCommitteeChair.HealsoservesastheChairofIEEEPittsburghSSIT

Chapter.In2003,hereestablishedthePittsburghChaptersofthePESandtheIndustryApplications Society(IAS).BothChaptersreceivedthe “OutstandingLargeChapter” awardsfortheiractivities in2004.HeservedastheFoundingChairofIEEEPittsburghPELSChapterthatreceivedthe BestChapterAwardin2015.UnderhisChairmanship,theIEEEPittsburghSectionreceived the “OutstandingLargeSection” awardforitsactivitiesin2005.HeservedasanEditorofthe IEEE TransactionsonPowerDelivery from2002to2007.HeservedastheTechnicalProgramChairofthe 2008PESGeneralMeetinginPittsburgh,andtheChaptersandSectionsActivitiesTrackChairat the2008IEEESectionsCongressinQuebecCity,Canada.HehasservedastheSpecialEventsChair oftheIEEEPittsburghSectionforadecade.HereceivedtheIEEEPittsburghSection Outstanding VolunteerService AwardandPower&EnergySociety OutstandingEngineer Award(2004).He isaDistinguishedToastmaster(DTM)wholedDistrict13ofToastmastersInternational(TI)asits Governortobethe10th-rankingDistrictintheworldin2007–2008.HehasbeenservingasaBoy ScoutsofAmericaLeaderforalmostadecade.

MeyLingSen wasborninAruba,DutchCaribbean.Shereceived BSEE(highdistinction,1988)andMEE(1990)degreesfrom Worcester PolytechnicInstitute (USA)and RiceUniversity (USA),respectively.As anEngineeringConsultant,sheworkedatABBandWestinghouse/ CW.SheistheCo-FounderandChiefOperatingOfficerofSenEngineeringSolutions,Inc.Sheistheco-inventoroftheSenTransformer, whichisusedasaSpecific,Measurable,Attainable,Relevant,and Time-bound(SMART)PowerFlowControllerthatisbasedonfunctionalrequirementsandacost-effectivesolution.Herinterestsarein powerelectronics,electricalmachines,andelectricpowerengineering. AsamemberofIEEE,shehasservedthePittsburghChaptersofPESandIASinvariouspositions,includingChapterChair.BothChaptersreceivedthe “ OutstandingLargeChapter ” awards fortheiractivitiesin2008and2009,respectively.ShealsoservedIEEEPittsburghSectionasthe Treasurerin2012andChairofWomeninEngineeringin2016and2018 –2019.ShehasbeenservingastheSpecialEventsChairoftheIEEEPittsburghSectionsince2020.ShereceivedIEEE PittsburghSectionPower&EnergySociety OutstandingEngineer Award(2018).SheisaDistinguishedToastmaster(DTM).SheservedastheTI ’ sPresident’ sDistinguishedAreaGovernorin 2007 – 2008.

TechnicalReviewers

J.M.DeSalvo

A.Parsotam

B.Shperling

Foreword

Thisbookisaproductoftheauthors’ fivedecadesofcombinedexperiencesintheresearchand developmentofpowerflowcontroltechnology.Thetraditionalpowergridasweknowitischangingdrastically.Mega-sizedwindandsolarprojectsarebeingintegratedintothetraditionalmajoritycarbon-basedpowergridinordertocurbtheproductionofgreenhousegasessignificantly.

Powersystemsoftodayweredesignedbasedoncentralgeneratingstationsandtransmissionand distributionlinestogettheenergytotheloads.However,withland-basedandoff-shorewindplants anddistributedandutility-scalesolarplantsbeingconnectedtothegrid,theoldparadigmdoesnot worksincethegeographiclocationsoftherenewableresourcesdonotingeneralcoincidewiththe traditionalgeneratingplants.ThereisaneedfortheT&Dsystemstoberevisitedandmodified/ upgradedforthenewpowerflowregimes.Thelineimpedancesthatweretunedoroptimizedto servecertainflowpatternsmaynowhinderdeliveryoftherenewableenergytothedesireddestinations.Theintermittentnatureoftherenewableenergysourcesbringsadditionalchallengesto systemfrequencyandvoltagecontrolandtoadoptingtheneededdynamiccapabilityandtheability tocontrolpowerflowsbidirectionallyattherightprice.Thiscanbemitigatedwithimpedanceregulationinstrategically-selectedtransmissioncorridors.Furthermore,inmanylocalitiesthereare nonewright-of-ways(ROWs),andrebuildingislimitedtoexistingones.Eventhoughrebuildcould beinevitable,flowcontrolmayhelpinsomescenariosandmaybemuchmoreeconomical.

Thekeytoacleanenergytransitiondependsontheelectricgrid’sabilitytogenerateanddistributerenewableenergythroughthetransmissionanddistributionsystem.Theintermittencyofsupplyandbidirectionalflows,coupledwiththeremotelocationsofsolarandwindprojects,are challenginggridplannersandoperators.Evenbeforewehavereachedlargepenetrationofrenewables,forecastersarefactoringrenewablecurtailmentasamajorstrategytobalancesupplyand demand,whichadverselyimpactstheeconomicsoftheprojects.

TheconceptofaSMARTPowerFlowController,developedinthisbook,isbasedonimpedance managementofthetransmissionline,whichwillbeessentialto(1)buildingthecapacitytointegrateandexpandtheuseofcleandistributedenergyresources,(2)pursuingefficientassetutilizationandreducingsystemlosses,(3)facilitatinggreatertransferofcleanenergyfromgeneration sitestoloadcenters,and(4)improvinggridreliabilityandresiliency.Thistechnologycanbecustomized,basedontherequiredrangeandspeedofoperation,componentnon-obsolescence,easeof relocation,andinteroperability.

ThisbookstartswiththederivationofthefundamentalsofpowerflowinanACtransmissionline anddevelopsvarioussolutionsthatcanbeusedtoenhancepowerflowwhilereducingthelossesin ACtransmissionlines.ThebookbuildsontheevolutionofpowerflowcontrollersinACtransmissionsystemscoveringthetheory,modeling,andvariousapplications.Thesubjectistreatedfrom

theworkingengineers’ pointofview.Afterreadingtheappropriatepartsofthisbook,students, teachers,andpracticingengineerswillbeabletoconductstudiesofpowersystemnetworksto mitigatetheiruniquepowerflowproblems.

Thebook’suniquecontributionisthatit

• providesthebasictheoryandthestep-by-stepexplanationofvariouspowerflowcontrollers;

• offersmodelingtechniquesthatareessentialtoelectricutilitieswhenconductingtheneeded studiesandanalysis;

• providescomputercodesinthemostwidely-usedElectro-MagneticTransientsProgram(EMTP) formats;

• describesanewclassofpowerflowcontrollers,basedonthetransformers/LoadTapChangers (LTCs)technology,developedbytheauthorsandnamedtheSenTransformer(ST).

ItisimportanttoemphasizethattheSTofferstheequivalentcontrolfeaturesoftwodevices –PhaseAngleRegulator(PAR)andVoltageRegulator(VR) – foralmostthepriceofone.IfonepurchasesaPAR,whichoffersthephaseangleoractivepowerflowcontrolonly,theSToffersthe addedvoltageorreactivepowerflowcontrolcapabilitywithperhapsasmalladditionalcost. Thelow-costpowerflowcontroltechnology,suchasST,isofinteresttoutilitiesbecauseofits simplicity,comparedtopowerelectronicsinverter-basedUnifiedPowerFlowController.

IbelievethattheSens’ inventionsarefundamentalcontributionstowardtheadvancementof low-costelectricpowerflowcontroltechnology.AsimulationmodeloftheSThasalreadybeen developedinPSS/E,themostwidelyusedloadflowsoftware,andthereportisgivenin AppendixC.AsanapplicationexampleexercisingthePSS/Emodel,itwasverifiedthattheSTperformedasthemostsuitablecandidateforpowerflowenhancementinasegmentoftheChilean network.Also,adistribution-levelChinesedemonstrationofa10-kVunitofSTconfirmedthe anticipatedperformanceoftheST.

Thetopicofpowerflowcontrolisofgreatinteresttomanypowerengineeringprofessionals,utilityengineers,largepowerequipmentmanufacturers,universityprofessors,andstudents.Thespecialtyofthebookisthatitdevelopsthemodernpowerflowcontroltheoriesfromthebasicsand supplementsthetheorywithrelevantcomputermodelsusingthemostwidelyusedsimulation software – EMTPandPSS/E.Thisbookexpandsuponwhattheauthorshadpresentedintheirlast book,titled IntroductiontoFACTSControllers – Theory,Modeling,andApplications. Insummary,thesubjectofpowerflowcontrolcannotbeoverstressed;itisaveryimportanttopic totheelectricpowerindustryandelectricutilities,particularlyintoday’senvironment.Duetothe currentneedforintegratingrenewableenergysourcesintothegridreliablytoreducethecarbonbasedgeneration,electricutilitiesareseriouslyconsideringallavailabletechnicalsolutions.Thisis atimelybookthatgivesthereaderclearinstructionsonhowtomodel,design,build,andevaluate powerflowcontrollers.Itsupplementsnicelytheveryfewexistingbooks.Irealizethatthisbookis practical,hands-on,andatrueguideforthepracticingengineers.Thebookgivessignificant amountsofdetailinmodelingandpresentationthatwillbemuchappreciatedbyresearchers/engineersinthefield.

Sincethe1990s,IhavebeeninteractingwithDr.KalyanSenonFlexibleAlternatingCurrent TransmissionSystems(FACTS)-relatedprojects.AstheLeadSimulationEngineeratWestinghouse,Dr.SendevelopedtheFACTSmodels,whichwereessentialforperformingthefeasibility studyoftheConvertibleStaticCompensator(CSC)FACTSprojectbeforeitsinstallationatthe NewYorkPowerAuthority(NYPA)Marcy345kVsubstationincentralNY.

Ihavereadthisbookwithgreatinterest.Itisaworkoflove,writtenbytwospouseswhospent theirentirecareersindevelopingamuch-neededpowerflowcontroltechnologythatcanhelp

Foreword xvii

utilitiesworldwidetoplanandoperatetheirpowergrids.ThespecialtyoftheSens’ bookisthatit iscoauthoredbyanengineerwhoactuallydesignedandcommissionedanumberofpower electronics-basedFACTScontrollersatWestinghousesincetheirinceptionsinthe1990s.Therefore,thebookincludesaflavorofpracticalrelevance.Thisbookisgoingtoaidthetransformational changethatistakingplaceintheelectricutilityindustryworldwide.

WhitePlains,NewYork

Nomenclature

β Relativephaseangleoftheseries-compensatingvoltagewithrespecttothe sending-endvoltage

δs Phaseangleofthevoltageatthesendingendofaline

δr Phaseangleofthevoltageatthereceivingendofaline

δ Powerangle(differenceofphaseanglesofthevoltagesatthetwoendsofaline)

δ Modifiedpowerangle(differenceofphaseanglesofthevoltagesatthetwo endsofalineaftercompensation)

δ l Lowestmodifiedpowerangle

δ h Highestmodifiedpowerangle

ε Leasterrorofthecalculatedvoltageandactually-tappedvoltageintheSen Transformer

θ Phase-lockedloop(PLL)angle

θ I Phaseangleofthelinecurrent

θ VX Phaseangleofthevoltageacrossthelinereactance

ο Degree

φ Powerfactorangle

ϕ Phaseanglebetweenthevoltageacrossthelinereactanceandthevoltage differencebetweenthesendingandreceivingends

ω Angularfrequency

ψ Phase-shiftangleofthemodifiedsending-endvoltagewithrespecttothe sending-endvoltage

Ω Unitofresistance,reactance,andimpedance

a1-b1-c1 Series-compensatingwindingsinthe A phaseofST

a2-b2-c2 Series-compensatingwindingsinthe B phaseofST

a3-b3-c3 Series-compensatingwindingsinthe C phaseofST

A-B-CExciterwindingsofST

A1-B1-C1 Shunt-compensatingwindingsinthe A phaseofST

A2-B2-C2 Shunt-compensatingwindingsinthe B phaseofST

A3-B3-C3 Shunt-compensatingwindingsinthe C phaseofST

AAmpere(unitofcurrent)

ACAlternatingCurrent

ANSIAmericanNationalStandardsInstitute

apr Instantaneousapparentpowerrating

APR ApparentPowerRating

ATCAvailableTransferCapability

b Multiplierof VXn from0to1

BPSBulkPowerSystem

BTB-SSSCBack-To-BackSSSC

BTB-STATCOMBack-To-BackSTATCOM

BYPBRKBypassbreaker

C Capacitance

cos(φ)Powerfactor

cp CompensatingpointsoftheSenTransformer

CSCConvertibleStaticCompensator

cr, cs , cse Intercept

dDutycycle

DCDirectCurrent

DCLSDCLinkSwitch

E Shunt-orseries-connectedvoltage

EHVExtraHighVoltage

ESElectronicSwitch

FFarad(unitofcapacitance)

FACTSFlexibleAlternatingCurrentTransmissionSystems

FCFixedCapacitor

GaNGalliumNitride

GHGGreen-HouseGas

GPFCGeneralizedPowerFlowController

GSTGeneralizedSenTransformer

GTOGate-TurnOff

HHenry(unitofinductance)

HVHighVoltage

HzHertz(unitoffrequency)

i Instantaneouscurrent,suchaslinecurrent(i),excitingcurrent(iex),sendingendcurrent(is),sourcecurrent(isrc),andsoon

I Linecurrentmagnitude

I Linecurrent

IBRInverter-BasedResource

IECInternationalElectrotechnicalCommission

IEEEInstituteofElectricalandElectronicsEngineers

Iex

ExcitercurrentthroughtheprimarywindingoftheSenTransformer

IPFCInterlinePowerFlowController

In Naturallinecurrentmagnitude

IRImpedanceRegulator

Is Currentatthesendingendoftheline

Isrc Sourcecurrent

ITCR

CurrentthroughThyristor-ControlledReactor

k NumberofTCSCsections

kHzKiloHertz(unitoffrequency)

kR Factor,representingtheratiooflineresistance, R,whenlinecurrentis I and thelineresistance, Rn,whenlinecurrentis In.

L Inductance

LTCLoadTapChanger

LVLowVoltage

MCMagneticCircuit

mr, ms , mse Slope

msMillisecond

MSTMultilineSenTransformer

MvarMegaVAR(unitofreactivepower)

n (subscript)Natural

NCNormally-Closed

NERCNorthAmericanElectricReliabilityCorporation

NONormally-Open

p Three-phaseinstantaneousactivepower

P Activepower

PARPhaseAngleRegulator

Plinen Powerlossinthenaturaloruncompensatedline

Plink Activepoweronthecommonlink

Pr Activepoweratthereceivingendoftheline

Prh Highestactivepoweratthereceivingendoftheline

Prl Lowestactivepoweratthereceivingendoftheline

Prn Naturalactivepoweratthereceivingendoftheline

Ps Activepoweratthesendingendoftheline

Pse ExchangedactivepowerbyaSeriesUnit

Psh ExchangedactivepowerbyaShuntUnit

Psn Naturalactivepoweratthesendingendoftheline

Psrc Activepoweratthesource

Ps Activepoweratthemodifiedsendingendoftheline

PFCPowerFlowController

POCPointofConnectiontotheutility

PSTPhase-ShiftingTransformer

puPerunit

q Three-phaseinstantaneousquadraturepower

QQualityfactor

Q Reactivepower

QBQuadratureBooster

Qlinen Reactivepowerabsorbedbythenaturaloruncompensatedline

Qlink Reactivepoweronthecommonlink

Qr Reactivepoweratthereceivingendoftheline

Qrh Highestreactivepoweratthereceivingendoftheline

Qrl Lowestreactivepoweratthereceivingendoftheline

Qrn Naturalreactivepoweratthereceivingendoftheline

Qs Reactivepoweratthesendingendoftheline

Qse ExchangedreactivepowerbyaSeriesUnit

Qsh ExchangedreactivepowerbyaShuntUnit

Qsn Naturalreactivepoweratthesendingendoftheline

Qsrc Reactivepoweratthesource

Qs Reactivepoweratthemodifiedsendingendoftheline

rk Voltageerroratapossible kth operatingpointintheSenTransformer

R Lineresistance

R Resistanceofasectionofaline

Reff Effectivelineresistance

ROMRough-OrderMagnitude

RMSRootMeanSquare

RRReactanceRegulator

Rse Series-compensatingresistance

Rsh Shunt-compensatingresistance

sSecond

S Apparentpower

SiCSiliconCarbide

SMARTSpecific,Measurable,Attainable,Relevant,andTime-bound

SPFCSMARTPowerFlowController

Sr Apparentpoweratthereceivingendoftheline

Ss Apparentpoweratthesendingendoftheline

se (subscript)Series-exchanged, i.e.cse, mse, Pse, Rse, Xse,Qse, Zse

Sse ExchangedapparentpowerbyaSeriesUnit

sh (subscript)Shunt-exchanged, i.e.Psh, Rsh, Xsh,Qsh, Zsh

Ssh

ExchangedapparentpowerbyaShuntUnit

SSSCStaticSynchronousSeriesCompensator

Ss Apparentpoweratthemodifiedsendingendoftheline

STSenTransformer

STATCOMSTATicsynchronousCOMpensator

SVCStaticVarCompensator

SynConSynchronousCondenser

t Time

TCRThyristor-ControlledReactor

THDTotalHarmonicDistortion

TNATransientsNetworkAnalyzer

TSCThyristor-SwitchedCapacitor

TSRThyristor-SwitchedReactor

TTCTransmissionTransferCapability

UHVUltraHighVoltage

UPFCUnifiedPowerFlowController

UPSUninterruptiblePowerSupply

v Instantaneousvoltage

V Phasevoltagemagnitude

V Phasorvoltage

VVolt(unitofvoltage)

va volt-ampere(unitofinstantaneousapparentpower)

VAVolt-Ampere(unitofapparentpower)

VARVolt-AmpereReactive(unitofreactivepower)

VRVoltageRegulator

VRTVoltage-RegulatingTransformer

Nomenclature

VSCVoltage-SourcedConverter

Vd

Voltageacrossthecompensatingresistance

Vdq Voltageacrossthecompensatingimpedance

Vq Voltageacrossthecompensatingreactance

Vr Voltageatthereceivingendoftheline

Vs Voltageatthesendingendoftheline

Vs Voltageatthemodifiedsendingendoftheline

Vs h Highestvoltageatthemodifiedsendingendoftheline

Vs l Lowestvoltageatthemodifiedsendingendoftheline

Vs s Series-compensatingvoltage

VR Voltageacrossthelineresistance

VRn Naturalvoltageacrossthelineresistance

VR,X Voltageacrossthelineimpedance Z= R + jX

VRn,Xn Naturalvoltageacrossthelineimpedance Z= R + jX

VX Voltageacrossthelinereactance

VXn Naturalvoltageacrossthelinereactance

WWatt(unitofactivepower)

WECCWesternElectricityCoordinatingCouncil

X Linereactance(total)

X C

Capacitivereactanceofasectionofaline

Xeff Effectivelinereactance

X L Inductivereactanceofasectionofaline

Xse Series-compensatingreactance

Xsh Shunt-compensatingreactance

Zse Series-compensatingimpedance

Zsh Shunt-compensatingimpedance

Preface

Bothauthorshavebeeninvolvedinexploringvariouspowerflowcontrollerssincetheearly1990s. KalyanSendevelopedpowerelectronicsinverter-basedFlexibleAlternatingCurrentTransmission Systems(FACTS)modelswhileworkingatWestinghousewherepioneeringdevelopmentof FACTSproductstookplace.Notethataforced-commutatedinverterwithaDClinkcapacitoris alsoreferredtoasaVoltage-SourcedConverter(VSC).Beinganactivecontributorthroughpatents, publications,design,andcommissioningofmuch-advertisedFACTScontrollerssinceitsinception inthe1990s,Kalyanhasafirst-handknowledgeofspecificapplicationswheretheinverter-based controllersarethedesirablesolutionsandwherethesesolutionsarenotsuitableatall.Hehaswrittenanaward-winningtechnicalcommitteepaperonthemodelingofUnifiedPowerFlowController(UPFC)inthe IEEETransactionsonPowerDelivery.MeyLingSenexploredanalternate approachtotheVSC-basedFACTSControllersthatiscosteffectivewhilemeetingfunctional requirementsformostutilityapplications.ThiseffortledtotheconceptoftheSenTransformer (ST).TheSTisfundamentallydifferentfromtheconventionaltransformer,inasensethatituses threeprimarywindingsandninesecondarywindingstocreateacompensatingvoltagethatmodifiesthelinevoltagetobeaspecificmagnitudeandphaseangle,whereastheconventionaltransformeronlymodifiesthemagnitudeofthelinevoltage.Asaresult,byusinganST,theactiveand reactivepowerflowsinthelinecanberegulatedindependentlytomaximizetherevenuegeneratingactivepowerflowandminimizethereactivepowerflowwhilemaintainingthestability ofthelinevoltage.

Since2002,KalyanhastraveledaroundtheworldasanIEEEDistinguishedLecturerandlecturedinmorethan150placesin15countries.Whenhegivesapresentationonpowerflowcontrollers,hisapproachistostartfromthebasicsandleaduptotheadvancedconceptofVSC-based FACTSControllersandST.Hisemphasisisbasedonreal-worldexperienceinmodeling,simulation,design,andcommissioning.Hewasrequestedinmanyplacestocompilehislecturematerial intheformofabook,whichresultedinthepublicationof IntroductiontoFACTSControllers:Theory,Modeling,andApplications in2009.AttheinceptionoftheFACTSdevelopmentinthe1990s, themainconcernswerethehighinstallationandoperatingcostsoftheFACTSControllers.Over thedecades,thelistofdrawbackshasexpandedtoincludecomponentobsolescence,costlymaintenance,lackoftrained-labor,impracticabilityofrelocationandlackofinteroperability.Adesired featureofaPowerFlowController(PFC)isthatitiseasilyrelocatabletowhereveritisneededthe most,sincetheneedforpowerflowcontrolmaychangewithtimeduetonewgeneration,load,and soon.Interoperabilityisdesiredsothatcomponentsfromvarioussupplierscanbeused,resulting inaglobalmanufacturingstandard,easeofmaintenance,andultimatelylowercosttoconsumers.

Theutilitiesaresearchingforasuitablepowerflowcontrollerthatoffersitsinherentfeatures: simplicity,operationalreliability,cost-effectiveness,componentnon-obsolescence,highefficiency, lowmaintenance,easeofrelocation,andinteroperabilitytomeettheirimmediateneedstorelieve gridcongestionduetooverload,peakloaddemand,andintegrationofrenewableenergysources intothegrid.TheSTcombinesthebestfeaturesoftheFACTScontrollersintermsoftheabilityto independentlycontrolactiveandreactivepowerflowswhileusingtime-testedandreliabletransformer/LoadTapChangers(LTCs)technologythatarefamiliartotheutilitiesworldwidefor almostacentury.MoreonLTCscanbefoundinthebook,titled On-LoadTap-ChangersForPower Transformers:Operation,Principles,ApplicationsandSelection,byA.Krämer,Maschinenfabrik Reinhausen,2000.

PowertransformersaretheworkhorsesthatmaketransmissionanddistributionofACelectric powerpossible.Transformersstepupthegeneratorvoltage(e.g.25kV)tothetransmissionlevel (e.g.345kV)andstepdowntodistributionlevel(e.g.13.8kV)and,finally,tohouseholdutilization voltage(e.g.120/240V).WiththeadditionofanLTCunderload,transformerscaneasilyregulate voltage.Specialtytransformers,suchasPhaseAngleRegulators(PARs),canalsoregulatephase angleofthelinevoltage.TheSTcanregulateboththevoltagemagnitudeandthephaseangle simultaneously;asaresult,theactiveandreactivepowerflowsthroughthelinecanbecontrolled independentlyasdesired.

Theprimarygoalofthisbookistopresentthefundamentalssothatreaderscanretaintheinformationclearlyintheirmindsandprovideameaningfulinputintheselectionprocessofadoptinga particularsolution.Thebookdescribesvariousconceptsthatareapplicabletoelectricpowerindustries.Theconceptscanbeappliedusingtraditionalnon-powerelectronics-basedsolutionsand modernpowerelectronics-basedsolutionsorsomehybridoftraditional-modernsolutions.Thereasonfortheprimarygoalisthataparticularsolutionbecomesobsoleteastimeprogresses;however, thefundamentalconceptsremainthesame.

Earlypowerflowcontrollersemployedbasictechnologies,suchastransformers,capacitors,and reactorsforthecompensatingvoltageinjectionintotheline.Laterdesignsusedpowerelectronicsto achievemuchgreaterflexibilityandoptimizationthroughanindependentcontrolofactiveand reactivepowerflows.Whenthefirstgenerationofpowerflowcontrollers,basedonpowerelectronicsVSCs,werebuiltinthe1990s,theGate-Turn-Offthyristor(GTO)wastheforced-commutated semiconductorswitchofchoicebecauseofitsavailabilityinhighpowerrating(4500V,4000A)and itslowforwardvoltagethatresultedinlowconductionloss.EarlyFACTSControllersusedVSCs withGTOs,switchingonce-per-cyclethatresultedinthelowestswitchinglossandthelowestoveralllossofabout1%oftheratingoftheVSC.TheseVSCsusedspecialtransformerstoemployharmonic-neutralizedtechniquesandproducedhigh-qualityACwaveformswithoutusingfilters.The inherentnatureofaGTOisitsrelativelylongerturn-onandturn-offtimes.Morecommonlyused modernPulseWidthModulation(PWM)techniquesarebasedoninstantaneousturn-onandturnoffofaswitch.AvoltagewaveformthatiscreatedwithaPWMtechniqueconsistsofafundamental componentofinterestandharmoniccomponents,thedominantofwhichisrelatedtotheratioof theswitchingandthefundamentalfrequencies.Ahigherswitchingfrequencyisdesirable,because thehigherdominantfrequencyrequiresareduced-sizedfilter.Tokeepthesumofturn-onand turn-offtimesofaGTOtobelessthan1%oftheswitchingperiod,itwouldresultinonlyseveral hundredHzofswitchingfrequency.Thiswouldrequireafairlylarge-sizedoutputfiltertoeliminate theunwantedlow-orderharmoniccomponents,generatedbyaforce-commutatedinverter.

Aboutadecadelater,theVSCofchoicestartedtouseInsulatedGateBipolarTransistor(IGBT)basedPWMtechniques.AnIGBToffersshorterturn-onandturn-offtimes,whichislessthan1%of theswitchingperiodthatresultsinaswitchingfrequencyofseveralkHz.Alowerswitchingperiod

meansahigherswitchingfrequencyandhigherorderharmoniccomponentsthatarenotofsignificantinterest,sincetheydonotgeneratesignificantamountofharmoniccurrentsfortworeasons; first,higherordervoltageharmoniccomponentsarelowerinmagnitudesandsecond,thehigher ordervoltageharmoniccomponents “ see ” higherreactancesforagiveninductance.However, somefilteringmaystillbeneeded,sinceswitchingfrequencycouldnotbeincreasedtothedesired levelinsomecasesduetogenerationofexcessivelosses(3–4%oftheratingoftheVSC)asafunction oftheincreasedswitchingfrequency.Anotherdecadelater,thetopologyofchoicehasbecomemultilevelVSCsthatdonotneedanyharmonicfiltering.WhilethetopologiesofVSCsarechanging,so arethesemiconductorswitchingdevices.Theupcomingswitchesarebasedonsiliconcarbide(SiC) andgalliumnitride(GaN)fordesirablereasons,suchashigh-speedoperation,whichresultsin lowerturn-onandturn-offtimes,thuslowerswitchingloss,high-temperatureoperation,lower coolingrequirement,andsmallercircuitsforthegatedriveandthesnubber.Ahigherswitching frequencycreatesahigherElectro-MagneticInterference(EMI),whichrequirestheuseofanadditionalEMIfilter.Thefactisthatwithvariousadvancesinthepowerelectronicstechnologyand semiconductorswitches,theFACTScontrollersbecomeobsoleteinarelativelyfewyearsandas aresult,aone-to-onecomponentreplacementbecomesimpossiblein10–15years.Intheutility worldwhere45–50yearsofequipmentlifeisthenorm,thismeanstheentirepowerelectronics inverter-basedFACTSinstallationmayneedtobereplacedseveraltimesinthose45-to50-year period.Inaddition,simplemaintenancerequireshighlyskilledpersonnelthatarenotreadilyavailable.Theglobalstandardandinteroperabilitydonotexistduetoalimitednumberofmanufacturers.Thisisahighlyexpensivepropositionperhapstwoordersofmagnitudemorethana long-livedandeasilymaintainedtransformer/LTCs-basedtechnology,suchasST.

Today’spowergridhasevolvedintointegrationofinverter-based,renewable-sourced,electricity generationfromsolarandwindfarms,whichareintermittentinnature.Therefore,traditional steady-statepowerflowcontrollers,suchasseries-connectedreactor/capacitorconcepts,needto beupdatedwithanimproveddynamicresponse.Additionally,increasinginstallationofroof-top solaranditsintegrationintoalow-voltagedistributionnetworkhasalteredthetraditionalvoltage profileinthedistributionnetworkandincreasedtheneedforabidirectionalpowerflowcontroller whentherenewablegenerationisnotavailable.Therefore,allavailablesolutionsneedtobeconsideredforfutureneeds,whichhasledtotheconceptofSMARTControllers.

Aconsiderableamountofefforthasbeenputintomodelingvariouscontrollers.Modelingisthe onlyapproach,beforeanyhardwareconstruction,fortheverificationoftheperformanceofany concept.Thebookincludesmodelsofmanycontrollers,developedusingafreelyavailableElectro-MagneticTransientsProgram(EMTP)softwarepackage.

Thebookisdividedintosixchaptersandthreeappendices.Chapter1presentstheoriginofpower flowcontrollersandguidesthereadertotheselectionprocessofaSMARTPowerFlowController(SPFC).

Chapter2isforanyonewhowouldliketobecomefamiliarwiththesubject.Itdiscussesvarious topicsofthebookinsimpleelectricalengineeringtermsandcorroboratesthetheorywithrelevant mathematics.Thecharacteristicequationsofvariouspowerflowcontrollers,includingtheirequivalentcompensatingimpedances,aredeveloped.Usingtheseequations,asetofexampleproblemsis given,whichgivesaquickback-of-the-envelopecalculationresultswithoutmucheffort.Afigureof merit,called SenIndex,isdefinedforallthePowerFlowControllers(PFCs).

Chapter3presentsthefundamentalsofmodelinginEMTPandexplainsthebasicdifferencesof modelingvariousPFCs,suchastheVoltage-RegulatingTransformer(VRT),PhaseAngleRegulator (PAR),UnifiedPowerFlowController(UPFC),andSenTransformer(ST).FollowingtheRoughOrderMagnitude(ROM)calculationsperformedinChapter2,usingsimpleequationsto

characterizeapowerflowsolution,theROMresultsmayneedtoberefinedbyemployingthemodelingtechniquesdevelopedinChapter3.Anexamplesimulationofaseries-compensatingvoltageis showntoemulateaVRT,aPAR,andanImpedanceRegulator(IR).

Chapter4presentsthetransformer-basedPFCsandgivessomebaselineexamplesforcomparison withotherPFCsinthefollowingchapters.ItisshownhowaVRTandaPARmaybemodeledby usingaseries-compensatingvoltage.

Chapter5presentssomeearlyPFCsthatusemechanicalswitchesandsetsomebaselinesforcomparisoninthefollowingchapters.Itisshownhowtomodelavirtualimpedancethatisequivalentto shunt-connectedand/orseries-connectedinductiveand/orcapacitivecompensators.

Chapter6presentstheevolutionofanSTanditswidevarietyofapplications.Themostup-to-date advancementsinSTaredescribedinthischapter.Thisincludesvariousformsoftwo-coredesigns. Alsoincludedisanewfactory-testmethodunderfullpower.

AppendixAdescribestheoperationofvariousitems,suchas(1)three-phasebalancedandunbalancedvoltage,current,andpower;(2)symmetricalcomponents;(3)d-qtransformation;and(4) Fourieranalysis.Thereaderwillfinditusefultoseetheindustrytechniquesandtherelevance ofthetheoryandapplications.

AppendixBpresentsthepowerflowcontrolequationsinalossylineandcomparesthederived resultsfromthoseinChapter2forlosslesslines.Simplerversionsoftheseequationsarederivedin Chapter2,consideringthelineresistance(R)iszero.TheseexampleswillbeusedasfuturereferencesforthoseinvolvedwithPFCs.Forthereaderstorecognizetheimportanceoftheequations andexamplesolutionspresentedinChapter2,alistofallthe “Examples” isplacedattheendof AppendixB.UsingtheinformationreceivedfromSupervisoryControlAndDataAcquisition (SCADA)aboutthesending-andreceiving-endvoltages(Vs and Vr)andactiveandreactivepower flows(Pr and Qr),otherpowerflowvariables,suchasthepowerangle(δ),canbecalculatedfora knownlineimpedance(Z = R + jX).

AppendixCpresentsaloadflowstudyoftheChileannetwork,integratedwithSenTransformer, performedbySiemensPTIandsponsoredbyNewYorkPowerAuthority.

Pittsburgh,Pennsylvania

KalyanK.Sen MeyLingSen

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.