Immediate download Organic semiconductors for optoelectronics 1st edition hiroyoshi naito ebooks 202

Page 1


Organic Semiconductors for Optoelectronics 1st Edition Hiroyoshi Naito

Visit to download the full and correct content document: https://ebookmass.com/product/organic-semiconductors-for-optoelectronics-1st-editio n-hiroyoshi-naito/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Understanding Semiconductors 1st Edition Corey Richard

https://ebookmass.com/product/understanding-semiconductors-1stedition-corey-richard/

Nanoparticle Technology Handbook 3rd Edition Makio Naito

https://ebookmass.com/product/nanoparticle-technologyhandbook-3rd-edition-makio-naito/

Metal Oxides for Optoelectronics and Optics-Based Medical Applications Suresh Sagadevan

https://ebookmass.com/product/metal-oxides-for-optoelectronicsand-optics-based-medical-applications-suresh-sagadevan/

Understanding Semiconductors: A Technical Guide for Non-Technical People (Maker Innovations Series) 1st Edition Corey Richard

https://ebookmass.com/product/understanding-semiconductors-atechnical-guide-for-non-technical-people-maker-innovationsseries-1st-edition-corey-richard/

Metal-Organic Frameworks for Chemical Reactions: From Organic Transformations to Energy Applications 1st Edition Anish Khan (Editor)

https://ebookmass.com/product/metal-organic-frameworks-forchemical-reactions-from-organic-transformations-to-energyapplications-1st-edition-anish-khan-editor/

Organic Electronics for Electrochromic Materials and Devices 1st Edition Hong Meng

https://ebookmass.com/product/organic-electronics-forelectrochromic-materials-and-devices-1st-edition-hong-meng/

Organic Synthesis Using Biocatalysis 1st Edition

https://ebookmass.com/product/organic-synthesis-usingbiocatalysis-1st-edition-goswami/

Metal-free synthetic organic dyes Kruger

https://ebookmass.com/product/metal-free-synthetic-organic-dyeskruger/

eBook Online Access for Organic Chemistry 10th Edition, (Ebook PDF)

https://ebookmass.com/product/ebook-online-access-for-organicchemistry-10th-edition-ebook-pdf/

OrganicSemiconductorsforOptoelectronics

WileySeriesinMaterialsforElectronicand OptoelectronicApplications

www.wiley.com/go/meoa

SeriesEditors

RichardCurry,UniversityofManchester,Manchester,UK

HarryRuda,UniversityofToronto,Toronto,Canada

JunLuo,ChineseAcademyofSciences,Beijing,China

HonorarySeriesEditors

ProfessorArthurWilloughby, UniversityofSouthampton,Southampton,UK

DrPeterCapper, Ex-LeonardoMWLtd,Southampton,UK

ProfessorSafaKasap, UniversityofSaskatchewan,Saskatoon,Canada

PublishedTitles

BulkCrystalGrowthofElectronic,OpticalandOptoelectronicMaterials,EditedbyP.Capper PropertiesofGroup-IV,III—VandII—VISemiconductors,S.Adachi ChargeTransportinDisorderedSolidswithApplicationsinElectronics,EditedbyS.Baranovski OpticalPropertiesofCondensedMatterandApplications,EditedbyJ.Singh ThinFilmSolarCells:Fabrication,Characterization,andApplications,EditedbyJ.PoortmansandV. Arkhipov

DielectricFilmsforAdvancedMicroelectronics,EditedbyM.R.Baklanov,M.Green,andK.Maex LiquidPhaseEpitaxyofElectronic,OpticalandOptoelectronicMaterials,EditedbyP.CapperandM. MaukMolecularElectronics:FromPrinciplestoPractice,M.Petty LuminescentMaterialsandApplications,A.Kitai CVDDiamondforElectronicDevicesandSensors,EditedbyR.S.Sussmann PropertiesofSemiconductorAlloys:Group-IV,III—VandII—VISemiconductors,S.AdachiMercury CadmiumTelluride,EditedbyP.CapperandJ.Garland ZincOxideMaterialsforElectronicandOptoelectronicDeviceApplications,EditedbyC.Litton,D. C.Reynolds,andT.C.Collins

Lead-FreeSolders:MaterialsReliabilityforElectronics,EditedbyK.N.SubramunianSilicon Photonics:FundamentalsandDevices,M.JamalDeenandP.K.Basu NanostructuredandSubwavelengthWaveguides:FundamentalsandApplications,M.Skorobogatiy PhotovoltaicMaterials:FromCrystallineSilicontoThird-GenerationApproaches,EditedbyG. ConibeerandA.Willoughby GlancingAngleDepositionofThinFilms:EngineeringtheNanoscale,MatthewM.Hawkeye,Michael T.Taschuk,andMichaelJ.Brett PhysicalPropertiesofHigh-TemperatureSuperconductors,R.Wesche SpintronicsforNextGenerationInnovativeDevices,EditedbyKatsuakiSatoandEijiSaitohInorganic GlassesforPhotonics:Fundamentals,EngineeringandApplications,AnimeshJha AmorphousSemiconductors:Structural,OpticalandElectronicProperties,KazuoMorigaki,Sandor Kugler,andKoichiShimakawa MicrowaveMaterialsandApplications,Twovolumeset,EditedbyMailadilT.Sebastian,RickUbic, andHeliJantunen MolecularBeamEpitaxy:MaterialsandApplicationsforElectronicsandOptoelectronics,Editedby HajimeAsahiandYoshijiKorikoshi MetalorganicVaporPhaseEpitaxy(MOVPE):Growth,MaterialsProperties,andApplications,Edited byStuartIrvineandPeterCapper OpticalPropertiesofMaterialsandTheirApplications,SecondEdition,EditedbyJaiSingh OxideElectronics,EditedbyAsimRay

OrganicSemiconductorsforOptoelectronics

OsakaPrefectureUniversity Osaka,Japan

Thiseditionfirstpublished2021

©2021JohnWileyandSonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions.

TherightofHiroyoshiNaitotobeidentifiedastheauthoroftheeditorialmaterialinthisworkhasbeen assertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andthe constantflowofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereader isurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsforeach chemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsor indicationofusageandforaddedwarningsandprecautions.Whilethepublisherandauthorshaveused theirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties,including withoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarranty maybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotionalstatementsfor thiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitationand/or potentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendationsitmaymake. Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices. Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwitha specialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhave changedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernor authorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Name:Naito,Hiroyoshi,editor.

Title:Organicsemiconductorsforoptoelectronics/editedbyHiroyoshi Naito.

Description:Firstedition.|Hoboken,NJ:Wiley,2021.|Series:Wiley seriesinmaterialsforelectronicandoptoelectronicapplications| Includesbibliographicalreferencesandindex.

Identifiers:LCCN2020051135(print)|LCCN2020051136(ebook)|ISBN 9781119146100(hardback)|ISBN9781119146117(adobepdf)|ISBN 9781119146124(epub)

Subjects:LCSH:Organicsemiconductors.|Optoelectronics.

Classification:LCCQC611.8.O7O69672021(print)|LCCQC611.8.O7 (ebook)|DDC537.6/223–dc23

LCrecordavailableathttps://lccn.loc.gov/2020051135

LCebookrecordavailableathttps://lccn.loc.gov/2020051136

CoverDesign:Wiley

CoverImages:CourtesyandCopyrightofNIPPONSHOKUBAICO.,LTD Setin10/12ptWarnockProbyStraive,Chennai,India

10987654321

Contents

ListofContributors xiii

SeriesPreface xv

Preface xvii

1ElectronicStructuresofOrganicSemiconductors1

KazuyoshiTanaka

1.1Introduction1

1.2ElectronicStructuresofOrganicCrystallineMaterials2

1.2.1Free-ElectronPicture3

1.2.2Tight-BindingFramework4

1.2.2.1Formalism4

1.2.2.2SimpleExample7

1.2.3ElectronicPropertiesBasedontheElectronicStructure9

1.2.3.1CharacteristicsoftheEnergyBand9

1.2.3.2BandGap(ΔE g )11

1.2.3.3FermiEnergy(��F )andFermiLevel(E F )11

1.2.3.4BandWidth(W)12

1.2.3.5IonizationPotential(I p )12

1.2.3.6ElectronAffinity(E a )13

1.2.3.7DensityofStates(DOS)13

1.2.3.8EffectiveMass(m*)14

1.2.3.9COPattern14

1.2.3.10ElectronDensityandBondOrder14

1.2.3.11TotalEnergyof1DCrystal(E tot )15

1.2.3.12Mobility15

1.3InjectionofChargeCarriers16

1.3.1OrganicConductivePolymers17

1.3.2OrganicCharge-TransferCrystals19

1.4TransitionfromtheConductiveState26

1.4.1PeierlsTransition26

1.4.1.1Polyacetylene27

1.4.1.2TTF-TCNQ28

1.4.2CompetitionofSpinDensityWaveandSuperconductivity29

1.5ElectronicStructureofOrganicAmorphousSolid30

1.5.1ExaminationofElectronicStructures31

1.5.1.1DirectCalculationoftheLocalStructure32

1.5.1.2Effective-MediumApproximation33

1.5.2LocalizedLevelsandMobilityEdge33

1.5.3HoppingProcess33

1.5.3.1HoppingProcessbetweentheNearestNeighbors34

1.5.3.2VariableRangeHopping(VRH)36

1.5.3.3HoppingProcessviatheDopants37 1.6Conclusion37 Acknowledgment38 References38

2ElectronicTransportinOrganicSemiconductors41

HiroyoshiNaito

2.1Introduction41

2.2AmorphousOrganicSemiconductors41

2.2.1MeasurementsofTransportProperties43

2.2.1.1Time-of-FlightTransientPhotocurrent Experiment43

2.3ExperimentalFeaturesofElectronicTransportProperties44

2.4ChargeCarrierTransportModels44

2.4.1MultipleTrappingModel45

2.4.2GaussianDisorderModel(GDM)48

2.4.3CorrelatedDisorderModel(CDM)49

2.4.4GDMvs.CDM49

2.4.5PolaronicTransport50

2.4.6TransportEnergy50

2.4.7AnalyticalApproachtoHoppingTransport51

2.4.8FunctionalFormsofLocalizedStateDistributions52

2.5PredictionofTransportPropertiesinAmorphousOrganic Semiconductors52

2.6PolycrystallineOrganicSemiconductors53

2.6.1TransportinPolycrystallineSemiconductorsand TechnologicalImportanceofPolycrystallineSilicon53

2.6.2Field-EffectMobilityinOrganicPolycrystalline Semiconductors55

2.6.3PerformanceofField-EffectTransistorswithPolycrystalline OrganicSemiconductors58

2.7Single-CrystallineOrganicSemiconductors59

2.7.1BandConductioninSingle-CrystallineOrganic Semiconductors61

2.7.2PerformanceofField-EffectTransistorswithSingle CrystallineOrganicSemiconductors64

2.8ConcludingRemarks65 Acknowledgment65 References65

3TheoryofOpticalPropertiesofOrganicSemiconductors69

JaiSingh,MonishkaRitaNarayanandDavidOmpong

3.1Introduction69

3.2PhotoexcitationandFormationofExcitons70

3.2.1PhotoexcitationofSingletExcitonsduetoExciton-photon Interaction71

3.2.2ExcitationofTripletExcitons74

3.2.2.1DirectExcitationtoTripletStatesThrough Exciton-Spin-Orbit-PhotonInteraction74

3.2.2.2IndirectExcitationofTripletExcitonsThrough IntersystemCrossingandExciton-SpinOrbit-PhononInteraction79

3.3ExcitonupConversion83

3.4ExcitonDissociation85

3.4.1ProcessofConversionfromFrenkeltoCTExcitons88

3.4.2DissociationofCTExcitons89 References90

4LightAbsorptionandEmissionPropertiesofOrganicSemiconductors93

TakashiKobayashi,TakashiNagaseandHiroyoshiNaito

4.1Introduction93

4.2ElectronicStatesinOrganicSemiconductors94

4.2.1FluorescenceEmitters95

4.2.2PhosphorescenceEmitters97

4.2.3TADFEmitters99

4.2.4 π ConjugatedPolymers100

4.3DeterminationofExcited-stateStructureUsingNonlinear Spectroscopy102

4.3.1Background103

4.3.2ExperimentalTechnique106

4.3.2.1EA106

4.3.2.2TPE107

4.3.3ExperimentalResults109

4.3.3.1DE2109

4.3.3.2Ir(ppy)3 111

4.3.3.3PFO113

4.4DecayMechanismofExcitedStates115

4.4.1Background115

4.4.2ExperimentalTechnique117

4.4.2.1Time-resolvedPLMeasurements117

4.4.2.2PLQEMeasurements120

4.4.3ExperimentalResults121

4.4.3.1PFO121

4.4.3.2Ir(ppy)3 123

4.4.3.34CzIPN127

4.5Summary132 Acknowledgement132 References132

5CharacterizationofTransportPropertiesofOrganicSemiconductorsUsing ImpedanceSpectroscopy137

KenichiroTakagiandHiroyoshiNaito

5.1Introduction137

5.2Charge-CarrierMobility138

5.2.1MethodsforMobilityMeasurements138

5.2.2TheoreticalBasisforDeterminationofCharge-Carrier Mobility139

5.2.3DeterminationofCharge-CarrierMobility141

5.2.4InfluenceofBarrierHeightforCarrierInjectionon DeterminationofCharge-CarrierMobility142

5.2.5InfluenceofContactResistanceonDeterminationof Charge-CarrierMobility143

5.2.6InfluenceofLocalizedStatesonDeterminationof Charge-CarrierMobility144

5.2.7DemonstrationofDeterminationofCharge-Carrier Mobility146

5.3Localized-StateDistributions148

5.3.1MethodsforLocalized-StateMeasurements148

5.3.2TheoreticalBasisforDeterminationofLocalized-State Distribution149

5.3.3DemonstrationofDeterminationofLocalized-State Distribution150

5.4Lifetime153

5.4.1MethodsforDeep-Trapping-LifetimeMeasurements153

5.4.2DeterminationofDeep-Trapping-Lifetimeusingthe ProposedMethod153

5.4.3ValidityoftheProposedMethod154

5.4.4DemonstrationofDeterminationofDeepTrapping-Lifetime155

5.5ISinOLEDsandOPVs156

5.6Conclusions156 Acknowledgments157 References157

6Time-of-FlightMethodforDeterminingtheDriftMobilityinOrganic Semiconductors161

MasahiroFunahashi

6.1Introduction161

6.2PrincipleoftheTOFMethod162

6.2.1CarrierMobilityandTransientPhotocurrent162

6.2.2StandardSetupoftheTOFMeasurement163

6.2.3SamplePreparation164

6.2.4CurrentModeandChargeMode165

6.2.5InstructionsintheTOFMeasurements167

6.3InformationObtainedFromtheTOFExperiments172

6.4TechniquesRelatedtotheTOFMeasurement173

6.4.1XerographicTOFMethod173

6.4.2LateralTOFMethod174

6.4.3TOFMeasurementsUnderPulseVoltageApplication175

6.4.4DarkInjectionSpaceCharge-LimitedTransientCurrent Method175 6.5Conclusion177 References177

7MicrowaveandTerahertzSpectroscopy179 AkinoriSaeki

7.1Introduction179

7.2InstrumentalSetupofTime-ResolvedGigahertzandTerahertz Spectroscopies181

7.3TheoryofComplexMicrowaveConductivityinaResonantCavity183

7.4MicrowaveSpectroscopyforOrganicSolarCells185

7.5Frequency-Modulation:InterplayofFreeandShallowly-Trapped Electrons187

7.6Organic-InorganicPerovskite195

7.7Conclusions197 Acknowledgement198 References198

8IntrinsicandExtrinsicTransportinCrystallineOrganicSemiconductors: Electron-Spin-ResonanceStudyforCharacterizationofLocalizedStates201 AndreyS.Mishchenko

8.1IntrinsicandExtrinsicTransportinCrystallineOrganic Semiconductors203

8.2ElectronSpinResonanceStudyforCharacterizationofLocalized States206

8.2.1IntroductionintoESRStudy206

8.2.2ESRSpectraofTrappedCarriers208

8.2.2.1ESRSpectraforSingleMoleculeandaCluster ContainingSeveralMolecules208

8.2.2.2ESRSpectraforaTrapinCrystal209

8.2.2.3ESRSpectraforSeveralKindsofTraps210

8.2.3FromESRSpectrumtoTrapDistributionOverDegreeof Localization211

8.2.3.1MethodtoSolveInverseProblem211

8.2.3.2TestsofSOMStabilityAgainsttheNoisein ExperimentalData212

8.2.3.3PracticalImplementationofMethod:Distribution ofTrapsinPentaceneTFT213

8.2.3.4ReliabilityofTrapDistributionResult214

8.2.4TransformationFromSpatialDistributiontoEnergy Distribution214

8.2.4.1TrapModel:2DHolsteinPolaronandOn-Site AttractiveCenter215

8.2.4.2EnergyDistributionofTrapsinPentaceneTFTs216

8.2.5Discussion217

8.2.6SummaryofTrapStudy218 8.3Conclusion219 Acknowledgments219 References220

9SecondHarmonicGenerationSpectroscopy225 TakaakiManakaandMitsumasaIwamoto

9.1Introduction225

9.2BasicsoftheEFISHG226

9.2.1MacroscopicOriginoftheSHG226

9.2.2MicroscopicDescriptionoftheSHG228

9.2.3EFISHGMeasurements229

9.2.4EvaluationofIn-planeElectricFieldinOFET231

9.2.5DirectImagingofCarrierMotioninOFET232

9.3SomeApplicationoftheTRM-SHGtotheOFET234

9.3.1TrapEffect234

9.3.2MetalElectrodeDependence237

9.3.3AnisotropicCarrierTransport239

9.4ApplicationoftheTRM-SHGtoOLED240

9.5Conclusions242 Acknowledgement243 References243

10DevicePhysicsofOrganicField-effectTransistors245 HiroyukiMatsui

10.1OrganicField-EffectTransistors(OFETs)245

10.1.1StructureofOFETs245

10.1.2OperationPrinciplesofOFETs248

10.1.3CarrierTraps251

10.1.4TransportModelsinChannels252

10.1.4.1BandTransportModel253

10.1.4.2MultipleTrapandReleaseModel256

10.1.4.3HoppingModel259

10.1.4.4DynamicDisorderModel260

10.1.4.5GrainBoundaryModel263

10.1.5CarrierInjectionatSourceandDrainElectrodes264

10.1.5.1TransmissionLineMethod(TLM)266

10.1.5.2Four-TerminalMeasurement267

10.1.5.3EffectofContactResistanceonApparentMobility268 References270

11SpontaneousOrientationPolarizationinOrganicLight-EmittingDiodes anditsInfluenceonChargeInjection,Accumulation,andDegradation Properties273

YutakaNoguchi,HisaoIshii,LarsJäger,TobiasD.SchmidtandWolfgangBrütting 11.1Introduction273

11.2InterfaceChargeModel275

11.3InterfaceChargeinBilayerDevices277 11.4ChargeInjectionProperty281 11.5DegradationProperty283 11.6Conclusions290 Acknowledgement291 References292

12AdvancedMolecularDesignforOrganicLightEmittingDiodeEmittersBased onHorizontalMolecularOrientationandThermallyActivatedDelayed Fluorescence295

LiZhao,DaeHyeonKim,Jean-CharlesRibierre,TakeshiKominoandChihayaAdachi 12.1Introduction295

12.2MolecularOrientationinTADFOLEDs299

12.3MolecularOrientationinSolutionProcessedOLEDs300 References304

13OrganicFieldEffectTransistorsIntegratedCircuits307 MayumiUno

13.1Introduction307

13.2OrganicFundamentalCircuits308

13.2.1InverterforLogicComponents308

13.2.2LogicNANDandNORGates310

13.2.3ActiveMatrixElements310

13.3HighPerformanceOrganicTransistorsApplicabletoFlexibleLogic Circuits312

13.3.1ReducingtheContactResistance313

13.3.2DownscalingtheChannelSizesandVerticalTransistors314

13.3.3High-SpeedOrganicTransistors314

13.4IntegratedOrganicCircuits315

13.4.1RFIDTagApplications316

13.4.2SensorReadoutCircuits317

13.5Conclusions317 References318

14Naphthobisthiadiazole-BasedSemiconductingPolymersforHigh-Efficiency OrganicPhotovoltaics321 ItaruOsakaandKazuoTakimiya 14.1Introduction321

14.2SemiconductingPolymersBasedonNaphthobisthiadiazole322 14.3Quaterthiophene–NTzPolymer:Comparisonwiththe BenzothiadiazoleAnalogue324

14.4Naphthodithiophene–NTzPolymer:ImportanceoftheBackbone Orientation327

14.5OptimizationofPNTz4TCells:DistributionofBackbone OrientationvsCellStructure332

14.6Thiophene,Thiazolothiazole–NTzPolymers:HiglyThermallyStabe SolarCells335 14.7Summary339 References340

15PlasmonicsforLight-EmittingandPhotovoltaicDevices343

KoichiOkamoto

15.1OpticalPropertiesoftheSurfacePlasmonResonance343

15.2High-EfficiencyLightEmissionsusingPlasmonics345

15.3MechanismfortheSPCoupledEmissions347

15.4QuantumEfficienciesandSpontaneousEmissionRates349

15.5ApplicationsforOrganicMaterials350

15.6DeviceApplicationforLight-EmittingDevices352 15.7ApplicationstoHigh-EfficiencySolarCells354

ListofContributors

KazuyoshiTanaka FukuiInstituteforFundamentalChemistry,KyotoUniversity, Kyoto,Japan

JaiSingh SchoolofEngineeringandInformationTechnology,CharlesDarwin University,Australia

MonishkaRitaNarayan SchoolofEngineeringandInformationTechnology,Charles DarwinUniversity,Australia

DavidOmpong SchoolofEngineeringandInformationTechnology,CharlesDarwin University,Australia

TakashiKobayashi DepartmentofPhysicsandElectronics,TheResearchInstitute ofMolecularElectronicDevices,OsakaPrefectureUniversity,Sakai,Japan

TakashiNagase DepartmentofPhysicsandElectronics,TheResearchInstitute ofMolecularElectronicDevices,OsakaPrefectureUniversity,Sakai,Japan

HiroyoshiNaito DepartmentofPhysicsandElectronics,TheResearchInstitute ofMolecularElectronicDevices,OsakaPrefectureUniversity,Sakai,Japan

KenichiroTakagi DepartmentofPhysicsandElectronics,OsakaPrefectureUniversity, Sakai,Japan

MasahiroFunahashi DepartmentofAdvancedMaterialsScience,FacultyofEngineering,KagawaUniversity,Takamatsu,Kagawa,Japan

AkinoriSaeki DepartmentofAppliedChemistry,GraduateSchoolofEngineering, OsakaUniversity,Suita,Osaka,Japan

AndreyS.Mishchenko RIKENCenterforemergentMatterScience(CEMS),Wako, Japan

TakaakiManaka TokyoInstituteofTechnology,O-okayama,Meguro-Ku,Tokyo,Japan

MitsumasaIwamoto TokyoInstituteofTechnology,O-okayama,Meguro-ku,Tokyo, Japan

HiroyukiMatsui GraduateSchoolofOrganicMaterialsScience,YamagataUniversity, Yamagata,Japan

YutakaNoguchi DepartmentofElectronicsandBioinformatics,MeijiUniversity, Tokyo,Japan

HisaoIshii CenterforFrontierScience,ChibaUniversity,Chiba,Japan

LarsJäger InstituteofPhysics,UniversityofAugsburg,Augsburg,Germany

TobiasD.Schmidt InstituteofPhysics,UniversityofAugsburg,Augsburg,Germany

WolfgangBrutting InstituteofPhysics,UniversityofAugsburg,Augsburg,Germany

LiZhao CenterforOrganicPhotonicsandElectronicsResearch,KyushuUniversity, Fukuoka,Japan

DaeHyeonKim CenterforOrganicPhotonicsandElectronicsResearch,Kyushu University,Fukuoka,Japan

Jean-CharlesRibierre CenterforOrganicPhotonicsandElectronicsResearch,Kyushu University,Fukuoka,Japan

TakeshiKomino CenterforOrganicPhotonicsandElectronicsResearch,Kyushu University,Fukuoka,Japan

ChihayaAdachi CenterforOrganicPhotonicsandElectronicsResearch,Kyushu University,Fukuoka,Japan

MayumiUno OsakaResearchInstitueofIndustrialScienceandTechnology(ORIST), Osaka,Japan

ItaruOsaka GraduateSchoolofAdvancedScienceandEngineering,Hiroshima University,Hiroshima,Japan

KazuoTakimiya RIKEN,CenterforEmergentMatterScience,Saitama,Japan,and GraduateSchoolofScience,TohokuUniversity,Sendai,Japan

KoichiOkamoto DepartmentofPhysicsandElectronics,OsakaPrefectureUniversity, Sakai,Japan

SeriesPreface

WileySeriesinMaterialsforElectronicandOptoelectronic Applications

Thisbookseriesisdevotedtotherapidlydevelopingclassofmaterialsusedforelectronic andoptoelectronicapplications.Itisdesignedtoprovidemuch-neededinformationon thefundamentalscientificprinciplesofthesematerials,togetherwithhowtheseare employedintechnologicalapplications.Thesebooksareaimedat(postgraduate)students,researchers,andtechnologistsengagedinresearch,development,andthestudy ofmaterialsinelectronicsandphotonics,andatindustrialscientistsdevelopingnew materials,devices,andcircuitsfortheelectronic,optoelectronic,andcommunications industries.

Thedevelopmentofnewelectronicandoptoelectronicmaterialsdependsnotonly onmaterialsengineeringatapracticallevel,butalsoonaclearunderstandingofthe propertiesofmaterialsandthefundamentalsciencebehindtheseproperties.Itis thepropertiesofamaterialthateventuallydetermineitsusefulnessinanapplication. Theseriesthereforealsoincludessuchtitlesaselectricalconductioninsolids,optical properties,thermalproperties,andsoon,allwithapplicationsandexamplesof materialsinelectronicsandoptoelectronics.Thecharacterizationofmaterialsisalso coveredwithintheseriesasmuchasitisimpossibletodevelopnewmaterialswithout thepropercharacterizationoftheirstructureandproperties.Structure–property relationshipshavealwaysbeenfundamentallyandintrinsicallyimportanttomaterials scienceandengineering.

Materialsscienceiswellknownforbeingoneofthemostinterdisciplinarysciences. Itistheinterdisciplinaryaspectofmaterialssciencethathasledtomanyexciting discoveries,newmaterials,andnewapplications.Itisnotunusualtofindscientists withachemicalengineeringbackgroundworkingonmaterialsprojectswithapplicationsinelectronics.Inselectingtitlesfortheseries,wehavetriedtomaintainthe interdisciplinaryaspectofthefield,andhenceitsexcitementtoresearchersinthisfield.

Preface

Thephotoconductiveandsemiconductingpropertiesoforganicsemiconductorswere reportedin1906and1950,respectively,andsincethen,basicresearchhassteadily continued.In1980,molecularlydispersedpolymersinwhichholetransportmolecules weredispersedininsulatingpolymerswerecommercializedasphotoreceptorsfor electrophotography.Themanufacturingprocessforthisorganicphotoreceptorwas acoatingprocess,whichcontributedtothelowcostofthephotoreceptor.Organic light-emittingdiode(OLED)andorganicsolarcellswerereportedin1987and1989, respectively.Thesedeviceswerehighlyefficientatthattimeandshowedthepotential oftheorganicdevices.OLEDswerecommercializedasanautomotivedisplayin1997, andarecurrentlybeingusedinhigh-definitionOLEDTVsandOLEDlighting.Inthe future,itisexpectedthatorganicsemiconductorswillbesuccessfullyappliedtoflexible displays,biosensors,andotherdevicesthatcouldnotberealizedwithconventional inorganicsemiconductors.Thedevelopmentoffutureorganicdevicescannotbe achievedwithoutaproperunderstandingoftheoptoelectronicpropertiesoforganic semiconductorsandhowthesepropertiesinfluencetheoveralldeviceperformance. Therefore,itisintendedheretohaveonesinglevolumethatcoversfundamentals throughtoapplications,withup-to-dateadvancesinthefield.

Thisbooksummarizesthebasicconceptsandalsoreviewssomerecentdevelopments inthestudyofoptoelectronicpropertiesoforganicsemiconductors.Itcoversexamples andapplicationsinthefieldofelectronicandoptoelectronicorganicmaterials.An attemptismadetocoverbothexperimentalandtheoreticaldevelopmentsineachfield presentedinthisbook,whichconsistsof15chapterscontributedbyexperiencedand well-knownscientistsondifferentaspectsofoptoelectronicpropertiesoforganicsemiconductingmaterials.Mostchaptersarepresentedtoberelativelyindependentwith minimalcross-referencing,butchapterswithcomplementarycontentsarearranged togethertofacilitatethereaderwithcross-referencing.

InChapter1byTanaka,thefundamentalelectronicpropertiesoforganicsemiconductingmaterialsareconciselyreviewedandthechaptertoprovidesbasicconcepts forunderstandingtheelectronicproperties.InChapter2,Naitopresentsareviewof electronictransportpropertiesoforganicsemiconductors,andChapter3bySingh etal .coversthetheoreticalconceptsofopticalpropertiesoforganicsemiconductors. InChapter4,Kobayashi etal .havepresentedacomprehensivereviewofadvanced,as wellasstandardexperimentaltechniques,forthecharacterizationofopticalproperties oforganicsemiconductingmaterialsincludingfluorescent,phosphorescentand thermallyassisteddelayedfluorescentemitters.InChapters5to7,acomprehensive

reviewofadvancedandstandardexperimentaltechniquesforthecharacterization oftransportpropertiesoforganicsemiconductingmaterialsarepresented.Naito reviewsimpedancespectroscopy,whichisapplicabletothemeasurementofdrift mobilityofthinorganicsemiconductingfilmsinChapter5.Funahashireviewsstandardtime-of-flightmeasurementswithdifferentmeasurementconfigurationsfordrift mobilityinorganicliquid-crystallinesemiconductorsinChapter6,andSaekireviews microwaveandterahertzspectroscopy,whichisauniqueelectrodelesstechnique, inorganicandorganic-inorganicperovskitesolarcellsinChapter7.Chapter8,by Mishchenko,coverselectronspinresonancestudyforthecharacterizationoflocalized states.InChapter9,ManakaandIwamotopresentrecentadvancesinsecondharmonic generationspectroscopy.InChapters10to12,reviewsofdevicephysicsofkeyorganic devicesarepresented.Matsuipresentsacomprehensivereviewofthedevicephysics oforganicfield-effecttransistorsinChapter10and,inChapter11byNoguchi etal ., basicprocessesinOLEDsarereviewed.Zhao etal .discusstherelationshipbetween out-couplingefficiencyandmolecularorientationinOLEDsinChapter12.Unoreviews theapplicationoforganicfield-effecttransistorstointegratedcircuitsinChapter13 withOsakaandTakimiyareviewinghighperformancepolymericsemiconductorsfor organicsolarcellsinChapter14.Finally,inChapter15,Okamotocoversplasmonics fortheimprovementofefficienciesoflight-emittingandphotovoltaicdevices.

Theaimofthebookistopresentitsreaderswithrecentdevelopmentsintheoreticalandexperimentalaspectsofoptoelectronicpropertiesoforganicsemiconductors. Accomplishmentsandtechnicalchallengesindeviceapplicationsarealsodiscussed. Thereadershipofthebookisexpectedtobegraduatestudents,aswellasteachingand researchprofessionals.

Finally,theEditorwishestothankJennyCosshamandKatrinaMacedafortheirhelp andencouragementintheeditingandproductionprocesses.

Osaka,Japan

ElectronicStructuresofOrganicSemiconductors

KazuyoshiTanaka

FukuiInstituteforFundamentalChemistry,KyotoUniversity,Kyoto,Japan

CHAPTERMENU

Introduction,1

ElectronicStructuresofOrganicCrystallineMaterials,2

InjectionofChargeCarriers,16

TransitionfromtheConductiveState,26

ElectronicStructureofOrganicAmorphousSolid,30 Conclusion,37

1.1Introduction

Electricconductivitiesoforganicmaterialsarenormallylowandtheyareclassifiedas insulatorsorsemiconductors.Ingeneral,electricconductivityofthesemiconductoris broadlyconsideredtobeintherangefrom10 10 to102 Scm 1 (Figure1.1).Electric conductivity �� isexpressedby

where n isthenumberofchargecarriersforelectrictransport, e theelementarycharge (1.602 × 1019 C),and �� themobilityofthecarriers.Appearanceofhighconductivity inorganicmaterialperseisquiterareorcompletelyabsent.Thisisbecauseorganic materialsdonothaveenoughnumberof n thoughtheymighthavelarge �� inapotential senseembodiedby,e.g.,extended π-conjugationappropriatetotheelectricconduction throughoutthematerial.

Theabovedescriptionmeansthatorganicmaterialscanchangeintosemiconductive orevenmetallicstateintermsofappropriateinjectionofcarriersiftheyareguaranteed toshowappropriate �� values.Fromthelatterhalfofthepreviouscentury,agreatdealof attemptstowardthisdirectionhavebeenpiledupandnowadaysorganicsemiconductorsororganicmetalshavebecomequitecommonmembersinelectronicsmaterials suchasorganicfield-effecttransistor(OFET),organiclight-emittingdiode(OLED), organicphotovoltaic(OPV)device,andsoon.Itisnotedherethatcharacteristicfeatures oforganicsemiconductorsororganicmetalscomefromtheirstructurallowdimensionality.Thisissimultaneouslyaccompaniedwiththefactthatthedirectionofelectric OrganicSemiconductorsforOptoelectronics, FirstEdition.EditedbyHiroyoshiNaito. ©2021JohnWiley&SonsLtd.Published2021byJohnWiley&SonsLtd.

Figure1.1 Logarithmicrepresentationofelectricconductivity �� (S/cm)ofmiscellaneousmaterialsat roomtemperature.

transportisremarkablydevelopedtowardoneortwodirectionsinthematerialand,in thissense,thesearecalledone-dimensional(1D)ortwo-dimensional(2D)materials.For example,polymerwithratherrigidspinecanberegardedas1Dmaterialandgraphenea complete2Dmaterial.Theselow-dimensionalmaterialsoftenshowpeculiarbehaviorin relationtoelectronicpropertieswhentheyareinthesemiconductiveormetallicstate. Analysisoftheelectronicstructureisofprimaryimportanceinconsiderationofthe semiconductiveormetallicpropertiesoforganicmaterials.InthisChapter,weareto study(i)thewaysofcarrierinjectionsand(ii)transitionfromtheconductivestateinherentinlow-dimensionalmaterials,withrespecttoorganicsemiconductors.Emphasis willalsobeputonunderstandingoftheelectronicpropertiesofthesematerialsbasedon theirelectronicstructures.Wefirststartfromtheelectronicstructuresoforganicmaterialswithregularrepetitionofmolecularunit,thatis,crystallinestructure,andthenelucidatetheelectronicpropertiesderivedfromtheelectronicstructures.Theprospectsfor typicalconductivepolymersandcharge-transferorganiccrystalsarealsotobeafforded. Inthelastpart,theelectronicpropertiesoforganicamorphousmaterialwillalsobe dealtwith.

1.2ElectronicStructuresofOrganicCrystallineMaterials

InthisSection,electronicstructureanditsrelatedquantitiesoforganicmaterialswith crystallinestructuresaredescribedwithrespecttothe1Dsystemnotonlyforthesake ofsimplicitybutalsoduetobeingrealisticinmostoftheorganicsemiconductors. Notethatthe1Dorganiccrystalhasregularrepetitionoftheunitcellsasillustratedin Figure1.2beingsomewhatsimilartotheprimarystructureofidealpolymers.Extension to2Dor3Dcrystalisquitestraightforward.Inordertodescribetheelectronicstructure oforganiccrystal,theorbitalapproximationoccurringfromone-electronpictureis tobeemployedthroughoutthisSectionunlessspeciallynoted,sinceitallowsusto

Figure1.2 Schematicdrawingof1D crystal. A A A A A A

Translation along the x-axis (Translation length a)

haveasimplebutclearideainthesamespiritasthemolecularorbital(MO)scheme fortheordinaryorganicmolecules.Inorganiccrystals,thewavefunctionbasedonthe one-electronpictureisoftenmentionedascrystalorbital(CO)asisdescribedlater.We willtrytofigureouttheelectronicpropertiesoforganiccrystalsmainlyderivedfrom theCOs.

1.2.1Free-ElectronPicture

First,westartfromthesimplestwavefunctionofafreeelectronin1Dspace,usingthe Schrödingerequationwhichisexpressedas

withoutanypotentialsforafreeelectron.Thewavefunctionofafreeelectronatapoint x isaccompaniedwithavariable k as

where i standsfortheimaginaryunitand k iscalledwavevector(orwavenumber)being proportionaltomomentum p oftheelectron,thatis,

with ℏ = h 2�� , h beingthePlanck’sconstant.Asamatterofcourse, k becomesvector k for2Dand3Dcases.Furthermore, A and B inEq.(1.3)aretheformalnormalization constants.Eachofthetwotermsintheright-handsideofEq.(1.3)signifiesthemotion ofafreeelectrontothe x and–x directions.

Thefree-electronwavefunctionbasicallydescribestheelectronmotioninafreespace withoutanypotentialsasismentionedaboveand,inthissense,isconsideredtodescribe theelectronsinsidethespaceofcrystalasidealgas.Notethiswavefunctiontakesa complexvalue,whichisnaturalinthepictureofquantummechanics.Theenergyofa freeelectronisafunctionof k andisgivenby

whichhasacontinuousparabolicshapewithavariable k asshowninFigure1.3.The plotoftheenergyvaluedependingon k isgenerallycalledenergybandorbandstructure.Accordingtothenumberofelectrons,thereappearstheupperlimitofenergy levelsfilledwithelectronscalledFermienergy(��F )dividingboththevalenceandconductionbands.Thewavevectoratthepositionof ��F iscalledFermiwavevector k F .Note that ±k givesthesameenergysignifyingthedegeneracyaccordingtoinversionofthe momentum,whichisalsomentionedastime-reversalsymmetryduetothechangeof momentumdirection.

Figure1.3 Energybandofafreeelectron. ��F and k F signifyFermienergyandFermiwavevector, respectively.

Figure1.4 Modelpotentialof1D crystal.

1.2.2Tight-BindingFramework

1.2.2.1Formalism

Thenextstepistointroduceaninfinitearrayoftheunitcellsintheconcerningorganic 1DcrystalstructurealreadyshowninFigure1.2.Thisconceptsimultaneouslybrings aboutthespatialregulararrayofpotentials V (x)inFigure1.4intotheSchrödinger equationas

with a beingthetranslationlength.Severalexamplesofunitcellsintheorganic1Dand 2DcrystalsaregiveninFigure1.5.

Inordertoobtaintheplausiblewavefunctionforgeneral1DcrystalwithinfiniterepetitionoftheunitcellsshowninFigure1.2,periodicboundarycondition(orBorn-von Karmanboundarycondition)isintroducedtowardsimplemathematicaltreatmentas intheordinarysolid-statephysics.Thisconditionisembodiedbyconsideringahuge “ring”withaninfinitediameterconsistingofaninfinitearrayoftheunitcellsasshown inFigure1.6.Thismakesthe1Dfree-electronwavefunctioninEq.(1.3)changeintothe 1DBlochfunctionwhichsatisfiestherelationship

�� (x + a)= exp[ika]�� (x)

where,again, k signifiesthewavevectorand a thetranslationlength.TheBlochfunction isconsideredasdeformationofthefree-electronwavefunctionintothatmodulatedby

Figure1.5 Examplesof1D(a),(b)and2D(c),(d)crystalsandtheunitcells(showninparentheses,oval, orsquare).Thearrowsindicatethedirection(s)ofthetranslation.

Each circle stands for the unit cell

Figure1.6 Periodicboundaryconditionexpressedbyaringwithaninfinitelylargediameter.Thefirst unitcell(blackcircle)becomesoverlappedwiththelastunitcellaftertheinfinitetranslation.

thearrayoftheunitcellscontainingtheatomsormolecules.AlsonotethatEq.(1.8) signifiesthatthetranslatedwavefunction �� (x + a)isrepresentedbymultiplicationof thephasefactorexp[ika]totheoriginalfunction �� (x).Thevalueof k rangesfrom–�� /a to �� /a,whichiscalledthefirstBrillouinzoneorsimplyBrillouinzone.

Quantumchemicaltreatmentoforganicmoleculesaregenerallybasedonthelinear combinationofatomicorbitals(LCAO)framework,whichcanalsobebroughtabout intotheBlochfunctionfororganiccrystal.[1]ThisiscalledCOaftertheconventional MOashasbeenalreadymentionedabove.TheCOisexpressedby

Table1.1 Typicalmethodsforcrystalorbital(CO)calculation

MethodofcalculationFeatures

Hückelforonly π electrons totalenergyunhandled spinsunhandled

ExtendedHückelforallthevalenceelectrons bandgapunreliable totalenergyunhandled spinsunhandled

VEH(Valence-effectiveHamiltonian)forallthevalenceelectrons seldomusedrecently employsadjustableparameters

SemiempiricalHartree-Fock (CNDO,INDO,MINDO,MNDO, AM1,etc.)

forallthevalenceelectrons seldomusedrecently employsadjustableparameters totalenergylessreliable bandgapoverestimated

Hartree-Fockforalltheelectrons totalenergyplausible structuraloptimizationpossible bandgapoverestimated

DFT(Densityfunctionaltheory)foralltheelectrons totalenergyplausible structuraloptimizationpossible bandgapplausible

where N formallystandsforthetotalnumberoftheunitcellnumberedby j, �� �� (x – ja) forthe �� -thatomicorbital(AO)involvedinthe j-thunitcell, s theenergylevelof �� s (k , x),and C �� ,s (k )thecoefficient.Amongthesevariables,thecoefficients C �� ,s (k )areinitially unknownandtheirvaluesaretobevariationallydeterminedbysolvingthecorrespondingSchrödingerequationintermsofthesecularequation.Notethat N isinfinitein actuality,sincethereareaninfinitenumberoftheunitcellsinFigure1.6.

Theconceptemployedaboveisoftenmentionedasthetight-bindingmethod,since thewavefunction,basedonthefree-electron,isnowmodulatedbyAOsneartheatomic regioninvolvedineachunitcell.Inthissense,theCOsstillremaincomplexfunctions. Itisstraightforwardtoshowthatthetight-bindingwavefunctioninEq.(1.9)satisfies therelationshipinthe1DBlochfunctionofEq.(1.8).Thereareseveralapproximation methodsfortheactualcalculationofCOs,whicharebasicallysimilartothoseforthe conventionalMOcalculations.TypicalcalculationmethodsarelistedinTable1.1.Afew softwarepackagesarecommerciallyavailablefortheCOcalculations.

TheproceduretoobtaintheCOalsogivestheenergylevel ��s (k )ofeach �� s (k , x).Since ��s (k )isobtainedateach k continuouslyexistingintheBrillouinzoneintherange[–�� /a, �� /a]mentionedabove,itconstructsanenergy-bandstructureforeach s atthesame time,similartothatofafreeelectroninFigure1.3.Asimpleimageoftwoenergybands

Figure1.7 Schematicdrawingofthevalenceandtheconductionbands. obtainedbythetight-bindingschemeisillustratedinFigure1.7,wheretwoelectrons aresuppliedperunitcell.Notethattwoelectronsperunitcelloccupyonebandintotal. Inthiscase,theenergeticallylowerpartoftheenergybandisoccupiedbytheelectron andtheupperpartisunoccupied.Theoccupiedbranchiscalledthevalencebandand theunoccupiediscalledtheconductionband.

1.2.2.2SimpleExample

Inordertounderstandtheelectronicstructureoftheorganic1Dcrystal,itwillbeappropriatetostartfromanexplanationoftheband-structureanalysisofthesimplestinfinite 1Dchainwithiso-distantarrayoflattice;theunitcellofwhichconsistsofsingleatom A,thetranslationlengthbeing a asinFigure1.8a.ThisatomAcanalsobesubstituted byatomicgrouporso.Forinstance,whenAischangedintoaCHgroup,thischain canbeconsideredasnon-bondalternantpolyacetyleneinFigure1.8b.LetusexaminetheelectronicstructureofthissystemwithintheframeworkofthesimpleHückel approximation.Thesecularequationinthiscaseisexpressedby

where �� denotestheCoulombintegraloftheAOonA, �� theresonanceintegralbetween theadjacentAOs,and a thetranslationlengthasdenotedinFigure1.8b.Notethatboth �� and �� areofnegativevalues.Theresonanceintegral �� isalsocalledthetransferintegral t (t =−�� )insolid-statephysics.Thevariable k signifiesthewavevectorintheBrillouin zone[ �� /a, �� /a]andtheeigenvalue ��s isthefunctionof k . Thebandstructureofthe1Diso-distantchainisthenobtainedasshowninFigure1.9a fromtheeigenvalues ��1 (k )and ��2 (k )bysolvingEq.(1.10) ��1,2 (k )= �� ∓ √2�� 2 (1 + cos ka) (1.11)

Itisseenthatat k =± �� a ,thehighestoccupied(HO)band ��1 (k ),andthelowestunoccupied(LU)band ��2 (k )sticktogethertogivethezero-bandgap.Hence,the1Diso-distant chainshouldhavethemetallicproperty.

Conduction

Figure1.8 InfiniterepetitionofatomsAand(b)polyacetylenewiththeiso-distanttranslationlength. (c)and(d)representthebond-alternantcases.

Figure1.9 Bandstructurescorrespondingtothe1Dpolymersin(a)Figure1.8(a),(b),and(b) Figure1.8(c),(d).Notethatthetranslationlength a in(b)istwiceaslongasthatin(a)duetothe dimerizationinFigure1.8.

Next,letusconsiderthecaseinwhichtheabove1Dchainisnotiso-distantbutwith alternantdistance(say,1Dalternantchain)asinFigure1.8c.Inthiscase,twokindsof resonanceintegrals �� and �� ′ existcorrespondingto,e.g.,A=AandA-A,bonds,respectively(|�� | > |�� ′ |).Thischaincanalsobeconsideredsimilartothebond-alternantpolyacetyleneinFigure1.8d.Thesecularequationforthe1Dalternantchainisthengiven by

wherethecorrespondingeigenvaluesareobtainedas

Crystal orbital (CO)

Eigenvalues

Energy band

Shape and location

1.2ElectronicStructuresofOrganicCrystallineMaterials

As it is Squared (Product with its complex conjugate)

Expectaion value for the Hamiltonian

Inversed differential

Orbital patterns (Real function at k = 0, ��/a)

Electron density, Spin density

Total electronic energy (per unit cell)

Density of states (DOS)

Band gap (∆Eg), Electron affinity (Ea), Ionization potential (Ip), Band width (W ), Effective mass (m*)

Figure1.10 Electronicpropertiesderivedfromthecrystalorbital(CO).

Thebandstructureofthe1DalternantchainisillustratedinFigure1.9b,wherethe bandgap ΔE g appearswiththevalue

Thissignifiesthatthe1Dalternantchainshouldshowsemiconductiveorinsulating propertydependingonthevalueof ΔE g ,whichisalsotrueforthebond-alternantpolyacetylene.

Itisaninterestingproblemtopredictwhichsystemisthemoreenergeticallystable, the1Diso-distantorthe1Dalternantchainintheabove.Theanswertothisquestion willbediscussedinSection.1.4.1.

1.2.3ElectronicPropertiesBasedontheElectronicStructure

Severalpiecesofusefulinformationontheelectronicpropertiesoforganic1Dcrystal canbeobtainedfromtheBloch-typeCO �� s (k , x)anditsenergylevel ��s (k ),thediagram ofwhichisshowninFigure1.10.Inthefollowing,thesewillbedescribeditembyitem.

1.2.3.1CharacteristicsoftheEnergyBand

Theenergy-bandstructureoforganiccrystalsaffordsmuchinformationsuchasband gap,bandwidth,ionizationpotential,electronaffinity,andsoonasseeninwhatfollows. Inparticular,thehighestoccupied(HO)andthelowestunoccupied(LU)bandsoften playcrucialrolesnotonlyinelectronicpropertybutalsochemicalreactivity.Thoughit israthertiresometoexaminealltheenergybandsoftheorganic1Dcrystal,theanalysesoftheHOandtheLUbandsandtheirneighboringbandsoftengiveussufficient informationtoconsidertheessentialelectronicproperties. ItisofnotethattheclassificationofCOsbasedonthesymmetrysuchas, σ or π character,forexample,reflectsthecorrespondingenergyband.Thesymmetryforthe1D crystalstemsfromthelineargroupinthespacesymmetrybeingabitdifferentfrom thepointgrouptowhichtheordinarymoleculesbelong.Forinstance,theenergy-band structureofpolythiophenewithinfinitechainlength,asanexampleoforganic1Dcrystal,isshowninFigure1.11a.Here,crossingof σ and π bandsareseen.Thefactthat

Figure1.11 (a)BandstructureandDOSwiththeunitcellofpolythiopehene,(b)theHOCOpattern, and(c)theLUCOpattern.CalculationwasdonebyCrystal06softwarewithB3LYP/6-21G**.Boththe HOCOandLUCOat k = 0and �� /a areof �� -types(Topview).AlsonotethatthebothHOandtheLU bandsareof �� type.

Table1.2 Electronicpropertiesofpolythiophenea)

Quantity Value

Bandgap2.003eV

HObandwidth4.292eV

LUbandwidth3.829eV

Ionizationpotential4.496eV

Electronaffinity2.493eV

Effectivemass(TopoftheHOband)

0.520 m0

Effectivemass(BottomoftheLUband)0.560 m0

a)AlsoseethecaptionofFigure1.11.

thesecrossingscantakeplacecomesfromthesymmetryruleofthelineargroup,which hasbeendiscussedelsewhere.[2–4]NotethatinFigure1.11atheupperpartofthe HObandsandthewholeoftheLUbandsarebothof π-typeleadingtotheextended π-conjugationtowardthe1Ddirectionor,inotherwords,throughoutthepolymerchain, whichisappropriatetotheintrachainconductionpathsforbothholesandelectrons. Electronicpropertiesaccompaniedwiththebandstructureofpolythiophenearelisted inTable1.2.Thebandstructurecanbeexperimentallyobtainedbytheangleresolved photoelectronspectroscopy(ARPES)method.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.