DesignofThermalEnergySystems
PradipMajumdar
Thiseditionfirstpublished2021 ©2021JohnWiley&SonsLtd
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions.
TherightofPradipMajumdartobeidentifiedastheauthorofthisworkhasbeenassertedinaccordance withlaw.
RegisteredOffices
JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA
JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK
EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA
Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com.
Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.
LimitofLiability/DisclaimerofWarranty
MATLABⓇ isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorksdoesnot warranttheaccuracyofthetextorexercisesinthisbook.Thiswork’suseordiscussionofMATLABⓇ softwareorrelatedproductsdoesnotconstituteendorsementorsponsorshipbyTheMathWorksofa particularpedagogicalapproachorparticularuseoftheMATLABⓇ software.
Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantability orfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,written salesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproduct isreferredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthat thepublisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmay provideorrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisheris notengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbe suitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshould beawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwas writtenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitorany othercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.
LibraryofCongressCataloging-in-PublicationData
Names:Majumdar,Pradip,1954-author.
Title:Designofthermalenergysystems/PradipMajumdar.
Description:Firstedition.|Hoboken,NJ,USA:Wiley,2021.|Includes bibliographicalreferencesandindex.
Identifiers:LCCN2020040595(print)|LCCN2020040596(ebook)|ISBN 9781118956939(cloth)|ISBN9781118956946(adobepdf)|ISBN 9781118956915(epub)
Subjects:LCSH:Heatengineering.|Renewableenergysources.
Classification:LCCTJ808.M3452021(print)|LCCTJ808(ebook)|DDC 621.402–dc23
LCrecordavailableathttps://lccn.loc.gov/2020040595
LCebookrecordavailableathttps://lccn.loc.gov/2020040596
CoverDesign:Wiley
CoverImages:IllustrationcourtesyofPradipMajumdar; Background©Xanya69/GettyImages
Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India
InlovingmemoryofmylateparentsSnehalataandRatiRanjanMajumdar and Tomywife:Srabani,andChildren:DiyaandIshan
Contents
Preface xix
AbouttheAuthor xxi
AbouttheCompanionWebsite xxiii
1Introduction 1
1.1ThermalEngineeringDesign 1
1.2ElementsofDesignAnalysisofThermalSystems 2
1.2.1SomeSpecialAspectsofThermalDesign 3
1.2.2DesignTypes 3
1.3ExamplesofThermalEnergyDesignProblems 4
1.3.1Solar-HeatedSwimmingPool 4
1.3.2AChilledWaterSystemforAir-ConditioningSystem 7
1.3.2.1ObjectiveFunction 8
1.3.3SecondaryWaterSystemforHeatRejection 8
1.3.4SolarRankineCyclePowerGenerationSystem 10
1.3.5ResidentialAir-ConditioningSystem 14
1.3.6HeatRecoveryfromDieselEngineExhaust 18
1.3.7CoolingSystemforaLi-ionBatteryStackinaVehicle 19 Bibliography 24
2ThermodynamicsAnalysis 26
2.1SomeBasicConceptsofThermodynamics 26
2.1.1ThermodynamicSystemandControlVolume 26
2.1.2ThermodynamicProperties,States,andPhases 26
2.1.2.1PureSubstance 27
2.1.2.2SimpleCompressibleSubstance 27
2.1.2.3Phase-EquilibriumDiagramofaPureSubstance 27
2.1.3ThermodynamicProcessesandCycles 29
2.1.3.1ReversibleandIrreversibleProcesses 29
2.1.3.2ThermodynamicCycle 29
2.1.4EnergyandEnergyTransfer 30
2.1.5HeatandWork 30
2.1.5.1HeatEnergy(Q) 30
2.1.5.2Work(W ) 31
2.2ConservationofMass 31
2.2.1System 31
2.2.2ControlVolume 31
2.3TheFirstLawofThermodynamics 32
2.3.1TheFirstLawofThermodynamicsforaSystem 32
2.3.2TheFirstLawofThermodynamicsforaControlVolume 33
2.3.3SpecialCases 33
2.3.3.1Steady-StateSteady-Flow(SSSF)Process 33
2.3.3.2Uniform-StateUniform-Flow(USUF)Process 34
2.4TheSecondLawofThermodynamics 34
2.4.1Kelvin–PlanckStatement 34
2.4.2ClausiusStatement 35
2.4.3InequalityofClausius 36
2.4.3.1Steady-StateSteady-Flow(SSSF)Process 38
2.4.3.2Uniform-StateUniform-Flow(USUF) 38
2.4.3.3ReversibleSteady-FlowWork 39
2.5CarnotCycle 39
2.6MachineEfficiencies 40
2.6.1Turbine 40
2.6.2CompressorandPumps 41
2.6.2.1Compressor 41
2.6.2.2Pump 41
2.7SpecificHeat 41
2.8IdealGasEquationofState 42
2.9ChangeinEnthalpy,InternalEnergy,Entropy,andGibbsFunctionforIdeal Gases 42
2.9.1ChangeinEnthalpyandInternalEnergy 42
2.9.1.1CaseI:ConstantSpecificHeat 43
2.9.1.2CaseII:Temperature-DependentSpecificHeatvalues 43
2.9.1.3CaseIII 43
2.9.2EntropyChangeinaProcess 43
2.9.3SpecialCases 44
2.9.3.1CaseI:ForConstantSpecificHeatValues 44
2.9.3.2CaseII:ForTemperature-DependentSpecificHeat Values 44
2.9.3.3CaseIII 44
2.10ReversiblePolytropicProcess 44
2.11ReversibleAdiabaticorIsentropicProcess 45
2.12MixtureofGases 45
2.12.1MixtureParameters 46
2.12.1.1MassFraction 46
2.12.1.2MoleFraction 46
2.12.2IdealGasMixtureProperties 47
2.12.3ChangeofPropertiesinaThermodynamicProcess 48
2.12.4MoistAir:MixtureofAirandWaterVapor 49
2.12.4.1Dew-PointTemperature(T dp ) 50
2.12.4.2RelativeHumidity(RHor ��) 50
2.12.4.3HumidityRatio(ω) 50
2.12.4.4Dry-BulbandWet-BulbTemperatures 51
2.12.4.5Moist-airEnthalpy 51
2.12.4.6PsychrometricChart 52
2.12.5ApplicationofConservationEquationstoAir-Conditioning Process 52
2.12.5.1ConservationofMass 52
2.12.5.2ConservationofEnergy 52
2.12.6HeatingofMoistAir 53
2.12.6.1ConservationMass 53
2.12.6.2ConservationofEnergy 54
2.12.6.3CoolingandDehumidificationProcess 56
2.12.6.4HumidificationProcess 58
2.12.6.5ConservationofMass 58
2.12.6.6ConservationofEnergy 59
2.12.6.7MixingProcess 60
2.13CombustionProcess 63
2.13.1CombustionReaction 63
2.13.2BalancedReactionEquation 64
2.13.3HydrocarbonFuelTypes 64
2.13.4CombustionReactionModel 65
2.13.5MajorCombustionParameters 65
2.13.5.1TheoreticalAir(Stoichiometric)andExcessAir 66
2.13.5.2Air-FuelRatio(AF) 66
2.13.5.3EquivalenceRatio(Φ) 66
2.13.5.4EvaluationofEnthalpyandEntropyinaReactingSystem 68
2.13.6FirstLawforReactingSystems 69
2.13.7TemperatureofProductofCombustion 70
2.14Power-GeneratingCycles 73
2.14.1VaporPowerCycles 73
2.14.1.1RankineVaporPowerCycle 73
2.14.1.2FirstLawofThermodynamicAnalysisofaStandardRankine VaporPowerCycle 75
2.14.1.3ThermodynamicanalysisofastandardRankinecycle: 75
2.14.1.4EffectofSuperheatingandReheating 82
2.14.1.5ThermodynamicAnalysisofRegenerativeFeedWaterPower Cycle 88
2.14.2GasPowerSystem 102
2.14.2.1ReciprocatingInternalCombustionSystems 103
2.14.2.2SimplifiedModelfortheAnalysisofInternalCombustion Engine:AirStandardCycles 103
2.14.2.3OttoCycleforSparkIgnitionEngine 104
2.14.2.4FirstLawofThermodynamicAnalysis 104
2.14.2.5TheDieselCycleforCompression–IgnitionEngine 108
2.14.2.6BraytonCycle:AStandardCycleforGasTurbineEngine 113
2.14.2.7GasTurbinewithRegenerativeHeatExchangerforHeat Recovery 113
2.14.2.8FirstLawofThermodynamicAnalysisofaGasTurbineCycle withRegenerativeHeatRecovery 114
2.14.2.9GasTurbinewithMultistageCompressionsand Expansions 119
2.15CoolingandRefrigerationSystem 124
2.15.1VaporCompressionRefrigerationSystem 124
2.15.1.1ThermodynamicAnalysisofVaporCompression RefrigerationCycle 128
2.15.1.2TheAbsorptionRefrigerationSystem 133
2.16TheSecondLaworExergyAnalysis 134
2.16.1Irreversibility 136
2.16.2AvailabilityorExergy 136
2.16.3SecondLawEfficiency 138
2.17CaseStudyProblems 141
2.17.1CaseStudyProblem:AnalysisandDesignofSolar-DrivenIrrigation Pump 141 Bibliography 146 Problems 146
3ReviewofBasicLawsandConceptsofHeatTransfer 151
3.1Heat-TransferModesandRateEquations 151
3.2ConductionHeatTransfer 151
3.2.1ConductionHeat-TransferResistance 152
3.2.1.1BoundaryConditions 152
3.2.2ThermalResistancesandHeatTransferinCompositeLayers 152
3.3ConvectionHeatTransfer 153
3.3.1ConvectionModes 154
3.3.2ConvectionHeat-TransferCoefficient 154
3.3.2.1LocalConvection 155
3.3.2.2AverageorMeanHeat-TransferCoefficient 155
3.3.3ControllingForcesinConvection 155
3.3.3.1SurfaceForces 156
3.3.3.2BodyForces 156
3.3.4MajorFactorsandParametersinConvectionHeatTransfer 156
3.3.4.1ThermophysicalandTransportproperties 156
3.3.4.2FlowGeometry 159
3.3.4.3ConvectionHeat-TransferCorrelations 162
3.3.4.4ForcedConvectionHeatTransferandCorrelations 163
3.3.5ForcedConvectionInternalFlowandHeatTransfer 164
3.3.5.1LaminarFlows 164
3.3.5.2InternalTurbulent-FlowHeat-TransferCorrelations 177
3.3.5.3LiquidMetals 177
3.3.6ExternalFlows 179
3.3.6.1LaminarFlowOveraFlatPlate 179
3.3.6.2TurbulentFlowOveraFlatPlate 179
3.3.6.3ExternalCrossFlowOveraCylinder 180
3.3.6.4FlowOveraSphere 181
3.3.6.5FlowOverTubeBanks 181
3.3.6.6JetCooling 185
3.3.7FreeorNaturalConvection 186
3.3.7.1EffectsofTurbulence 188
3.3.7.2EmpiricalFreeConvectionCorrelations 189
3.3.7.3FreeConvectionOveraVerticalPlate 189
3.3.7.4FreeConvectionOveraHorizontalSurface(Figure3.20) 190
3.3.8CondensationHeatTransfer 193
3.3.8.1LaminarFilmCondensationOveraVerticalPlate 193
3.3.8.2TurbulentCondensation 195
3.3.8.3CondensationOverHorizontalCylindricalTube 196
3.3.9BoilingHeatTransfer 198
3.3.9.1PoolBoiling 198
3.3.9.2FilmPoolBoiling 200
3.3.10InternalForcedConvectionTwo-phaseFlowBoiling 201
3.3.11EffectofTemperature 202
3.3.11.1Approach–I 202
3.3.11.2Approach–II 202
3.4ThermalRadiationHeatTransfer 202
3.4.1.1TheGrayBody 204
3.4.1.2RadiationHeatExchange 204
3.5Heat-TransferResistances 207
3.5.1.1OverallHeat-TransferCoefficientinaHeat-Exchanger CircularTube 208
3.5.1.2OverallHeat-TransferCoefficientinaSphericalStorage wall 209
3.6ContactResistancesandThermalInterfaceMaterials 210 Bibliography 213
4DesignandSelectionofFinsandHeatSinks 215
4.1DesignRequirementsforFinsandHeatSinks 215
4.2ConfigurationsandTypesofFins 217
4.3FinPerformanceModelingandSolutions 219
4.3.1AGeneralFinHeatEquation 219
4.3.1.1StraightLongitudinalFinofUniformCross-section 221
4.3.1.2StraightFinofVariableCross-section 223
4.3.1.3SpineFinofCircularConeShape 224
4.3.1.4StraightParabolicFinwithCircularBase 235
4.3.1.5StraightConcaveParabolicFinwithRectangularBase 236
4.3.1.6StraightFinofTrapezoidalCross-section 237
4.3.1.7AnnularorCircularFin 238
4.4ParametersforFinPerformanceCharacterization 240
4.4.1FinEffectiveness 240
4.4.2FinEfficiency 243
4.4.3FinThermalResistance 249
4.5MultipleFinArraysandOverallSurface 251
4.5.1Finned-SurfaceConvectionThermalResistance 252
4.5.2OverallHeatTransferCoefficientforaFinnedSurface 252
4.5.2.1PlaneWall 252
4.5.2.2CylindricalSurface 253
Bibliography 255
Websites 256
Problems 256
5AnalysisandDesignofHeatExchangers 259
5.1Heat-exchangerTypesandClassifications 259
5.1.1Double-PipeHeatExchanger 259
5.1.2Shell-and-TubeHeatExchangers 259
5.1.3CrossFlowHeatExchangers 261
5.1.4CompactHeatExchangers 262
5.2Heat-exchangerCodesandStandards 262
5.2.1TEMAStandard 263
5.2.2APIStandard600(2015) 263
5.2.3ASMEBoilerandPressureVesselCode(BVPC)(2017) 263
5.2.4HeatExchangerInstitute(HEI)Standard 266
5.2.5API-662StandardforPlate-heatExchangers 266
5.2.6HEI3092StandardforGasketedPlate-heatExchangers 266
5.2.7ASMEB31.1forPowerPiping 266
5.3Heat-exchangerDesignOptions 266
5.3.1CategoriesofShell-and-TubeHeatExchanger 266
5.3.1.1FixedTubeSheet 267
5.3.1.2ReturnBendorU-Tube 267
5.3.1.3FloatingTubeSheet 268
5.3.2RecommendedDesignAssumptions 268
5.3.2.1TubeGeometricalParameters 268
5.3.2.2ShellGeometricalParameters 269
5.3.2.3CounterFlowVs.ParallelFlow 269
5.3.2.4ChoiceofaFluidinShellSideVs.TubeSide 269
5.4Heat-exchangerDesignAnalysisMethods 269
5.4.1LogMeanTemperatureDifference(LMTD) 269
5.4.1.1Parallel-FlowArrangement 270
5.4.1.2CounterFlow 271
5.4.1.3Multi-PassShell-TubeandCrossFlowHeatExchanger 274
5.4.2Effectiveness–NTUMethod 278
5.4.3OverallHeat-transferCoefficientinHeatExchanger 283
5.4.4FinnedSurface 284
5.4.5FoulingFactor 289
5.5Shell-and-tubeHeatExchanger 292
5.5.1FlowGeometryandFlowParameters 292
5.5.1.1Tube-SideFlowGeometry 292
5.5.1.2RatioofTube-sideFreeFlowAreatoFlowAreaofthe Tubes 292
5.5.1.3NetSurfaceAreaforHeatTransfer 293
5.5.1.4Shell-SideFlowGeometry 293
5.5.2TypesandEffectsofBaffles 293
5.5.3TubeArrangementsinShellSide 293
5.5.4Shell-SideFlowArea 294
5.5.5EstimationofHeat-transferCoefficientsinaShellandTube 295
5.5.5.1TubeArrangementsInsideShellandTubeHeat Exchanger 295
5.5.5.2Tube-SideConvectionCoefficient 296
5.5.5.3Shell-SideConvectionCorrelation 297
5.5.6PressureDropsinTubeandShellSides 298
5.5.7AdditionalShell-SideConsideration 302
5.5.7.1CorrectedShell-SideConvectionHeat-transfer Coefficient 302
5.5.7.2CorrectedShell-SidePressureDrop 303
5.5.8Temperature-DependentFluidPropertiesandCorrections 303
5.5.9ClassificationofHeat-exchangerDesignProblemsTypes 304
5.5.10Heat-exchangerDesignAnalysis:MethodologyandAlgorithms 304
5.5.10.1DesignType-1:DesignMethodology 304
5.5.10.2Heat-exchangerDesignProblemType-IIa 316
5.5.10.3Heat-exchangerDesignProblemType-IIb 320
5.5.10.4Shah’sMethodforEnhancedConvergenceinType-IIDesign Problems 339
5.5.11DesignProcedureforType-IIHeatExchangerBasedonShah’s Method 339
5.6CompactHeatExchangers 343
5.6.1AlgorithmforCompactheat-exchangerDesignandAnalysis 347
5.7Heat-exchangerNetwork(HEN)Analysis 349
5.7.1BasicAnalysisProcessforHEN 350 ThePINCHDesignMethodforHeat-exchangerNetworks 352 Bibliography 352 Problems 353
6AnalysisandDesignofSolarCollectorandSolarThermalSystem 356
6.1SolarThermalEnergySystem 356
6.1.1ClassificationofSolarSystem 356
6.1.1.1ActiveSystem 356
6.1.1.2PassiveSystem 357
6.1.2ExamplesofActiveSolarThermalSystem 357
6.1.2.1SolarWater-HeatingSystem 357
6.1.2.2SolarSpace-HeatingSystem 357
6.1.2.3Solar-CoolingSystem 358
6.1.2.4ASolar-DrivenIrrigationPump 359
6.1.2.5SolarRankineCyclePowerGeneration 359
6.2TypesandSelectionofSolarCollectors 360
6.2.1CollectorOperationalTemperatures 360
6.2.2Fixedvs.Tracking 361
6.2.3TypesofCollectorDesign:FlatPlatevs.Concentrating 361
6.2.4Flat-PlateSolarCollector 361
6.2.5ConcentratingCollector 363
6.2.5.1ClassificationConcentratingCollector 364
6.2.6CompoundParabolicConcentrator(CPC)Collector 365
6.2.6.1TruncatedCPCCollector 367
6.3SolarRadiationCharacteristicsandEstimation 369
6.3.1SolarRadiation 369
6.3.2ThermalRadiation 369
6.3.3SolarIntensityDistribution 369
6.3.4ExtraterrestrialRadiation 370
6.3.5SolarConstant(Gsc ) 370
6.3.6TotalIncidentRadiation 371
6.3.7ComputationofSolarTime 372
6.3.8GreenwichCivilTime(LCT) 372
6.3.9LocalCivilTime(LCT) 372
6.3.10LocalStandardTime 373
6.3.11LocalSolarTime(LST) 373
6.3.12BasicEarthandSunAngles 375
6.3.13SolarandWallAngles 375
6.3.13.1SolarAngles 375
6.3.13.2WallAngles 378
6.3.13.3ASHRAEClear-DayModelforEstimationofSolar RadiationFlux 378
6.3.13.4DiffuseRadiationonNonhorizontalSurface 379
6.3.13.5ReflectedRadiation(GR) 380
6.4OpticalPropertiesofAbsorberPlateandGlazingMaterials 381
6.4.1SolarRadiation–MaterialInteraction 381
6.4.2OpticalPropertyofAbsorberPlate 382
6.4.3SelectiveCoating 382
6.4.4OpticalPropertiesofGlazingMaterials 384
6.4.4.1AbsorptionCoefficient 385
6.4.4.2ReflectanceCoefficient 386
6.4.5TransmittanceThroughGlassCover 386
6.4.6OpticalPropertiesforAbsorbingGlazingCover 387
6.4.7Transmittance–AbsorptanceProductofCollector(τα) 390
6.4.8AbsorbedSolarRadiationonaCollectorSurface 391
6.4.9TypesandSelectionofGlazing 392
6.4.10ThermalInsulation 393
6.5SolarThermalCollectorAnalysisandPerformance 393
6.5.1Flat-PlateCollector 393
6.5.1.1SolarCollectorHeatLossandOverallHeatTransfer 394
6.5.1.2TemperatureDistributioninAbsorbingPlate 396
6.5.1.3CollectorPerformance 397
6.5.1.4CollectorEfficiencyFactor(F ′ ) 398
6.5.1.5FluidTemperatureDistributionintheCollectorTube 398
6.5.1.6CollectorHeatRemovalFactor(F R ) 399
6.5.1.7Three-DimensionalAnalysis 400
6.5.2ConcentratingCollector 400
6.5.3CollectorPerformanceCharacterization 404
6.5.3.1SolarCollectorEfficiency(�� c ) 404 Bibliography 406 Problems 407
7RotaryComponentsinThermalSystems 409
7.1TurbomachineTypes 409
7.2BasicEquationsofTurbomachines 410
7.2.1ConservationofAngularMomentum 410
7.2.2TheEulerEquationofEnergyTransferinTurbomachines 412
7.2.3VelocityDiagrams 414
7.2.4SlipConsideration 417
7.3Impeller-BladeDesignandFlowChannels 419
7.4CentrifugalPumps 420
7.4.1ComponentsofCentrifugalPumps 421
7.4.1.1VaneorBladeTypes 423
7.4.1.2ImpellerCasing 424
7.4.1.3VoluteandVaneDiffuserCasing 424
7.4.2VelocityTrianglesandBasicEquationsforPumpPerformance 426
7.4.2.1VolumeFlowRates 427
7.4.2.2PumpPerformanceOutput 427
7.4.2.3MajorPumpParameters 430
7.4.2.4PumpHead, hP 430
7.4.2.5PumpEfficiency 430
7.4.2.6PumpPerformanceCharacteristics 431
7.4.3RealPumpPerformance 434
7.4.3.1EffectofSlipFactor 436
7.4.3.2PumpPerformanceCharacteristics 437
7.4.4EffectofOperatingImpellerSpeed 437
7.4.5ExternalLosses 439
7.4.5.1LeakageLoss 439
7.4.5.2DiskFrictionLoss 439
7.4.5.3MechanicalLoss 439
7.5SpecificSpeedandPumpSelections 440
7.5.1EffectofSpecificSpeedonPumpPerformanceCharacteristics 442
7.5.2AffinityLawsforCentrifugalPumps 443
7.6CavitationandNetPositiveSuctionHead(NPSH) 445
7.6.1ThomaCavitationParameter(�� ) 449
7.6.2CavitationResistanceCoatings 451
7.7PumpsinSeriesorinParallel 451
7.7.1PumpsConnectedinSeries 451
7.7.2PumpsConnectedinParallel 452
7.8PumpStandardsandCodes 452
7.8.1ASMECentrifugalPumpsStandards–PTC8.2 452
7.8.2ANSIPUMPS–ASMEB73.1StandardsforChemical/Industrial ProcessPumps 453
7.8.3ANSI/HI:HydraulicInstituteStandardsforPumpsandPumping Systems 453
Bibliography 453 Problems 454
8AnalysisandDesignofFluid-FlowSystems 456
8.1BasicEquationsofFluidFlow 456
8.1.1ConservationofMass 456
8.1.2ConservationofEnergy 457
8.1.3BasicEnergyEquationforAnalyzingPipeFlow 457
8.1.4FrictionalHeadLossforFlowinPipes:MajorLoss 460
8.1.4.1FrictionFactor:FullyDevelopedLaminarFlowinCircular Pipe 462
8.1.4.2FrictionalPressureDropsforTurbulentFlow 464
8.1.4.3MinorLossesinValvesandFittings 467
8.1.4.4MinorLossCoefficientValues 469
8.1.4.5GradualExpansionandContraction 470
8.1.4.6ValvesandFittings 470
8.1.4.7ElbowsandBends 471
8.2PipingSystemswithRotaryDevices 473
8.3PipingSystemCharacteristics 477
8.4PipingSystemDesignProcedure 482
8.5PipingNetworkClassifications 489
8.5.1PipesinSeries 489
8.5.2PipesinParallel 496
8.6PipingSysteminSeries–ParallelNetwork 502
8.6.1HardyCrossMethod–BasedonDarcy–WeisbachFrictionFactor 505
8.6.2HazenWilliams–BasedHardyCrossMethod 510
8.6.2.1HazenWilliamsExpressionandCoefficients 510
8.6.3HardyCrossMethodAlgorithm 512
8.6.4GeneralizedHardyCross 522
8.6.4.1MinorLosses 522
8.6.4.2Devices 523
8.6.4.3Pumps 523
8.6.4.4GeneralizedExpression 523
Bibliography 524
Problems 525
9SimulationofThermalSystems 528
9.1BasicPrinciples,Types,andClassesofSimulations 528
9.2SimulationProcedureandMethodology 529
9.2.1InformationFlowDiagram 529
9.2.2DevelopmentoftheInformationFlowDiagram 529
9.3SolutionMethodsforSystemSimulation 535
9.4Newton–RaphsonMethodfortheSolutionofNonlinearEquations 536
9.5Newton–RaphsonMethodfortheSolutionofaSystemofEquations 538
9.6Newton–RaphsonSolutionAlgorithm 540
9.7SomeFactsAbouttheNewton–RaphsonMethod 552
9.8NumericalEvaluationsofPartialDerivativesinSystemSimulation 553
9.9DifferentSolutionOptionsforaLinearSystemofEquations 554
9.10AGeneralizedNewton–RaphsonAlgorithmforSystemSimulation 555
Bibliography 556
Problems 556
10OptimizationofThermalComponentsandSystems 562
10.1OptimizationAnalysisModels 562
10.2FormulationandMathematicalRepresentationofOptimizationProblemsin ThermalSystems 563
10.2.1AnalysisandDesignVariables 564
10.2.2ObjectiveFunction 564
10.2.3DesignConstraints 565
10.2.3.1EqualityandInequalityConstraints 565
10.2.3.2LinearandNonlinearConstraints 566
10.2.3.3NonlinearConstraints 566
10.2.4ImplicitConstraints 566
10.2.5FormulationoftheOptimizationProblem 567
10.2.6GeneralMathematicalStatementofOptimizationProblems 569
10.2.7ExamplesofDesignOptimizationProblems 570
10.3OptimizationMethods 573
10.3.1GraphicalOptimizationMethod 574
10.3.2OptimizationMethodofDifferentialCalculus 575
10.3.2.1FunctionswithManyVariables 578
10.3.3MethodofLagrangeMultiplier 579
10.4AGeneralProcedureforLagrangeMultiplier 581
10.4.1GeometricProgramming 585
10.4.1.1DegreeofDifficulty 585
10.4.1.2GeneralOptimizationProcedurebyGeometric Programming 585
10.4.1.3MultivariableGeometricProgramming 591
10.4.2ProcedureforSolvingMultivariableProblemUsingGeometric Programing 592
10.4.2.1MultivariableGeometricProgramingwithConstraints 593
Bibliography 595 Problems 595
AppendixAParametricRepresentationofThermalParametersandProperties 599
A.1ExamplesofDataforParametricRepresentations 599
A.2BasicApproachesforEquationDevelopment 600
A.3ParametricRepresentationTechniques 601
A.3.1PolynomialCurve-Fitting 601
A.3.1.1PolynomialCurve-Fitting–SingleVariable 602
A.3.1.2PolynomialCurve-Fitting–TwoVariablesorMore Variables 604
A.3.2LeastSquareRegressionCurve-Fitting 608
A.3.2.1AccuracyoftheLeastSquareCurveFit 609
A.3.3Curve-FittedCorrelationalFunctionforThermophysical Properties 613
Bibliography 613 Problems 613
AppendixBEconomicAnalysisandCostEstimationofThermalComponentsand Systems 614
B.1EconomicAnalysisProcedure 614
B.1.1SomeBasicConcepts 614
B.1.1.1InterestRateandItsEffectonInvestments 614
B.1.2SomeCommonMethodsofEconomicEvaluation 616
B.1.2.1ReturnonInvestment(ROI)Method 617
B.1.2.2PaybackMethod 617
B.1.3LifeCycleCost(LCC)Analysis 618
B.2CostEstimationofThermalComponentsandSystems 621
B.2.1EquipmentCost 621
Bibliography 625 Problems 625
AppendixCThermodynamicandThermophysicalProperties 626 Bibliography 656
AppendixDModifiedBesselFunctionoftheFirstandtheSecondKinds 657
AppendixEConstantsandConversionUnits 659
Index 663
Preface
Thisbookisintendedforundergraduateandfirstyeargraduatestudentsinvariousfields ofengineeringandsciencetointroducethedesignandanalysisofthermalenergysystems. Thisbookisalsointendedasatextbookforarequiredcourseinthecorecurriculumand forthecapstonedesigncourseinthermo-fluidscienceareaofthemechanicalengineering degreeprogram.
Oneoftheessentialrequirementsofmechanicalengineeringcurriculumistoprovide strongcoverageintheareasofthermalenergyandfluidsystems.Studentsareexpected toanalyseanddesignofthermalsystemssuchasconventionalandrenewableenergy systems,coolingsystemsandpump-pipingsystems,andthermo-fluidcomponentssuchas heatsinks,thermalinterfacematerials,heatexchangers,condensers,solarcollectors,wind turbines,heatexchanger,pipingsystemsandnetworks,andabletoselectandintegrate appropriateheatsinks,pumps,coolingtower,turbine,andcompressorsinthermalsystems fordifferentapplications.
Thisbookcanalsobeadaptedastextbookforcoursesinvariousotherfieldsofengineeringsuchaschemicalengineering,nuclearengineering,andcivilengineering.Students intheseprogramsareexpectedtohaveprerequisiteknowledgeofthermodynamics,fluid mechanicsandheattransfer.Studentsinotherfieldofstudiescanalsobenefitfromthis booksincethebookiscomprehensivewiththeinclusionofthereviewsoflawsandprinciplesofthermodynamics,fluidmechanicsandheattransfer.Thebookwillcontinuetobe usefulasareferencebookforpracticingengineersinthefieldofenergyandpowerindustrieswhichexperiencedemandsforcontinuousincreaseincapacityofconventionalpower generationsaswellasdemandsfordevelopingrenewableandalternativeenergyandpower generationsystems.
Thebookcontainsessentialtopicsinthermalenergysystemsandcomponentssuchas conventionalpowergenerationandcoolingsystems,renewableenergysystemslikesolar energysystem,heatrecoverysystems,andthermalheatmanagement.Examplesaredrawn fromsolarenergysystems,batterythermalheatmanagement,electricalandelectronics cooling,engineexhaustheatandemissionsandmanufacturingprocesses.Contemporary topicssuchassteadystatesimulationandoptimizationmethodsarealsoincluded.The bookincludesnumberofworkedoutdesignproblemstodemonstrateiterativedesign methodologies.
xx Preface
Thebookiswrittenwithafocustosatisfyfollowinglearningobjectives:
● Applythermalanalysistechniquestogeneratedesignspecificationandratings.
● Designthermalsystemsandcomponentstomeetengineeringspecifications.
● Applydesignmethodologiestodesignthermalsystemsandcomponents.
● Applyiterativemethodologiestodesignthermo-fluidsystemsandcomponents.
● Developabilitytoidentify,formulate,andsolvedesignproblems.
● Understandthefunctionsofvariouscomponentsandsystemsrequiringthermal-fluid principles.
● Decomposeaproblemintointerdependentsub-problemsasappropriate.
● Formulatemathematicalproblemsfromthephysical/engineeringdescription,and choosephysicallymeaningfulboundaryconditionsandconstraints.
● Evaluateeconomicsandcostsofthermalenergysystemsandcomponents.
● Familiarizewithvariousengineeringstandardsandcodesforthermalenergysystemand components.
ThebookevolvedfromseveralyearsofmyteachingacourseonDesignofThermalSystems.Ibelievethatthecontentofthebookwithcomprehensivesubjectmatterswillhelp studentsbuildastrongergriponthesubjectofdesignandanalysisofthermalandfluid systems.Iwelcomesuggestionsfrominterestedreadersofthebook.
Iwouldliketothankmystudentsfortheirscomments,feedbacks,andsuggestionsover manyyears.Theywerethecontinuoussourceofmymotivationtocontinueandcomplete thebook.
Ithankallreviewersfortheirconstructivecomments.Iwouldliketoexpressmysincere appreciationtoalleditors,managers,designers,andeditorialstaffmembersatWileyfor theirefforts,supports,understandingandpatienceduringtheproductionofthisbook. SpecialthankstomychildrenDiyaandIshanforhelpingmeselectthecoverpageof thebook.
Iwouldliketoexpressmydeepappreciationtomywife: Srabani andmychildren: Diya andIshan fortheircontinuoussupport,understandingandpatienceduringpreparation ofthemanuscript.
PradipMajumdar
AbouttheAuthor
PRADIPMAJUMDAR earnedhisM.S.andPh.D.inmechanicalengineeringfromIllinois InstituteofTechnology.HewasaprofessorandthechairintheDepartmentofMechanicalEngineeringatNorthernIllinoisUniversity.HeisanadjunctfacultyinDepartment Mechanical,MaterialsandAerospaceEngineeringatIllinoisInstituteofTechnology.Heis recipientofthe2008FacultyoftheYearAwardforExcellenceinUndergraduateEducation. Dr.Majumdarhasbeentheleadinvestigatorfornumerousfederalandindustrialprojects. Dr.Majumdarauthorednumerouspapersonfluiddynamics,heatandmasstransfer,energy systems,fuelcell,Li-ionbatterystorage,electronicscoolingandelectricaldevices,engine combustion,nano-structuredmaterials,advancedmanufacturing,andtransportphenomenainbiologicalsystems.Dr.MajumdaristheauthorofthreebooksincludingComputational MethodsforHeatandMassTransfer ;Fuel Cells-Principles,DesignandAnalysis;and ComputationalFluidDynamicsandHeatTransfer (InPress).Dr.Majumdariscurrently servingasaneditorofthe InternationalCommunicationsinHeatandMassTransfer .Hehas previouslyservedasthe AssociateEditorofASMEJournalofThermalScienceandEngineering.Dr.MajumdarhasbeenmakingkeynoteandplenarypresentationsonLi-ionBattery storage,fuelcell,electronicscooling,nanostructurematerialsatnationalandinternational conferencesandworkshops.Dr.Majumdarhasparticipatedasaninternationalexpertin GIANlectureseriesonfuelcellandLi-ionbatterystorage.Dr.Majumdarisafellowofthe AmericanSocietyofMechanicalEngineers(ASME).