Full download Power system protection: fundamentals and applications (ieee press series on power and

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/power-system-protection-fundamentals-and-applicati ons-ieee-press-series-on-power-and-energy-systems-1st-edition-ciufo/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

POWER SYSTEM PROTECTION 2nd Edition

https://ebookmass.com/product/power-system-protection-2ndedition/

Electrochemical Power Sources: Fundamentals, Systems, and Applications Tom Smolinka

https://ebookmass.com/product/electrochemical-power-sourcesfundamentals-systems-and-applications-tom-smolinka/

Power Electronics, Motor Drive Systems: Fundamentals, Experiments and Applications Manias

https://ebookmass.com/product/power-electronics-motor-drivesystems-fundamentals-experiments-and-applications-manias/

Intelligent Data Mining and Analysis in Power and Energy Systems : Models and Applications for Smarter Efficient Power Systems 1st Edition Zita A. Vale

https://ebookmass.com/product/intelligent-data-mining-andanalysis-in-power-and-energy-systems-models-and-applications-forsmarter-efficient-power-systems-1st-edition-zita-a-vale/

Power System Protection, 2nd Edition Paul M. Anderson

https://ebookmass.com/product/power-system-protection-2ndedition-paul-m-anderson/

Applications of modern heuristic optimization methods in power and energy systems Lee Kwang Y.

https://ebookmass.com/product/applications-of-modern-heuristicoptimization-methods-in-power-and-energy-systems-lee-kwang-y/

Electrochemical Power Sources: Fundamentals, Systems, and Applications: Metal-Air Batteries: Present and Perspectives Hajime Arai

https://ebookmass.com/product/electrochemical-power-sourcesfundamentals-systems-and-applications-metal-air-batteriespresent-and-perspectives-hajime-arai/

Energy Storage for Modern Power System Operations Sandeep Dhundhara

https://ebookmass.com/product/energy-storage-for-modern-powersystem-operations-sandeep-dhundhara/

Electrochemical power sources: fundamentals, systems, and applications : hydrogen production by water electrolysis / 1st Edition Edited By Tom Smolinka

https://ebookmass.com/product/electrochemical-power-sourcesfundamentals-systems-and-applications-hydrogen-production-bywater-electrolysis-1st-edition-edited-by-tom-smolinka/

IEEEPress

445HoesLane Piscataway,NJ08854

IEEEPressEditorialBoard EkramHossain, EditorinChief

JónAtliBenediktsson AnjanBose DavidAlanGrier ElyaB.Joffe

XiaoouLi LianYong AndreasMolisch SaeidNahavandi

JeffreyReed DiomidisSpinellis SarahSpurgeon AhmetMuratTekalp

PowerSystemProtection

FundamentalsandApplications

JohnCiufo

CiufoandCooperbergConsultingInc.(CCCI)

Mississauga GreaterTorontoArea

Ontario Canada

AaronCooperberg

CiufoandCooperbergConsultingInc.(CCCI)

Mississauga GreaterTorontoArea

Ontario Canada

Copyright©2022byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyany means,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection 107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,or authorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222 RosewoodDrive,Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com. RequeststothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons, Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/ go/permission.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparing thisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontents ofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceand strategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomer CareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317) 572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationData:

Names:Ciufo,John,1953-author.|Cooperberg,Aaron,1952-author.

Title:Powersystemprotection:fundamentalsandapplications/John Ciufo,CiufoandCooperbergConsulting(CCCI),AaronCooperberg,Ciufo andCooperbergConsulting(CCCI).

Description:Firstedition.|Hoboken,NewJersey:JohnWiley&Sons, Inc.,[2022]|Series:IEEEpressseriesonpowerandenergysystems| Includesbibliographicalreferencesandindex.

Identifiers:LCCN2021048461(print)|LCCN2021048462(ebook)|ISBN 9781119847366(cloth)|ISBN9781119847373(adobepdf)|ISBN 9781119847380(epub)

Subjects:LCSH:Electricpowersystems–Protection.

Classification:LCCTK1010.C582022(print)|LCCTK1010(ebook)|DDC 621.31–dc23/eng/20211122

LCrecordavailableathttps://lccn.loc.gov/2021048461

LCebookrecordavailableathttps://lccn.loc.gov/2021048462

CoverDesign:Wiley

CoverImage:©PatrickJennings/Shutterstock

Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India 10987654321

Contents

AbouttheAuthors xix

Preface xxi

Acknowledgements xxiii

1WhatIsPowerSystemProtection,WhyIsItRequiredandSomeBasics? 1

1.1WhatIsPowerSystemProtection? 1

1.2WhyIsPowerSystemProtectionsRequired? 2

1.2.1MinimizePrimaryEquipmentDamage 5

1.2.2ProvideContinuityofServicebyMinimizingOutageTimeandService 5

1.2.3PromoteSafety 5

1.2.4MaintainingPowerSystemIntegrity 6

1.3SomeBasicProtectionSystemTermsandInformation 6

1.3.1Relay 6

1.3.2ProtectiveRelays 6

1.3.3ProtectiveRelaying 6

1.3.4ProtectionEngineering 7

1.3.5ProtectionSystemObjectives 7

1.3.6ProtectionSystemCharacteristics 7

1.3.6.1Selectivity 7

1.3.6.2Sensitivity 8

1.3.6.3Speed 8

1.3.7ProtectionSystemReliability 9

1.3.7.1Dependability 9

1.3.7.2Security 10

1.3.8ProtectionSystemBackup 10

1.3.8.1RemoteBackup 11

1.3.8.2LocalBackup 11

1.3.9ProtectionSystemRedundancy 12 References 12

2BasicPowerSystemProtectionComponents 13

2.1GeneralDescription 13

2.2PowerSystemProtectionComponents 13

2.2.1InstrumentTransformers 13

2.2.2ProtectiveRelays 15

2.2.3AuxiliaryLogic 15

2.2.3.1AuxiliaryRelays 16

2.2.3.2ApplicationofAuxiliaryRelays 16

2.2.4PanelsandRacks 18

2.2.5BatterySystemsUsedforProtections 20

2.2.6Telecommunications 20

2.3PhysicalImplementation 21

2.3.1RelayandControlBuilding 21

2.3.2LocationofInstrumentTransformers 22

2.3.3Terminations 22

2.3.4ProtectionIsolationDevices 23

2.3.5WiringandCable(ControlWiring) 23

2.4PowerSystemIsolationDevicesandControlInterfaces 23

2.4.1IsolationDevices 23

2.4.2ControlInterfaces 24

2.5RedundancyArrangements 24

2.5.1InstrumentTransformers 24

2.5.2DualBreakerTripCoils 26

3ACSignalSources 27

3.1Introduction 27

3.2CurrentTransformers 27

3.2.1CurrentTransformerSecondaryBurden 31

3.2.2CurrentTransformerTypes 32

3.2.2.1Bar-TypeCT 32

3.2.2.2Bushing-TypeCT 35

3.2.2.3Window-TypeCT 35

3.2.2.4Wound-TypeCT 35

3.2.3CurrentTransformerPolarity 35

3.2.4CurrentTransformerRatios 36

3.2.5AuxiliaryTransformers 40

3.2.6CurrentTransformerAccuracyClassifications 40

3.2.7GeneralCharacteristicsofCTs 43

3.2.8ResponseofCTsUnderTransientPowerSystemConditions 44

3.2.8.1TheEffectofCTSaturationonProtections 44

3.2.8.2CausesofCTSaturation 44

3.2.8.3FluxRemanenceintheCTCore 46

3.2.8.4UseofAirGapstoReduceRemanence 46

3.2.8.5MethodstoEnsureCorrectCTPerformance 47

3.2.9GeneralRequirementsforCTSizing 49

3.2.9.1MaximumExpectedLoadCurrent 49

3.2.9.2MaximumSymmetricalFaultCurrent 50

3.2.9.3MaximumCTBurden 50

3.2.9.4CalculatetheSteady-stateCTSecondaryVoltage(V S ) 50

3.2.9.5CTApplicationExample 51

3.3VoltageSources 53

3.3.1MagneticVoltageTransformers 54

3.3.1.1MagneticVoltageTransformersEquivalentCircuit 54

3.3.1.2ProtectionofVTs 54

3.3.2CapacitiveVoltageTransformer(CVT) 55

3.3.3BushingPotentialDevices 56 References 56

4BasicTypesofProtectionRelaysandTheirOperation 57

4.1General 57

4.2FundamentalPrinciplesandCharacteristics 58

4.2.1Non-directionalInductionDiskOvercurrent 58

4.2.2InductionPrincipleofOperation 58

4.3Overcurrent 59

4.3.1InductionDiscTime-Overcurrent 59

4.3.2InverseTime-OvercurrentRelay 61

4.3.2.1InverseTime-OvercurrentCharacteristics 61

4.3.2.2BasicPickupCurrentSetting 63

4.3.2.3TimeDialAdjustment 65

4.3.2.4SettingAdjustmentsforanInverseTime-OvercurrentRelay 65

4.3.3TimeCoordinationwithOvercurrentRelays 65

4.3.3.1CoordinationTimeforElectromechanicalRelays 68

4.3.3.2CoordinationTimeforDigitalRelays 68

4.3.4DirectionalOvercurrentRelays 68

4.3.4.1MethodofDirectioning 69

4.3.4.2TheWatt-HourStructure 70

4.3.4.3TheInductionCupStructure 71

4.3.4.4RelayPhaseRelationshipofVoltageandCurrentinaDirectionalRelay 71

4.3.4.5TypicalApplicationofDirectionalPhaseOvercurrentRelays 74

4.3.4.6TypicalApplicationofGroundDirectionalOvercurrentRelays 76

4.4Differential 77

4.4.1General 77

4.4.2DifferentialPrincipleUsedinBusProtection 77

4.4.2.1FundamentalPrincipleofOperation 77

4.4.2.2SecurityforOut-of-ZoneFaults 79

4.4.2.3LowImpedanceDifferentialProtection 80

4.4.2.4HighImpedanceDifferentialProtection 81

4.4.3DifferentialPrincipleUsedinTransformerProtection 81

4.4.3.1PercentDifferentialRelay 82

4.5Distance 86

4.5.1General 86

4.5.2NeedforDistanceProtection 86

4.5.3ImpedanceRelayPrincipleofOperation 86

4.5.4MHORelayPrincipleofOperation 90

4.5.4.1Offset-MHORelayPrincipleofOperation 91

4.5.4.2Reactance–TypeDistanceRelay 91

4.5.4.3Blinder-TypeDistanceRelay 93 Reference 94

5ProtectionInformationRepresentation,Nomenclature,andJargon 95

5.1General 95

5.2ProtectionDrawingTypes 95

5.2.1Single-lineDiagram 96

5.2.2Three-PhaseDiagram(ACEWD) 98

5.2.2.1TranscriptionofInformationfromACEWDtoSingle-LineDiagrams 98

5.2.3DCElementaryWiringDiagrams–AlsoKnownasDCControlDiagrams 99

5.2.4ElectricalArrangement(EA) 101

5.2.5ConnectionWiringDiagrams(CWD) 101

5.2.6ProtectionLogicDiagrams 103

5.2.7ProtectionSettingsRecordsandSupportInformation 107

5.2.8ProtectionRelayThreshold/PickupSettings 107

5.2.9RelayConfigurationandSettingsFile 107

5.3NomenclatureandDeviceNumbers 108

5.3.1CommonlyUsedProtectionDeviceNumbers 109

5.3.2PrefixandSuffixMeaning 109

5.3.3Interlocks 111

5.4ClassificationofRelays 112

5.4.1MethodsofOperation 112

5.4.2ResponseCharacteristics 112

5.5ProtectionJargon 114

5.5.1RelayOperationandPerformance 114

5.5.2ProtectionSystemOperationandPerformance 115 Reference 116

6Per-UnitSystemandFaultCalculations 117

6.1General 117

6.2Per-Unit 118

6.2.1BaseQuantityEquations 119

6.2.1.1EstablishtheBaseVoltage(kV)andPower(MVA) 119

6.2.1.2FromBaseVoltageandPower,CalculatetheBaseCurrentandImpedance 119

6.2.2Per-UnitGeneral 119

6.2.3Per-UnitImpedance 120

6.2.4ConversionofPUValuesToDifferentBases 120

6.2.5ASummaryforSolvingaProblemUsingPerUnit 123

6.2.6Example 124

6.3FundamentalNeedforFaultInformation 125

6.3.1TypesofFaults 126

6.3.1.1Balancedvs.Unbalanced 126

6.4SymmetricalComponents 128

6.4.1TheoryofSymmetricalComponents 128

6.4.1.1PositiveSequencePhasors 129

6.4.1.2NegativeSequencePhasors 129

6.4.1.3Zero-SequencePhasors 130

6.4.2PhaseQuantitiesInTermsofSequenceComponents 130

6.5SequenceImpedancesofPowerApparatus 131

6.5.1SynchronousMachinery 131

6.5.2TransmissionLines 132

6.5.3Transformers 132

6.5.3.1EquivalentCircuit:PositiveandNegativeSequenceImpedances 133

6.5.3.2Zero-SequenceCircuitandImpedance 134

6.5.3.3Zero-sequenceImpedancewithNeutralGroundingImpedance 135

6.5.3.4BanksofThree,Single-PhaseTransformers 136

6.5.3.5TypicallyUsedTransformersandModels 137

6.6BalancedFaultAnalysis 139

6.6.1BalancedFaultCalculations 139

6.6.2SimplifyingAssumptions 140

6.7SequenceNetworks 140

6.7.1SequenceNetworkInterconnections 140

6.7.1.1PrincipleofInterconnections 140

6.8SummaryofUnbalanceFaultCalculations 144

6.8.1PositiveSequenceDiagram 145

6.8.2NegativeSequenceDiagram: 145

6.8.3Zero-SequenceDiagram 146

6.8.4ConducttheFaultStudy 147

6.9High-LevelSummaryoftheFaultCalculationProcess 147

6.9.1DevelopaSingle-LineDiagramoftheStudiedArea 147

6.9.2DeterminetheStudiedPowerSystemElementImpedances 148

6.9.3DevelopSequenceImpedanceModels 148

6.9.4DeterminetheFaultTypesandSystemConditions 148

6.9.5ConducttheFaultStudiesandDetermineRelayQuantities 148

6.10UsefulFaultCalculationFormulas/Methods 148

6.10.1ConversionfromShortCircuitValuestoSystemImpedances 148

6.11FaultCalculationExamples 149

6.11.1Three-PhaseFaultExample 149

6.11.2Line-to-GroundFaultExample 151

6.11.2.1PositiveSequence 152

6.11.2.2NegativeSequenceNetwork 152

6.11.2.3Zero-SequenceNetwork 152

6.11.2.4ReductioninthePositiveSequenceNetwork 153

6.11.2.5ReductionintheZero-SequenceNetwork 154

6.11.2.6CalculatetheL-GFault 154 References 157

7ProtectionZones 159

7.1ProtectionZonesGeneral 159

7.2ZonesDefined 159

7.3ZoneOverlapAroundBreakers 161

7.4ProtectionZoningatStations 163

7.4.1HVSwitchingStations 163

7.4.2LVDistributionStations 165

7.4.2.1TheTransformerZone 165

7.4.2.2TheBusZone 167

7.4.2.3TheDistributionFeederZone 167

7.5ProtectionZonesinGeneral 170

7.5.1Lines 170

7.5.2Transformers 170

7.5.3Generators 173

7.5.4ProtectionZonesOverlappingBetweenStations 173

7.6BackupProtection 177

7.6.1RemoteBackup 177

7.6.2LocalBackup 178

7.7CTConfigurationandProtectionTripZones 178

7.7.1CTsConnectedinWye 179

7.7.2CTsConnectedinDelta 180

7.8WhereProtectionsZonesdonotOverlapAroundBreakers 182

7.8.1BlindSpotCreatedbyNon-OverlapofProtectionsZonesaroundBreakers 182

7.9LinesTerminatingDirectlyonBusesataHVSwitchingStation 183

8TransformerProtection 185

8.1Introduction 185

8.2GeneralPrinciples 185

8.3DifferentialProtectionPowerTransformers 186

8.3.1FactorsAffectingTransformerDifferentialProtection 186

8.3.2PhaseShiftingfromPrimarytoSecondary 187

8.3.3TheFlowofZero-SequenceCurrent 188

8.3.3.1SubstationGroundingRequirements 188

8.3.3.2ArtificialGroundSources 190

8.3.4FlowofZero-SequenceCurrentsinDifferentialCircuits 194

8.3.4.1Delta–WyeTransformer 194

8.3.4.2Wye–DeltaTransformer 194

8.3.5RestrictedGroundFaultProtection 199

8.3.5.1TheoryofOperation 205

8.3.6PercentDifferentialRelaySettings 212

8.3.6.1CurrentTransformerMismatchandUnder-LoadTapChanging 212

8.3.6.2PercentDifferentialRelayOperation 213

8.3.6.3MaximumSystemUnbalance 215

8.3.6.4Introductionof % SlopeUnderFaultConditions 217

8.3.6.5EffectofMagnetizingCurrentInrushonDifferentialRelays 217

8.3.6.6ThirdRestraintWinding 218

8.3.6.7TransformerOverloadProtectionsforDoubleTransformerContingency 219

8.4PercentDifferentialProtectionAutotransformers 220

8.5TransformerPercentDifferentialSettingExamples 227

8.5.1PowerTransformerPercentDifferentialProtectionSettingExample 227

8.5.2AutotransformerPercentDifferentialProtectionSettingExample 231

8.5.3PowerTransformerRestrictedGroundFaultSettingExample 234 Reference 235

9BusProtection 237

9.1Introduction 237

9.2TypicalBusArrangements 237

9.3BusProtectionRequirements 239

9.4MethodsofProtectingBuses 239

9.4.1DifferentialProtection 240

9.4.1.1LowImpedanceBusDifferentialProtection 241

9.4.1.2HighImpedanceBusDifferentialProtection 245

9.4.1.3DifferentialProtectionwithDigitalRelays 246

9.4.1.4BusDifferentialProtectionZones 249

9.4.2BusBlockingProtection 260

9.5ExampleHighImpedanceDifferentialProtectionSetting 264 Reference 267

10BreakerFailureProtectionandAutomaticReclosing 269

10.1Introduction 269

10.2BreakerFailureGeneralBackground 269

10.2.1TypicalBreakerFailureTrippingZones 269

10.2.2PrinciplesofBreakerFailureProtection 271

10.2.3RequirementsforBreakerFailureProtection 273

10.2.4TypesofInitiation 273

10.2.5SpeedofOperation 273

10.2.6DeterminationofBreakerFailureCondition 273

10.2.6.162aLogicPath(Mechanical-BreakerFailureDetection) 274

10.2.6.262bLogicPath(ElectricalBreakerFailureDetection) 274

10.2.6.362cLogicPath(LowMagnitudeFaultBreakerFailureDetection) 275

10.2.7AdditionalGenericFeaturesofBreakerFailureProtection 275

10.2.7.1EarlyTripFunction 275

10.2.7.2BreakerTestSwitchSupervision 275

10.2.8CircuitOperationofBreakerFailure 275

10.2.9CoordinationwithOtherProtections 275

10.2.10Non-DuplicationofBreakerFailure 276

10.2.10.1Non-DuplicationofBreakerFailureExample 276

10.2.10.2ImpactonProtectionSeparation 278

10.2.11Load-SubstationBusFaultandLVBreakerFailure 278

10.2.12PedestalBreakerandFree-StandingCTFrameLeakageProtection 278

10.2.12.1ProtectionBlindSpot 280

10.2.12.2FrameLeakageProtection 280

10.3BreakerAutomaticReclosingGeneralBackground 283

10.3.1AutomaticReclosingTiming 283

10.3.2ReclosingSupervision 284

10.3.3Lockout 284

10.3.4Long-TimeCancel 284

10.3.5InitiationandCancellationofReclosing 284

11StationProtection 285

11.1Introduction 285

11.2TypesofStations 285

11.2.1SwitchingStations 285

11.2.2LoadSubstations 287

11.3StationandProtectionArchitecture 287

11.3.1Terminal/SwitchingStation 287

11.3.1.1BreakerandHalfArrangement 287

11.3.1.2RingBusArrangement 289

11.3.2Load-SubstationTypicalArrangement 289

11.3.2.1LoadSubstationwithDoubleTransformerDifferentialProtection 289

11.3.2.2LoadSubstationwithSingleTransformerDifferentialProtection 290

11.3.3FaultIsolationviaHVIsolatingDevices 292

11.3.3.1NormallyOpenBus-TieBreaker 292

11.3.3.2NormallyClosedBus-TieBreaker 292

11.3.4FaultIsolationviaTele-Protection 294

11.3.5StationTele-protectionSubsystems 294

11.3.5.1Tele-ProtectionUsingFrequencyShiftKeying 295

11.3.5.2Tele-ProtectionUsingT1(Digital) 295

11.4StationSwitchgearType 300

11.4.1Terminal/SwitchingStationOutdoorSwitchgear 300

11.4.2TerminalStationIndoorSwitchgear 300

11.4.3Load-SubstationOutdoorSwitchgear 301

11.4.4Load-SubstationIndoorSwitchgear 301

11.5Sub-TransmissionTypesandStationGrounding 302

11.5.1ExclusiveThree-wireSub-transmission 302

11.5.2ExclusiveFour-wireSub-transmission 303

11.5.3CombinedThree-WireandFour-WireSub-Transmission 303

11.5.4StationGroundingBar 303

11.6MasterGround 303

12CapacitorBankProtection 307

12.1CapacitorBanks 307

12.2PurposeforShuntCapacitorsonPowerSystemNetworks 307

12.3CapacitorBankConstruction 308

12.3.1IndividualCapacitorUnits 308

12.3.2BasicSeries–ParallelArrangement 309

12.3.3CapacitorBankConfigurations 309

12.3.4ShuntCapacitorGrounding 309

12.3.5CapacitorTypesbyFusing 312

12.3.5.1Fused 314

12.3.5.2NoFuses 315

12.3.6CapacitorBankRatings 316

12.3.6.1AnExampleFusedCapacitorBankRating 316

12.3.6.2AnExampleFuselessCapacitorBankRating 317

12.3.7InformationRequiredBeforeProtectionSettingsCalculations 317

12.3.8GeneralShuntCapacitorBankProtectionPrinciples 318

12.4CapacitorBankProtection 319

12.4.1FusedCapacitorBanks 319

12.4.1.1NeutralUnbalanceProtection 319

12.4.2AllCapacitorBanks 321

12.4.2.1OvercurrentProtection 321

12.4.2.2OvervoltageProtection 323

12.5CapacitorBankBreakers 324

12.6CapacitorBankSampleSettings 324

12.6.1Double-WyeUngroundedConfiguration–ExternallyFused 324

12.6.2Single-WyeUngroundedConfiguration–ExternallyFused 326

12.6.3WyeGroundedConfiguration–Fuseless 328

12.6.4PhaseandGroundOvercurrentProtection 330

12.6.5OvervoltageProtection 333 Reference 333

13SynchronousGeneratorProtection 335

13.1Introduction 335

13.2General 336

13.2.1GeneratorBasicsandFunctions 336

13.2.1.1PrimeMover 336

13.2.1.2Rotor 338

13.2.1.3Stator 338

13.2.1.4GovernorControls 338

13.2.1.5VoltageControl(ExciterandAVR) 339

13.2.1.6StationService/UAT(UnitAuxiliaryTransformer) 340

13.3Generator/UnitTransformerProtections 340

13.3.1GeneratorDifferential(87G) 341

13.3.2MainUnitTransformerDifferential(87T) 341

13.3.3Generator-TransformerOverallZoneProtection(87O) 341

13.3.4Split-PhaseDifferential(87SPHydraulicOnly) 342

13.3.5StatorGround(59G) 343

13.3.6LossofExcitation(40) 346

13.3.7PhaseUnbalance(46) 347

13.3.8Under-Frequency(81) 348

13.3.9Over-excitation24 350

13.3.10Out-of-Step(21–78) 350

13.3.11ReversePower(32) 353

13.3.12TransmissionSystemBackup 353

13.3.12.1PhaseBackup(21,51V) 353

13.3.12.2GroundBackup(51TG) 354

13.4CurrentTransformers 355

13.5GeneratorProtectionSampleSettings 356

13.5.1SampleSetting1–LargeHydraulicGenerators 356

13.5.1.1Differential(87) 356

13.5.1.2Split-PhaseDifferential(87SP) 356

13.5.1.3StatorGround(59G) 357

13.5.1.4LossofExcitation(40) 357

13.5.1.5PhaseUnbalance(46) 358

13.5.2SampleSetting2–LargeThermalGenerators 358

13.5.2.1Differential(87) 358

13.5.2.2StatorGround(59G) 359

13.5.2.3LossofExcitation(40) 361

13.5.2.4Over-Excitation(24) 362

13.5.2.5Out-of-Step(21–78) 362

13.5.2.6PhaseUnbalance(46) 363

13.6GeneratorControlandProtectionSystemsCoordination 363

13.6.1SynchronousGeneratorPhasorDiagrams/Capability 363

13.6.1.1CapabilityCurve 364

13.6.2Steady-StateStabilityLimit(SSSL) 367

13.6.2.1Ona RX Plot 367

13.6.3Over-excitationV/HzProtectionandControlSystemCoordination 368

13.6.4LossofExcitationProtectionandControlSystemCoordination 369

13.7GeneralGeneratorTrippingRequirements 369

13.8BreakerFailureInitiation 370 Reference 370

14TransmissionLineProtection 371

14.1General 371

14.2BasicLineProtectionRequirements 371

14.3ImpedanceRelaysandWhyNotJustOvercurrentRelays 372

14.3.1SourceImpedance 374

14.4DistanceRelayResponsetoFaultTypes 376

14.4.1PhaseFaultResponse 376

14.4.2GroundFaultResponse 378

14.5ApparentImpedance 381

14.5.1ExampleofApparentImpedance 382

14.5.2DerivationofApparentImpedance 383

14.5.3ApparentImpedanceEffectonDistanceRelaySettings 383

14.5.4MaximumApparentImpedanceCalculationExample 384

14.5.5ApparentImpedanceandParalleledConductors 385

14.5.6LoadsubstationsandApparentImpedances 386

14.5.6.1PresenceofTappedLoadsubstations 386

14.5.6.2LineBackupProtectionatLoadsubstations 387

14.5.6.3LargeZone2ReachesSeeingintotheLoadSubstationLVSide 387

14.5.6.4LoadSubstationsSuppliedbyLongTaps 388

14.6Redundancy/Backup 388

14.6.1NeedforProtectionBackup 388

14.6.2RemoteandLocalProtectionBackup 388

14.6.2.1RemoteBackup 389

14.6.2.2LocalBackup 389

14.7Tele-Protection(AlsoKnownasPilot-Protection) 390

14.7.1Tele-protectionArchitecture 390

14.7.2ProtectionSchemeTypesforLocalBackup 390

14.7.2.1DirectUnderreachingTransferTrip(DUTT) 390

14.7.2.2PermissiveOverreachingTransferTrip(POTT) 392

14.7.2.3DirectionalComparisonBlockingTransferTrip(DCBTT) 397

14.8GeneralImplications 399

14.8.1ApparentImpedanceImplications 399

14.8.2LineProtectionZone2ReachImplications 400

14.8.3CommunicationImplications 400

14.9PeripheralRequirementsofDistanceProtection 400

14.9.1DistanceRelayResponsetoThree-PhaseFaults 401

14.9.2MemoryAction 402

14.9.3Stub-busandSwitchOntoFaultProtection 402

14.9.4OvercurrentSupervision 403

14.9.4.1SupervisingCurrentElements 404

14.9.5ReclosingCoordinationwithLineEndOpen–PermissiveEchoTimer 404

14.9.6PotentialSources 405

14.9.6.1TransientResponse 405

14.9.7LossofVoltagetoDistanceRelays 407

14.9.8Self-MonitoringRelays 407

14.10Tele-Protection(Pilot-Protection)AHistoricalPerspective 408

14.11Tele-ProtectionviaPowerLineCarrier 408

14.11.1ProtectionArchitecturewithPLC 409

14.11.1.1Applications 409

14.12SynchronousOpticalNetwork(SONET) 409

14.12.1FiberInstallation 410

14.12.2Multiplexer(MUX)Equipment 410

14.12.3DefinitionofT1 410

14.13Three-TerminalLines 410

14.13.1SchemeTypeandSettingConsiderations 410

14.13.1.1PermissiveOverreachingScheme 410

14.13.1.2DirectionalComparisonBlockingScheme 411

14.13.1.3WeakEndInfeedsandCurrentReversals 412

14.14DistributedGeneration 413

14.14.1TraditionalProtectionSchemes 413

14.14.2ConventionalGenerationvs.TappedGeneration 414

14.14.2.1ConventionalGeneration 414

14.14.2.2TappedGeneration 414

14.14.3ImpactontheTraditionalProtectionSchemes 415

14.14.3.1PermissiveOverreachingScheme 416

14.14.3.2DirectionalComparisonBlockingScheme 416

14.14.3.3LineDifferentialScheme 416

14.14.3.4IssueswithEitherPermissiveorBlockingSchemes 417

14.14.3.5PreferredSchemetoCaterforMulti-TappedGeneration 417

14.14.3.6ConvertingfromPermissivetoBlockingSchemes 417

14.14.3.7GroundDistanceProtectionSettings 418

14.14.3.8Loadsubstations 418

14.15DistanceRelayResponsetoResistiveFaults 421

14.15.1BackgroundtoResistiveFaults 421

14.15.1.1ResistiveFaults 421

14.15.1.2DistanceRelaysandFaultResistanceCoverage 421

14.15.2DistanceRelayResponsetoResistiveFaults 427

14.15.2.1ExpandingMHOCharacteristics 427

14.16PowerSystemConsiderations 428

14.16.1LoadabilityDuringNormalSystemConditions 429

14.16.2LoadabilityDuringExtremeSystemConditions 430

14.16.3NewLoadabilityCriteriainNorthAmerica 431

14.16.3.1VariousMethodsofBlindingRelaystoLoad 432

14.17LineCurrentDifferentialProtection 433

14.17.1Introduction 433

14.17.2FunctionalDescription 434

14.17.3LineswithTappedLoadSubstations 434

14.17.4Two-EndedScheme 436

14.17.5Three-EndedScheme 436

14.17.6ClockSynchronization 437

14.17.7Settings 437

14.17.7.1LineCurrentDifferentialElementSettings 437

14.17.7.2DistanceElementSettings 438

14.17.7.3PhaseandGroundDistanceSettings 438

14.17.7.4DistanceElementsSettings–TappedLoad-substationStations 438

14.17.7.5Three-TerminalLines 438

14.17.8SystemConsiderations 438

14.17.8.1WeakEndInfeedsandCurrentReversals 438

14.17.8.2LineLoadingandSystemSwings 439

14.17.8.3TappedGeneration 439

14.18PilotWireProtection 439

14.18.1Introduction 439

14.18.2TheoryofOperation 440

14.19PowerSystemConsiderations 440

14.19.1FaultClearingTimeCriticality 440

14.19.2FaultClearingPerformanceCategories 441

14.19.2.1NormalClearingTimes 441

14.19.2.2BreakerFailureClearingTimes 441

14.19.3ProtectionPlanning 442

14.19.4FaultClearingComponents 442

14.20LineSettingApplicationExample 443

14.20.1Two-TerminalLineSettingExample 443

14.20.1.1SettingZone1 443

14.20.1.2SettingZone2 443

14.20.1.3PeripheralSettings 446

14.20.2Long-TappedTransformerLineSettingExample 448

14.20.2.1SettingZone1 450

14.20.2.2SettingZone2 451

14.20.2.3SettingZone3 452

14.20.2.4SettingofRelayElements 453 References 453

15Subtransmission/DistributionFeederProtection 455

15.1Subtransmission/DistributionCharacteristics 455

15.2Definitions/Characteristics 455

15.2.1DistributionNetworkFeederDefinitions 455

15.2.2FeederCharacteristics 456

15.3DistributionFeederProtectionDevices 459

15.3.1ProtectionDevices 459

15.3.1.1OvercurrentRelays 459

15.3.1.2DistanceRelays 465

15.3.1.3Fuses 467

15.3.1.4AutomaticReclosers(AR) 476

15.4ProtectionCoordinationPrinciples 482

15.4.1FunctionsofDistribution/OvercurrentProtection 482

15.4.2CoordinationGeneral 483

15.4.2.1Fuse–FuseCoordination 484

15.4.2.2Fuse–AutomaticRecloser(AR) 485

15.4.2.3PrimaryFuse–TransformerDamageCurve 489

15.5FeederEnergization 491

15.6SubtransmissionFeederProtection 493

15.6.1General 493

15.6.2SubtransmissionFeederProtectionRequirements 494

15.6.3SubtransmissionProtection 494

15.6.3.1ProtectionFunctions 494

15.6.3.2CircuitOperationandTripping 497

15.6.4AutomaticReclosing 498

15.6.4.1General 498

15.6.4.2AutomaticReclosingCircuitOperation 498

15.6.5RelaySettings 500

15.6.5.1Three-Wirevs.FourWireFeeders 501

15.6.5.2GeneralInformation/DataRequirements 501

15.6.5.3PhaseProtection 502

15.6.5.4GroundProtection 506

15.7ImpactofDistributedGenerators(DGs)onDistributionFeederProtection 509

15.7.1SignificantProtectionIssuesCausedbyDistributedGeneration 509

15.7.1.1TheFeederBecomesNon-Radial 509

15.7.1.2Islanding 509

15.7.1.3InternalFaults(FaultsontheFeederConnectingtheDGs) 511

15.7.1.4ExternalFaults(FaultsonFeedersAdjacenttoOneConnectedtoDG) 513

15.7.1.5AutomaticReclosingandSynchronism 514

15.7.1.6InrushCurrent–InterconnectionTransformers 515

15.7.1.7SummaryofProtectionImpactsDuetoDGs 515

15.8FeederProtectionApplicationSettingsExample 516

References 522

Index 523

AbouttheAuthors

JohnCiufo,P.Eng.

IsaprofessionalElectricalEngineerwithoverfortyyearsofelectricutilityexperiencewithafocus onprotectionandcontrol(P&C)engineering.HehasworkedforHydroOneInc.,formerlyOntario Hydrofrom1976to2010.Overtheyears,hehasheldmanydifferentpositionsintheP&Cpower systemdiscipline.Hisexperienceincludesengineering,powersystemreliabilitycompliance,smart grid,assetmanagement,developmentofstrategies,policies,developingfunctionalanddesignstandards,cybersecurity,anddigitalstations.HecompletedhiscareerwithHydroOneasaSeniorManager–Protection&ControlStrategiesandStandardsinAssetManagement.In2011,hebecamea principalownerofCiufo&CooperbergConsultingInc.aconsultingcompanythatspecializesin powersystemprotection.

Johnhasanextensivebackgroundinprotectionandcontrolsystemsintheelectricindustry.He isaregisteredProfessionalEngineerintheProvinceofOntarioandwasamemberoftheNortheastPowerCoordinatingCouncil(NPCC),TaskForceonSystemProtectionfor10years,anda Vice-ChairfromJanuary2008toJanuary2010.WasamemberoftheNorthAmericanElectric RegulatoryCorporation(NERC),SystemProtectionandControlSubcommitteesinceMay2004, andwastheChairbetweentheperiodsJune2008toSeptember2010.HewasonseveralNERC draftingteamsdevelopingprotectionandcontrol-relatedstandardsandhasco-authoredseveral industrypapers.

DuringhiscareeratOntarioHydro/HydroOne,hewasinstrumentalindevelopingprotection engineeringapplicationstandards;protectionphilosophiesandprocesses;transitionedthecompanyfromelectromechanicaldesignstomicroprocessor-baseddesignsthatresultedinsignificant costsavings;developedprotectionandcontrolhealthindicesandassetmanagementprocesses; developedreliabilitycomplianceprogramsandprocesses;developedthecompany’scybersecurity complianceprogram,introducedandpiloteddigitalstationdesigns,transitionedthecompanyfrom microwavetoDigitalSynchronousOpticalNetwork(SONET)teleprotectionsystems,established, developed,andconductedinternalcompanyprotectiontraining,amongotherachievements.

JohncontinuestobeactiveintheindustryandprovidesengineeringservicestomanyNorth Americanelectricutilities.HeisaTechnicalAdvisorfortheCentreforEnergyAdvancementTechnologicalInnovations(CEATI)fortheProtectionandControlGroup.

AaronCooperberg,LicensedProtectionEngineer

IsprofessionallylicensedtopracticePowerSystemProtectionintheProvinceofOntario.Upon graduationhavingspecializedinPowerSystemshebeganhiscareerwithOntarioHydroin1977.He wasassignedtheretotheprotectionengineeringgroupresponsibleforthespecificationanddesign ofprotectionsystems.Hespent21yearsworkingalongsideOntarioHydro’stopexpertsinPower

Systemprotectionengineeringcarryingoutmanyprotectionsystemdesignsduringtheperiodof rapidexpansionofOntario’s500kVtransmissionsystemandtheconstructionoflargemulti-unit Nuclear,ThermalandHydraulicgenerationsites.

Hislast13yearswithOntarioHydroandthenHydroOnewasfocusedontheAssetManagement oftheprovince’sProtectionSystems.Herehedevelopedindustry-recognizedAssetManagement designandbusinesscasestrategiesfortheproactivereplacementofend-of-lifeprotectionsystems.Hehasalsoledtheteamresponsiblefordevelopingthetechnicalrequirementstoconnect multi-tappedgenerationtoHydroOne’sTransmissionandDistributionsystems.Hecompletedhis careerwithHydroOneasaSeniorManager–Protection&ControlPlanning.In2011,hebecame aprincipalownerofCiufo&CooperbergConsultingInc.aconsultingcompanythatspecializesin powersystemprotection.

Aaronpossessesanin-depthknowledgeofprotectionsystemsfortransmissionaswellasgenerationhavingdesignedprotectionsystemsfornuclearandhydroelectricgenerationaswellastransmissionfortheformerOntarioHydro.HeprovidedexperttestimonytotheU.S–CanadaCommittee ontheAugust14th,2003,blackout.HewasontheNERCdraftingteamdevelopingProtectionand ControlStandardPRC-001forProtectionCoordination.Hewasaspeakeratconferencesonthe topicsofprotectionsystemsaswellasAssetManagementandhaspresentedatCEATIandElectric PowerResearchInstitute(EPRI).AaroncontinuestobeactiveintheindustryprovidingengineeringservicestomanyNorthAmericanelectricutilities.

Preface

Thisbookcontainstheaccumulatedexperiencesandpracticesusedbytheauthorswhohaveeach, practicedprotectionengineeringforoverfortyyears.

Protectionengineeringisaspecialtywithinthestudyofpowersystemengineering.Itisgenerally, nottaughtinengineeringprogramsexceptforsomespecializedpost-graduateprograms.Consideringthateverypowersystembig,andsmall,regardlessofvoltagelevel,requirestheapplication ofprotectionsystems;theauthorsfeltthattherewasagapintheindustry,andthereisaneedfor moreprotectionsysteminformationandguidancefornewprotectionpractitioners.

Protectionisahighlycomplexdisciplinerequiringseveralyearsofspecializedengineeringdevelopmentfollowinggraduation.Utilitiestypicallyresorttotherecruitmentofgraduatepowersystem engineersintothefieldofprotectionengineering.Historically,theserecruitswouldgainthenecessaryexperienceandtrainingwhileworkingalongwithseasonedengineersovermanyyearsas theygainconfidence.Thismentoringapproachisbecomingmoredifficulttoimplement.Specifically,thismentoringapproachreliesonseveralyearsofoverlapwhichisbecomingmoredifficult toattainasmanyexperiencedstaffwithlifelongknowledgehave,orareretiring,leavingfewer,and fewerexperiencedmentors.

Newprotectionpractitionerstothisfieldrequireresources,andthemeanstogainthenecessary know-how.Itisforthisreasonthatwefeltcompelledtowritethisbook,toprovidenewprotectionpractitionerswithabooktheycanrelatewithforPowerSystemProtectionFundamentalsand Applications.Itistheintentoftheauthors,thatthisbookfacilitatesknowledgetransferviatheuse ofastructuredsetoffundamentalprotectionprinciples,explanatoryillustrations,andapplications oftheseprinciples.

Theauthorsappreciatethechallengesfornewprotectionpractitioners.Itisacomplexfield requiringknowledgeofelectricalengineering,powersystems,powerequipment,protectionengineering,telecommunications,powersystemanalysis,control,andmorerecently,computerprogramming,andnetworksastheindustrytransformsintoadigitalworld.Protectionpractitioners aretaskedwithdesigning,maintaining,operating,compliance,managing,anddiagnosingprotectionsystemapplications.Assuch,theyareaccountabletomakethesesystemsworkandfunction perdesign;theyrepresenttheprocessmetaphorically,where“therubbermeetstheroad.”

Thisbookiswrittenwiththeapproachthatinthisnewanddynamicdigitaltransformation, theunderstandingoftheunderlyingprotectionprinciplesiskeytothesuccessfuldevelopmentof aprotectionpractitioner.Fundamentally,protectionpractitionersareheldaccountabletodesign, operate,maintain,andimplementworkablesolutionstosupportthereliableoperationofthepower system.Itisforthispurpose;wewrotethisbooktobeabalancebetweentheoryandpractical applicationsfortheintentofbeingrelatable.

Acknowledgements

JohnCiufo

Anundertakingofthisnaturerequiresapassionforthepracticeofprotectionengineering.Italso requiresdedicatingpersonaltimetoitsdevelopment,andassuch,Iwouldliketothankmyfamily fortheircooperationandunderstanding.

ThisbookwasmadepossiblewiththeencouragementandsupportofmydearwifeMaria.I wouldliketoalsothankmychildren,VanessaLynnandMarkJoseph,fortheirinspirationduring thewritingofthisbook.

Additionally,Iwouldliketothankmycolleagueandfriend,AaronCooperberg,forhisshared interestanddedicationtothissubjectandforco-authoringthisbook.

AaronCooperberg

DuringmycareeratOntarioHydro/HydroOne,Iwasalwayspassionateaboutsharingmyengineeringknowledgewithco-workersandparticularlywithjuniorprotectionengineeringstaff.This passionforsharingknowledgehasleadmetoco-authorthisbook.

Iwouldliketoacknowledgetheencouragement,support,andpatienceofmywifeRinawithout whomthisbookwouldnotbepossible.

Additionally,Iwouldliketothankmycolleagueandfriend,JohnCiufoforwhomIhavethe utmostrespect.John’scommitmentanddeterminationwereinstrumentalwhileco-authoring thisbook.

JohnandAaron

WewouldliketoexpressoursincerethankstoOntarioHydro/HydroOneforprovidingtheopportunitiestolearnandpracticepowersystemprotectionandcontrolengineering.Thishasallowedus tocontributetoHydroOne’ssuccessandadvancementstotheOntariopowergridandultimately forthebettermentofthepeopleofOntario.

WewouldliketoconveyoursincerestgratitudetoMurchedAjami,IanBradley,MarkCiufo, andMiroslavKosticforreviewingourmanuscript,providingtheirdirection,andtheircontinued support.

1.1WhatIsPowerSystemProtection?

Ourmodernhumancivilizationisdependentontheelectricpowersystemtoenableallofitscritical functions:food,health,sanitation,security,commerce,andprogress.Theelectricpowersystemis dependentonprotections.Byelectricpowersystem,wearereferringtopowergenerationanda networkofwiresthatconnectgenerationtotheloadlocationswhereitisutilizedtopowerthe functionsabove.Protectionsconsistofanassemblyofelectriccomponents,andconsequently,are betterreferredtoasprotectionsystems.Protectionsystemscontinuouslymonitortheequipment thatthepowersystemitselfiscomprisedofforabnormaloperatingconditions.Protectionsare automaticsystemsthatonceanabnormalconditionisdetected,quicklyaspossibleisolatesthe abnormalconditionbythetrippingofcircuitbreakersortheoperationoffuses.

Powersystemprotectionsystemsarereferredtoassecondaryequipment,astheprimaryequipmentistransformers,lines,buses,generators,capacitors,breakers,disconnectors,etc.Primary equipmentisdirectlyinvolvedwithelectricenergysupplyanddelivery.Protectionsystemsare designedandinstalledtooverseeand“protect”primaryequipmentandtheintegrityofthepower system.

Inessence,powersystemprotections“protect”powersystemprimaryequipmentand,thereby, maintainsystemintegrityandsafety.

Protectionsystemsaretoapowersystemasapanelcircuitbreaker/fuseistoahouseholdelectricalcircuitpanel.

Inadditiontoprotectingpowersystemprimaryequipment,powersystemsalsoemployremedialactionschemes(RASs),previouslyknownasspecialprotectionsystems(SPSs),toprotectthe integrityofthepowersystem.RAS/SPSscanmonitor frequency,voltage,andoperatingcontingenciesthatrequireimmediatesystemcorrectactions,amongothers.

Powersystemprotectionsareclassifiedas“mission-critical”assets,asfailuretooperateor,if theydonotoperateasintended,havegraveconsequencestothecontinuedoperationofthepower system.

AprotectionsystemitselfiscomprisedofIndividualdevices,sub-systems,andnumerouspieces ofequipmentasfollows:

● Protectionrelaysthatmonitorthepowersystemforabnormalconditions.

● Communicationsystemsthatareusedaspartoftheoverallprotectionsystemfunctionality.

● Voltageandcurrentsensingequipmentthatstepsdownhigh-powersystemvaluestomuchlower valuescapableofbeinginputintotheprotectionrelays.

2 1WhatIsPowerSystemProtection,WhyIsItRequiredandSomeBasics?

● Directcurrent(DC)auxiliarysupplyincludingbatteriesandtheirchargersusedtopower protectionrelays,auxiliarydevices,communicationsystemsandtripcircuitbreakers.

● Controlcircuitryworkingwithprotectionstotripcircuitbreakersorotherinterruptingdevices suchascircuitswitchers.

Mostreliabilityorganizationsthatoverseetheadequacyofprotectionsincludetheabove-listed componentsaspartofanoverallprotectionsystem.Batteriesarenotincludedjustthebattery circuits.Also,circuitbreakersarenotincludedjustthebreakertripcoilsare.However,batteries andbreakersarekeycomponentsofprotectionsystemsbutfallunderthejurisdictionofstation engineering.Theconsequenceofsuchdefinitionsonlyimpactscomplianceandorganizational accountability.

AtypicalprotectionsystemconsistingofthesecomponentsisillustratedinFigure1.1showing thataprotectionsystemconsistsofmanycomponents,orsub-systems:CTs,PTs,protectiverelays, auxiliaryrelays,controlwiring,equipmentmountingpanels,DCpowersupplies,telecommunications,andbreakertripcoils.Aprotectionsystem,inthegeneralcase,isnotjustonedevice,or subsystem,itconsistsofseveralsub-systems,eachcontainingseveraldevicesthatrepresentthe whole.Tofunctioncorrectly,eachofthecomponentsorsub-systemsmustthemselvesoperate correctly itisaserialoperation.Eachofthesesub-systemsandtheirfunctionswillbediscussed inmoredetailinChapter2,Section2.1

Itisnotpossibletodesignanelectricpowersystemthatisimmunetoequipmentfailuresand abnormaloperatingconditions.Therefore,allpowersystemsmustdeployhighlyreliableprotectionsystemsthatcanquicklydetectabnormalconditionsandtakeappropriateactionstomitigate abnormalities.

Inthenormalstateofapowersystem,thereisabalanceofelectricenergysufficienttomeet theneedsoftheconnectedload,inreal-time,andthepowersystemoperatingquantitiessuchas voltages,currents,andfrequency,areallwithinthedesignratingsoftheprimaryequipment.

Abnormalconditionsresultwhensystemfaultsoccurthatcausetheseoperatingquantitiesto deviatebeyondequipmentratings.Protectionsystemsaredesignedtomonitorpowersystemquantilesforsuchabnormalitiesandoperatetoisolatethesefaulteventsthatcauseabnormalquantities. Oneprominentoperatingquantitythatisdrasticallyimpactedbysucheventsiscurrent.System faultsalsoreferredtoasdisturbances,cancausenormalloadcurrenttoincreasefromseveral hundredampsto70,000Awhichcancausemajordamageifnotclearedinfractionsofasecond. Currentsofsuchhighquantitiescancausethermaldamage,mechanicaldamage,forcesaresohigh thatmetalbusbarscanbend,equipmentfailures,fires,safetyissues,andacollapseofthepower systemifnotclearedwithintheshort-timeratingsofprimaryequipment.

Someexamplesofsystemeventsthatcauseabnormalconditionsareasfollows:lightningstrikes (Figure1.2),wind,icestorms,animalcontact,equipmentfailures(Figure1.3),caraccidentsknockingdownelectricalpoles/equipment,etc.,thatcauseshortcircuitsorbrokenconnections.Such eventsarealsoreferredintheindustry,asfaults.Faultsandtheirtypes,causes,andhowtocalculate faultvalueswillbefurtherdiscussedinChapter6.

1.2WhyIsPowerSystemProtectionsRequired?

Powersystemsaredesigned,planned,andconstructedtolimitfailuremodesandequipmentdamageandtherebyenhanceoverallsystemreliability.

Figure1.1 Illustrationofaprotectionsystemforatransmissionline[1].

Environmentalrisklightningstrike–DallasTx.Source:NOAAPhotoLibrary/Flickr/CCBY2.0.

Figure1.3 Failedtransformeronfire–ThessalonikiGreece.Source:Konstantinos Stampoulis/Firefighters.gr/ WikimediaCommons/CCBY-SA3.0GR.

Thepowersystemisdesignedtobalanceperformanceandminimizethecostofenergydelivery. Theplanning,design,andimplementationofapowersystemisabalanceofinitialcapitalcosts andongoingmaintenancecostswiththepotentialcostimpactofpowersystemequipmentfailure. Powersystemsareexposedandsubjectedtoenvironmentalelementssuchasrain,snow,ice, lightning(Figure1.2),storms,andothersuchenvironmentalrisks.Theseriskscause,power system’sprimaryequipmentcomponentstomakeunwantedcontactwithothercomponents, referredtoasfaultswhichresultinfaultcurrentsintheorderof10–100timesnormalloadcurrents. Transmissionlineshavethehighestriskofenvironmentalelementsduetotheirincreasednatural exposuretotheenvironment.

Figure1.2

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.