Novel electrochemical energy storage devices: materials, architectures, and future trends 1st editio

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/novel-electrochemical-energy-storage-devices-materi als-architectures-and-future-trends-1st-edition-feng-li/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Dielectric Materials for Energy Storage and Energy

Harvesting Devices Shailendra Rajput & Sabyasachi

Parida & Abhishek Sharma & Sonika

https://ebookmass.com/product/dielectric-materials-for-energystorage-and-energy-harvesting-devices-shailendra-rajputsabyasachi-parida-abhishek-sharma-sonika/

Transition Metal Oxides for Electrochemical Energy Storage Jagjit Nanda

https://ebookmass.com/product/transition-metal-oxides-forelectrochemical-energy-storage-jagjit-nanda/

Nanowire Energy Storage Devices: Synthesis, Characterization and Applications Liqiang Mai

https://ebookmass.com/product/nanowire-energy-storage-devicessynthesis-characterization-and-applications-liqiang-mai/

Energy Storage Devices for Renewable Energy-Based Systems: Rechargeable Batteries and Supercapacitors 2nd Edition Nihal Kularatna

https://ebookmass.com/product/energy-storage-devices-forrenewable-energy-based-systems-rechargeable-batteries-andsupercapacitors-2nd-edition-nihal-kularatna/

Advances

in Supercapacitor and Supercapattery: Innovations in Energy Storage Devices Mohammad Khalid

https://ebookmass.com/product/advances-in-supercapacitor-andsupercapattery-innovations-in-energy-storage-devices-mohammadkhalid/

Nanostructured, Functional, and Flexible Materials for Energy Conversion and Storage Systems 1st Edition Alagarsamy Pandikumar

https://ebookmass.com/product/nanostructured-functional-andflexible-materials-for-energy-conversion-and-storage-systems-1stedition-alagarsamy-pandikumar/

Emerging 2D Materials and Devices for the Internet of Things: Information, Sensing and Energy Applications (Micro and Nano Technologies) 1st Edition Li Tao (Editor)

https://ebookmass.com/product/emerging-2d-materials-and-devicesfor-the-internet-of-things-information-sensing-and-energyapplications-micro-and-nano-technologies-1st-edition-li-taoeditor/

Energy Storage Systems: System Design and Storage Technologies Armin U. Schmiegel

https://ebookmass.com/product/energy-storage-systems-systemdesign-and-storage-technologies-armin-u-schmiegel/

Thermoelectric Materials and Devices Lidong Chen

https://ebookmass.com/product/thermoelectric-materials-anddevices-lidong-chen/

NovelElectrochemicalEnergyStorage Devices

Materials,Architectures,andFutureTrends

FengLi

LeiWen

Hui-mingCheng

Authors

FengLi InstituteofMetalResearch

ChineseAcademyofSciences 72WenhuaRoad Shenyang110016 China

LeiWen InstituteofMetalResearch ChineseAcademyofSciences 72WenhuaRoad Shenyang110016 China

Hui-mingCheng InstituteofMetalResearch ChineseAcademyofSciences 72WenhuaRoad Shenyang110016 China

Cover CoverImage:©TarikVision/Getty Images

Allbookspublishedby Wiley-VCH arecarefullyproduced.Nevertheless, authors,editors,andpublisherdonot warranttheinformationcontainedin thesebooks,includingthisbook,to befreeoferrors.Readersareadvised tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-Publication Data

Acataloguerecordforthisbookis availablefromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>.

©2021WILEY-VCHGmbH,Boschstr. 12,69469Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc. usedinthisbook,evenwhennot specificallymarkedassuch,arenotto beconsideredunprotectedbylaw.

PrintISBN: 978-3-527-34579-3

ePDFISBN: 978-3-527-82104-4

ePubISBN: 978-3-527-82106-8

oBookISBN: 978-3-527-82105-1

Typesetting SPiGlobal,Chennai,India PrintingandBinding

Printedonacid-freepaper 10987654321

Contents

Preface xiii

Abbreviations xv

1Introduction 1

1.1EnergyConversionandStorage:AGlobalChallenge 1

1.2DevelopmentHistoryofElectrochemicalEnergyStorage 3

1.3ClassificationofElectrochemicalEnergyStorage 4

1.4LIBsandECs:AnAppropriateElectrochemicalEnergy Storage 6

1.5SummaryandOutlook 10 References 10

2MaterialsandFabrication 15

2.1MechanismsandAdvantagesofLIBs 15

2.1.1Principles 15

2.1.2AdvantagesandDisadvantages 16

2.2MechanismsandAdvantagesofECs 18

2.2.1Categories 18

2.2.2EDLCs 18

2.2.3Pseudocapacitor 20

2.2.4HybridCapacitors 21

2.3RoadmapofConventionalMaterialsforLIBs 22

2.4TypicalPositiveMaterialsforLIBs 23

2.4.1LiCoO2 Materials 23

2.4.2LiNiO2 andItsDerivatives 25

2.4.3LiMn2 O4 Material 26

2.4.4LiFePO4 Material 27

2.4.5Lithium–Manganese-richMaterials 28

2.4.6CommercialStatusofMainPositiveMaterials 28

2.5TypicalNegativeMaterialsforLIBs 29

2.5.1Graphite 29

2.5.2SoftandHardCarbon 31

2.6NewMaterialsforLIBs 33

2.6.1NanocarbonMaterials 33

2.6.2Alloy-BasedMaterials 35

2.6.3MetalLithiumNegative 39

2.7MaterialsforConventionalECs 39

2.7.1PorousCarbonMaterials 40

2.7.2TransitionMetalOxides 41

2.7.3ConductingPolymers 42

2.8ElectrolytesandSeparators 42

2.8.1Electrolytes 42

2.8.2Separators 45

2.9EvaluationMethods 46

2.9.1EvaluationCriteriaforLIBs 46

2.9.2TheoreticalGravimetricandVolumetricEnergy Density 46

2.9.3PracticalEnergyandPowerDensityofLIBs 47

2.9.4CycleLife 48

2.9.5Safety 48

2.9.6EvaluationMethodsforECs 49

2.10ProductionProcessesfortheFabrication 50

2.10.1Design 50

2.10.2Mixing,Coating,Calendering,andWinding 51

2.10.3ElectrolyteInjectingandFormation 51

2.11Perspectives 51 References 53

3FlexibleCells:TheoryandCharacterizations 67

3.1LimitationsoftheConventionalCells 67

3.1.1MechanicalPropertiesofConventionalMaterials 67

3.1.2LimitationsofConventionalArchitectures 68

3.1.3LimitationsofElectrolytes 69

3.2MechanicalProcessforBendableCells 69

3.2.1EffectofThickness 70

3.2.2EffectofFlexibleSubstratesandNeutralPlane 71

3.3MechanicsofStretchableCells 72

3.3.1WavyArchitecturesbySmallDeformationBuckling Process 72

3.3.2WavyArchitecturesbyLargeDeformationBuckling Process 74

3.3.3IslandBridgeArchitectures 75

3.4StaticElectrochemicalPerformanceofFlexibleCells 76

3.5DynamicPerformanceofFlexibleCells 77

3.5.1BendingCharacterization 78

3.5.2StretchingCharacterization 78

3.5.3ConformabilityTest 79

3.5.4StressSimulationbyFiniteElementAnalysis 79

3.5.5DynamicElectrochemicalPerformanceDuring Bending 83

3.5.6DynamicElectrochemicalPerformanceDuring Stretching 85

3.6SummaryandPerspectives 90 References 90

4FlexibleCells:MaterialsandFabrication Technologies 95

4.1ConstructionPrinciplesofFlexibleCells 95

4.2SubstrateMaterialsforFlexibleCells 95

4.2.1PolymerSubstrates 96

4.2.2PaperSubstrate 97

4.2.3TextileSubstrate 98

4.3ActiveMaterialsforFlexibleCells 98

4.3.1CNTs 98

4.3.2Graphene 99

4.3.3Low-DimensionalMaterials 99

4.4ElectrolytesforFlexibleLIBs 101

4.4.1InorganicSolid-stateElectrolytesforFlexibleLIBs 102

4.4.2Solid-statePolymerElectrolytesforFlexibleLIBs 104

4.5ElectrolytesforFlexibleECs 104

4.6NonconductiveSubstrates-BasedFlexibleCells 107

4.6.1Paper-BasedFlexibleCells 108

4.6.2Textiles-BasedFlexibleCells 112

4.6.3PolymerSubstrates-BasedFlexibleCells 117

4.7CNTandGraphene-BasedFlexibleCells 121

4.7.1Free-standingGrapheneandCNTsFilmsforSCs 121

4.7.2Free-standingGrapheneandCNTFilmsforLIBs 122

4.7.3FlexibleCNTs/GrapheneCompositeFilmsforthe Cells 125

4.8ConstructionofStretchableCellsbyNovel Architectures 127

4.8.1StretchableCellsBasedonWavyArchitecture 127

4.8.2StretchableCellsBasedonIsland-Bridge Architecture 129

4.9ConclusionandPerspectives 130

4.9.1MechanicalPerformanceImprovement 131

4.9.2InnovativeArchitectureforStretchableCells 132

4.9.3ElectrolytesDevelopment 132

4.9.4PackagingandTabs 132

4.9.5IntegratedFlexibleDevices 133 References 133

5ArchitecturesDesignforCellswithHighEnergy Density 147

5.1StrategiesforHighEnergyDensityCells 147

5.2GravimetricandVolumetricEnergyDensityof Electrodes 149

5.3ClassificationofThickElectrodes:BulkandFoam Electrodes 151

5.4DesignandFabricationofBulkElectrodes 153

5.4.1AdvantagesofBulkElectrodes 153

5.4.2LowTortuosity:TheKeyforBulkElectrodes 155

5.5CharacterizationandNumericalSimulationof Tortuosity 157

5.5.1CharacterizationofTortuositybyX-rayTomography 157

5.5.2NumericalSimulationofTortuosityonRatesby CommercialSoftware 158

5.6FabricationMethodsforBulkElectrodes 159

5.7ThickElectrodeswithRandomPoreStructure 160

5.7.1Pressure-lessHigh-temperatureSinteringProcess 160

5.7.2ColdSinteringProcess 161

5.7.3SparkPlasmaSinteringTechnology 162

5.7.4BriefSummaryforSinteringTechnologies 165

5.8ThickElectrodeswithDirectionalPoreDistribution 165

5.8.1IterativeExtrusionMethod 165

5.8.2Magnetic-InducedAlignmentMethod 168

5.8.3CarbonizedWoodTemplateMethod 168

5.8.4IceTemplatesMethod 172

5.8.53D-PrintingforThickElectrodes 173

5.8.6BriefSummaryforBulkElectrodes 175

5.9Carbon-BasedFoamElectrodeswithHighGravimetric EnergyDensity 178

5.9.1GrapheneFoam 179

5.9.2CNTsFoam 181

5.9.3CNT/GrapheneFoam 181

5.10Carbon-BasedThickElectrodes 182

5.10.1LowElectronicConductiveMaterial/CarbonFoam 182

5.10.2LargeVolumeVariationMaterials/CarbonFoam 186

5.10.3CompactGrapheneElectrodes 188

5.10.4SummaryforCarbonFoamElectrodes 189

5.11ThickElectrodesBasedontheConductivePolymer Gels 191

5.12SummaryandPerspectives 193 References 195

6MiniaturizedCells 205

6.1Introduction 205

6.1.1DefinitionoftheMiniaturizedCellsandTheir Applications 205

6.1.2ClassificationofMiniaturizedCells 206

6.1.3DevelopmentTrendsoftheMiniaturizedCells 207

6.2EvaluationMethodsfortheMiniaturizedCells 209

x Contents

6.2.1EvaluationMethodsforElectricDouble-layerm-ECs 210

6.2.2Evaluationmethodsform-LIBsandm-ECs 211

6.3ArchitecturesofVariousMiniaturizedCells 212

6.4MaterialsfortheMiniaturizedCells 213

6.4.1ElectrodeMaterials 213

6.4.2ElectrolytesfortheMiniaturizedCells 214

6.5FabricationTechnologiesforMiniaturizedCells 215

6.5.1FabricationofMiniaturizedCellswith2DParallelPlate Configuration 216

6.6FabricationTechnologiesfor2DInterdigitatedCells 220

6.7PrintingTechnologiesfor2DInterdigitatedCells 222

6.7.1AdvantagesofPrintingTechnologies 222

6.7.2ClassificationofPrintingTechniques 222

6.7.3ScreenPrintingforMiniaturizedCells 224

6.7.4InkjetPrinting 228

6.8ElectrochemicalDepositionMethodfor2DInterdigitated Cells 228

6.9LaserScribingfor2DInterdigitatedCells 231

6.10InSituElectrodeConversionfor2DInterdigitated Cells 234

6.11FabricationTechnologiesfor3DIn-planeMiniaturized Cells 236

6.11.13DPrintingfor3DInterdigitatedConfigurationCells 236

6.11.23DInterdigitatedConfigurationbyElectrodeposition 239

6.12FabricationofMiniaturizedCellswith3DStacked Configuration 240

6.12.13DStackedConfigurationbyTemplateDeposition 241

6.12.23DStackedConfigurationbyMicrochannel-Plated DepositionMethods 245

6.13IntegratedSystems 247

6.14SummaryandPerspectives 249 References 250

7SmartCells 263

7.1DefinitionofSmartMaterialsandCells 263

7.1.1DefinitionofSmartCells 263

7.1.2DefinitionofSmartMaterials 263

7.2TypeofSmartMaterials 264

7.2.1Self-healingMaterials 264

7.2.2Shape-memoryAlloys 265

7.2.3Thermal-respondingPTCThermistors 266

7.2.4ElectrochromicMaterials 267

7.3ConstructionofSmartCells 268

7.3.1Self-healingSiliconAnodes 268

7.3.2AqueousSelf-healingElectrodes 271

7.3.3Liquid-alloySelf-healingElectrodeMaterials 273

7.3.4Thermal-respondingLayer 274

7.3.5Thermal-respondingElectrodesBasedonthePTC Effect 276

7.3.6IonicBlockingEffect-BasedThermal-responding Electrodes 278

7.4ApplicationofShape-memoryMaterialsinLIBsand ECs 280

7.4.1Self-adaptingCells 280

7.4.2Shape-memoryAlloy-BasedThermalRegulator 281

7.5Self-heatingandSelf-monitoringDesigns 282

7.5.1Self-heating 283

7.5.2Self-monitoring 285

7.6IntegratedElectrochromicArchitecturesforEnergy Storage 286

7.6.1IntegrationPossibilities 286

7.6.2IntegratedElectrochromicECs 287

7.6.3IntegratedElectrochromicLIBs 289

7.7SummaryandPerspectives 291 References 292

Index 301

Preface

Electrochemicalenergystorageinthecells(herethesearelithiumionbatteries (LIBs)andelectrochemicalcapacitors(ECs))hasbeenrecognizedasthemost promisingtechnologyforportableelectronicsaswellasstationaryandvehicle applications.Existingtechnologiesstillfaceperformanceandcostchallenges, includingbarriersinspecificenergy,energydensity,servicelife,andenergyefficiencyathighrates.Overthepastdecades,portableelectronicshavebeenusedin everyaspectofourdailylife.Oneofthekeycomponentsoffutureportabledevices isthecompatiblecellwithanultrahighenergydensityandspecificfeatures(e.g. miniaturization,integration,flexibility,andsmartfunctions).

Developingadvancedcellsalwaysrequiresthediscoveryofnewmaterials,new electrochemistry,andanincreasedunderstandingoftheprocessesonwhichthe devicesdepend.Theoverallperformanceofthecellsislimitedbythefundamentalbehavioroftheusedmaterials,includingelectrodeactivematerials,electrolytes, separators,andothercomponents.Unfortunately,theconventionalfabricationtechnologyandarchitecturesofelectrodesbasedonthesematerialshavealmostreached theirlimits,whichcannotsatisfyfuturerequirements.Therefore,forthecomingera ofportableelectronics,weurgentlyneedtoreconsiderhowwerationallydesignand intelligentlyfabricateadvancedandintelligentcells.Weneedtonotonlyconstruct novelconfigurationsofmaterials,electrolytes,separators,and,asresults,thecells tomeetthedesiredcriteriabutalsodevelopsmarttechnologiestofabricatethese electrochemicalenergystoragedevicesinaneconomicallyviableandtime-efficient manner.

Inthisbook,wewillpresentacomprehensiveintroductionofthedevelopmentsof innovativematerials,architecturesanddesignconsiderationsintheelectrode,and cellconfigurations,togetherwiththerecenttechnologiesusedtoachievethesenovel designs.Aswewantedtowriteabookforresearchers,engineers,andstudents,we tryourbesttounderstandthecurrentapplicationofthecellsinportableelectronic products.

ThewritingofthisbookwascompletedbyProf.FengLiandDr.LeiWen,and Prof.Hui-mingChengrevisedit.TheoriginofthisbookisfromthemeetingofProf. LiandDr.ZaiYuinChinaNano2017atBeijing.Dr.Yuwishedthatwecanwritea bookaboutourresearch.Itisahardworkforusandnewchancetothinkabout ourresearchinsight.In2018,wewroteanoutlineofthebookandpassedittothe

reviewersforapproval.Afterthat,webeganwritingthebook.AlthoughDr.ZaiYu hasleftWiley,Ms.ArunaPragasamisveryhappytocontinuetocontactandhelp us.Ononeoccasion,Prof.LiwenttoTsinghuaUniversityandtalkedwithProf. QiangZhangandProf.JiaqiHuang.WeknowthatDr.ShaoyuQianisresponsible forauthorofChinaregion.Sheansweredourquestionswithpatienceduringthe writing.

Finally,wewouldliketothankallscientistswhohavebeenhelpfulinthepreparationofthisbookandallcolleagueswhokindlydevotedtheirtimeandeffortsto contributechaptersanddiscussions.WethankDr.HongzeLuo,fromCouncilfor ScientificandIndustrialResearch(CSIR),SouthAfrica,forpreparingthedraftof Chapter6;Dr.ZhigangZhao,fromSuzhouInstituteofNano-techandNano-Bionics (SINANO),China,forhishelpinthepreparationofElectrochromicCellssection inChapter7;Drs.JiLiangandHouFeng,MrsHaoLi,NanLi,andMissPengyi LufromTianjinUniversity,China,fortheirhelpfuldiscussionandinitialdrafting ofChapters3and4;andDr.LiqunWang,TianjinNormalUniversity,forthehelpfuldiscussionindraftingChapter6.WewouldliketothankMr.HaoruiShenand HuicongYang,PhDcandidatesinourlab.Mr.Shenhelpedintheplottingoffigures. Mr.HuicongYangisthefirstreaderofthisbookandgavevaluableadvicestoward theentirebook.

WealsothankthefinancialsupportfromNationalNaturalScienceFoundationof China(Nos.51525206,51927803,52020105010,51972313,52072378and51902316), MOST(2016YFA0200102and2016YFB0100100),theStrategicPriorityResearch ProgramoftheChineseAcademyofSciences(XDA22010602),LiaoningRevitalizationTalentsProgram(No.XLYC1908015),YouthInnovationPromotionAssociation oftheChineseAcademyofSciences(No.Y201942)andChinaPetrochemical Cooperation(No.218025).TheBureauofIndustryandInformationTechnologyof Shenzhenforthe“2017GrapheneManufacturingInnovationCenterProject”(No. 201901171523).

Abbreviations

AAOanodizedaluminumoxide

ACactivatedcarbon,alternativecurrent

AGVautomatedguidedvehicles

ALDatomiclayerdeposition

CASChineseAcademyofSciences

CCCDconstantcurrentchargeanddischarge

CMCsodiumcarboxymethylcellulose

CNFcellulosenanofiber

CNTcarbonnanotubes

CVcyclicvoltammetry

CVDchemicalvapordeposition

DECdiethylcarbonate

DMCdimethylcarbonate

DMEdimethoxyethane

DOEDepartmentofEnergy

DOL1,3-dioxolane

EBIDelectronbeam-induceddeposition

ECelectrochemicalcapacitors,ethylenecarbonate

EDLCelectricdouble-layercapacitors

EGexfoliatedgraphene

EISelectrochemicalimpedancespectroscopy

ELDelectrolyticdeposition

EMCethylmethylcarbonate

EPDelectrophoreticdeposition

ETPTAethoxylatedtrimethylolpropanetriacrylate

EVelectricvehicle

EVAethylenevinylacetate

FTOfluorine-dopedtinoxide

GCEgelcompositeelectrolyte

GCPgraphene-coatedpaper

GICgraphiteintercalationcompound

GNSgraphenenanosheet

GOgrapheneoxide

xvi Abbreviations

HEVhybridelectricvehicle

HFPhexafluoropropylene

IDCInternationalDataCorporation

IHPinnerHelmholtzplane

IoTInternetofThings

IREAInternationalRenewableEnergyAgency

ITOindiumtinoxide

LBLlayer-by-layer

LCOLiCoO2

LDHlayerdoublehydroxides

LFPLiFePO4

LIBlithiumionbattery

LIBOBlithiumbis(oxalato)borate

LIPONlithiumphosphorusoxynitrides

LLZOLi7 La3 Zr2 O12

LMOLiMn2 O4

LTOLi4 Ti5 O12

m-LIBsmicrolithiumionbatteries

m-ECsmicroelectrochemicalcapacitors

MCMBmesocarbonmicrobeads

mtoemilliontonoilequivalent

NASICONsodiumsuperionicconductor

NCALiNix Coy Al1 x y O2

NEDONewEnergyandIndustrialTechnologyDevelopmentOrganization

NiCdnickelcadmium

NiMHnickelmetalhydride

NMCLiNix Mny Co1 x y O2

NMP N -methyl-2-pyrrolidone

NWnanowire

OHPouterHelmholtzplane

P3DTpoly(3-decylthiophene)

P3OTpoly(3-octylthiophene-2,5-diyl)

P3OPyPSSpoly(3-octylpyrrole)poly(styrenesulfonate)

PAApolyacrylicacid

PAAmpolyacrylamide

PANIpolyaniline

PCpropylenecarbonate

PDApolydopamine

PDMSpolydimethylsiloxane

PEpolyethylene

PEDOTpoly(3,4-ethylenedioxythiophene)

PEOpolyoxyethylene

PEGpolyethyleneglycol

PENpolyethylenenaphthalate

PESpolyethersulfone

Abbreviations xvii

PETpolyethyleneterephthalate

PIpolyimide

PMMApolymethylmethacrylate

PPpolypropylene

PPOpropyleneoxide

PPYpolypyrrole

PSSpoly(styrenesulfonate)

PTCpositivetemperaturecoefficient

PTFEpolytetrafluoroethylene

PUpolyurethane

PVApolyvinylalcohol

PVDFpolyvinylidenedifluoride

PVPpolyvinylpyrrolidone

rGOreducedgrapheneoxide

RFradiofrequency

RTILroom-temperatureionicliquid

SEsolidelectrolyte

SEBSstyrene–ethylene–butylene–styrene

SEIsolidelectrolyteinterphase

SEMscanningelectronmicroscope

SHEstandardhydrogenelectrode

SHPself-healingpolymer

SPEsolidpolymerelectrolyte

SPRPStrategicPriorityResearchProgram

TEABF4 tetraethylammoniumtetrafluoroborate

TEMtransmissionelectronmicroscope

TMOtransitionmetaloxides

MWCNTsmulti-walledcarbonnanotubes

UPyureidopyrimidinone

UVultraviolet

Introduction

Theworldiswitnessingincreasingrequirementsforenergytomeettheneedsof modernsociety.Duetothedrasticclimatewarmingaroundtheworld,developing innovativesustainablecleanenergy(wind,tidal,solarenergy,etc.)withhighenergy efficiencyisextremelyimportant.However,variousrenewableenergytoelectricity arequitefluctuatingovertime,anddevelopingreliableenergystoragesystemsis animportantwaytosolvethesechallenges.Therefore,tosatisfytheincreasing socialandindustrialdemands,betterelectrochemicalenergystoragedevicesshould beused.

Onthispoint,searchingfornovelelectrochemicalenergystoragesystemwith exceptionalelectrochemicalpropertiesforenergystorageisessential.Inthischapter, wewillfirstgiveabriefintroductiontowardvariouselectrochemicalenergystorage devices,includingelectrochemicalcapacitors(ECs)andlithiumionbatteries(LIBs).

1.1EnergyConversionandStorage:AGlobalChallenge

NobelchemistryprizewinnerRichardSmalleyhadsaid:“Energyisthesinglemost importantproblemfacinghumanitytodayandenergyisthelargestenterpriseon Earth”[1].Nowadays,theenergygenerationstillmainlyreliesonfossilfuels(oil, coal,andgas),whichoccupy80%oftotalenergyneedsintheworld.Ontheother hand,thefossilfuelsarestilltobethedominantprimaryenergyresourcesformany yearsinthefuture.Therefore,limitedsuppliesofthefossilfuelsmakeitimperativethatcombustion-basedenergysourcesshouldbereplacedbycleanandrenewableenergy[2].Thesesustainableenergiesmainlyincludehydropower,solar,wind, geothermal,andtidalenergy.

Figure1.1showstheglobalenergyconsumption.In2018,thegrowthrateofglobal energyconsumptionis2.9%,whichwasthehighestratesince2010.Althoughfossil energystilloccupiesthemostenergyconsumptionaroundtheworld,therenewableenergyalsomadeasignificantincreaseinrecentyears[4].Gasandrenewables havethemostobviousincreaseamongvariousenergysourcessince2010[3].

Moreimportantly,therenewableenergysectoralsohassignificantsocialandeconomicimpact.In2018,atleast11millionpeoplewereemployedintherenewable energysectoraroundtheworld.Comparedwiththedatain2016,thegrowthrate NovelElectrochemicalEnergyStorageDevices:Materials,Architectures,andFutureTrends, FirstEdition.FengLi,LeiWen,andHui-mingCheng. ©2021WILEY-VCHGmbH.Published2021byWILEY-VCHGmbH.

Figure1.1 Amountsofglobalenergyconsumption.

Figure1.2 Globalrenewableenergyemploymentindexedbytechnology.Source: InternationalRenewableEnergyAgency[4].©2018,IRENA-InternationalRenewable EnergyAgency.

ofemploymentwas5.3%[4].AsshowninFigure1.2,thetopfiveemploymentin therenewableenergysectoronthelistincludessolarphotovoltaic,liquidbiofuels, hydropower,windenergy,andsolarheating.

Electricityhasbeenconsideredasthemosteffectivewaytoexploreandutilize variousrenewableenergieseffectively.Comparedwithotherformsofenergy, electricityhasmanyobviousadvantagesasfollows[5]:(i)Convenience:electricity canbeeasilytransformedintothedesiredformsofenergy,suchasheat,light,and mechanicalenergy.(ii)Easycontrol:electricitycansimplybeoperatedandtuned.

Figure1.3 Applicationofelectrochemicalenergystorage,AGV(automatedguided vehicles).

(iii)Flexibility:electricitycanbeeasilytransferredbytransmissionline.(iv)Cheap: comparedwithotherformsofenergy,electricityisaneconomicalform,whichhas beenwidelyusedfordomesticandindustrialapplications.(v)Lowtransmission loss:electricitycanbeeasilytransmittedwithhighefficiencyfromthepowerplant totheuser.

Althoughelectricityhasmanyadvantages,therenewableenergy-basedelectricity isquitefluctuatingovertime.Forexample,thecloudsconstantlyaltertheoutputof solarenergysystemsandwindcannotblowatafixedspeed.Unfortunately,gridhas afixedfrequencyof50Hz,whichwasdeterminedbyturbinesinpowerplants.These mustbematchedtoavoidthefluctuationofgrid.Therefore,thecleanenergy-based electricityrequirestobestoredanddeliveredforcommercialusage.

Asaresult,renewableenergycallsforthedevelopmentofelectricitystorage devices.Amongthesevariouselectrochemicalenergystoragesystems,ECsand variousbatterieshaveshowedgreatpotentialnotonlyinthepoweringportable electronicsbutalsointhetransportationsector.

AsshowninFigure1.3,variouselectrochemicalenergystoragehasbeenwidely usedineveryaspectinourdailylife,suchasaerospace(satellites,rockets,andaircrafts),transportation(cars,trains,andships),portableelectronicgadgets(mobile phones,laptops,anddigitalcameras),andindustryfields[6].Theever-growing advancementofelectrochemicalenergystoragetechnologyhasgreatlypromoted thedevelopmentofhumansociety.Itcanbeanticipatedthatelectrochemical energystoragematerialsandtechnologyplaymoreimportantroleinhumanlife.

1.2DevelopmentHistoryofElectrochemicalEnergy Storage

AsshowninFigure1.4,thefirstelectrochemicalenergystoragechemistryinhistory isBaghdadbattery,whichconsistedofaceramicpot,atubeofcopper,arodofiron, andvinegarelectrolyte.Thisancientbatteryhas ∼2.0voltsofelectricity[8].

Figure1.4 ReplicaofBaghdadbatteryfoundinIraq.Source:Aquiziam[7].

ThefirstmodernbatterywasinventedbytheItalianscientistVoltain1799,which wascalledas“Voltapile.”ThisbatterywasastackofAgandZndisks,andthemetal diskswereseparatedbysaltwater-soakedcloth[9].Voltafoundthatthesinglepile couldonlyproduce1.0–2.0voltsofelectricity.Toincreasethevoltageoutput,several “Voltapiles”couldbeconstructedsidebyside.Theprocessesthatoccurinthedevice werelaterdemonstratedbyHumphryDavyandMichaelFaraday,whichdescribed thatitistheoccurrenceofchemicalreactionsthatisresponsiblefortheproduction ofelectricity[9].

Thisfindingmarkedtheemergenceoftheelectrochemistry.Consequently, theresearchanddevelopmentofvariouselectrochemicalenergystoragesystems becameactiveinthenineteenthandtwentiethcenturies.[10]Thesimplehistoryof electrochemicalenergystorageisshowninFigure1.5.

1.3ClassificationofElectrochemicalEnergyStorage

Theelectrochemicalenergystoragehasalmostpenetratedeveryaspectinourdaily life,whichcanefficientlystoreandconvertenergyreversiblybetweenchemical energyandelectricalenergyinanenvironmentallyfriendlyway.

Therearemanyrequirementsthatelectrochemicalenergystorageneedstofulfill forvariousapplicationfields,suchasportableelectronics,electricvehicles(EVs), andpowertools.Themainrequirementsfordifferentelectrochemicalenergy storageincludehighgravimetric/volumetricenergydensity,longcyclelife,low cost,safety,andeasyfabrication[11].Theseattributesaremainlydeterminedbythe intrinsicpropertiesofthematerialsandchemistryconstitutingtheelectrochemical

1.3ClassificationofElectrochemicalEnergyStorage

Figure1.5 Developmentofvariouselectrochemicalenergystorage.

Figure1.6 Classificationof electrochemicalenergystorage.EDLC, electricdouble-layercapacitors.

energystorage[12].Basedonthechargestoragemechanism,theelectrochemical energystoragetechnologyhastwomaincategories:ECsandbatteries,asshownin Figure1.6.

AsshowninFigure1.6,ECshavetwomechanismstostoreelectricity:double-layer capacitanceandpseudocapacitance.Double-layercapacitanceisbasedonionic adsorption,whereaspseudocapacitanceisanelectrochemicalprocess.Electrochemicalbatterieshavetwobroadcategories,primaryandsecondarybatteries.A primarybatteryisonethatcannoteasilyberechargedafteroneuse.Anexampleof aprimarybatteryisthedrycell,whichwascommonlyusedtopowerremotesand clocks.Insuchcells,aZncontaineractsasthenegativeandacarbonrodactsas thepositive.Asecondarybatterycanberechargedtotheiroriginalpre-discharge status,suchasLIBs,NiCd,andNiMHbatteries.

1.4LIBsandECs:AnAppropriateElectrochemical EnergyStorage

Batteriescanstoreenergythroughreversibleredoxreactionsinthebulkphaseelectrodes,whereasECscanstoreamountsofenergyattheelectrolyte–electrodeinterfaceorthroughredoxreactionsonthesurfaceofelectrode[13,14].Asshownin Figure1.7,abatteryusuallydeliverhigherenergydensityandlowerpowerdensity thanthatofECs,whereasECsareadvantageousandpotentialcandidatesinawide rangeofapplicationsduetotheirhighpowerdensities(>10kWkg 1 ),exceptional reversibility(90–95%),andultra-longlifespan(>100000cycles)[15].

Amongvarioussecondarybatteries,suchasPb-acid,Ni-Cd,andNiMHbatteries, LIBspossesshigherenergydensityandcyclelifeandhavereasonablyattractedthe biggestcommercialandresearchinterest.LIBshavebeenwidelyusedtopowerthe portableelectronicsandhavealsoenabledtherapiddevelopmentofEVsandrenewableenergysources.Comparedwithothersecondarybatteries,LIBsshowmany outstandingproperties,suchashighvoltageandenergydensity,bettercyclelife, lightweight,andlowself-dischargerate[16].Therefore,thedevelopmentofLIBs hasbeenahotspotbothinindustryandinacademy.In2019,theNoblePrizein ChemistryrewardsthestudyoftheLIBstoDrs.M.StanleyWhittingham,JohnB. Goodenough,andAkiraYoshino.

TheLIBsconceptemergedinthe1970sandwasfinallycommercializedbySony inthe1990s[17,18].ThefoundationofLIBbeganduringtheoilcrisisbyStanley Whittingham,whofoundthatTiS2 canaccommodatelithiumionsatamolecular level[19–21].

1.4LIBsandECs:AnAppropriateElectrochemicalEnergyStorage 7

Lithiumisthelightestmetal(relativeatomicweightis6.94),andithasthelowest potential( 3.04vs.standardhydrogenelectrode,SHE);thispropertyenablesLIBs withhigherenergydensitythanthatofothersecondarybattery[22].Since1970s, metalliclithiumhasbeenusedasthenegativematerialforlithiumprimarybatteries. Unfortunately,metalliclithiumisnotsuitableforsecondarylithiumbatteriesdueto theuncontrolledlithiumdendriteduringcycling,whichcanpiercetheseparatorsto causeinnershort-circuit,eventuallycausingsmoking,firing,andexplosion[23,24].

Thebasicconceptof“Rockingchairbattery”wasproposedinthelate1970s, whichusedalayercompoundtoreplacethecommonlithiummetalasnegative electrode[16,25].Inthisconfiguration,lithiumexistsinanionicstaterather thanametalstate;thelithiumdepositioncanbegreatlysuppressedduring theelectrochemicalprocess.Therefore,thesafetyofbatterycanberemarkably improved.Accordingtothisconcept,MegahedandScrosati[26]usedLiWO2 as thenegative,V2 O5 asthepositive,and1moll 1 LiClO4 /PC(propylenecarbonate) astheelectrolytetoconfirmthisrockingchairbatteryconcept.However,the obtainedLIBstillshowedlowspecificcapacityandpoorcycling,whichfailed tobecommercialized.Whenametaloxideratherthanametalsulfideactedas thepositive,Dr.JohnGoodenoughpredictedthatthepositivemayhavegreater potential.Afterasystematicinvestigation,heshowedthatLiCoO2 canproduceas highasfourvoltspotentialin1980[27].ThefindingofLiCoO2 wasarevolutionary breakthroughandwouldresultinmorepowerfulbatteries.In1986,Aubornand Barberio[28]alsoassembledanLIBwithLiCoO2 asthepositiveelectrode,MoO2 as thenegativeelectrode,and1moll 1 LiPF6 /PCastheorganicelectrolyte.However, thisbatteryhastheintrinsicproblems,suchaslowoperatingvoltageandsluggish diffusionoflithiumionsinthenegativeelectrode.

Inthefollowingyears,theresearchanddevelopmentofLIBsdidnotmake significantprogress.Until1985,withthepositiveofGoodenoughasabasis,Akira YoshinoconstructedthefirstcommercialLIB.Ratherthanthereactivemetal lithiumasthenegative,petroleumcokewasusedasthenegativeelectrodeand LiCoO2 actedasthepositiveelectrodetoconstructanew,high-voltageLIB[16]. Thiscombinationofpositiveandnegativematerialsgreatlyextendedthecyclelife ofLIBsandsignificantlyimproveditssafetyandvoltage.Thisinnovativedesign openedthedoorforthelarge-scalecommercializationofLIBs,whichhasbeen regardedasamilestoneinthehistory.

Sinceitscommercializationin1991,LIBshaveenteredeveryaspectinourdaily lifeandarethefoundationofawireless,fossilfuel-freesociety.ThebetterLIBshave beenanongoinggoaltosatisfyfuturedemandsrangingfromsmall-scaleconsumer electronicstolarge-scaleEVsandgridstorage.AsshowninFigure1.8,theenergy densityof18650cylindricalcellsslowlyincreasedfrom ∼70to ∼300Whkg 1 [29]. Nowadays,LIBsof240–300Whkg 1 levelhavebeencommercializedandwidely usedinEVs.TodevelopbetterLIBs,majorcountriesintheworldhavebeen investedlotsofresourcestoconductextensiveandin-depthresearchinthis field.Forexample,the“Battery500”projectwassupportedbytheDepartmentof EnergyofUnitedStatestosetagoaltoachieve500Whkg 1 in2021.The“NewGenerationBattery”planwasalsofundedbyNewEnergyandIndustrialTechnology

Figure1.8 Thehistory,currentstatus,anddevelopmentofLIBs.(NEDO,TheNewEnergy andIndustrialTechnologyDevelopmentOrganization;GP,graphite;LFP,LiFePO4 ;NCM333, LiNi1/3 Co1/3 Mn1/3 O2 ;CATL,ContemporaryAmperexTechnology,Co.Ltd.,Ningde,China;BYD, BYDCompanyLimited,Shenzhen,China;SKI,SKInnovationCo.,LTD.,Korea.)

DevelopmentOrganization(NEDO)ofJapanandplannedtoachieve500Whkg 1 in2030.InChina,“StrategicPriorityResearchProgramforElectricVehicleswith longrange”wasreleasedbytheChineseAcademyofSciences(CAS).“Made inChina2025”projectlaunchedbytheChinesegovernmentsetagoalto achieve300and400Whkg 1 ofLIBsin2020and2025,respectively(asshownin Figure1.8)[29].

Insummary,abettervolumetric/gravimetricenergydensity,lowercost,better safety,andcyclelifearestillimportantrequirementstopowermobiledevicesand improvethedrivingrangeofEVs.Ontheotherhand,variousrenewableenergies alsorequiretobestoredanddeliveredforcommercialapplications.Insummary, thesetwoproblemscallfordevelopingappropriateLIBstomeettheserequirements.

Figure1.9showsthegeneraltrendsforthepresentautomobilebatteryresearch anddevelopmentobjectiveswithrespecttotheemployedmaterialsofnegative,electrolyte,andpositive.AsshowninFigure1.9,theenergydensityoffirst-generation LIBsforEVsis ∼130Whkg 1 ,whichisbasedonLiCoO2 ,LiFePO4 ,LiMn2 O4 , andgraphitematerials.Byfar,thesecond-generationLIBs,whicharebasedon thehigh-capacityLiNix Mny Coz O2 (NMC)orLiNi0.8 Co0.15 Al0.05 O2 (NCA)-positive [31]andgraphitematerials,normallyshowpracticalenergydensitiesuptoc. 240Whkg 1 andwassubsequentlycommercializedinTESLAModelS,shown inFigure1.9.AccordingtobothDepartmentofEnergy(DOE)andSPRP(StrategicPriorityResearchProgram)projects,a400Whkg 1 istheroof-topinthe third-generationLIBsduetothelimitationinthecapacityofconventionalLIBs configuration.Toachievehigherenergydensity,postLIBschemistryhasalsobeen investigated,suchasLi-S,Li-Air,andothersystems.

ECsareanotherimportantelectrochemicalenergystoragedevices,whichfirst appearedinthemiddleofthetwentiethcentury.Generally,ECscanberegardedas acomplementaryroleforLIBs.In1957,thefirsttypeofECswasinventedbyBecker ofGeneralElectric.Itwasfoundthatitscapacitanceisconsiderablyhigherthan

DOE: US department of energy SPRP: Strategic priority research program, Chinese academy of sciences Si/C anode with High-Voltage cathode energy density: 300–400 wh kg–1, 800–1200 wh l–1

or

Graphite/Spinel or Phosphate Energy

Figure1.9 ProgressofbatterytechnologiesbasedonDOEandSPRPprojects.Source: Hongetal.[30].ReproducedwithpermissionofWiley.

conventionalcapacitorduetothehighspecificsurfaceareaofporouscarbon[13]. In1969,anon-aqueouselectrolytewasusedinporouscarbon-basedECsbySohio, whichenhancedtheupperpotentialto3V[32].Thenin1971,thecapacitancebehaviorofRuO2 filmswasinvestigatedbyTrasattiandBuzzancaetal.[33].In1980s, Conwayetal.[32,34,35]alsoconductedlotsofinvestigationsontheRuO2 typeof EC,whichshowsasurface-redoxpseudocapacitance.Thisfieldhasbeenveryactive sinceabout1990s.Amongvariousmaterials,carbonmaterialswithhighspecific surfacearea,includingactivatedcarbons(ACs),carbonaerogels,carbonnanotubes (CNTs),andgraphene,areuniqueclassofmaterialsforelectricdouble-layercapacitors(EDLC)-typeECsandhavebeenappliedandinvestigated[36–38].

TheenergystoragemechanisminECstakesplacethrougheitherionadsorption attheelectrode/electrolyteinterfaceorreversiblefaradaicreactions[13,32,39]. Basedontheirmechanismsofchargestorage,ECsareclassifiedintofourbroad categories.Thefirsttypeincludeselectricdouble-layercapacitorsorso-called EDLCECs.ThesecondtypeispseudocapacitorsorFaradaicECs,whichisbasedon reversibleFaradicreactions.ThethirdiscalledhybridECs.HybridECscombines bothpreviousEDLCandpseudocapacitors.Thefourthcategoryrepresentshybrid EC-LIBsdevices,whichisbasedonthecombinationofECs,reversiblefaradic reactions,andLIB-typematerials[40].

InChapter2,wewillalsogiveabriefintroductiontowardthemechanismofECs. Table1.1showssummarizationandcomparisonsoftheimportantperformances betweenLIBsandECs.Theimportantperformancesincludeenergyandpower density,self-dischargerate,cyclelife,andtheworkingtemperatures.ECscan produceultra-highpowerdensityandcycleperformances,whereasLIBsusually possesshighergravimetric/volumetricenergydensity.

Table1.1 ComparisonbetweenECsandLIBs.

PerformancesECsLIBs

EDLCECPseudoECHybridEC

Chargetime(s)1–101–10100600

Cycleperformance1000000100000500000500–2000

Cellvoltage(V)0–2.72.3–2.82.3–2.83.6 Energydensity(Whkg 1 )3–510180250

Price(USD/kWh)–10000–10000–140

Operatingtemperature(∘ C)

Self-dischargepermonth(%)60604

ElectrolytesAprotic/proticProticAproticAprotic

Source:Libichetal.[13].

BasedonTable1.1,ECsandLIBscanprovideuniquesolutiontotheelectrochemicalenergystorageandcouldbeconsideredascomplementarytechnologies. Therefore,LIBsandECsarethedominantelectrochemicalenergystoragesystems inmodernsociety.

PerformancesofLIBsandECsstronglylinkedwiththeelectrodematerialsused. Withtheboomingdevelopmentofmaterials,theperformanceofLIBsandECshas alsobeenprogressingrapidly.InChapter2,themainpartwillbefocusedonmaterialsofLIBsandECsasthecurrentadvancedelectrochemicalenergystorage.

1.5SummaryandOutlook

Renewableenergysources,suchaswind,solartide,andgeothermal,become extremelyimportantinourmodernsociety.Renewableenergysourcesmustbefirst convertedtosecondaryelectricitybeforeutilization.Therefore,developingelectricitystoragesystemscanbeavailabletomeetdemandwheneverneededwould bethebreakthroughinelectricitydistribution.Amongelectrochemicalenergy storagesystems,ECsandLIBshavedisplayedgreatpotentialnotonlyinportable electronicsbutalsointherenewableenergytransportationsector.ECsandLIBs havetheirownadvantages;ECscanproduceultra-highpowerdensityandcycle life,whereasLIBsusuallypossesshighergravimetric/volumetricenergydensity.

References

1 MikeLillich(2004).NobellaureateSmalleyspeaksonglobalandnanoenergy challenges.https://www.purdue.edu/uns/html3month/2004/040902.Smalley .energy.html(accessed18June2020).

2 Lund,H.(2007).Renewableenergystrategiesforsustainabledevelopment. Energy 32(6):912–919.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.