[FREE PDF sample] Rf and microwave circuit design: theory and applications charles e. free ebooks

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/rf-and-microwave-circuit-design-theory-and-applicatio ns-charles-e-free/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

The load-pull method of RF and microwave power amplifier design 1st Edition John Sevic

https://ebookmass.com/product/the-load-pull-method-of-rf-andmicrowave-power-amplifier-design-1st-edition-john-sevic/

The Load-pull Method of RF and Microwave Power Amplifier Design John F. Sevic

https://ebookmass.com/product/the-load-pull-method-of-rf-andmicrowave-power-amplifier-design-john-f-sevic/

Mechanical Design: Theory and Applications T. H. C.

Childs

https://ebookmass.com/product/mechanical-design-theory-andapplications-t-h-c-childs/

Circuit Theory and Transmission Lines 2nd Edition

Ravish R. Singh

https://ebookmass.com/product/circuit-theory-and-transmissionlines-2nd-edition-ravish-r-singh/

Circuit Theory and Networks Analysis and Synthesis 2nd Edition Ravish R. Singh

https://ebookmass.com/product/circuit-theory-and-networksanalysis-and-synthesis-2nd-edition-ravish-r-singh/

Circuit Theory A. Nagoor Kani

https://ebookmass.com/product/circuit-theory-a-nagoor-kani/

Bird’s Electrical Circuit Theory and Technology, 7th Edition John O. Bird

https://ebookmass.com/product/birds-electrical-circuit-theoryand-technology-7th-edition-john-o-bird/

Circuit Theory 3rd Edition A Nagoor Kani

https://ebookmass.com/product/circuit-theory-3rd-edition-anagoor-kani/

Circuit Theory and Networks—Analysis and Synthesis (MU 2017) Ravish R. Singh

https://ebookmass.com/product/circuit-theory-and-networksanalysis-and-synthesis-mu-2017-ravish-r-singh/

RFandMicrowaveCircuitDesign

MicrowaveandWirelessTechnologiesSeries

SeriesEditor:ProfessorSteven(Shichang)Gao,ChairofRFandMicrowaveEngineering,andtheDirectorofPostgraduateResearch atSchoolofEngineeringandDigitalArts,UniversityofKent,UK

Microwaveandwirelessindustrieshaveexperiencedsignificantdevelopmentduringrecentdecades.Newdevelopmentssuchas 5Gmobilecommunications,broadbandsatellitecommunications,high-resolutionearthobservation,theInternetofThings,the InternetofSpace,THztechnologies,wearableelectronics,3Dprinting,autonomousdriving,artificialintelligenceetc.will enablemoreinnovationsinmicrowaveandwirelesstechnologies.TheMicrowaveandWirelessTechnologiesBookSeriesaims topublishanumberofhigh-qualitybookscoveringtopicsofareasofantennatheoryandtechnologies,radiopropagation,radio frequency,microwave,millimetre-waveandTHzdevices,circuitsandsystems,electromagneticfieldtheoryandengineering, electromagneticcompatibility,photonicsdevices,circuitsandsystems,microwavephotonics,newmaterialsforapplicationsinto microwaveandphotonics,newmanufacturingtechnologiesformicrowaveandphotonicsapplications,wirelesssystemsand networks.

RFandMicrowaveCircuitDesign:TheoryandApplications CharlesE.Free,ColinS.Aitchison September2021

Low-costSmartAntennas QiLuo,Steven(Shichang)Gao,WeiLiu March2019

RFandMicrowaveCircuitDesign

TheoryandApplications

CharlesE.Free UK

ColinS.Aitchison UK

Thiseditionfirstpublished2022 ©2022JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerial fromthistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofCharlesE.FreeandColinS.Aitchisontobeidentifiedastheauthorsofthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsinstandardprintversionsof thisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswithrespectto theaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensales materialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitation and/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservicesthe organization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisheris notengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshould consultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappeared betweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Free,CharlesE.,author.|Aitchison,ColinS.,author.

Title:RFandmicrowavecircuitdesign:theoryandapplications/Charles E.Free,UK,ColinS.Aitchison,UK.

Description:Hoboken,NJ,USA:Wiley,2022.|Series:Microwaveand wirelesstechnologiesseries|Includesbibliographicalreferencesand index.

Identifiers:LCCN2020028781(print)|LCCN2020028782(ebook)|ISBN 9781119114635(hardback)|ISBN9781119114673(adobepdf)|ISBN 9781119114666(epub)

Subjects:LCSH:Radiocircuits–Designandconstruction.|Microwave circuits–Designandconstruction.

Classification:LCCTK6560.F682022(print)|LCCTK6560(ebook)|DDC 621.3841/2–dc23

LCrecordavailableathttps://lccn.loc.gov/2020028781

LCebookrecordavailableathttps://lccn.loc.gov/2020028782

CoverDesign:Wiley

CoverImages:Circuitboardbackground©Berkah/GettyImages,InsetsketchbyCharlesFree Setin9.5/12.5ptSTIXTwoTextbyStraive,Chennai,India 10987654321

1.11.1MatchingaComplexLoadImpedancetoaRealSourceImpedance

1.11.2MatchingaComplexLoadImpedancetoaComplexSourceImpedance

1.B.1StructureofCoplanarWaveguide(CPW)

1.B.2ElectromagneticFieldDistributiononaCPWLine

1.B.3EssentialPropertiesofCoplanar(CPW)Lines

1.B.4SummaryofKeyPointsRelatingtoCPWLines

1.C.1WaveguidePrinciples

1.C.5PhaseandGroupVelocities

1.C.6FieldTheoryAnalysisofRectangularWaveguides

1.C.7WaveguideImpedance

1.C.8Higher-OrderRectangularWaveguideModes

1.C.9WaveguideAttenuation

2PlanarCircuitDesignI

2.2ElectromagneticFieldDistributionAcrossaMicrostripLine

2.3EffectiveRelativePermittivity,

2.8MicrostripCoupled-LineStructures

2.8.1AnalysisofMicrostripCoupledLines

2.8.2.1DesignofMicrostripDirectionalCouplers

2.8.3ExamplesofOtherCommonMicrostripCoupled-LineStructures

2.8.3.1MicrostripDCBreak

2.8.3.2Edge-CoupledMicrostripBand-PassFilter

3.4.1EtchedCircuits

3.4.2Thick-FilmCircuits(DirectScreenPrinted)

3.4.3ThickFilmCircuits(UsingPhotoimageableMaterials)

3.4.4Low-TemperatureCo-FiredCeramicCircuits

3.5UseofInkJetTechnology

3.6CharacterizationofMaterialsforRFandMicrowaveCircuits

3.6.1MeasurementofDielectricLossandDielectricConstant

3.6.1.1CavityResonators

3.6.1.2DielectricCharacterizationbyCavityPerturbation

3.6.1.3UseoftheSplitPostDielectricResonator(SPDR)

3.6.1.4OpenResonator

3.6.1.5Free-SpaceTransmissionMeasurements

3.6.2MeasurementofPlanarLineProperties

3.6.2.1TheMicrostripResonantRing

3.6.3PhysicalPropertiesofMicrostripLines

3.7SupplementaryProblems

4PlanarCircuitDesignII

4.1Introduction

4.2DiscontinuitiesinMicrostrip

4.2.1Open-EndEffect

4.2.2Step-Width

4.2.3Corners

4.3MicrostripEnclosures

4.4PackagedLumped-ElementPassiveComponents

4.4.1TypicalPackagesforRFPassiveComponents

4.4.2Lumped-ElementResistors

4.4.3Lumped-ElementCapacitors

4.4.4Lumped-ElementInductors

4.5MiniaturePlanarComponents

4.5.1SpiralInductors

4.5.2LoopInductors

4.5.3InterdigitatedCapacitors

4.5.4Metal–Insulator–MetalCapacitor

5

5.5ReflectionCoefficientofaTwo-PortNetwork

5.6PowerGainsofTwo-PortNetworks

5.7Stability

5.A.1TransmissionParameters(ABCD Parameters)

5.A.2AdmittanceParameters(Y -Parameters)

6.2.4FaradayRotation

6.3FerritesinMetallicWaveguide

6.3.1ResonanceIsolator

6.4FerritesinPlanarCircuits

6.4.1PlanarCirculators

6.4.2Edge-Guided-ModePropagation

6.4.3Edge-Guided-ModeIsolator

6.4.4PhaseShifters

6.5Self-BiasedFerrites

6.6SupplementaryProblems

7Measurements

7.3MicrowaveVectorNetworkAnalyzers

7.3.1DescriptionandConfiguration

7.3.2ErrorModelsRepresentingaVNA

7.3.3CalibrationofaVNA

7.4On-WaferMeasurements

8RFFilters

8.4DesignStrategyforRFandMicrowaveFilters

8.5Multi-ElementLow-PassFilter

8.6PracticalFilterResponses

8.7Butterworth(orMaximallyFlat)Response

8.8Chebyshev(EqualRipple)Response

8.9MicrostripLow-PassFilter,UsingSteppedImpedances

8.10MicrostripLow-PassFilter,UsingStubs

8.11MicrostripEdge-CoupledBand-PassFilters

8.12MicrostripEnd-CoupledBand-PassFilters

8.13PracticalPointsAssociatedwithFilterDesign

8.15SupplementaryProblems

9MicrowaveSmall-SignalAmplifiers

9.3Distributed(Microstrip)MatchingNetworks

9.4DCBiasingCircuits

12.4.1BasicPrinciples

12.4.2GainofaHertzianDipole

12.5RadiationfromaHalf-WaveDipole

13.2.1.2PowerAddedEfficiency

13.2.1.3InputandOutputImpedances

Preface

Inrecentyears,therapidexpansionofcommunicationapplicationsatRFandmicrowavefrequencieshascreatedsignificant interestinthisareaofhigh-frequencyelectronics,bothinindustryandacademia.Thistextbookprovidesarigorousintroductiontothetheoryofmodern-daycircuitsanddevicesatRFandmicrowavefrequencies,withanemphasisoncurrent practicaldesign.

Oneofthethemesofthebookisthatofthedesignofhigh-frequencyhybridintegratedcircuitsinwhichindividualpassive andactivecomponentsareinterconnectedwithinaplanarcircuitstructure.Thetraditionalmethodofmakingsuchcircuits istoassemblethecomponentsonalow-losscopper-cladprintedcircuitboard,whichhasbeenetchedwiththerequired interconnectionpattern.Inrecentyears,thedevelopmentofnewmaterialsandnewfabricationtechniqueshascreated greaterscopeforthecircuitdesigner,withtheopportunitytousehybridcircuitstructuresatmuchhigherfrequencies,well intothemillimetre-waveregion.Inparticular,theuseofaphotoimageablethick-filmandlow-temperatureco-firedceramic (LTCC)materialshasenabledlow-cost,high-performancemultilayerstructurestobefabricated.Thepropertiesofthese materials,andtheirapplicationtoRFandmicrowavecircuits,arediscussedinthebook.

ThebookhasbeenorganizedtoprovideacohesiveintroductiontoRFandmicrowavetechnologyatundergraduate andMaster’sdegreelevel.Itassumesonlyabasicknowledgeofelectronicsonthepartofthereader,withthebulkofthe high-frequencymaterialbeingdevelopedfromfirstprinciples.Manyworkedexampleshavebeenincludedinthetextto emphasizethekeypoints,andsupplementaryproblemswithanswersareprovidedattheendofmostchapters.

ThematerialpresentedinthebookisbasedlargelyoncoursesinRFandmicrowavecommunicationstaughtbyboth authorsatseveralUKUniversities.

Chapter1 introducesthetheoryofRFandmicrowavetransmissionlines,whicharefundamentaltohighfrequencycircuits.ThebasictheoryisexpandedtoincludetheprinciplesandapplicationsoftheSmithchart,whichisa graphicaltoolthatcanbeusedtorepresentandsolvetransmissionlineproblems.Thischapterincludessummariesofthe propertiesofsomecommonhigh-frequencytransmissionlines,namelycoaxialcable,microstrip,coplanarwaveguide,and hollowmetallicwaveguide.

Chapter2 expandsonthetheoryandapplicationsofmicrostrip,whichwasintroducedinthefirstchapter.Microstripis byfarthemostcommontypeofinterconnectionusedforRFandmicrowaveapplications,andthechapterdiscussesthe propertiesofthistransmissionmedium,andintroducessometypicalpassivemicrostripcomponents.

Chapter3 presentsinformationonmoderncircuitmaterialsandtheassociatedfabricationtechniques.Thisisanimportantchapterinthatgoodelectricaldesignofplanarcircuitsathighfrequenciesrequiresagoodunderstandingofthe propertiesandcapabilitiesofthecircuitmaterials.Inadditiontothetraditionaletchedcircuittechniques,thechapterdiscussesnewerfabricationapproachesusingphotoimageablethick-film,LTCC,andinkjetprinting.Thechapterconcludes withadiscussionofthevariousmethodsavailableforcharacterizingcircuitmaterialsathighfrequencies.

Chapter4 continuesthethemeofplanarcircuitdesignthroughadiscussionofthediscontinuitiesassociatedwith microstripcomponents.Alsointhischapteraretheequivalentcircuitsofpackagedlumped-elementpassivecomponents, aswellasminiatureplanarcomponentsthatcanbeusedinsinglelayerandmultilayerformats.

Chapter5 introducestheconceptof S-parameters.ThesearenetworkparametersusedtocharacterizeRFandmicrowave devices,andanunderstandingoftheirmeaningandusageisessentialformicrowavedesign.Thechapterincludesinformationonpowergaindefinitions,andtheuseofflowgraphsinhigh-frequencynetworkanalysis.

Chapter6 presentsinformationonmicrowaveferrites.Ferritematerialshaveawell-establishedplaceinmicrowave technology,primarilyforprovidingnon-reciprocalcomponents.Thepropertiesofferritematerials,aswellastheirusein traditionalmetallicwaveguidecomponents,areexplained.Morerecentusesofferritematerialinmultilayerplanarcircuits arealsodiscussed.

Chapter7 isconcernedwithmeasurementsatRFandmicrowavefrequencies.Thechapterfocusesinparticularontheuse ofthevectornetworkanalyzer(VNA),whichisthemainitemoftestinstrumentationinallhigh-frequencylaboratories. AswellasdescribingthefunctionsanduseoftheVNA,thechapteraddressestheimportantissuesofcalibrationand measurementerrors.

Chapter8 providesanintroductiontoRFfilters,whichareessentialcircuitsinmosthigh-frequencysub-systems.This chaptercommenceswithareviewoftheprincipalfilterresponses,andthenextendsthetheoreticaldiscussionintopractical designdetail.Anumberofworkedexamplesofthedesignofmicrostripfiltershavebeenincluded,andthechapterends withabriefreviewoftheadvantagesofmultilayerformatsforproducinghigh-performancefiltersatRFandmicrowave frequencies.

Chapter9 presentsinformationonthedesignofhybridmicrowaveamplifiersinwhichapackagedtransistor,usuallya metalsemiconductorfieldeffecttransistor(MESFET),ispositionedbetweeninputandoutputmatchingnetworks.The chapterfocusesonthedesignofthematchingnetworks,andconsiderstheeffectsofthesenetworksontransducergain, noise,andstability.Workedexamplesareincludedtoshowthedesignstrategiesemployedformicrostripimplementation.

Chapter10 introducesthefunctionanddesignofswitchesandphaseshiftersinplanarcircuits.Thefunctionsoffour devicescommonlyusedasswitchesinRFandmicrowavecircuitsaredescribed,namelyPINdiodes,fieldeffecttransistors(FETs),microelectromechanicalswitches(MEMS),andinlinephasechangeswitches(IPCS).Theuseoftheseswitches invarioustypesofphaseshiftersaredescribed,withsupportingworkedexamplestoshowhowmicrostripphaseshifters aredesigned.

Chapter11 givesinformationonthevarioustypesofoscillatorsusedinhigh-frequencycircuits.Startingwiththecriteria foroscillationinafeedbackcircuit,thethreemaintypesoftransistoroscillatorsaredescribed,namelytheColpitts,Hartley, andClapp–Gourietoscillators.Leadingonfromthebasicoscillatorstheconceptofthevoltage-controlledoscillator(VCO) isintroduced.ManyRFandmicrowavereceivers,andmosttestinstrumentation,derivetherequiredfrequencyfromavery stablelow-frequencycrystaloscillator,andafrequencysynthesizer.Thechapterincludesadiscussionofcrystaloscillators, togetherwithareviewofthemaintypesoffrequencysynthesizersusingphase-lockedloops.Alsogivenaredescriptions ofseveraltypesofoscillatorsusedspecificallyatmicrowavefrequencies;theseincludethedielectricresonatoroscillator (DRO),andoscillatorsusingtheGunnandImpattprinciples.Oscillatornoiseisasignificantissueinmanysituations, particularlyforlow-noisereceivers,andthechapterconcludeswithadiscussionofoscillatornoise,togetherwithamethod formeasuringthisnoise.

Chapter12 presentsinformationonRFandmicrowaveantennas.Thechaptercommenceswithadiscussionofthetheoreticalaspectsofelectromagneticradiationfromsimplewirestructures,includingthehalf-wavedipole.Theanalysisisthen extendedtoconsiderthebehaviourofwirearrays.ThemostnotablearrayusedforRFandlowmicrowavefrequencycommunicationistheYagi–Udaarray,andthisisconsideredinsomedetail.Theshortwavelengthsassociatedwithmicrowave frequenciesoffermorescopefortheantennadesigner,andthechaptergivesdesigndetailsofmicrowaveantennasusing planarpatchstructuresandalsothoseusingradiationfromapertures.

Chapter13 providesanintroductiontopoweramplifiers,anddistributedamplifiers.Poweramplifiersarecommonlypositionedinasthelastdeviceinatransmitterbeforethesignalsaretransmitted,andconsequentlyanydistortionintroduced bythepoweramplifiercannotbecorrected.Distortionisthereforeoneofthemainthemesofthischapter.Alsodescribed inthischapteraredistributedamplifiers,whichprovideanattractivecombinationofhighavailablegainandverywide bandwidthatmicrowavefrequencies.

Chapter14 bringstogetheranumberofdevicesintroducedinearlierchapterswithadiscussionofRFandmicrowave receivers.Noiseisanimportantissueinanyreceiver,particularlywhenthereceivedsignallevelsareverylow,andthis chapterincludesadiscussionoftypicalsourcesofnoise,andhowtheyaffecttheperformanceofareceiver.

AbouttheCompanionWebsite

Thisbookisaccompaniedbyacompanionwebsite:

www.wiley.com/go/free/rfandmicrowave

Thewebsiteincludes:

• TeachingPDFSlides(bychapter)

• MicrostripDesignGraphs

RFTransmissionLines

1.1Introduction

Transmissionlines,intheformofcableandcircuitinterconnects,areessentialcomponentsinRFandmicrowavesystems. Furthermore,manydistributedplanarcomponentsrelyontransmissionlineprinciplesfortheiroperation.Thischapter willintroducetheconceptsofRFtransmissionalongguidedstructures,andprovidethefoundationsforthedevelopment ofdistributedcomponentsinsubsequentchapters.

FourofthemostcommonformsofRFandmicrowavetransmissionlineareshowninFigure1.1.

(i) Coaxialcable isanexampleofashieldedtransmissionline,inwhichthesignalconductorisatthecentreofacylindrical conductingtube,withtheinterveningspacefilledwithlosslessdielectric.Thedielectricisnormallysolid,althoughfor higher-frequencyapplicationsitisoftenintheformofdielectricvanessoastocreateasemi-air-spacedmediumwith lowertransmissionlosses.Atypicalcoaxialcableisflexiblewithanouterdiameteraround5mm,althoughmuch smallerdiametersareavailablewith1mmdiametercablebeingusedforinterconnectionswithinmillimetre-wave equipment.Also,forveryhigh-frequencyapplications,thecablemayhavearigidorsemi-rigidconstruction.Further dataoncoaxialcablesareprovidedinAppendix1.A.

(ii) Coplanarwaveguide (CPW),inwhichalltheconductorsareonthesamesideofthesubstrate,isalsoshownin Figure1.1.Thistypeofstructureisveryconvenientforthemountingofactivecomponents,andalsoforprovidingisolationbetweensignaltracks.Coplanarlinesarewidelyusedincompactintegratedcircuitsforhigh-frequency applications.FurtherdataoncoplanarlinesaregiveninAppendix1.B.

(iii) Waveguide,formedfromhollowmetaltubesofrectangularorcircularcross-section,isatraditionalformoftransmissionlineusedformicrowavefrequenciesabove1GHz.Formanycircuitandinterconnectionapplications,waveguide hasbeensupersededbyplanarstructures,anditsuseinmodernRFandmicrowavesystemsisrestrictedtoratherspecializedapplications.Itistheonlytransmissionlinethatcansupporttheveryhighpowersrequiredinsometransmitter applications.Anotheradvantageofanair-filledmetalwaveguideisthatitisaverylowlossmediumandtherefore canbeusedtomakeveryhigh-Q cavities,andthisapplicationisdiscussedinmoredetailinChapter3inrelation todielectricmeasurements.Amorerecentapplicationoftraditionalwaveguidesisinsubstrateintegratedwaveguide (SIW)structuresformillimetre-waveapplications,andthisisexplainedinmoredetailinChapter4inthecontextof emergingtechnologies.FurtherdataonthetheoryofwaveguidesaregiveninAppendix1.C.

(iv) Microstrip isthemostcommonformofinterconnectionusedinplanarcircuitsforRFandmicrowaveapplications.As showninFigure1.1,itconsistsofalow-lossinsulatingsubstrate,withonesidecompletelycoveredwithaconductor toformagroundplane,andasignaltrackontheotherside.FurtherdataonmicrostriparegiveninAppendix1.D. Thisisaparticularlyimportantmediumforhigh-frequencycircuitdesignandsoChapter2isdevotedtoanin-depth discussionofmicrostripandtheassociateddesigntechniques.

1.2Voltage,Current,andImpedanceRelationshipsonaTransmissionLine

Initssimplestform,atransmissionlinecanbeviewedasatwo-conductorstructurewithagoandreturnpathforthecurrent. Forthepurposeofanalysiswemayregardanytransmissionlineasmadeupofalargenumberofveryshortlengths(�� z), eachofwhichcanberepresentedbyalumpedequivalentcircuit,asshowninFigure1.2.Intheequivalentcircuits, R and L RFandMicrowaveCircuitDesign:TheoryandApplications, FirstEdition.CharlesE.FreeandColinS.Aitchison. ©2022JohnWiley&SonsLtd.Published2022byJohnWiley&SonsLtd. Companionwebsite:www.wiley.com/go/free/rfandmicrowave

Commontypesofhigh-frequencytransmissionline.

Figure1.2 Representationofatransmissionlineintermsoflumpedcomponents.

representtheseriesresistanceandinductanceperunitlengthoftheconductors,respectively, C representsthecapacitance betweenthelinesperunitlength,and G istheparallelconductanceperunitlength,andrepresentstheveryhighresistance oftheinsulatingmediumbetweentheconductors.

Itshouldbenotedthatitislegitimatetorepresentacontinuoustransmissionlinebythelumpedequivalentcircuitshown inFigure1.2providingthat �� z issmallcomparedtoawavelength. R, L, G,and C arenormallyreferredtoastheprimary lineconstants,andhavetheunitsof Ω/m,H/m,S/m,andF/m,respectively.

Inordertoestablishrelationshipsbetweenthevoltageandcurrentonatransmissionlineweneedfirsttospecifyaline excitedbyasinusoidalvoltageatthesendingendwhoseangularfrequencyis ��.Ifwethenletthevoltageandcurrentat somearbitrarypointonthelinebe V and I ,respectively,wecanconsidertheeffectonanelementallengthatthispoint. Thevoltagedropacrosstheelementallengthwillbe �� V andtheparallelcurrentwillbe �� I ,asshowninFigure1.3.

UsingstandardACcircuittheory,wecanrelatethechangeinvoltage, �� V ,tothecomponentsoftheequivalentcircuitas

Coplanar waveguide Metal waveguide
Microstrip
Coaxial cable
Figure1.1

Figure1.3 Equivalentcircuitofanelementallength, �� z,ofatransmissionline.

Consideringtheparallelcurrent, �� I ,wehave

i.e.

DifferentiatingEq.(1.1)withrespecttotimegives

Substitutingfor dI dz fromEq.(1.2)gives

whichcanbewrittenas

where

Similarly

Todeterminethevariationof V alongtheline,wehavetosolvethedifferentialEq.(1.3)for V .Thisisasecond-order differentialequationwithastandardsolutionintheform

Thetwotermsontheright-handsideofEq.(1.6)showhowthepeakamplitudesandphasesofwavestravellinginthe forwardandreversedirectionsvarywithdistance.Thevaluesoftheamplitudesandphasesofthesewavesaredetermined bythevalueof �� ,whichisdefinedasthepropagationconstant(thisisconsideredinmoredetailinSection1.3).

DifferentiatingtheexpressioninEq.(1.6)gives

CombiningEqs.(1.7)and(1.1)gives

Rememberingthat ��

wecanrewriteEq.(1.8)as

Theimpedance, Z O ,istermedthecharacteristicimpedanceofthetransmissionline.Characteristicimpedanceisan importantpropertyofanytransmissionlineanditisusefultohaveanappreciationofitsphysicalsignificance.Theoretically, itistheratioofthevoltagetocurrentatanarbitrarypositiononaninfinitelylongtransmissionlinethatsupportsawave travellinginonedirection.Ifthelineislossless,i.e. R = 0and G = 0,thenweseefromEq.(1.10)that ZO = √L∕C andhas aconstantvaluethatisindependentoffrequency.Itfollowsthatifsuchalineisterminatedbyanimpedanceequaltothe characteristicimpedance,therewillbenoreflectionsfromthetermination.Moreover,ifatransmissionlineisterminated withitscharacteristicimpedance,thentheimpedanceattheinputofthelinewillbeequaltothecharacteristicimpedance; undertheseconditionsthelineissaidtobematched.

Consideringthesendingendoftheline,i.e. z = 0,thenfromEqs.(1.6)and(1.9)weobtain

where V S and I S arethevoltageandcurrentatthesendingendoftheline,respectively. RearrangingEq.(1.11)toobtain V 1 and V 2 gives:

Thevoltage, V ,andcurrent, I ,atanydistance, z,alongthetransmissionlinecannowbefoundintermsofthevoltage andcurrentatthesendingendbysubstituting V 1 andV2 fromEq.(1.12)intoEqs.(1.6)and(1.9)giving

Equation(1.13)maybewrittenintermsofhyperbolicfunctionsas

Similarly,

Theimpedance, Z z ,atanydistance z fromthesendingendofthelinecannowbefoundbydividingEq.(1.14)byEq.(1.15) giving

where ZS = VS IS istheimpedanceatthesendingendoftheline.

Ifwenowconsideratransmissionlineoffinitelength, l,terminatedbyanarbitraryimpedance, Z L ,then Z z = Z L when z = l,andEq.(1.16)canberewrittenas

Theinputimpedance, Z in ,ofatransmissionlineterminatedbyanimpedance, Z L ,canbefoundbyrearrangingEq.(1.17) togive

Thisisanimportant,butcomplicated,expressiongivingtheinputimpedance, Z in ,ofatransmissionlineterminatedin Z L intermsofthepropagationconstant, �� ,thecharacteristicimpedance, Z O ,andthelinelength, l.Ifthelineislowloss, Eq.(1.18)canbesignificantlysimplified,asisshownlaterinthechapter.

1.3PropagationConstant

ThepropagationconstantwasintroducedinEq.(1.4).Thisconstantdeterminestheamplitudeandphaseofawavepropagatingalongatransmissionlineataparticularfrequency,andmayconvenientlybeexpressedas

where �� istheattenuationconstantand �� isthephasepropagationconstant.Consideringthefirsttermontheright-hand sideofEq.(1.6)wehave

where V F representsthevoltageoftheforwardwaveatadistance l alongtheline.Themagnitudeofthiswaveisgivenby

Rearrangingthisequationgives

TakingthenaturallogarithmoftheratiooftwovoltagesgivestheratiointheunitsofNepers;so �� willhavetheunitsof Np/m (Nepers/metre).AlthoughNepersarenotincommonuseasaunitinRFwork,itisimportanttobeabletoconvert avoltageratiofromNepertothemoreusualpowerunitofdB.

Consideringavoltageratio, �� ,wehave

Theimaginarypartofthepropagationconstantgivesthetransmissionphasechangeexperiencedbythewaveintravelling adistance, z.Sincethereare2�� radiansinonewavelength,thephasepropagationconstantisalwaysgivenby

where �� isthewavelengthalongthelinebeingconsidered.ItfollowsfromEq.(1.25)thatthephasepropagationconstant hastheunitsof rad/m (radians/metre).

1.3.1Dispersion

Theforegoingtheorydescribesthepropagationalongatransmissionlineatasinglefrequency.Butsinceall information-carryingsignalscontainmorethanonefrequency,itisimportanttoknowhowthepropagationcharacteristics ofalinechangewithfrequency.

Ifallthefrequenciescontainedinasignaltravelatthesamevelocity,thetransmissionlineissaidtobedispersionless. Ifthisisnotso,andifthephasevelocity,1 vP ,isafunctionoffrequency,thetransmissionlinewillexhibitdispersion.If dispersionispresent,asignalcontaininganumberoffrequencycomponents,suchasavoltagepulse,willbecomedistorted asitpropagatesalongtheline,withthedegreeofdistortionincreasingwiththedistanceofpropagation.

Ausefulconceptindeterminingthedegreeofdispersionisgroupvelocity, vg .Wecanexplainthisconceptbyconsidering thetransmissionofasignalwhichconsistsofanumberofsinusoids,eachhavingadifferentfrequencyandamplitude. Thesefrequencycomponentswillcombinetoformacompositepattern,withaparticularenvelope.Thegroupvelocityis thevelocitywithwhichthisenvelopepropagatesalongthetransmissionline.Itcanbeshownthatthegroupvelocityis givenby

Ifthisvelocityisindependentoffrequency,thenthelinewillbedispersionlessandthephaserelationshipsbetweenthe frequencycomponentsofthesignalwillbemaintained.

Thereciprocalofthegroupvelocityisknownasthegroupdelay,andistheslopeofthe �� –�� responseataparticular frequency.If �� isalinearfunctionoffrequency,thenthe �� –�� responsewillbeastraightlineandthegroupdelaywillbe constant,andindependentoffrequency.Toavoiddistortionitisimportantthatthegroupdelayisconstantoverthefull frequencyrangeofthesignalbeingtransmitted.

1.3.2AmplitudeDistortion

Amplitudedistortionwilloccuriftheattentionconstant, �� ,isavaryingfunctionoffrequency,thuscausingthefrequency componentsofacomplexsignaltosufferdifferentamplitudechangesasthesignalpropagates.Fornoattenuationdistortion tooccur,werequire ���� �� f = 0.NormallyattenuationdistortionisnotsignificantforRFandmicrowavecircuitinterconnections,sincetheseinterconnectionsareshortanddeliberatelydesignedtobelowloss.

1.4LosslessTransmissionLines

ThemajorityoftransmissionlinesencounteredinRFandmicrowavecircuitsarebothshortanddeliberatelymanufactured tohavelowdissipativelosses.Consequently,itisusefultoconsiderhowtheforegoingtheoryismodifiedbyconsidering transmissionlinestobelossless.

Alosslesslinewillhave R = G = 0,andEq.(1.10)willbemodifiedsuchthatthecharacteristicimpedanceofthelineis realandgivenby

Also,sincetherearezerolossesintheline,theattenuationcoefficient, �� ,willbezeroandthepropagationcoefficientwill onlyrepresentthephasebehaviourofthewaveontheline,i.e.

1Thephasevelocityisthevelocitywithwhichphaseofasinusoidistransmitteddowntheline.Itisrepresentedby v p ,where v p = ��/�� .Phase velocityisdiscussedinmoredetailinAppendix1.C.5,inrelationtopropagationthroughwaveguides.

and

With �� = j�� ,theexpressionfortheinputimpedanceofatransmissionlineisalsomodified,andEq.(1.18)becomes

Recallingthatcosh(jx ) = cos(x )andsinh(jx ) = j sin(x ),Eq.(1.30)canberewrittenas

or

Thisisanimportantexpressiongivingtheinputimpedance, Z in ,ofaloss-freetransmissionlineterminatedin Z L interms ofthephasepropagationconstant, �� ,characteristicimpedance, Z O ,andlinelength, l

Example1.1 Thefollowinglineconstantsapplytoalosslesstransmissionlineoperatingat100MHz: L = 0.5 μH/m, C = 180pF/m.

Determine:

(i)Thecharacteristicimpedanceoftheline.

(ii)Thephasepropagationconstant.

(iii)Thevelocityofpropagationontheline.

(iv)Thephasechangeovera20cmlengthoftheline.

Solution

(i)

Example1.2 Aparticularlosslesstransmissionlinehasacharacteristicimpedanceof75 Ω,andaphaseconstant of4rad/m.Determinetheinputimpedanceofa30cmlengthofthetransmissionlinewhenitisterminatedbyan impedanceof(100 j50) Ω.

Solution

UsingEq.(1.32):

1.5MatchedandMismatchedTransmissionLines

UsingEq.(1.32),wecanestablishtheconditionsformatchingalosslesstransmissionlineofcharacteristicimpedance, Z O , terminatedinaload, Z L :

(i) Matchedline.If Z L = Z O ,then Z in = Z O andthelineisdescribedasbeingmatched,andalloftheenergytravelling fromthesendingendwillbeabsorbedbytheloadandtherewillbenoreflected(reverse)wave.

(ii) Totallymismatchedline.Iftheloadimpedanceisreplacedbyeitherashort-circuit,oranopen-circuit,thelineis describedasbeingtotallymismatchedandnoenergywillbedissipatedinthetermination.Theinputimpedanceis thenentirelyreactive.

With Z L = 0(i.e.ashort-circuit)Eq.(1.32)becomes:

With Z L =∞ (i.e.anopen-circuit)Eq.(1.32)becomes:

(iii) Partiallymismatchedline.Withanarbitraryvalueofloadimpedance,someoftheincidentenergywillbereflected fromthetermination,givingrisetoastandingwaveasdescribedinSection1.6.

1.6WavesonaTransmissionLine

If Z L ≠ Z O ,atransmissionlinewillbemismatchedandsomeoftheenergywillbereflectedfromtheload.Underthese circumstances,theincidentandreflectedtravellingwaveswillinteracttoformaninterferencepattern.Sincetheincident andreflectedwavesmustbeatthesamefrequencyiftheloadisapassiveimpedance,theinterferencepatternwilltakethe formofastandingwave,withthemaximaandminimaofthepatterninfixedpositions.Thedistancebetweentwoadjacent maximaorminimamustbe ��/2,where �� isthewavelengthontheline.Atypicalvoltagestandingwavepatternisshown inFigure1.4.

Figure1.4 Standingvoltagewave.

Thevoltageatthemaximumpointofthepatternwillbe V max = |V F | + |V R |andattheminimumpoint V min = |V F | |V R |, where V F and V R arethepeakvoltagesoftheforwardandreflectedwaves,respectively.Thedegreeofmismatchon atransmissioncanbespecifiedbytwoparameters,namelythevoltagestandingwaveratio(VSWR)andthereflection coefficient, ��.Thesetwoparametersaredefinedasfollows. VSWRisdefinedas

Sinceweknowthat V R = 0foramatchedload,and V R = V F foratotalmismatchwherealltheenergyisreflected,we candeducetherangeofVSWRvaluesas

When Z L = Z O ,theVSWRisunity. Reflectioncoefficient, ��,isdefinedas

Itfollowsthattherangeofthemagnitudeof �� isgivenby

withzerobeingthebestvalue,andunitycorrespondingtototalreflectionfromtheload.Itshouldbenotedthat �� isacomplexquantity,givingbothmagnitudeandphaseinformation,andthisisanessentialparameterinthedesignofmatching networks,whichwillbediscussedlaterinthechapter.

Clearly,theremustbesomerelationshipbetweenVSWRandreflectioncoefficient,sincebothparametersprovideinformationaboutthedegreeofreflectionfromaload,andthisrelationshipisshowninEq.(1.39)

Also,wecandeterminearelationshipbetweenreflectioncoefficientandimpedancebyfirstrewritingEq.(1.11)inthe form

RearrangingEq.(1.41)gives

Example1.3 WhatistheVSWRcorrespondingtoareflectioncoefficientof0.4∠−22∘ ?

Solution

1.7TheSmithChart

TheSmithchart,developedbyJ.B.Smithin1935,isagraphicaltoolusedinthedesignofRFandmicrowavecircuits.Whilst atechniquethatinvolvesgraphicalmanoeuvresisliabletosignificantreadingandplottingerrors,theSmithchartisstill usefulingivingaquickvisualappreciationofacircuitproblem,whichcansubsequentlybereworkedusingCADtogive precisedesigninformation.

OneofthemainmodernapplicationsoftheSmithchartisinmeasuringinstrumentationtodisplaycircuitparametersas afunctionoffrequency,andthechartformsanessentialpartofthedisplayinmodernnetworkanalyzers(seeChapter7).

1.7.1DerivationoftheSmithChart

Equation(1.42)canbewrittenintermsofnormalizedimpedancesas

where z representsanormalizedimpedance,definedas

where Z O isthecharacteristicimpedanceoftheline.

(Itshouldbenotedthatwehaveusedthenormalconventionwhereby normalized valuesofimpedance,resistance,and reactancearerepresentedbylower-caselettersz,r,andx,respectively.)

Writing z = r + jx ,Eq.(1.43)canbeexpandedas

Sinceweknowthereflectioncoefficientisacomplexquantity,representingmagnitudeandphase,wecanwrite

CombiningEqs.(1.45)and(1.46)gives

WecansolveEq.(1.47)byequatingtherealandimaginaryparts,andaftersomelaborious,butroutinemaths,weobtain

and

ItcanbeseenthatEqs.(1.48)and(1.49)arebothintheformofequationsrepresentingcirclesinthe U V plane.

Foraparticularvalueof r ,Eq.(1.48)representsacircleofradius 1 r +1 withacentreat ( r r +1 , 0).Thevalueof r istherefore constantaroundanyparticularcircle.Thesearetermedconstantnormalizedresistancecirclesandexamplesaredrawnin Figure1.5.

Similarly,foraparticularvalueof x ,Eq.(1.49)representsacircleofradius 1 x withcentreat (1, 1 x ).Theseareconstant normalizedreactancecircles,andexamplesaredrawninFigure1.6,whereitshouldbenotedthat x cantakebothpositive andnegativevalues,sincewecanhavebothpositiveandnegativereactanceinapracticalcircuit.Itcanalsobeseenthatthe circlerepresenting x = 0hasaninfiniteradius,andisthereforerepresentedbyastraightlinecoincidentwiththe U -axis. Forreference,the r = 0circlehasalsobeenshowninFigure1.6.

ThesetsofcirclesshowninFigures1.5and1.6canbecombinedontoasingle U V plot,andthisformstheSmith chart.AtypicalSmithchartisshowninFigure1.7.Notethatonlyreactancelinesthatliewithinthe r = 0circleareshown, sincenormalizedresistancevalueslessthanzerohavenophysicalmeaning.Notealsothattheresistanceandreactance circlesconstitutingtheSmithchartaredrawninthepolardiagramplaneofthereflectioncoefficient,andconcentriccircles, centredonthe U = 0and V = 0origin,representvaluesofconstantreflectioncoefficientamplitude.Thesecirclesarenot normallyincludedontheSmithchart,butaredrawnonbytheuser,aswillbeshowninsubsequentexamples.

Figure1.5 Normalizedconstantresistancecircles.

Figure1.6 Normalizedconstantreactancecircles.

TheSmithchartshowninFigure1.7isanexampleofacommerciallydrawnchart,anditcanbeseenthatinadditionto thenormalizedresistanceandreactancecirclesthathavebeendiscussed,asetofscaleshasbeenprovidedontheleft-hand side.Thesescalesareausefulaidforplottingradialdistancesonthechart,whichcorrespondtoparticularvaluesofVSWR andreflectioncoefficient.Theuseofthesescaleswillbedemonstratedinthesolutionsofworkedexampleslaterinthe chapter.

1.7.2PropertiesoftheSmithChart

(i)Animpedancepointisplottedonthechartbylocatingtheintersectionoftheappropriateresistanceandreactance lines,rememberingthatthechartonlydisplaysnormalizedvalues.

(ii)Sincethechartwasdrawninthereflectionplane,i.e. �� = U + jV ,pointsoncirclesthatareplottedwiththeircentreat theoriginrepresentreflectioncoefficientsofconstantmagnitude.Thesecircles,whicharenotprintedonthechartbut needtobedrawnbytheuser,areoftenreferredtoasconstantVSWRcircles(orusuallyjustasVSWRcircles).Moving aroundaconstantVSWRcirclecorrespondstomovingalongatransmissionline,therebychangingtheangleofthe reflectioncoefficient.However,thedirectionofrotationaroundaVSWRcircleisimportant,sincemovingfromthe generatorendofatransmissionlinetowardstheloadwillmaketheangleofthereflectioncoefficientmorepositive, andconverselymovingfromtheloadtowardsthegeneratorwillmaketheangleofthereflectioncoefficientmore negative.ToaidtheuseroftheSmithchart,anannularscaleshowingtheangleofthereflectioncoefficientisprinted aroundtheoutsideofthechart(theuseofthisscaleisdiscussedinpoint(iii)anddemonstratedinExample1.4).We knowfromtheearlierdiscussionofstandingwavesthatthevoltagepatternonamismatchedtransmissionlinewill repeateveryhalf-wavelength,andthereforemakingacompleterevolutionfromagivenpointonaVSWRcircle,to returntothesamepoint,mustcorrespondtomovingadistance ��/2alongtheline.Appropriatewavelengthscales areprovidedaroundtheperipheryofthechart.Notethattherearetwoscales,denotingtwodifferentdirectionsof movement.DistancesontheSmithchartarealwaysrepresentedaselectricallengths,i.e.asfractionsofawavelength. (iii)Reflectioncoefficientscanbeplotteddirectlyonthechart.Radialdistancescorrespondtothemagnitudeofthereflectioncoefficientonalinearscale,startingat0inthecentreofthechart(theorigininthe U V plane),andwitha maximumof1atthemaximumcircumference.SomemanufacturersoftheSmithchartprovideareflectioncoefficientscaleasanaidtoplotting(Figure1.7).Smithchartsalsocontaincircumferentialscalescorrespondingtothe angleofthereflectioncoefficient.Soplottingareflectioncoefficientpointinvolvesidentifyingtheradiallinethrough theappropriateangle,andthenmarkingtherequiredradialdistancealongthisline.

Figure1.7 TheSmithchart.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.