Design of thermal energy systems pradip majumdar all chapter instant download

Page 1


Design of Thermal Energy Systems Pradip Majumdar

Visit to download the full and correct content document: https://ebookmass.com/product/design-of-thermal-energy-systems-pradip-majumdar/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Thermal, mechanical, and hybrid chemical energy storage systems Klaus Brun (Editor)

https://ebookmass.com/product/thermal-mechanical-and-hybridchemical-energy-storage-systems-klaus-brun-editor/

Thermal Systems Design: Fundamentals and Projects, 2nd Edition Richard J. Martin

https://ebookmass.com/product/thermal-systems-designfundamentals-and-projects-2nd-edition-richard-j-martin/

Tidal Energy Systems: Design, Optimization and Control 1st Edition

https://ebookmass.com/product/tidal-energy-systems-designoptimization-and-control-1st-edition/

Thermal system design and simulation Dhar

https://ebookmass.com/product/thermal-system-design-andsimulation-dhar/

Tidal Energy Systems: Design, Optimization and Control

Vikas Khare

https://ebookmass.com/product/tidal-energy-systems-designoptimization-and-control-vikas-khare/

Energy Storage Systems: System Design and Storage

Technologies Armin U. Schmiegel

https://ebookmass.com/product/energy-storage-systems-systemdesign-and-storage-technologies-armin-u-schmiegel/

Thermal Energy Storage: From Fundamentals to Applications Alexandra Soh

https://ebookmass.com/product/thermal-energy-storage-fromfundamentals-to-applications-alexandra-soh/

Low-Grade Thermal Energy Harvesting 1st Edition Shiren

Wang

https://ebookmass.com/product/low-grade-thermal-energyharvesting-1st-edition-shiren-wang/

Geothermal Energy Systems Ibrahim Dincer

https://ebookmass.com/product/geothermal-energy-systems-ibrahimdincer/

DesignofThermalEnergySystems

DesignofThermalEnergySystems

PradipMajumdar

Thiseditionfirstpublished2021 ©2021JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions.

TherightofPradipMajumdartobeidentifiedastheauthorofthisworkhasbeenassertedinaccordance withlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

MATLABⓇ isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorksdoesnot warranttheaccuracyofthetextorexercisesinthisbook.Thiswork’suseordiscussionofMATLABⓇ softwareorrelatedproductsdoesnotconstituteendorsementorsponsorshipbyTheMathWorksofa particularpedagogicalapproachorparticularuseoftheMATLABⓇ software.

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantability orfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,written salesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproduct isreferredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthat thepublisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmay provideorrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisheris notengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbe suitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshould beawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwas writtenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitorany othercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.

LibraryofCongressCataloging-in-PublicationData

Names:Majumdar,Pradip,1954-author.

Title:Designofthermalenergysystems/PradipMajumdar.

Description:Firstedition.|Hoboken,NJ,USA:Wiley,2021.|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2020040595(print)|LCCN2020040596(ebook)|ISBN 9781118956939(cloth)|ISBN9781118956946(adobepdf)|ISBN 9781118956915(epub)

Subjects:LCSH:Heatengineering.|Renewableenergysources.

Classification:LCCTJ808.M3452021(print)|LCCTJ808(ebook)|DDC 621.402–dc23

LCrecordavailableathttps://lccn.loc.gov/2020040595

LCebookrecordavailableathttps://lccn.loc.gov/2020040596

CoverDesign:Wiley

CoverImages:IllustrationcourtesyofPradipMajumdar; Background©Xanya69/GettyImages

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India

InlovingmemoryofmylateparentsSnehalataandRatiRanjanMajumdar and Tomywife:Srabani,andChildren:DiyaandIshan

Contents

Preface xix

AbouttheAuthor xxi

AbouttheCompanionWebsite xxiii

1Introduction 1

1.1ThermalEngineeringDesign 1

1.2ElementsofDesignAnalysisofThermalSystems 2

1.2.1SomeSpecialAspectsofThermalDesign 3

1.2.2DesignTypes 3

1.3ExamplesofThermalEnergyDesignProblems 4

1.3.1Solar-HeatedSwimmingPool 4

1.3.2AChilledWaterSystemforAir-ConditioningSystem 7

1.3.2.1ObjectiveFunction 8

1.3.3SecondaryWaterSystemforHeatRejection 8

1.3.4SolarRankineCyclePowerGenerationSystem 10

1.3.5ResidentialAir-ConditioningSystem 14

1.3.6HeatRecoveryfromDieselEngineExhaust 18

1.3.7CoolingSystemforaLi-ionBatteryStackinaVehicle 19 Bibliography 24

2ThermodynamicsAnalysis 26

2.1SomeBasicConceptsofThermodynamics 26

2.1.1ThermodynamicSystemandControlVolume 26

2.1.2ThermodynamicProperties,States,andPhases 26

2.1.2.1PureSubstance 27

2.1.2.2SimpleCompressibleSubstance 27

2.1.2.3Phase-EquilibriumDiagramofaPureSubstance 27

2.1.3ThermodynamicProcessesandCycles 29

2.1.3.1ReversibleandIrreversibleProcesses 29

2.1.3.2ThermodynamicCycle 29

2.1.4EnergyandEnergyTransfer 30

2.1.5HeatandWork 30

2.1.5.1HeatEnergy(Q) 30

2.1.5.2Work(W ) 31

2.2ConservationofMass 31

2.2.1System 31

2.2.2ControlVolume 31

2.3TheFirstLawofThermodynamics 32

2.3.1TheFirstLawofThermodynamicsforaSystem 32

2.3.2TheFirstLawofThermodynamicsforaControlVolume 33

2.3.3SpecialCases 33

2.3.3.1Steady-StateSteady-Flow(SSSF)Process 33

2.3.3.2Uniform-StateUniform-Flow(USUF)Process 34

2.4TheSecondLawofThermodynamics 34

2.4.1Kelvin–PlanckStatement 34

2.4.2ClausiusStatement 35

2.4.3InequalityofClausius 36

2.4.3.1Steady-StateSteady-Flow(SSSF)Process 38

2.4.3.2Uniform-StateUniform-Flow(USUF) 38

2.4.3.3ReversibleSteady-FlowWork 39

2.5CarnotCycle 39

2.6MachineEfficiencies 40

2.6.1Turbine 40

2.6.2CompressorandPumps 41

2.6.2.1Compressor 41

2.6.2.2Pump 41

2.7SpecificHeat 41

2.8IdealGasEquationofState 42

2.9ChangeinEnthalpy,InternalEnergy,Entropy,andGibbsFunctionforIdeal Gases 42

2.9.1ChangeinEnthalpyandInternalEnergy 42

2.9.1.1CaseI:ConstantSpecificHeat 43

2.9.1.2CaseII:Temperature-DependentSpecificHeatvalues 43

2.9.1.3CaseIII 43

2.9.2EntropyChangeinaProcess 43

2.9.3SpecialCases 44

2.9.3.1CaseI:ForConstantSpecificHeatValues 44

2.9.3.2CaseII:ForTemperature-DependentSpecificHeat Values 44

2.9.3.3CaseIII 44

2.10ReversiblePolytropicProcess 44

2.11ReversibleAdiabaticorIsentropicProcess 45

2.12MixtureofGases 45

2.12.1MixtureParameters 46

2.12.1.1MassFraction 46

2.12.1.2MoleFraction 46

2.12.2IdealGasMixtureProperties 47

2.12.3ChangeofPropertiesinaThermodynamicProcess 48

2.12.4MoistAir:MixtureofAirandWaterVapor 49

2.12.4.1Dew-PointTemperature(T dp ) 50

2.12.4.2RelativeHumidity(RHor ��) 50

2.12.4.3HumidityRatio(ω) 50

2.12.4.4Dry-BulbandWet-BulbTemperatures 51

2.12.4.5Moist-airEnthalpy 51

2.12.4.6PsychrometricChart 52

2.12.5ApplicationofConservationEquationstoAir-Conditioning Process 52

2.12.5.1ConservationofMass 52

2.12.5.2ConservationofEnergy 52

2.12.6HeatingofMoistAir 53

2.12.6.1ConservationMass 53

2.12.6.2ConservationofEnergy 54

2.12.6.3CoolingandDehumidificationProcess 56

2.12.6.4HumidificationProcess 58

2.12.6.5ConservationofMass 58

2.12.6.6ConservationofEnergy 59

2.12.6.7MixingProcess 60

2.13CombustionProcess 63

2.13.1CombustionReaction 63

2.13.2BalancedReactionEquation 64

2.13.3HydrocarbonFuelTypes 64

2.13.4CombustionReactionModel 65

2.13.5MajorCombustionParameters 65

2.13.5.1TheoreticalAir(Stoichiometric)andExcessAir 66

2.13.5.2Air-FuelRatio(AF) 66

2.13.5.3EquivalenceRatio(Φ) 66

2.13.5.4EvaluationofEnthalpyandEntropyinaReactingSystem 68

2.13.6FirstLawforReactingSystems 69

2.13.7TemperatureofProductofCombustion 70

2.14Power-GeneratingCycles 73

2.14.1VaporPowerCycles 73

2.14.1.1RankineVaporPowerCycle 73

2.14.1.2FirstLawofThermodynamicAnalysisofaStandardRankine VaporPowerCycle 75

2.14.1.3ThermodynamicanalysisofastandardRankinecycle: 75

2.14.1.4EffectofSuperheatingandReheating 82

2.14.1.5ThermodynamicAnalysisofRegenerativeFeedWaterPower Cycle 88

2.14.2GasPowerSystem 102

2.14.2.1ReciprocatingInternalCombustionSystems 103

2.14.2.2SimplifiedModelfortheAnalysisofInternalCombustion Engine:AirStandardCycles 103

2.14.2.3OttoCycleforSparkIgnitionEngine 104

2.14.2.4FirstLawofThermodynamicAnalysis 104

2.14.2.5TheDieselCycleforCompression–IgnitionEngine 108

2.14.2.6BraytonCycle:AStandardCycleforGasTurbineEngine 113

2.14.2.7GasTurbinewithRegenerativeHeatExchangerforHeat Recovery 113

2.14.2.8FirstLawofThermodynamicAnalysisofaGasTurbineCycle withRegenerativeHeatRecovery 114

2.14.2.9GasTurbinewithMultistageCompressionsand Expansions 119

2.15CoolingandRefrigerationSystem 124

2.15.1VaporCompressionRefrigerationSystem 124

2.15.1.1ThermodynamicAnalysisofVaporCompression RefrigerationCycle 128

2.15.1.2TheAbsorptionRefrigerationSystem 133

2.16TheSecondLaworExergyAnalysis 134

2.16.1Irreversibility 136

2.16.2AvailabilityorExergy 136

2.16.3SecondLawEfficiency 138

2.17CaseStudyProblems 141

2.17.1CaseStudyProblem:AnalysisandDesignofSolar-DrivenIrrigation Pump 141 Bibliography 146 Problems 146

3ReviewofBasicLawsandConceptsofHeatTransfer 151

3.1Heat-TransferModesandRateEquations 151

3.2ConductionHeatTransfer 151

3.2.1ConductionHeat-TransferResistance 152

3.2.1.1BoundaryConditions 152

3.2.2ThermalResistancesandHeatTransferinCompositeLayers 152

3.3ConvectionHeatTransfer 153

3.3.1ConvectionModes 154

3.3.2ConvectionHeat-TransferCoefficient 154

3.3.2.1LocalConvection 155

3.3.2.2AverageorMeanHeat-TransferCoefficient 155

3.3.3ControllingForcesinConvection 155

3.3.3.1SurfaceForces 156

3.3.3.2BodyForces 156

3.3.4MajorFactorsandParametersinConvectionHeatTransfer 156

3.3.4.1ThermophysicalandTransportproperties 156

3.3.4.2FlowGeometry 159

3.3.4.3ConvectionHeat-TransferCorrelations 162

3.3.4.4ForcedConvectionHeatTransferandCorrelations 163

3.3.5ForcedConvectionInternalFlowandHeatTransfer 164

3.3.5.1LaminarFlows 164

3.3.5.2InternalTurbulent-FlowHeat-TransferCorrelations 177

3.3.5.3LiquidMetals 177

3.3.6ExternalFlows 179

3.3.6.1LaminarFlowOveraFlatPlate 179

3.3.6.2TurbulentFlowOveraFlatPlate 179

3.3.6.3ExternalCrossFlowOveraCylinder 180

3.3.6.4FlowOveraSphere 181

3.3.6.5FlowOverTubeBanks 181

3.3.6.6JetCooling 185

3.3.7FreeorNaturalConvection 186

3.3.7.1EffectsofTurbulence 188

3.3.7.2EmpiricalFreeConvectionCorrelations 189

3.3.7.3FreeConvectionOveraVerticalPlate 189

3.3.7.4FreeConvectionOveraHorizontalSurface(Figure3.20) 190

3.3.8CondensationHeatTransfer 193

3.3.8.1LaminarFilmCondensationOveraVerticalPlate 193

3.3.8.2TurbulentCondensation 195

3.3.8.3CondensationOverHorizontalCylindricalTube 196

3.3.9BoilingHeatTransfer 198

3.3.9.1PoolBoiling 198

3.3.9.2FilmPoolBoiling 200

3.3.10InternalForcedConvectionTwo-phaseFlowBoiling 201

3.3.11EffectofTemperature 202

3.3.11.1Approach–I 202

3.3.11.2Approach–II 202

3.4ThermalRadiationHeatTransfer 202

3.4.1.1TheGrayBody 204

3.4.1.2RadiationHeatExchange 204

3.5Heat-TransferResistances 207

3.5.1.1OverallHeat-TransferCoefficientinaHeat-Exchanger CircularTube 208

3.5.1.2OverallHeat-TransferCoefficientinaSphericalStorage wall 209

3.6ContactResistancesandThermalInterfaceMaterials 210 Bibliography 213

4DesignandSelectionofFinsandHeatSinks 215

4.1DesignRequirementsforFinsandHeatSinks 215

4.2ConfigurationsandTypesofFins 217

4.3FinPerformanceModelingandSolutions 219

4.3.1AGeneralFinHeatEquation 219

4.3.1.1StraightLongitudinalFinofUniformCross-section 221

4.3.1.2StraightFinofVariableCross-section 223

4.3.1.3SpineFinofCircularConeShape 224

4.3.1.4StraightParabolicFinwithCircularBase 235

4.3.1.5StraightConcaveParabolicFinwithRectangularBase 236

4.3.1.6StraightFinofTrapezoidalCross-section 237

4.3.1.7AnnularorCircularFin 238

4.4ParametersforFinPerformanceCharacterization 240

4.4.1FinEffectiveness 240

4.4.2FinEfficiency 243

4.4.3FinThermalResistance 249

4.5MultipleFinArraysandOverallSurface 251

4.5.1Finned-SurfaceConvectionThermalResistance 252

4.5.2OverallHeatTransferCoefficientforaFinnedSurface 252

4.5.2.1PlaneWall 252

4.5.2.2CylindricalSurface 253

Bibliography 255

Websites 256

Problems 256

5AnalysisandDesignofHeatExchangers 259

5.1Heat-exchangerTypesandClassifications 259

5.1.1Double-PipeHeatExchanger 259

5.1.2Shell-and-TubeHeatExchangers 259

5.1.3CrossFlowHeatExchangers 261

5.1.4CompactHeatExchangers 262

5.2Heat-exchangerCodesandStandards 262

5.2.1TEMAStandard 263

5.2.2APIStandard600(2015) 263

5.2.3ASMEBoilerandPressureVesselCode(BVPC)(2017) 263

5.2.4HeatExchangerInstitute(HEI)Standard 266

5.2.5API-662StandardforPlate-heatExchangers 266

5.2.6HEI3092StandardforGasketedPlate-heatExchangers 266

5.2.7ASMEB31.1forPowerPiping 266

5.3Heat-exchangerDesignOptions 266

5.3.1CategoriesofShell-and-TubeHeatExchanger 266

5.3.1.1FixedTubeSheet 267

5.3.1.2ReturnBendorU-Tube 267

5.3.1.3FloatingTubeSheet 268

5.3.2RecommendedDesignAssumptions 268

5.3.2.1TubeGeometricalParameters 268

5.3.2.2ShellGeometricalParameters 269

5.3.2.3CounterFlowVs.ParallelFlow 269

5.3.2.4ChoiceofaFluidinShellSideVs.TubeSide 269

5.4Heat-exchangerDesignAnalysisMethods 269

5.4.1LogMeanTemperatureDifference(LMTD) 269

5.4.1.1Parallel-FlowArrangement 270

5.4.1.2CounterFlow 271

5.4.1.3Multi-PassShell-TubeandCrossFlowHeatExchanger 274

5.4.2Effectiveness–NTUMethod 278

5.4.3OverallHeat-transferCoefficientinHeatExchanger 283

5.4.4FinnedSurface 284

5.4.5FoulingFactor 289

5.5Shell-and-tubeHeatExchanger 292

5.5.1FlowGeometryandFlowParameters 292

5.5.1.1Tube-SideFlowGeometry 292

5.5.1.2RatioofTube-sideFreeFlowAreatoFlowAreaofthe Tubes 292

5.5.1.3NetSurfaceAreaforHeatTransfer 293

5.5.1.4Shell-SideFlowGeometry 293

5.5.2TypesandEffectsofBaffles 293

5.5.3TubeArrangementsinShellSide 293

5.5.4Shell-SideFlowArea 294

5.5.5EstimationofHeat-transferCoefficientsinaShellandTube 295

5.5.5.1TubeArrangementsInsideShellandTubeHeat Exchanger 295

5.5.5.2Tube-SideConvectionCoefficient 296

5.5.5.3Shell-SideConvectionCorrelation 297

5.5.6PressureDropsinTubeandShellSides 298

5.5.7AdditionalShell-SideConsideration 302

5.5.7.1CorrectedShell-SideConvectionHeat-transfer Coefficient 302

5.5.7.2CorrectedShell-SidePressureDrop 303

5.5.8Temperature-DependentFluidPropertiesandCorrections 303

5.5.9ClassificationofHeat-exchangerDesignProblemsTypes 304

5.5.10Heat-exchangerDesignAnalysis:MethodologyandAlgorithms 304

5.5.10.1DesignType-1:DesignMethodology 304

5.5.10.2Heat-exchangerDesignProblemType-IIa 316

5.5.10.3Heat-exchangerDesignProblemType-IIb 320

5.5.10.4Shah’sMethodforEnhancedConvergenceinType-IIDesign Problems 339

5.5.11DesignProcedureforType-IIHeatExchangerBasedonShah’s Method 339

5.6CompactHeatExchangers 343

5.6.1AlgorithmforCompactheat-exchangerDesignandAnalysis 347

5.7Heat-exchangerNetwork(HEN)Analysis 349

5.7.1BasicAnalysisProcessforHEN 350 ThePINCHDesignMethodforHeat-exchangerNetworks 352 Bibliography 352 Problems 353

6AnalysisandDesignofSolarCollectorandSolarThermalSystem 356

6.1SolarThermalEnergySystem 356

6.1.1ClassificationofSolarSystem 356

6.1.1.1ActiveSystem 356

6.1.1.2PassiveSystem 357

6.1.2ExamplesofActiveSolarThermalSystem 357

6.1.2.1SolarWater-HeatingSystem 357

6.1.2.2SolarSpace-HeatingSystem 357

6.1.2.3Solar-CoolingSystem 358

6.1.2.4ASolar-DrivenIrrigationPump 359

6.1.2.5SolarRankineCyclePowerGeneration 359

6.2TypesandSelectionofSolarCollectors 360

6.2.1CollectorOperationalTemperatures 360

6.2.2Fixedvs.Tracking 361

6.2.3TypesofCollectorDesign:FlatPlatevs.Concentrating 361

6.2.4Flat-PlateSolarCollector 361

6.2.5ConcentratingCollector 363

6.2.5.1ClassificationConcentratingCollector 364

6.2.6CompoundParabolicConcentrator(CPC)Collector 365

6.2.6.1TruncatedCPCCollector 367

6.3SolarRadiationCharacteristicsandEstimation 369

6.3.1SolarRadiation 369

6.3.2ThermalRadiation 369

6.3.3SolarIntensityDistribution 369

6.3.4ExtraterrestrialRadiation 370

6.3.5SolarConstant(Gsc ) 370

6.3.6TotalIncidentRadiation 371

6.3.7ComputationofSolarTime 372

6.3.8GreenwichCivilTime(LCT) 372

6.3.9LocalCivilTime(LCT) 372

6.3.10LocalStandardTime 373

6.3.11LocalSolarTime(LST) 373

6.3.12BasicEarthandSunAngles 375

6.3.13SolarandWallAngles 375

6.3.13.1SolarAngles 375

6.3.13.2WallAngles 378

6.3.13.3ASHRAEClear-DayModelforEstimationofSolar RadiationFlux 378

6.3.13.4DiffuseRadiationonNonhorizontalSurface 379

6.3.13.5ReflectedRadiation(GR) 380

6.4OpticalPropertiesofAbsorberPlateandGlazingMaterials 381

6.4.1SolarRadiation–MaterialInteraction 381

6.4.2OpticalPropertyofAbsorberPlate 382

6.4.3SelectiveCoating 382

6.4.4OpticalPropertiesofGlazingMaterials 384

6.4.4.1AbsorptionCoefficient 385

6.4.4.2ReflectanceCoefficient 386

6.4.5TransmittanceThroughGlassCover 386

6.4.6OpticalPropertiesforAbsorbingGlazingCover 387

6.4.7Transmittance–AbsorptanceProductofCollector(τα) 390

6.4.8AbsorbedSolarRadiationonaCollectorSurface 391

6.4.9TypesandSelectionofGlazing 392

6.4.10ThermalInsulation 393

6.5SolarThermalCollectorAnalysisandPerformance 393

6.5.1Flat-PlateCollector 393

6.5.1.1SolarCollectorHeatLossandOverallHeatTransfer 394

6.5.1.2TemperatureDistributioninAbsorbingPlate 396

6.5.1.3CollectorPerformance 397

6.5.1.4CollectorEfficiencyFactor(F ′ ) 398

6.5.1.5FluidTemperatureDistributionintheCollectorTube 398

6.5.1.6CollectorHeatRemovalFactor(F R ) 399

6.5.1.7Three-DimensionalAnalysis 400

6.5.2ConcentratingCollector 400

6.5.3CollectorPerformanceCharacterization 404

6.5.3.1SolarCollectorEfficiency(�� c ) 404 Bibliography 406 Problems 407

7RotaryComponentsinThermalSystems 409

7.1TurbomachineTypes 409

7.2BasicEquationsofTurbomachines 410

7.2.1ConservationofAngularMomentum 410

7.2.2TheEulerEquationofEnergyTransferinTurbomachines 412

7.2.3VelocityDiagrams 414

7.2.4SlipConsideration 417

7.3Impeller-BladeDesignandFlowChannels 419

7.4CentrifugalPumps 420

7.4.1ComponentsofCentrifugalPumps 421

7.4.1.1VaneorBladeTypes 423

7.4.1.2ImpellerCasing 424

7.4.1.3VoluteandVaneDiffuserCasing 424

7.4.2VelocityTrianglesandBasicEquationsforPumpPerformance 426

7.4.2.1VolumeFlowRates 427

7.4.2.2PumpPerformanceOutput 427

7.4.2.3MajorPumpParameters 430

7.4.2.4PumpHead, hP 430

7.4.2.5PumpEfficiency 430

7.4.2.6PumpPerformanceCharacteristics 431

7.4.3RealPumpPerformance 434

7.4.3.1EffectofSlipFactor 436

7.4.3.2PumpPerformanceCharacteristics 437

7.4.4EffectofOperatingImpellerSpeed 437

7.4.5ExternalLosses 439

7.4.5.1LeakageLoss 439

7.4.5.2DiskFrictionLoss 439

7.4.5.3MechanicalLoss 439

7.5SpecificSpeedandPumpSelections 440

7.5.1EffectofSpecificSpeedonPumpPerformanceCharacteristics 442

7.5.2AffinityLawsforCentrifugalPumps 443

7.6CavitationandNetPositiveSuctionHead(NPSH) 445

7.6.1ThomaCavitationParameter(�� ) 449

7.6.2CavitationResistanceCoatings 451

7.7PumpsinSeriesorinParallel 451

7.7.1PumpsConnectedinSeries 451

7.7.2PumpsConnectedinParallel 452

7.8PumpStandardsandCodes 452

7.8.1ASMECentrifugalPumpsStandards–PTC8.2 452

7.8.2ANSIPUMPS–ASMEB73.1StandardsforChemical/Industrial ProcessPumps 453

7.8.3ANSI/HI:HydraulicInstituteStandardsforPumpsandPumping Systems 453

Bibliography 453 Problems 454

8AnalysisandDesignofFluid-FlowSystems 456

8.1BasicEquationsofFluidFlow 456

8.1.1ConservationofMass 456

8.1.2ConservationofEnergy 457

8.1.3BasicEnergyEquationforAnalyzingPipeFlow 457

8.1.4FrictionalHeadLossforFlowinPipes:MajorLoss 460

8.1.4.1FrictionFactor:FullyDevelopedLaminarFlowinCircular Pipe 462

8.1.4.2FrictionalPressureDropsforTurbulentFlow 464

8.1.4.3MinorLossesinValvesandFittings 467

8.1.4.4MinorLossCoefficientValues 469

8.1.4.5GradualExpansionandContraction 470

8.1.4.6ValvesandFittings 470

8.1.4.7ElbowsandBends 471

8.2PipingSystemswithRotaryDevices 473

8.3PipingSystemCharacteristics 477

8.4PipingSystemDesignProcedure 482

8.5PipingNetworkClassifications 489

8.5.1PipesinSeries 489

8.5.2PipesinParallel 496

8.6PipingSysteminSeries–ParallelNetwork 502

8.6.1HardyCrossMethod–BasedonDarcy–WeisbachFrictionFactor 505

8.6.2HazenWilliams–BasedHardyCrossMethod 510

8.6.2.1HazenWilliamsExpressionandCoefficients 510

8.6.3HardyCrossMethodAlgorithm 512

8.6.4GeneralizedHardyCross 522

8.6.4.1MinorLosses 522

8.6.4.2Devices 523

8.6.4.3Pumps 523

8.6.4.4GeneralizedExpression 523

Bibliography 524

Problems 525

9SimulationofThermalSystems 528

9.1BasicPrinciples,Types,andClassesofSimulations 528

9.2SimulationProcedureandMethodology 529

9.2.1InformationFlowDiagram 529

9.2.2DevelopmentoftheInformationFlowDiagram 529

9.3SolutionMethodsforSystemSimulation 535

9.4Newton–RaphsonMethodfortheSolutionofNonlinearEquations 536

9.5Newton–RaphsonMethodfortheSolutionofaSystemofEquations 538

9.6Newton–RaphsonSolutionAlgorithm 540

9.7SomeFactsAbouttheNewton–RaphsonMethod 552

9.8NumericalEvaluationsofPartialDerivativesinSystemSimulation 553

9.9DifferentSolutionOptionsforaLinearSystemofEquations 554

9.10AGeneralizedNewton–RaphsonAlgorithmforSystemSimulation 555

Bibliography 556

Problems 556

10OptimizationofThermalComponentsandSystems 562

10.1OptimizationAnalysisModels 562

10.2FormulationandMathematicalRepresentationofOptimizationProblemsin ThermalSystems 563

10.2.1AnalysisandDesignVariables 564

10.2.2ObjectiveFunction 564

10.2.3DesignConstraints 565

10.2.3.1EqualityandInequalityConstraints 565

10.2.3.2LinearandNonlinearConstraints 566

10.2.3.3NonlinearConstraints 566

10.2.4ImplicitConstraints 566

10.2.5FormulationoftheOptimizationProblem 567

10.2.6GeneralMathematicalStatementofOptimizationProblems 569

10.2.7ExamplesofDesignOptimizationProblems 570

10.3OptimizationMethods 573

10.3.1GraphicalOptimizationMethod 574

10.3.2OptimizationMethodofDifferentialCalculus 575

10.3.2.1FunctionswithManyVariables 578

10.3.3MethodofLagrangeMultiplier 579

10.4AGeneralProcedureforLagrangeMultiplier 581

10.4.1GeometricProgramming 585

10.4.1.1DegreeofDifficulty 585

10.4.1.2GeneralOptimizationProcedurebyGeometric Programming 585

10.4.1.3MultivariableGeometricProgramming 591

10.4.2ProcedureforSolvingMultivariableProblemUsingGeometric Programing 592

10.4.2.1MultivariableGeometricProgramingwithConstraints 593

Bibliography 595 Problems 595

AppendixAParametricRepresentationofThermalParametersandProperties 599

A.1ExamplesofDataforParametricRepresentations 599

A.2BasicApproachesforEquationDevelopment 600

A.3ParametricRepresentationTechniques 601

A.3.1PolynomialCurve-Fitting 601

A.3.1.1PolynomialCurve-Fitting–SingleVariable 602

A.3.1.2PolynomialCurve-Fitting–TwoVariablesorMore Variables 604

A.3.2LeastSquareRegressionCurve-Fitting 608

A.3.2.1AccuracyoftheLeastSquareCurveFit 609

A.3.3Curve-FittedCorrelationalFunctionforThermophysical Properties 613

Bibliography 613 Problems 613

AppendixBEconomicAnalysisandCostEstimationofThermalComponentsand Systems 614

B.1EconomicAnalysisProcedure 614

B.1.1SomeBasicConcepts 614

B.1.1.1InterestRateandItsEffectonInvestments 614

B.1.2SomeCommonMethodsofEconomicEvaluation 616

B.1.2.1ReturnonInvestment(ROI)Method 617

B.1.2.2PaybackMethod 617

B.1.3LifeCycleCost(LCC)Analysis 618

B.2CostEstimationofThermalComponentsandSystems 621

B.2.1EquipmentCost 621

Bibliography 625 Problems 625

AppendixCThermodynamicandThermophysicalProperties 626 Bibliography 656

AppendixDModifiedBesselFunctionoftheFirstandtheSecondKinds 657

AppendixEConstantsandConversionUnits 659

Index 663

Preface

Thisbookisintendedforundergraduateandfirstyeargraduatestudentsinvariousfields ofengineeringandsciencetointroducethedesignandanalysisofthermalenergysystems. Thisbookisalsointendedasatextbookforarequiredcourseinthecorecurriculumand forthecapstonedesigncourseinthermo-fluidscienceareaofthemechanicalengineering degreeprogram.

Oneoftheessentialrequirementsofmechanicalengineeringcurriculumistoprovide strongcoverageintheareasofthermalenergyandfluidsystems.Studentsareexpected toanalyseanddesignofthermalsystemssuchasconventionalandrenewableenergy systems,coolingsystemsandpump-pipingsystems,andthermo-fluidcomponentssuchas heatsinks,thermalinterfacematerials,heatexchangers,condensers,solarcollectors,wind turbines,heatexchanger,pipingsystemsandnetworks,andabletoselectandintegrate appropriateheatsinks,pumps,coolingtower,turbine,andcompressorsinthermalsystems fordifferentapplications.

Thisbookcanalsobeadaptedastextbookforcoursesinvariousotherfieldsofengineeringsuchaschemicalengineering,nuclearengineering,andcivilengineering.Students intheseprogramsareexpectedtohaveprerequisiteknowledgeofthermodynamics,fluid mechanicsandheattransfer.Studentsinotherfieldofstudiescanalsobenefitfromthis booksincethebookiscomprehensivewiththeinclusionofthereviewsoflawsandprinciplesofthermodynamics,fluidmechanicsandheattransfer.Thebookwillcontinuetobe usefulasareferencebookforpracticingengineersinthefieldofenergyandpowerindustrieswhichexperiencedemandsforcontinuousincreaseincapacityofconventionalpower generationsaswellasdemandsfordevelopingrenewableandalternativeenergyandpower generationsystems.

Thebookcontainsessentialtopicsinthermalenergysystemsandcomponentssuchas conventionalpowergenerationandcoolingsystems,renewableenergysystemslikesolar energysystem,heatrecoverysystems,andthermalheatmanagement.Examplesaredrawn fromsolarenergysystems,batterythermalheatmanagement,electricalandelectronics cooling,engineexhaustheatandemissionsandmanufacturingprocesses.Contemporary topicssuchassteadystatesimulationandoptimizationmethodsarealsoincluded.The bookincludesnumberofworkedoutdesignproblemstodemonstrateiterativedesign methodologies.

xx Preface

Thebookiswrittenwithafocustosatisfyfollowinglearningobjectives:

● Applythermalanalysistechniquestogeneratedesignspecificationandratings.

● Designthermalsystemsandcomponentstomeetengineeringspecifications.

● Applydesignmethodologiestodesignthermalsystemsandcomponents.

● Applyiterativemethodologiestodesignthermo-fluidsystemsandcomponents.

● Developabilitytoidentify,formulate,andsolvedesignproblems.

● Understandthefunctionsofvariouscomponentsandsystemsrequiringthermal-fluid principles.

● Decomposeaproblemintointerdependentsub-problemsasappropriate.

● Formulatemathematicalproblemsfromthephysical/engineeringdescription,and choosephysicallymeaningfulboundaryconditionsandconstraints.

● Evaluateeconomicsandcostsofthermalenergysystemsandcomponents.

● Familiarizewithvariousengineeringstandardsandcodesforthermalenergysystemand components.

ThebookevolvedfromseveralyearsofmyteachingacourseonDesignofThermalSystems.Ibelievethatthecontentofthebookwithcomprehensivesubjectmatterswillhelp studentsbuildastrongergriponthesubjectofdesignandanalysisofthermalandfluid systems.Iwelcomesuggestionsfrominterestedreadersofthebook.

Iwouldliketothankmystudentsfortheirscomments,feedbacks,andsuggestionsover manyyears.Theywerethecontinuoussourceofmymotivationtocontinueandcomplete thebook.

Ithankallreviewersfortheirconstructivecomments.Iwouldliketoexpressmysincere appreciationtoalleditors,managers,designers,andeditorialstaffmembersatWileyfor theirefforts,supports,understandingandpatienceduringtheproductionofthisbook. SpecialthankstomychildrenDiyaandIshanforhelpingmeselectthecoverpageof thebook.

Iwouldliketoexpressmydeepappreciationtomywife: Srabani andmychildren: Diya andIshan fortheircontinuoussupport,understandingandpatienceduringpreparation ofthemanuscript.

PradipMajumdar

AbouttheAuthor

PRADIPMAJUMDAR earnedhisM.S.andPh.D.inmechanicalengineeringfromIllinois InstituteofTechnology.HewasaprofessorandthechairintheDepartmentofMechanicalEngineeringatNorthernIllinoisUniversity.HeisanadjunctfacultyinDepartment Mechanical,MaterialsandAerospaceEngineeringatIllinoisInstituteofTechnology.Heis recipientofthe2008FacultyoftheYearAwardforExcellenceinUndergraduateEducation. Dr.Majumdarhasbeentheleadinvestigatorfornumerousfederalandindustrialprojects. Dr.Majumdarauthorednumerouspapersonfluiddynamics,heatandmasstransfer,energy systems,fuelcell,Li-ionbatterystorage,electronicscoolingandelectricaldevices,engine combustion,nano-structuredmaterials,advancedmanufacturing,andtransportphenomenainbiologicalsystems.Dr.MajumdaristheauthorofthreebooksincludingComputational MethodsforHeatandMassTransfer ;Fuel Cells-Principles,DesignandAnalysis;and ComputationalFluidDynamicsandHeatTransfer (InPress).Dr.Majumdariscurrently servingasaneditorofthe InternationalCommunicationsinHeatandMassTransfer .Hehas previouslyservedasthe AssociateEditorofASMEJournalofThermalScienceandEngineering.Dr.MajumdarhasbeenmakingkeynoteandplenarypresentationsonLi-ionBattery storage,fuelcell,electronicscooling,nanostructurematerialsatnationalandinternational conferencesandworkshops.Dr.Majumdarhasparticipatedasaninternationalexpertin GIANlectureseriesonfuelcellandLi-ionbatterystorage.Dr.Majumdarisafellowofthe AmericanSocietyofMechanicalEngineers(ASME).

AbouttheCompanionWebsite

Thisbookisaccompaniedbyacompanionwebsite:

https://www.wiley.com/go/majumdar

Thewebsiteincludes:

● PresentationSlides

● SolutionsManual

Introduction

Mechanicalengineeringdesigninvolvesbothmechanicalandthermaldesigns.Mechanicaldesigndealswithmechanicalstrengthandstructuralpropertiesofmaterials;motion anddynamics;geometricaldimensionsandtolerances.Mechanicaldesignrequiresknowledgeofengineeringmechanics,materialsandstrengthofmaterials,vibration,andmachine design.Thermaldesigndealswiththethermalaspectsofthecomponents,processes,and systems,andrequiresknowledgeofthermalsciencesubjectssuchasthermodynamics,heat transfer,andfluidmechanics.Adesignofaproductmayrequirethermaldesignanalysis firstfollowedbymechanicaldesignandareofteninterrelated.Aproductdesignmaynot onlyrequiremechanicalconceptsdesignbutmayalsorequireknowledgeofthermalscienceconceptsandthermaldesignanalysistechniques.Often,theproductdesignrequires additionalsubjectareassuchaselectricalengineeringandbiomedicalengineering,and multiphysicsanalysis.

1.1ThermalEngineeringDesign

Athermalengineeringdesignprocessinvolvestheapplicationsofconceptsfromfundamentalengineeringsciencetopicssuchasthermodynamics,heattransfer,andfluiddynamics, followingsomespecifiedwell-definedstepsandinaniterativeprocess.Asuccessfuldesign processmayinvolveseveralstepsasshowninFigure1.1andisdescribedbelow:

1. Conception:Requiressomeintuitionaboutthefinalend-productusingone’screative sense.

2. Synthesis:Somevisionofthewaytheendresultsmightbeachieved.Considerationof multipleoptionsandmultiplepathwaysisgivenbeforedevelopingthedesign.

3. Analysis:Waystorealizethedesignbyfollowingwell-definedmethodologieslike thermalanalysis,computersimulationanalysis,economicanalysis,andcostestimation. Suchknowledgebasescanbelearned.Theanalysisstepleadstodefiningtheratingsand specificationsoftheproduct.

DesignofThermalEnergySystems, FirstEdition.PradipMajumdar. ©2021JohnWiley&SonsLtd.Published2021byJohnWiley&SonsLtd. Companionwebsite:www.wiley.com/go/majumdar

4. Evaluation:Thisisthewaytoprovethefunctioningofasuccessfuldesign.Thisinvolves testingofaprototyperequiringiterations.Useofsophisticatedsimulationmethodsand designtoolsmayreducenumberprototypestobemade,hencereducecostinthedesign, development,andproduction.

5. Communication:Presentthedesigntoothersintheformoftechnicalreportsandoral presentations.

1.2ElementsofDesignAnalysisofThermalSystems

Variouselementsandstepsgenerallyusedinthedesignanalysisofthermalsystemsare demonstratedinFigure1.2.Columnoneinthefigureshowsthatadesignprocessstarts withaconceptualdesignalongwithsomepotentialoptionsandalternatives.Thisis followedbytheselectionoftypeofcomponents,selectionofrangesforsomekeyvariables andparameters,andsettinganyconstraints.Thermodynamicanalysisiscarriedoutto establishtheinitialspecificationandratingsofthemajorcomponents.

Thecomponent-levelanalysisanddesignarenextcarriedouttodevelopthedetailspecificationofeachcomponentinthesystem.Costestimationfollowedbyaneconomicanalysis areessentialtocheckthefeasibilityofthedesign.Iterativerefinementcanbecarriedout bychangingthesetvariablesandparameters.Asystemsimulationisrequiredtodetermine theexpectedoperatingconditionsandperformanceatoffloadorpart-loadconditionsand isgenerallyusedinthedesignstagetoprovideanimproveddesign.Optimizationstepis oftencarriedouttoensurethefeasibilityoftheconceptbasedoneithertheperformanceor thecostorboth.

Design concept

System options and alternatives

Components selection

Set constraints and set some parameters

Thermodynamic Analysis and get initial specifications

Component design and update specification Cost estimation Economic analysis

Parametric representation

Equation solver

Data base

Properties

Cost

System flow network diagram

Set initial guesses

System simulation

Final flow and operating parameters

Use constrains and set objective function

Optimization and optimum design

Final specification of the prototype

Figure1.2 Flowchartshowingdetailelementsofthermaldesignprocess.

1.2.1SomeSpecialAspectsofThermalDesign

Athermalsystemmaybeverylargeandhaveasingleapplication.Forexample:Autilitylargethermalpowerplantthatproduces1000MWofelectricpower.Itcouldalsobe somesystemsthatareproducedinlargenumbers.Forexample,refrigerationunits,airconditioningunit,fuelcells,solarwater-heatingsystem,orsmallersolarthermalpower generationunitsintherangesof1–10kW.Thermalsystemsgenerallyinvolvealargenumberofcomponentsinonedesign,andoftenthesecomponentscanbecategorizedsuchas heatexchangers,condensers,boilers,coolingtowersheatsinks,pumps,fans,etc.Another importantaspectofthethermalsystemdesignprocessisthatmanyparametersmustoften beset,eitherarbitrarilyorinrelationtootheraspectsofthedesign.Thevaluesoftheparameterswill,however,affectboth capital and operatingcost ,includingthe energycost ,and hencewillrequireiterativerefinementsoftheparametervaluesassumed.

1.2.2DesignTypes

Designscanbecategorizedintodifferenttypes:nonfunctional,functional,satisfactory,and optimum.

Nonfunctional:Thedevicedoesnotfunction.Forexample,thecoolingdeviceisdesigned, butproducesnocoolingeffect,andevenproducesundesirableeffectssuchasirreversible heating.

Functional:Thedeviceperformsintheexpectedmannerasitisdesignedtodoso.For example,adesignedcoolingdeviceiscapableofcoolingawaterstream.

Satisfactory:Afunctionaldesignthatmeetssome assignedcriteria.Forexample,achilleris designedtotransfer25kWofheatfromanairstreamandcooltheairstreamfrom25to 13 ∘ C.

Optimal:Adesignthatisobtainedbasedon somespecificrestrictions.Forexample,asolar collectorisdesignedtosupplythermalenergytorunadomesticsolarwaterheating system.

Thecollectorisdesignedandfabricatedwitharestrictionofminimumcostand/or minimumweight.

1.3ExamplesofThermalEnergyDesignProblems

SometypicalthermaldesignprojectsarediscussedinSections1.3.1–1.3.7.Theobjectiveis tounderstandsomeofthebasicstepstobefollowedinthedesignofthermalsystems.

1.3.1Solar-HeatedSwimmingPool

TheswimmingpoolsofmosthotelsintheUSAarecurrentlyoutdoorsandheatedbygas heaters.Itisproposedtousesolarenergytoheatthepoolthroughoutyearasneeded.Itis alsoproposedtohaveflat-platesolarcollectorsthatreceiveenergyfromthesunanduse theenergytomaintainthewateratacomfortabletemperaturerangeyear-round.

Abasicsolarwater-heatingsystemalongwithtwoadditionaloptionalsystems,shown inFigure1.3,aredescribedhereforconsideration.Thebasicwater-heatingsystemfor swimmingpoolconsistsofasolarcollectorarray,apump,apipingsystemofvalvesand fittings.

Afewassumptionsaremade,andafewvariablesandparametersaresetbeforestarting theanalysis.Atypicaldesignprocessisdescribedbelow.

UnderstandtherequirementsandsetknownData:

1. Geographicallocation:Thisisimportanttoestablishtheavailablesolarradiationandto selectthedesignoutdoorconditions.Forexample–SelectSantaBarbara,CA.

2. Pooldimension:Selectthepooldimensiontoestablishtheamountofwatertobeheated andrateatwhichwaterwillbecirculatedthroughthesystem.Forexample,selectthe poolsizeas12mlong × 8mwidewithwaterdepththatvariesinthelengthwisedirection from0.8to3.0m.

3. Designoperatingconditions: –Acomfortablewatertemperaturerangeforthepool –Designoutdoorairconditionssuchasthedry-bulbandwet-bulbtemperatures.

Selectoptionalsystems:

1.Considersystemwithorwithoutathermalstorage.

2.Considersystemwithorwithoutanauxiliarygasorelectricheater.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Design of thermal energy systems pradip majumdar all chapter instant download by Education Libraries - Issuu