Buy ebook Patterning and cell type specification in the developing cns and pns: comprehensive develo

Page 1


Patterning and Cell Type Specification in the Developing CNS and PNS: Comprehensive Developmental Neuroscience 2nd Edition John Rubenstein (Editor)

Visit to download the full and correct content document: https://ebookmass.com/product/patterning-and-cell-type-specification-in-the-developin g-cns-and-pns-comprehensive-developmental-neuroscience-2nd-edition-john-rubenst ein-editor/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Cellular Migration and Formation of Axons and Dendrites: Comprehensive Developmental Neuroscience 2nd Edition John Rubenstein (Editor)

https://ebookmass.com/product/cellular-migration-and-formationof-axons-and-dendrites-comprehensive-developmentalneuroscience-2nd-edition-john-rubenstein-editor/

A Comprehensive Guide to Intellectual and Developmental Disabilities 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/a-comprehensive-guide-tointellectual-and-developmental-disabilities-2nd-edition-ebookpdf/

A Type Primer (2nd Edition) 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/a-type-primer-2nd-edition-2ndedition-ebook-pdf/

Neuroscience for Neurosurgeons (Feb 29, 2024)_(110883146X)_(Cambridge University Press) 1st Edition Farhana Akter

https://ebookmass.com/product/neuroscience-for-neurosurgeonsfeb-29-2024_110883146x_cambridge-university-press-1st-editionfarhana-akter/

Specification of Drug Substances and Products: Development and Validation of Analytical Methods 2nd Edition Christopher M. Riley

https://ebookmass.com/product/specification-of-drug-substancesand-products-development-and-validation-of-analyticalmethods-2nd-edition-christopher-m-riley/

The Neurology of Consciousness: Cognitive Neuroscience and Neuropathology 2nd Edition – Ebook PDF Version

https://ebookmass.com/product/the-neurology-of-consciousnesscognitive-neuroscience-and-neuropathology-2nd-edition-ebook-pdfversion/

Encyclopedia of Behavioral Neuroscience, 2nd Edition

https://ebookmass.com/product/encyclopedia-of-behavioralneuroscience-2nd-edition/

Developing Cross-Cultural Measurement In Social Work Research And Evaluation 2nd Edition Edition Keith T. Chan

https://ebookmass.com/product/developing-cross-culturalmeasurement-in-social-work-research-and-evaluation-2nd-editionedition-keith-t-chan/

Developmental Editing: A Handbook for Freelancers, Authors, and Publishers, 2nd Edition Scott Norton

https://ebookmass.com/product/developmental-editing-a-handbookfor-freelancers-authors-and-publishers-2nd-edition-scott-norton/

PatterningandCellTypeSpecification

intheDevelopingCNSandPNS

ComprehensiveDevelopmentalNeuroscience

SecondEdition

SeniorEditors-in-Chief

JohnRubenstein

DepartmentofPsychiatry & WeillInstituteforNeurosciences UniversityofCalifornia,SanFrancisco,SanFrancisco,CA,UnitedStates

PaskoRakic

DepartmentofNeuroscience & KavliInstituteforNeuroscience YaleSchoolofMedicine,NewHaven,CT,UnitedStates

Editors-in-Chief

BinChen

DepartmentofMolecular,Cell & DevelopmentalBiology UniversityofCalifornia,SantaCruz,SantaCruz,CA,UnitedStates

KennethY.Kwan

MichiganNeuroscienceInstitute & DepartmentofHumanGenetics UniversityofMichigan,AnnArbor,MI,UnitedStates

SectionEditors:

ElizabethA.Grove

DepartmentofNeurobiology & GrossmanInstituteforNeuroscience UniversityofChicago,Chicago,IL,UnitedStates

ShubhaTole

DepartmentofBiologicalSciences

TataInstituteofFundamentalResearch,Mumbai,India

FrancoisGuillemot

TheFrancisCrickInstitute,London,UnitedKingdom

KennethCampbell

DivisionofDevelopmentalBiology,CincinnatiChildren’sHospitalMedicalCenter UniversityofCincinnatiCollegeofMedicine,Cincinnati,OH,UnitedStates

ArturoAlvarez-Buylla

EliandEdytheBroadCenterofRegenerationMedicineandStemCellResearch UniversityofCalifornia,SanFrancisco,SanFrancisco,CA,UnitedStates

DavidRowitch

DepartmentofPaediatrics,UniversityofCambridgeandWellcome-MRCCambridgeStemCellInstitute, Cambridge,UnitedKingdom

AdjunctProfessorofPediatrics,UCSF

AcademicPressisanimprintofElsevier 125LondonWall,LondonEC2Y5AS,UnitedKingdom 525BStreet,Suite1650,SanDiego,CA92101,UnitedStates 50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,OxfordOX51GB,UnitedKingdom

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans,electronicormechanical,including photocopying,recording,oranyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. Detailsonhowtoseekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandourarrangementswith organizationssuchastheCopyrightClearanceCenterandtheCopyrightLicensingAgency,canbefoundatourwebsite: www. elsevier.com/permissions

ThisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightbythePublisher(otherthanasmay benotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchandexperiencebroadenourunderstanding, changesinresearchmethods,professionalpractices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgeinevaluatingandusingany information,methods,compounds,orexperimentsdescribedherein.Inusingsuchinformationormethodstheyshouldbe mindfuloftheirownsafetyandthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,oreditors,assumeanyliabilityforany injuryand/ordamagetopersonsorpropertyasamatterofproductsliability,negligenceorotherwise,orfromanyuseor operationofanymethods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-814405-3

ForinformationonallAcademicPresspublicationsvisitour websiteat https://www.elsevier.com/books-and-journals

Publisher: NikkiLevy

AcquisitionsEditor: NatalieFarra

EditorialProjectManager: AndraeAkeh

ProductionProjectManager: SuryaNarayananJayachandran

CoverDesigner: DavidTastad

TypesetbyTNQTechnologies

Contributors

KaterinaAkassoglou,GladstoneInstituteofNeurological DiseaseandDepartmentofNeurology,Universityof California,SanFrancisco,CA,UnitedStates

NicolaJ.Allen,MolecularNeurobiologyLaboratory,Salk InstituteforBiologicalStudies,LaJolla,CA,United States

FernandoC.Alsina,DepartmentofMolecularGenetics andMicrobiology

AlessandroAlunni,ZebrafishNeurogeneticsUnit, Developmental & StemCellBiologyDepartment, InstitutPasteur,UMR3738,CNRS,Paris,France

A.Alvarez-Buylla,UniversityofCalifornia,SanFrancisco,CA,UnitedStates

MadelineG.Andrews,UniversityofCalifornia,San Francisco,CA,UnitedStates

S.-L.Ang,FrancisCrickInstitute,London,United Kingdom

B.Appel,UniversityofColoradoSchoolofMedicine, Aurora,CO,UnitedStates

BadrulAre fin,DepartmentofClinicalandExperimental Medicine,LinköpingUniversity,Linköping,Sweden

ShahrzadBahrampour ,DepartmentofClinicaland ExperimentalMedicine,LinköpingUniversity,Linköping,Sweden

Q.-R.Bai,TongjiUniversity,Shanghai,China

LaureBally-Cuif,ZebrafishNeurogeneticsUnit,Developmental & StemCellBiologyDepartment,Institut Pasteur,UMR3738,CNRS,Paris,France

RenataBatista-Brito,DominickP.PurpuraDepartmentof Neuroscience,AlbertEinsteinCollegeofMedicine, Bronx,NY,UnitedStates

MagnusBaumgardt,DepartmentofClinicalandExperimentalMedicine,LinköpingUniversity,Linköping, Sweden

JonathanBenito-Sipos,DepartamentodeBiología,UniversidadAutónomadeMadrid,Madrid,Spain

D.E.Bergles,JohnsHopkinsSchoolofMedicine,Baltimore,MD,UnitedStates

AparnaBhaduri,UniversityofCalifornia,SanFrancisco, CA,UnitedStates

S.Blaess,InstituteofReconstructiveNeurobiology,LIFE & BRAINCenter,UniversityofBonn,MedicalFaculty andUniversityHospitalBonn,Bonn,Germany

StephanieBonney,DepartmentofPediatrics,Sectionof DevelopmentalBiology,UniversityofColorado, AnschutzMedicalCampus,Aurora,CA,UnitedStates

BernadettBosze,DepartmentofCellBiologyandHuman Anatomy,UniversityofCaliforniaDavis,Davis,CA, UnitedStates

JoshuaJ.Breunig,BoardofGovernorsRegenerative MedicineInstitute,LosAngeles,CA,UnitedStates; DepartmentofBiomedicalSciences,LosAngeles,CA, UnitedStates;SamuelOschinComprehensiveCancer Institute,LosAngeles,CA,UnitedStates;Department ofMedicine,DavidGeffenSchoolofMedicine,UCLA, LosAngeles,CA,UnitedStates

NadeanL.Brown,DepartmentofCellBiologyandHumanAnatomy,UniversityofCaliforniaDavis,Davis, CA,UnitedStates

S.A.Buffi ngton,BaylorCollegeofMedicine,Houston, TX,UnitedStates

C.L.Call,JohnsHopkinsSchoolofMedicine,Baltimore, MD,UnitedStates

K.Campbell,CincinnatiChildren’sHospitalMedical Center,UniversityofCincinnatiCollegeofMedicine, Cincinnati,OH,UnitedStates

AstridE.Cardona,UTSABrainHealthConsortiumand SouthTexasCenterforEmergingInfectiousDiseases, DepartmentofBiology,TheUniversityofTexasatSan Antonio,SanAntonio,TX,UnitedStates

CatarinaCatela,DepartmentofNeurobiology,University ofChicago,Chicago,IL,UnitedStates

A.Cebrián-Silla,UniversityofCalifornia,SanFrancisco, CA,UnitedStates;UniveristatdeValència, CIBERNED,Valencia,Spain

Yi-TingCheng,CenterforCellandGeneTherapy,Baylor CollegeofMedicine,OneBaylorPlaza,Houston,TX, UnitedStates

VictorV.Chizhikov,UniversityofTennesseeHealth ScienceCenter,DepartmentofAnatomyandNeurobiology,Memphis,TN,UnitedStates

MarionCoolen ,ZebrafishNeurogeneticsUnit,Developmental & StemCellBiologyDepartment,Institut Pasteur,UMR3738,CNRS,Paris,France

JesúsRodriguezCurt,DepartmentofClinicaland ExperimentalMedicine,LinköpingUniversity, Linköping,Sweden

DimitriosDavalos,NeuroinflammationResearchCenter, DepartmentofNeurosciences,LernerResearchInstitute,ClevelandClinic,Cleveland,OH,UnitedStates

L.M.DeBiase,JohnsHopkinsSchoolofMedicine,Baltimore,MD,UnitedStates

BenjaminDeneen,CenterforCellandGeneTherapy, DepartmentofNeuroscience,BaylorCollegeofMedicine,OneBaylorPlaza,Houston,TX,UnitedStates

OmerDurak,DepartmentofStemCellandRegenerative Biology,andCenterforBrainScience,HarvardUniversity,Cambridge,MA,UnitedStates

RyannM.Fame,DepartmentofStemCellandRegenerativeBiology,andCenterforBrainScience,Harvard University,Cambridge,MA,UnitedStates;Department ofPathology,BostonChildren’sHospital,Boston,MA, UnitedStates

StephenP.J.Fancy,NeurologyandPediatrics,University ofCalifornia,SanFrancisco,SanFrancisco,CA,United States

GordFishell,DepartmentofNeurobiology,Blavatnik Institute,HarvardMedicalSchool,Boston,MA,United States;StanleyCenterforPsychiatricResearch,Broad Institute,Cambridge,MA,UnitedStates

IsabelleFoucher,ZebrafishNeurogeneticsUnit,Developmental & StemCellBiologyDepartment,Institut Pasteur,UMR3738,CNRS,Paris,France

L.Fuentealba,UniversityofCalifornia,SanFrancisco, CA,UnitedStates

FredH.Gage,SalkInstituteforBiologicalStudies,La Jolla,CA,UnitedStates

LudovicGalas,NormandieUniversity,UNIROUEN, INSERM,PRIMACEN,Mont-Saint-Aignan,France

AndrewW.Grande,DepartmentofNeurosurgery, UniversityofMinnesota,Minneapolis,MN,United States

ElizabethA.Grove,DepartmentofNeurobiology,The GrossmanInstituteforNeuroscience,Universityof Chicago,Chicago,IL,UnitedStates

J.L.Haigh,UniversityofCalifornia,Davis,CA,United States

JeanHébert,Neuroscience,Genetics,StemCells,Albert EinsteinCollegeofMedicine,Bronx,NY,UnitedStates

OliverHobert,DepartmentofBiologicalSciences, HowardHughesMedicalInstitute,ColumbiaUniversity,NewYork,NY,UnitedStates

RobertB.Hufnagel,MedicalGeneticsandOphthalmic GenomicsUnit,NationalEyeInstitute,Bethesda,MD, UnitedStates

WielandB.Huttner ,MaxPlanckInstituteofMolecular CellBiologyandGenetics,Dresden,Germany

YasuhiroItoh,DepartmentofStemCellandRegenerative Biology,andCenterforBrainScience,HarvardUniversity,Cambridge,MA,UnitedStates

K.R.Jessen,UniversityCollegeLondon,London,United Kingdom

JaneE.Johnson,DepartmentofNeuroscience,University ofTexasSouthwesternMedicalCenter,Dallas,TX, UnitedStates

EyalKarzbrun,KavliInstituteofTheoreticalPhysicsand DepartmentofPhysics,UniversityofCalifornia,Santa Barbara,CA,UnitedStates

YutaroKomuro,DepartmentofNeurology,DavidGeffen SchoolofMedicine,UniversityofCalifornia,Los Angeles,LosAngeles,CA,UnitedStates

HitoshiKomuro,DepartmentofNeuroscience,Yale UniversitySchoolofMedicine,NewHaven,CT, UnitedStates

ArnoldR.Kriegstein,UniversityofCalifornia,San Francisco,CA,UnitedStates

J.T.Lambert,UniversityofCalifornia,Davis,CA,United States

KatherineR.Long,MaxPlanckInstituteofMolecular CellBiologyandGenetics,Dresden,Germany

GuillerminaLópez-Bendito ,InstitutodeNeurocienciasde Alicante,UniversidadMiguelHernández-ConsejoSuperiordeInvestigacionesCientí fi cas(UMH-CSIC), SantJoand’Alacant,Spain

JessicaL.MacDonald,DepartmentofStemCelland RegenerativeBiology,andCenterforBrainScience, HarvardUniversity,Cambridge,MA,UnitedStates; DepartmentofBiology,SyracuseUniversity,Syracuse, NY,UnitedStates

JeffreyD.Macklis,DepartmentofStemCellandRegenerativeBiology,andCenterforBrainScience,Harvard University,Cambridge,MA,UnitedStates;Bauer Laboratory,Cambridge,MA,UnitedStates

MariaCarolinaMarchetto,SalkInstituteforBiological Studies,LaJolla,CA,UnitedStates

FranciscoJ.Martini,InstitutodeNeurocienciasdeAlicante,UniversidadMiguelHernández-ConsejoSuperior deInvestigacionesCientí ficas(UMH-CSIC),SantJoan d’Alacant,Spain

MichaelP.Matise,DepartmentofNeuroscience & Cell Biology,Rutgers-RobertWoodJohnsonMedical School,Piscataway,NJ,UnitedStates

F.T.Merkle,MetabolicResearchLaboratoriesand MedicalResearchCouncilMetabolicDiseasesUnit, WellcomeTrust-MedicalResearchCouncilInstituteof MetabolicScience,andtheWellcomeTrust-Medical ResearchCouncilCambridgeStemCellInstitute,UniversityofCambridge,Cambridge,UnitedKingdom

A.Meunier,InstitutNationaldelaSantéetdela RechercheMédicale,Paris,France;CentreNationalde laRechercheScienti fique,Paris,France;Institutde Biologiedel’EcoleNormaleSupérieure(IBENS), Paris,France

KathleenJ.Millen,SeattleChildren’sHospitalResearch InstituteCenterforIntegrativeBrainResearch,Seattle, WA,UnitedStates

RobertH.Miller,AnatomyandCellBiology,Schoolof MedicineandHealthSciences,GeorgeWashington University,Washington,DC,UnitedStates

R.Mirsky,UniversityCollegeLondon,London,United Kingdom

SwatiMishra,DepartmentofPediatrics,Sectionof DevelopmentalBiology,UniversityofColorado, AnschutzMedicalCampus,Aurora,CA,UnitedStates; DepartmentofPathology,InstituteforStemCell & RegenerativeMedicine,UniversityofWashington, Seattle,WA,UnitedStates

AnnaVictoriaMolofsky,LaboratoryofMolecular Neurobiology,CentreofNewTechnologies,University ofWarsaw,Warsaw,Poland

IgnacioMonederoCobeta,DepartmentofClinicaland ExperimentalMedicine,LinköpingUniversity, Linköping,Sweden

K.Monk,VollumInstitute,OregonHealthScienceCenter, Portland,OR,UnitedStates

EdwinS.Monuki,Pathology & LaboratoryMedicine, Developmental & CellBiology,UniversityofCaliforniaIrvine,Irvine,CA,UnitedStates

MasatoNakafuku,DivisionofDevelopmentalBiology, CincinnatiChildren’sHospitalMedicalCenter,DepartmentsofPediatricsandNeurosurgery,Universityof CincinnatiCollegeofMedicine,Cincinnati,OH,United States

HarukazuNakamura,LaboratoryofOrganMorphogenesis,GraduateSchoolofLifeSciences,Tohoku University,Aoba-ku,Sendai,Japan

BrandenR.Nelson,CenterforIntegrativeBrainResearch, SeattleChildren’sResearchInstitute,Seattle,WA, UnitedStates

A.S.Nord,UniversityofCalifornia,Davis,CA,United States

K.Obernier,UniversityofCalifornia,SanFrancisco,CA, UnitedStates

NobuhikoOhno,DepartmentofAnatomy,Divisionof HistologyandCellBiology,JichiMedicalUniversity, Shimotsuke-Shi,Tochigi,Japan;DivisionofUltrastructuralResearch,NationalInstituteforPhysiological Sciences,Okazaki,Aichi,Japan

AbdulkadirOzkan,DepartmentofStemCelland RegenerativeBiology,andCenterforBrainScience, HarvardUniversity,Cambridge,MA,UnitedStates

DavidB.Parkinson,MedicineandDentistry,Plymouth University,Plymouth,Devon,UnitedKingdom

ManuelPeter ,DepartmentofStemCellandRegenerative Biology,andCenterforBrainScience,Harvard University,Cambridge,MA,UnitedStates

SamuelJ.Pleasure,DepartmentofNeurology,Programs inNeuroscienceandDevelopmentalBiology,Institute forRegenerativeMedicine,UniversityofCalifornia, SanFrancisco,CA,UnitedStates

M.N.Rasband,BaylorCollegeofMedicine,Houston,TX, UnitedStates

OrlyReiner,DepartmentofMolecularGenetics,The WeizmannInstituteofScience,Rehovot,Israel

D.H.Rowitch,UniversityofCalifornia,SanFrancisco, CA,UnitedStates

J.L.R.Rubenstein,UniversityofCaliforniaatSanFrancisco,SanFrancisco,CA,UnitedStates

DebosmitaSardar,CenterforCellandGeneTherapy, BaylorCollegeofMedicine,OneBaylorPlaza,Houston,TX,UnitedStates

AninditaSarkar,SalkInstituteforBiologicalStudies,La Jolla,CA,UnitedStates

K.Sawamoto,NagoyaCityUniversityGraduateSchoolof MedicalSciences,Nagoya,Japan;NationalInstitutefor PhysiologicalSciences,Okazaki,Japan

KamalSharma,DepartmentofAnatomy & CellBiology, UniversityofIllinoisatChicago,Chicago,IL,United States

Q.Shen,TongjiUniversity,Shanghai,China

JulieA.Siegenthaler,DepartmentofPediatrics,Sectionof DevelopmentalBiology,UniversityofColorado, AnschutzMedicalCampus,Aurora,CA,UnitedStates

DebraL.Silver,DepartmentofMolecularGeneticsand Microbiology;DepartmentofCellBiology;Department ofNeurobiology;DukeInstituteforBrainSciences, DukeUniversityMedicalCenter,Durham,NC,United States

N.Spassky,InstitutNationaldelaSantéetdelaRecherche Médicale,Paris,France;CentreNationaldelaRechercheScienti fique,Paris,France;InstitutdeBiologiede l’EcoleNormaleSupérieure(IBENS),Paris,France

S.R.W.Stott,TheCureParkinson’sTrust,London,United Kingdom

JohannesStratmann,DepartmentofClinicalandExperimentalMedicine,LinköpingUniversity,Linköping, Sweden

L.Subramanian,UniversityofCalifornia,SanFrancisco, CA,UnitedStates

JohnSvaren,DepartmentofComparativeBiosciencesand WaismanCenter,UniversityofWisconsin,Madison, WI,UnitedStates

LukaszMateuszSzewczyk,DepartmentofPsychiatryand WeillInstituteforNeurosciences,UniversityofCalifornia,SanFrancisco,SanFrancisco,CA,UnitedStates; LaboratoryofMolecularNeurobiology,CentreofNew Technologies,UniversityofWarsaw,Warsaw,Poland

S.Temple,NeuralStemCellInstitute,Rensselaer,NY, UnitedStates

StefanThor,DepartmentofClinicalandExperimental Medicine,LinköpingUniversity,Linköping,Sweden; SchoolofBiomedicalSciences,UniversityofQueensland,StLucia,QLD,Australia

ShubhaTole,DepartmentofBiologicalSciences,Tata InstituteofFundamentalResearch,Mumbai,Maharashtra,India

GregorioValdez,BrownUniversity,Providence,RI, UnitedStates

DavidVaudry,NormandieUniversity,UNIROUEN, INSERM,PRIMACEN,Mont-Saint-Aignan,France; NormandieUniversity,UNIROUEN,INSERM,U1239, DC2N,Mont-Saint-Aignan,France

ClaireWard,DominickP.PurpuraDepartmentofNeuroscience,AlbertEinsteinCollegeofMedicine,Bronx, NY,UnitedStates

MichaelWegner,InstitutfürBiochemie,Emil-FischerZentrum,UniversitätErlangen-Nürnberg,Erlangen, Germany

BehzadYaghmaeianSalmani,DepartmentofClinicaland ExperimentalMedicine,LinköpingUniversity, Linköping,Sweden

Chapter1

Morphogens,patterningcenters,and theirmechanismsofaction

1DepartmentofNeurobiology,UniversityofChicago,Chicago,IL,UnitedStates; 2Pathology & LaboratoryMedicine,Developmental & Cell Biology,UniversityofCaliforniaIrvine,Irvine,CA,UnitedStates

Chapteroutline

1.1.Generalprinciplesofmorphogengradients3

1.1.1.Historyofthemorphogenandmorphogeneticfield3

1.1.2.Howmorphogengradientspatterntissues4

1.1.3.Howmorphogensaredistributed5

1.1.4.Howmorphogensignalingistransducedand interpreted6

1.1.5.Howmorphogengradientsareconvertedintosharp boundaries6

1.1.6.Summary generalprinciplesofmorphogen gradients7

1.2.Localsignalingcentersandprobablemorphogensinthe telencephalon7

1.2.1.Earlyforebrainpatterning8

1.2.2.TheRPC8

1.2.3.Thetelencephalicroofplateandcorticalhem8

1.2.4.Theantihem9

1.3.BMPsasmorphogensintelencephalicpatterning9

1.3.1.PerformanceobjectivesforaBMPgradientinthe dorsaltelencephalon9

1.3.2.Midlineexpressionandhomeogeneticexpansionof BMPproduction10

1.3.3.BMPsignalinggradientinthedorsaltelencephalon11

1.3.4.BMPsasdorsaltelencephalicmorphogens11

1.3.5.LinearconversionofBMPsignalingbycorticalcells12 1.3.6.NonlinearconversionofBMPsignalingbyDTM cells12

1.3.7.Summary theBMPsignalinggradient13 1.4.FGF8asamorphogenintelencephalicpatterning13 1.5.Interactionsamongsignalingcentersintelencephalic patterning14

1.5.1.FGF8,Shh,andBMPsignaling15 1.5.2.Cross-regulationofBMP,FGF,andWNTsignaling15 1.5.3.InteractionsofShh,FGFs,andGli315 1.6.Morphogensinhumanbraindisease15 1.6.1.HoloprosencephalyandKallmannsyndrome15 1.6.2.Gradientsinholoprosencephalyneuropathology17 1.6.3.Gradientsinotherhumanbraindisorders17 References18

1.1Generalprinciplesofmorphogengradients

1.1.1Historyofthemorphogenandmorphogeneticfield

Theconceptofamorphogencanbetracedtotheturnofthe20thcentury,whenMorganpostulatedthepresenceof “formativesubstances” asthebasisfordifferentregenerationratesinworms(Morgan,1901).Verysoonthereafter,Boveri entertainedthisideafornormaldevelopment(Boveri,1901).Aseminaleventforthis fieldwasthediscoveryofalocalized sourceformorphogensknownastheSpemannorganizer(SpemannandMangold,1924).Theterm “morphogen” was coinedbyTuring,whodescribedhowuniformlydistributedsignalsmadebycellscanspread,self-organize,andgenerate pattern(Turing,1952).Turingpatternsremainhighlyrelevantindevelopment,butforthischapterandthedeveloping forebrain,themorerelevantconceptisthatofnonuniformgradeddistributionsofmorphogens,anideaformalizedinthe famous “French flag” modelofWolpert(Fig.1.1)(Wolpert,1969).

FIGURE1.1 TheFrench flagmodel. Schematicofhowadiffusiblemorphogencanassignpositionalvaluesandinstructcellsfates.Morphogen (green) secretedfromasourcecellformsaconcentrationgradientwithinatissue.Atintermediateconcentrationsabovethreshold1,respondingcellsadopt “white” fate.Athighconcentrationsabovethreshold2,cellsadopt “blue” fate. BasedonKicheva,A.,Gonzalez-Gaitan,M.,2008.TheDecapentaplegic morphogengradient:aprecisedefinition.Curr.Opin.CellBiol.20,137 143;Rogers,K.W.,Schier,A.F.,2011.Morphogengradients:fromgeneration tointerpretation.Annu.Rev.CellDev.Biol.27,377 407.

Inthismodel,Wolpertdescribedsmoothlydeclininggradientsofmorphogenconcentrationwithina “morphogenetic field” ofcells.Thesegradientswereimaginedtoariseviadiffusionfromalocalizedsourcetowardasink,thusgivingcells withinthemorphogenetic fielddifferentpositionalvaluesbasedonmorphogenconcentration.Thepositionalvaluesthen determinedthefatesadoptedbycellsinthe field(Fig.1.1).Itwasnotuntilthe1980sthatthemolecularidentityofa morphogenwasdefined(bicoid)(DrieverandNusslein-Volhard,1988a,1988b).The firstsecretedmorphogenwas identi fiedsoonthereafter(decapentaplegicordpp)(FergusonandAnderson,1992).Sincethen,manymoremorphogens havebeendiscovered.Most,butnotall,aresecretedproteins;examplesofothermolecularclassesincludetranscription factors(bicoidanddorsal)andavitaminderivative(retinoicacid).

1.1.2Howmorphogengradientspatterntissues

Theconceptofpositionalidentityisimportantforunderstandinghowmorphogengradientsworkbecauseitiserroneousto considermorphogensasthesoledeterminantsofcellfate.Asitturnsout,thesamelimitedrepertoireofmorphogensis usedoverandoveragainacrossontogenyandphylogenytogeneratethedizzyingarrayofcelltypesfoundintheanimal kingdom.Thus,morphogenscouldnotpossiblybeinstructiveofcellfateontheirown.Rather,morphogensactupon tissueswithdifferentprepatternsandcompetencies,andthesecompetenciesincombinationwiththepositionalinformation providedbymorphogensdeterminecellfate.Forexample,inthischapter,wediscussindetailhowbonemorphogenetic proteins(BMPs,theorthologuesofdpp)and fibroblastgrowthfactors(FGFs)providepositionalinformationtodorsal telencephaliccellswithrestrictedneuralpotential.

Thedefi ningpropertyofamorphogenistheabilitytospecifytwoormorecellfatesinaconcentration-dependent manner.Forsome,atleastthreefatesarenecessarytoensurethatamorphogenistrulyinstructive(Freemanand Gurdon,2002).Morphogensoftenspecifybetweenthreetosevenfateswithinatissue(AsheandBriscoe,2006),whichare separatedbysharp,discreteboundaries.Theacquisitionofmaturecellfatesandboundariesisprecededbycell-intrinsic differencesintheexpressionof “selector” genes(mostoftentranscriptionfactors)thatspecifycellfatesinparticularways (Garcia-Bellido,1975).Understandinghowgradedmorphogenicinformationisconvertedintosharp(switch-likeor ultrasensitive)changesindownstreamgeneexpressionremainsacentralproblemfordevelopmentalbiologists,although, aswewillseebelow,severalmechanismsunderlyingsuch “switches” havebeendefined.

Oneimportantobjectiveformanytissuespatternedbymorphogensistheestablishmentofsecondaryorganizersor signalingcenters(Meinhardt,2009).Thesesecondarysitesofmorphogenproductionexpandtherangesoverwhich morphogenscanact,providefor fi nersubdivisionsofpattern,orboth,andarelocatedatboundariesestablishedbythe primarymorphogengradientandselectorgenes.Otherconsequencesofprimarypatterningincludeapoptosis,cellsorting tofurtherrefi neborders,andotherformsofcell-to-cellsignaling(Landeretal.,2009a).Theseeventscanberegulatedby morphogensormaybecomelargelycell-autonomousandimmunetoextrinsiccontrol.Aninterestingpotentialuseof

morphogengradientsisthecontrolofproliferationandgrowth,whichisoftenrelativelyuniformwithintissues,butthe juryremainsoutonthisissue(SchwankandBasler,2010;DekantyandMilan,2011).(Note:Interestingly,generating uniformgrowthfromgradedinformationwouldbeexactlytheoppositeproblemofmakingsharpborders!)

Overthelastdecadeorso,theapplicationofmathematic almodelingandcomputersimulationshasprovideddeep insightsnotonlyintothe “what’ s” and “how ’s ” ofmorphogengradientsbutalsointothemanyinteresting “why ’s” . Theseapproacheshaveprovidedinsightsintosystems-levelfeaturessuchasrobustness(insensitivitytoperturbations), adaptabilityorresilience(theabilitytoadapttoperturbations),precision,noisebuffering,andscalingofpatterntotissue size,whichwouldbeimpossibleorimpracticaltoaddressviawetlabexperimentationalone.(Considerthemany advantagesofacomputer,ratherthanabenchscientist,testing1000pointsinparameterspace.)Severalgeneral principleshaveemergedfromthiswork,whichhavebeenreviewedbyseveralothers(BarkaiandShilo,2009;Lander etal.,2009a;Wartlicketal.,2009;BriscoeandSmall,2015).Amongitsmanylessons,morphogensystemsbiologyhas taughtus(1)thatde fi ningindividualoperationswithinamorphogensystem(e.g.,whethergene x isnecessaryand suf fi cientforfunction y )provideslittleunderstandingofthesystem itself;(2)thattheperfo rmanceobjectivesof morphogensystemsdifferasaresultoftheuniquefactorsandforcesthatimpingeuponthem;(3)thatmorphogen systemscanuseverydifferentmechanismstomeetsimilarobjectives;(4)thateverymechanism,nomatterhow advantageous,hastrade-offs;and(5)thatunderstandinghowmorphogensystemsworkandbalanceconfl ictingpriorities isimpossiblewithoutanalyzingsystemsasawhole.

Doesitmakesensethatmorphogensystemshaveevolvedsomanydifferentmechanismstoachievesimilargoals? Fromengineeringandevolutionaryperspectives,theanswerisyes.Engineersareveryfamiliarwiththe “nofreelunch” principle i.e.,everymechanismhastrade-offs,andmechanismsthatconferrobustnessinonesettingmightincrease fragilityinanother.Thus,despiteattemptstomakesystemsresistanttomosteverything,highlyengineeredsystemsare inescapablyfragile(CarlsonandDoyle,2002).Furthermore,fragilityisnotallbad infact,fragilityisnecessaryfor adaptability sothe “robust,yetfragile” trade-offisacommonfeatureofcomplexsystems.Giventhatevolutionactsupon preexistingbiologicaltemplatesratherthancleanslates,mechanisticmultiplicityandredundancywouldalsobelogical, necessary,andunavoidable.

1.1.3Howmorphogensaredistributed

Howaremorphogensdistributedtogenerateconcentrationgradients?Asoriginallyenvisioned(Wolpert,1969;Crick, 1970),extracellulardiffusionisapredominantmechanism(Landeretal.,2002;RogersandSchier,2011;Zhouetal., 2012).Theadvantagesofdiffusionaremany.Itissimple,fast,andoccursviarandomwalkratherthanbeingballistic, whichnegatesimpedimentssuchastortuosityoftheextracellularspace(Lander,2007).(Randomwalkisthereasonwhy diffusion fillsamazealmostasfastasitdoesanopenspace.)Thespeedofdiffusioncanalsoexplainhowlong-range gradientscanforminthepresenceofhigh-affinityreceptorsbecauseligand-receptorbindingratesformorphogensare oftenmuchslowerthandiffusion(e.g.,foractivin,ittakes30mintoload0.5%ofavailablereceptors)(Freemanand Gurdon,2002).Accordingly,diffusivityisanimportantpointofregulationandcanoccurbymodifyingthemorphogens themselves(e.g.,vialipidmodification)ortheirbindingtocofactorsandextracellularmatrix(RogersandSchier,2011). Diffusioncanbeusedininterestingwaystogeneratesignalinggradients e.g.,bygivingamorphogenanditsinhibitor differentdiffusionvectorsforfacilitatedtransport(Holleyetal.,1996;Shimmietal.,2005)ordifferentdiffusivities,which generatesdifferentrangesofactivity(Meinhardt,2009).

Clearly,however,mechanismsotherthandiffusionarealsousedtogeneratemorphogengradients.Forretinoicacid, spatiallyregulatedintracellulardegradationleadstoitsgradient(Whiteetal.,2007).Cellularratherthanmolecular mechanismshavealsobeeninvoked,suchastheprogressivedilutionofintracellularmorphogensresultingfromcell division,andtheuseofcellular filopodia-likeextensionsor “cytonemes” (RogersandSchier,2011).Cell-to-cell “transcytosis” hasbeenproposedasanalternativetodiffusion,althoughtranscytosisisdif ficulttocleanlydissociatefrom diffusion,andithasbeenarguedthatthedatasupportingtranscytosiscanbeentirelyexplainedbydiffusion(Landeretal., 2002;KichevaandGonzalez-Gaitan,2008;Zhouetal.,2012).Nevertheless,nondiffusionmechanismscertainlyexistand arelikelytorectifywhateverdeficienciesdiffusionhasinspeci ficsystems(Lander,2007).

Whatdomorphogengradientslooklike?IntheFrench flagmodel,Wolpertillustratedadecliningexponentialfunction (Fig.1.1),andthisturnsouttoaccuratelydescribemanymorphogensystems.Fordiffusivesystems,threeparameters describegradientprofile:morphogenproductionrateor flux,diffusion,andclearance.Whenclearanceoccursviaasink,as postulatedbyCrick(Crick,1970),gradientprofileislinear.Incontrast,uniformclearancewithinatissueleadstoa decliningexponentialgradient.Nonuniformdiffusionorclearancecanleadtootherdistributions,suchaspowerlaw functions(KichevaandGonzalez-Gaitan,2008).

Thesizeofmorphogenetic fields(i.e.,theamountoftissuepatternedbymorphogengradients)canalsobeestimated. Thelengthscale,ordecaylength,foranexponentialgradientisthedistanceoverwhichmorphogenconcentrationfallsby e 1 (w37%).Lengthscaleisdeterminedbydiffusivityandclearancerate,butitisindependentofsynthesisrate,andthe morphogenetic fieldsforbicoidandGurken/EGFRin Drosophila are w3 5timesthelengthscale(Goentoroetal.,2006). Usingreasonableparameters,othershavesuggestedafewhundredmicronsasatheoreticalmaximum,whichmatches invivosituationsreasonablywell(Landeretal.,2009a).

1.1.4Howmorphogensignalingistransducedandinterpreted

Howisextracellularmorphogenconcentrationmeasuredbyacell?Inmostcases,signalingintensityisdeterminedbythe absolutenumberofoccupiedreceptors(DysonandGurdon,1998),althoughinthecaseofhedgehog(Hh),theratioof occupied:unoccupiedreceptorshasbeenimplicatedasthekeydeterminant(RogersandSchier,2011).Intuitively,theuse ofabsoluteratherthanrelativenumbersofoccupiedreceptorswouldbeusefulatlowmorphogenconcentrationsandcould allowforlargermorphogenetic fields.Signalingintensitycanbemodulatedinmanyways,includingviachangestothe extracellularmatrixorreceptornumbers.

Whenabsolutereceptornumbersareused,morphogenreceptorsignalingisdirectlyproportionaltoextracellular morphogenconcentration.Importantly,formostmorphogens,thisproportionalityismaintainedallthewaydowntotheir transcriptionaleffectorsinthenucleus(AsheandBriscoe,2006;RogersandSchier,2011).Alikelyexplanationforthis proportionalityisthelinearratherthanbranchedconstructionofmostmorphogensignalingpathways.Indeed,formany morphogenpathways,thesignaltransducerdoublesasthetranscriptionaleffector(e.g.,SmadforNodalandBMP,Glifor Sonichedgehog/Shh)(AsheandBriscoe,2006).Theabsenceofsigni ficantbranchingorcascadingreducesthepossibilities fornonlinearsignalampli fication.Inthisway,thepositionalvaluesimpartedbyextracellularmorphogenconcentrations aredirectlyandproportionallytransmittedintorespondingcells.

Respondingcellsarealsoquitesensitivetomorphogenconcentration.Forexample,cellscansenselargeconcentration differencesinShhoractivin(25-50X),andrelativelysmallchangesinconcentrationoractivatedreceptornumber(2-3X) aresuf ficientforfatetransformationsormajorshiftsinboundaryposition(FergusonandAnderson,1992;Dysonand Gurdon,1998;AsheandBriscoe,2006).Highsensitivityalsoexpandstherangeoverwhichmorphogenscanact,uptothe pointwheresignalandrobustnessmechanismsareovercomebynoise.Formanygradients,bindingnoiseduetolow receptoroccupancyisalikelylimitingfactor(Landeretal.,2009a).

Timeisanothercrucialfactorforinterpretingmorphogens.Forpracticalreasons,spatialgradientsareoften consideredattheirsteadystates,butthesestatesrepresentoversimplifyingassump tionsinmanycases.Indeed, patterninginvivocanbequitefast(evenlessthanafewhours),andsomegradientsaredecodedduringrising, pre steadystateconditions( BarkaiandShilo,2009 ).Temporalintegrationanddynamicinterpretationsofsignalingcan alsobecritical(SagnerandBriscoe,2017).Insomecases,fatetransformationsca usedbyincreasedconcentrationcanbe mimickedbyincreasedduratio n;thisisparticularlywelles tablishedforShh.Inothersystems,however,cellfatesre fl ect thehighestconcentr ationeverseenbyacellratherthanatemporalintegral( AsheandBriscoe,2006;Rogersand Schier,2011).

1.1.5Howmorphogengradientsareconvertedintosharpboundaries

Theneedtogeneratediscreteandwell-separatedcelltypesisnearlyuniversal,andmorphogensystemshaveevolvedmany differentwaystoconvertgradedextracellular(andintracellular)informationintononlinearfatedecisionsandboundaries. Somemechanismsgeneratenonlinearityinextracellularmorphogendistribution;theseincludefacilitatedtransport, alterationsinmorphogendegradationorclearance,andregulationofreceptoravailability.

However,mostnonlinearconversionmechanismsareintracellular,andmanyaretranscriptional.Thismakessome sensebecausemostmorphogentransductionpathwaysretainlinearityallthewaydowntothenucleus.Nonlinear transcriptionalmechanismsincludecooperativity,differentialbindingsiteaf fi nity,autoregulatorypositivefeedback, feedforwardloops,signswitching(e.g.,fromtranscriptionalactivatortorepressor),andcross-repression(Ashe andBriscoe,2006).Manypositivefeedbackmechanismsalsogeneratebistability,thepropertyofhavingtwopotential stablestatesatsomestimulusconcentr ations.Bistabilityrepresentsaformo fcellmemoryandprovidesrobustness to “on” states,whichenablescellstomaintaintheirfatesaf tertheinducingmorphogenisnolongeravailable.In additiontothesetranscriptionalsharpeningmechanisms, morphogensystemsalsoemploycellular-levelmechanisms tosharpenboundaries,includingsorting,death,andrespeci fi cationofmislocalizedcellsnearboundaries(Ashe andBriscoe,2006).

1.1.6Summary generalprinciplesofmorphogengradients

Morphogengradientsystemsarecomplexbutsharemanycommonfeatures,whichcanbesummarizedasfollows(Rogers andSchier,2011):

1. Morphogensarereleasedfromdynamiclocalizedsources,assemblewithothermolecules,andmoveviadiffusion throughtheextracellularspace.

2. Gradientshapeisdeterminedby fluxfromthesource,diffusivity,andclearancefromtissues.

3. Morphogenconcentrationanddurationaretransmittedlinearlytointracellularmolecules,ultimatelyresultinginthe gradedandproportionalactivityoftranscriptionaleffectors.

4. Transcriptionaleffectorsparticipateincomplexregulatorynetworksthatinvolvepreexistingintrinsicfactors,which ultimatelydeterminetargetgeneresponses.

5. Feedbackmechanismsacttobuffer fluctuationsinmorphogenproduction,regulatesignalinginterpretation,andconfer scalabilityandrobustnesstomorphogen-mediatedpatterning.

1.2Localsignalingcentersandprobablemorphogensinthetelencephalon

Developmentalneurobiologistswererelativelyslowtoadopttheconceptthatmorphogenssecretedfromsignalingcenters canpatterncomplexstructuresoftheembryonicbrain.Thiswasparticularlytrueofthetelencephalon,giventhatthispart oftheembryonicbraingivesrisetothecerebralcortex,longbelievedtobesofunctionallycomplexthatuniquemechanismswouldbeneededtopatternit.Therecognitionofseveralputativemorphogensourcesadjacenttotheearly embryonicforebrain,however,ledtotheproposalthatthesesignalingcentersandmorphogenswerecriticaltothe structuralorganizationofthetelencephalon,justastheyareforotherpartsoftheembryo(Furutaetal.,1997;Groveetal., 1998;Crossleyetal.,2001;RagsdaleandGrove,2001;Ohkuboetal.,2002).Thus,eventhemostfunctionallycomplex partofthebodyispatternedbymechanismsthatarecommonlyusedelsewhereintheembryo.

Halfadozenputativesignalingcentershavenowbeenidenti fiedforthetelencephalon,chie flyforthecerebralcortex, andsubstantialevidencesupportsapatterningroleforseveralofthese.Thecandidatesignalingcenterscomprise(1)a sourceofShhfromtheprechordalmesodermthatunderliesthemedialprosencephalicneuralplate(Rubensteinand Beachy,1998);(2)theanteriorneuralridge(ANR),whichappearsbeforeclosureoftheanteriorneuroporeattheedgeof theneuralplateandexpresses Fgf8 (CrossleyandMartin,1995);(3)therostraltelencephalicpatterningcenter(RPC,also knownastheanteriorcerebralpole)formedasthetelencephalicvesiclegeneratestwocerebralhemispheres,also

FIGURE1.2 Threetelencephalicsignalingcenters. (A,B)DorsalviewsoftwoE10.5forebrainsprocessedwithinsituhybridizationtoshowthegenes indicated,anteriortothetop.(C,D)E13.5hemispheresviewedfromthemedial(C)orlateral(D)face,anteriortotheleft. Fgf8 isexpressedattherostral patterningcenter(alsoknownastheanteriorcerebralpoleoracp)(A)and Wnt3a atthecorticalhem(B D). sFrp2 expressionmarkstheantihem,which formsapincershapewiththeWnt3a-expressinghem(D).

expressing Fgf genesofthe Fgf8 subfamily(BachlerandNeubuser,2001);(4)thetelencephalicroofplate,asourceof BMPsignals(Furutaetal.,1997;Monukietal.,2001;Chengetal.,2006);(5)lineallyrelatedsuccessorstotheroofplateat thedorsomedialedgeofeachcerebralcorticalhemisphere thechoroidplexusepithelium(CPE)andcorticalhem, expressingWntandBMPproteins(Furutaetal.,1997;Groveetal.,1998;Hebertetal.,2002;Currleetal.,2005);and (6)the “antihem,” atthejunctionofthedorsalandventraltelencephalon,secretingtheWntinhibitorsFrp2;theEGFfamily membersTgf-a,neuregulins1and3;andFGF7(Assimacopoulosetal.,2003)(Fig.1.2).Wedescribeheretheputative signalingsourcesandtheirconstituentsignalingmoleculesthatcontrolpatterningofbroaddivisionsofthetelencephalon. Anotherchapterinthisvolumediscusses,morespeci fically,theroleoftwoofthesignalingsourcesinpatterningthe neocortexintoamapofdistinctareas.

1.2.1Earlyforebrainpatterning

Theprechordalmesoderm,producingShh,andtheANRinfluencetheearlieststagesofforebrainpatterning.FGF8from theANRupregulatesgeneexpressionofthetranscriptionfactor,Foxg1,whoseexpressionisthe firstmarkeroftelencephalictissue(ShimamuraandRubenstein,1997;RubensteinandBeachy,1998).Shhfrommesodermunderlyingthe medialprosencephalicneuralplatedividesthediencephaliceye fi eldintotwo(Chiangetal.,1996).Furthermore,similarto theactionofShhinthespinalcord,earlyactivityofShhcontributestothespeci ficationofventralcellfatesintheventral telencephalon(Susseletal.,1999;GulacsiandAnderson,2006).Dissimilarfromthecaudalcentralnervoussystem(CNS), ventralizingthetelencephalonappearsalsotorequireFGFsignaling(Gutinetal.,2006;Danjoetal.,2011).

1.2.2TheRPC

ThesignalingcenterwetermtheRPCexpresses Fgf genesofthe Fgf8 subfamily,similarlytotheisthmicorganizer(ISO) atthemidbrain/hindbrainjunction.Atbothsites,FGF8andFGF17havepartlyseparateandpartlycomplementary patterningroles. Fgf8 isexpressedastheRPCforms,andFGF8inducesexpressionof Fgf18 and Fgf17 (Cholfinand Rubenstein,2008),thelatterofwhichisexpressedmorebroadlythan Fgf8 Fgf18 hasamorelimitedexpressiondomain anditstelencephalicrolehasnotyetbeenstudied.AlthoughtheRPCmayarisefromcellsoftheANR,thetwosignaling sourcesaredistinguishabletemporallyandbymorphology.Thatis,theANRisevidentwhentheneuraltubeisopen,but theRPCisidentifiedwhentheanteriorneuroporehasclosedataboutembryonicday(E)9inthemouse.TheANRis criticaltotheinitialpatterningoftheforebrain,theRPCinlaterpatterningofthetelencephalon.

TheRPChasalsobeenreferredtoasthe “commissuralplate,” astructurethatalsoformsanteromedially,butlaterin development,asachannelforthemajorcommissuresofthehemispheres.Indeed,FGF8isneededtopositionthe commissuralplate(Moldrichetal.,2010).TheRPCdoesnotappeartobeaspeci ficprogenitorofthecommissuralplate. FatemappingindicatestheRPCgivesrisetoneuronsthatpopulatetheprefrontalcortexandpartsoftheseptum,aswellas thelikelycommissuralplate(Toyodaetal.,2010;Hochetal.,2015).Evidencedetailedinasubsequentchapterindicates thatFGF8andFGF17,dispersingfromtheRPCasmorphogens,patterntheneocorticalareamap(Fukuchi-Shimogoriand Grove,2001;Gareletal.,2003;CholfinandRubenstein,2007,2008;Toyodaetal.,2010).

1.2.3Thetelencephalicroofplateandcorticalhem

Thetelencephalicroofplatecanbedefi nedasthemidlineofthetelencephalicvesiclebeforeithasdividedintotwo hemispheres.Oncethetwomedialhemisphericwallsaredistinct,bilateralCPEandcorticalhemsbecomeevidentatthe dorsomedialedgeofeachcerebralcortex.TheroofplateproducesseveralmembersoftheBMPfamilyofsignaling molecules,andgeneticablationofeitherthetypeIBMPreceptorBMPRIaoroftheentireroofplatecausesalossof telencephalicCPE(Hebertetal.,2002).Ablationoftheroofplatefurthercausesacorticalphenotypethatresemblesmiddle interhemispheric(MIH)holoprosencephaly(Chengetal.,2006;Monuki,2007).ThecorticalhemsecretesWntsandBMPs fromthedorsomedialedgeofthecorticalprimordium(Furutaetal.,1997;Groveetal.,1998)andisbothnecessaryand suf ficientforspecifyingthehippocampus.Withoutacorticalhem,orifhemWntsignalingissuf ficientlydepleted,the hippocampusfailstodevelop(Galceranetal.,1999;Leeetal.,2000;Yoshidaetal.,2006).SuggestingthatcanonicalWnt signalinginducesthedifferenthippocampal fields,constitutivelyactive b-catenininducescorticalcellstoexpressgenes normallycharacteristicofhippocampus(Machonetal.,2007).Moststriking,anectopicheminducesasmallsecondary, ectopichippocampus(Mangaleetal.,2008).

BMPsignalingalsocontributestotheformationofthehippocampus.InmicedeficientfortwoofthetypeIBMP receptors,BMPsignalingisreducedbutnotabrogated,givenathirdtypeIreceptorisalsopresentinthetelencephalon (Caroniaetal.,2010).Thedouble-mutantmousehasagreatlyreducedhippocampaldentategyrus(DG)comparedwith

controlmiceandaproportionallysmallerpopulationofadultDGneuralstemcells.ModeratereductionsinWntsignaling inthehemalsocauseadiminishedorabsentDG(LiandPleasure,2005).Beyondthehippocampus,thecorticalhemalso regulatesthesizeandpatterningofneocortex(Caronia-Brownetal.,2014).HowWntandBMPsignalingworktogetherin earlyhippocampalandneocorticaldevelopmentstillneedsclari fication.

1.2.4Theantihem

Theantihemliesattheoppositeedgeofth ecerebralcortextothehem,forminganarrowbandsurroundingtheboundary betweenthedorsalandventraltelencephalon.Interestingly,inmicedefi cientinthetranscriptionfactorLhx2,which promotescorticalidentity,boththehemandth eantihemexpandintothevacantterritory( Mangaleetal.,2008 ), suggestinghemandantihemareinsomesenseequivalentstructures.Theantihemexpresses sFrp2,encodingasoluble Wntinhibitor(Kimetal.,2001 ), Fgf7,andtheEGFgenes, Tgf a , Nrg1,and Nrg3 (Kimetal.,2001;Assimacopoulos etal.,2003 ).Thelatterareorthologsof DrosophilaSpitz and Vein,encodingEGFligandsthatcontrolneuronal speci fi cationinthe Drosophila ventralnervecord(Skeath,1998;vonOhlenandDoe,2000).Theantihemisevidentby geneexpressionadayortwoafterthehem,suggestingitispresenttoolateforaroleinearlycorticogenesis. Nonetheless,completelossoftheantiheminthe smalleye (Pax6-defi cient)mutantsuggestspossibleinvolvementinthe corticalpatterningandcellmigrationdefectsthatoccurin smalleye andPax6nullmice.FurtherimplyingthattheEGF familyregulatescorticalregi onalization,EGFinducesamolecularmarkeroflimbiccorticalareas,LAMP,inexplantsof nonlimbiccortex(FerriandLevitt,1995 ).Greaterunderstandingofthespeci fi cfunctionsofthisputativesignaling centerawaitsconditionalg eneticmanipulationsspeci fi ctotheantihem.

1.3BMPsasmorphogensintelencephalicpatterning

Dothegeneralprinciplesofmorphogengradientsapplytothemammaliantelencephalon?Inthenexttwosections,we focusonBMPandFGFsignalingindorsaltelencephalicpatterning,forwhichthereissubstantialevidencethattheanswer is “yes.”

1.3.1PerformanceobjectivesforaBMPgradientinthedorsaltelencephalon

FollowingneuralinductionandneuraltubeclosureatE9inmice,fourdistinctcellfatesdifferentiatealongthedorsoventral (DV)axisofthedorsaltelencephalonbyE12(Fig.1.3).Threeoftheseformdomainsatornearthedorsaltelencephalic midline(DTM) frommedialtolateral,thesearethechoroidplaque,CPE,andcorticalhem.CPEproducesthe cerebrospinal fl uid,andthecorticalhemactsasanorganizerforthehippocampus(Mangaleetal.,2008)andneocortical patterningcenter(Caronia-Brownetal.,2014).(Thechoroidplaqueisnotknowntohaveaspecificfunction.)Lateralto theseisthecortexorcorticalprimordium,whichismuchlargerandconstitutesmostofthedorsaltelencephalon.

Inmice,thecriticalperiodforspecifyingthesedorsaltelencephalicfatesprecedestheonsetofcorticalneurogenesisat E11.ExcessiveCPEandhemformwhenthetranscriptionfactorLhx2isinactivatedbyE8.5,butnotafterE10.5,andthis sameE8.5 E10.5perioddefinesthecriticalperiodforspecifyingcorticalidentity(Mangaleetal.,2008).Forebrain competencyforCPEfatealsocoincideswiththisperiod,basedonculturestudiesofE8.5andE9.5forebraincells(Thomas andDziadek,1993)orE9.5andE10.5dorsalforebrainexplants(Srinivasanetal.,2014).PeakCPEcompetencyin embryonicstem(ES)cell derivedsystemsalsocorrelateswithpreneurogenicneuroepithelialcellsratherthanneurogenic radialglia(Watanabeetal.,2012).Thus,ifaninstructiveBMPgradientexists,itmustexistinthepreneurogenicdorsal telencephalon.

Inadditiontospecifyingcelltypes,whatotherperformanceobjectivesmightaBMPgradientinthedorsaltelencephalonhave?Thespeci fi cationofCPEandcorticalhem fi tswiththeperformanceobjectiveofspecifyingsecondary organizersbecausebothtissueshavespeci fi csignalingfunctions(Mangaleetal.,2008;Lehtinenetal.,2011 ).Another objectivecouldbegradedpatterningofthecortex.Theneurogeniccorticalprimordiumiswellknownforits transcriptionalgradients ratherthanthresholds( Sansometal.,2005 ),andthegradientsimpactcorticalarealizationin matureanimals(Bishopetal.,2000;Mallamacietal.,2000).Onenotableperformanceobjec tivethatthecortexlacksis regeneration.Withtheexceptionofhippocampusandolfactorybulb,signifi cantneuronalregenerationdoesnotoccurin thedorsaltelencephalon,whichmayrefl ectapositiveselectionduringevolu tionforlong-termmemorystorage (Spaldingetal.,2005;Bhardwajetal.,2006).(Theideaisthatneuronalregenerationandreplacementwouldcause lossesofmemory/informationstoredwithinexistingneuronalcircuits.)Thelackofregenerationalsoimpliesthatthe neocortexmusthavegoodnegativefeedbackandmaintenancesystemstogenerateandmaintaintherightnumberof cellsfromthebeginning(Landeretal.,2009b ).

FIGURE1.3 Abonemorphogeneticprotein(BMP)signalinggradientandswitchinthedorsaltelencephalon. (A)Coronalschematicsofthe dorsaltelencephalon.BMPs( green )producedatthedorsalmidlinediffuseoveranaïvedorsaltelencephalicneuroepithelium.Within2 3daysin mice,fourfatesarespeci fi ed choroidplaque( green),choroidplexusepithelium( blue),corticalhem( orange),andcortex(red ).(B)Modi fi edFrench fl agmodel.TheBMPgradientgeneratesthreethresholdsseparatingthefourcelldomains,whichincludecellsthatcontinuetoproduceBMPs,andalso providesgradedpositionalinformationtothecortex.(C)TheBMPsignalinggradientinE10.5dorsaltelencephalon(from Chengetal.,2006).The pSmadgradientisasimpledecliningexponential(decaylength w290um),whichbecomesreducedand fl attenedfollowingroofplateablation (“mutant ”).(D)Schematicsofagradedresponse(gray)andanultrasensitive “switch” (red).(E)UltrasensitivityofE12.5corticalprogenitorstoBMP4 (Msx1 and Msx1-nlacZ RT-qPCRfrom Huetal.,2008 ).(F) Msx1 ultrasensitivityinvivoatE10.5,asevidencedbyitssharpborderinnormalembryos (arrows)andasisolatedhighlyexpressingcellsfollowingroofplateablation(arrowheads)( Msx1 ISHfrom Huetal.,2008 ).

Collectively,theseobservationssuggestthefollowingpotentialperformanceobjectivesforaBMPgradientinthe preneurogenicdorsaltelencephalon(Fig.1.3).TheBMPgradientmightspecifyuptofourdiscretefatesseparatedbythree thresholds,whichincludesthepositioningoftwosecondaryorganizers(CPEandcorticalhem).Nonlinearconversionsof gradedBMPinformationwouldbeneededforthesethresholds.Coincidentally,theBMPorthologuedppisthoughttobe responsibleforthreethresholdsinboththe Drosophila embryoandwingimaginaldisc(Asheetal.,2000;Affolterand Basler,2007).Duringtheneurogenicperiod,BMPgradientsmightalsoregulatetranscriptionalgradientswithinthecortex, whichwouldrequirelinearorsublinearinterpretationsoftheBMPgradient.

1.3.2MidlineexpressionandhomeogeneticexpansionofBMPproduction

IsBMPproductionsuf ficientlylocalizedtogenerateagradientinthedorsaltelencephalon?Beforeandafterneuraltube closureinmice,atleastsixBMPs(BMP2,4,5,6,7,and12,whichisalsoknownasGDF7)aretranscribedbyroofplate orDTMcells(Furutaetal.,1997).TheexpressionepicenterforalloftheseBMPsisthemidline.LocalizedBMPproductionatthemidlinewouldbepredictedtoformapreneurogenicBMPgradientthatishighestatthemidlineandlower morelaterally(Fig.1.3).

TwoadditionalfeaturesofBMPexpressioninthedorsaltelencephalonincreasethespatialandtemporalrangesover whichBMPgradientsmightact.First,someBMPsareexpressedbeyondthemidlineinthecorticalprimordium,andthis

expressionisalsograded(Furutaetal.,1997).Second,earlyBMP-producingcellsoftheroofplateinducelaterBMPproducingCPEandhemcells(Currleetal.,2005),aformof “homeogenetic” induction(i.e.,likeinducinglike)akin tothosedescribedinthemidbrain,spinalcord,and Drosophila (Liemetal.,1995;AlexandreandWassef,2003;Bierand DeRobertis,2015).Ontheotherhand,geneticlineagetracingsuggeststhatlineage-basedmechanismsdonotplayamajor roleinexpandingBMPproduction,atleastwithinprogenitordomains(Currleetal.,2005).Intuitively,thesemechanisms forexpandingBMPproductionwouldbeusefulaccompanimentstotheevolutionaryenlargementofthetelencephalon.

1.3.3BMPsignalinggradientinthedorsaltelencephalon

IsthereaBMPgradientinthedorsaltelencephalon?Asofnow,thereremainsnodirectevidenceforBMPsthemselves havingagradeddistribution.However,thereisevidenceforagradientofBMP signaling basedonthedistributionof phosphorylatedSmad1/5/8(pSmad),thedirectreadoutofBMPsignaling.(Note:Inthedorsaltelencephalon,Smad1and Smad5,butnotSmad8,areprobablytherelevantSmads)(Arnoldetal.,2006).AtE10.5,thepSmadgradientpeaksatthe midline,whereBMPproductionishighest,andexhibitsasimpleexponentialdeclineawayfromthemidline(Fig.1.3C) (Chengetal.,2006)withalengthscaleof290um(Srinivasanetal.,2014).Thehighdorsomedial-to-lowventrolateral (“DV”)orientationofthisgradientisconsistentwiththemidline-centeredBMPproductionmentionedearlier.

Perturbationstothesystemhaveconfirmedtheexistenceofthissignalinggradient.First,geneticroofplateablations, whichreducemidlineBMPproduction,leadtoacorrespondingreductionand flatteningoftheexponentialpSmadgradient (Fig.1.3C)(Chengetal.,2006).Second,BMP4-soakedbeadsindorsaltelencephalicexplantsinduceconcentration-, position-,andorientation-dependentresponsesthatimplyanunderlyingBMPsignalinggradientwithintheexplanted tissue(Huetal.,2008).Lastly,differencesintheEC50 valuesinvitroandborderpositionsinvivoforBMPtargetgenes Msx1 and Msx2 leadtoaBMPlengthscalecalculationof270um,whichagreeswellwiththe290umvaluederivedfrom thepSmadsignalinggradient(Srinivasanetal.,2014).

TheseobservationsontheBMPsignalinggradientinthedorsaltelencephalonhaveseveralimplications.The exponentialratherthanpower-lawshapeofthegradientsuggestsuniformclearanceofBMPsfromdorsaltelencephalic neuroepithelium.Usingtheroughestimatorof3 5timesthecalculatedlengthscale(Srinivasanetal.,2014),theBMP signalinggradientmightthenpattern800 1400um,whichwouldsuf ficefortheentiredorsaltelencephalonat preneurogenicstages.Theshapeofthegradientalsomakesgoodsensebecausemultiplecellfatethresholdsareneeded towardtheDTM,anditiseasiertomakethresholdswheregradientsaresteepest.

TheexponentialpSmadgradientfurthersuggeststhatdorsaltelencephaliccellsinterpretextracellularBMPconcentrationinalinearlyproportionalfashion.Inthe Drosophila embryoandwingimaginaldisc,GFP-DppandpMad distributionsarebothbest fi tbysimpledecliningexponentials,implyingalineargradedrelationship(Kichevaand Gonzalez-Gaitan,2008).AlthoughBMPdistributionsareunknowninthedorsaltelencephalon,nuclearpSmadlevelsin culturedE12.5corticalprogenitorscorrelateinagradedandpositivefashionwithextracellularBMP4concentration(Hu etal.,2008).Theaforementionedexplantstudies(Huetal.,2008)alsoimplythatBMP4-soakedbeadshaveagradedand additiveeffectonBMPsignaling.

1.3.4BMPsasdorsaltelencephalicmorphogens

AreBMPsand/orBMPsignalingnecessaryandsuffi cientfordorsaltelencephalicfates?WhilethinkingaboutBMP signalinginthese “operational ” termsprovideslimitedinsightintohowthesystemactuallyworks,themodelfallsapartin theabsenceofsuchevidence.Fortunately,thereissubstantialoperationalevidencetosupportthemodel.Cellularablations establishedarequirementforBMP-producingroofplatecellsinthespecificationofallthreeDTMfates(i.e.,roofplate, CPE,andcorticalhem)andinnormalcorticalpatterning(Currleetal.,2005;Chengetal.,2006).Importantly, telencephalon-specifi cinactivationsofBMPreceptors(BMPRIaandBMPRIb)demonstratedsimilarrequirementsfor BMPsignaling(Hebertetal.,2002;Fernandesetal.,2007;Caroniaetal.,2010).WhileDTMfatespecificationdoesnot occurfollowingroofplateorBMPreceptorablation,cortexisspeci fied,albeitabnormallypatterned.Thus,DTMfatesare moredependentonBMPsignalingthancortex agradedrequirementforBMPsignalingthatcorrelateswellwithits normalgradientinthedorsaltelencephalon.

InadditiontotherequirementsforBMPsignaling,suf ficiencyisthe sinequanon foraninstructivemorphogen.Initial evidenceforsuf ficiencycamefromexplantstudies,whichdemonstratedtheabilityofBMP4andotherBMPstoimpart DTM-associatedpropertiesuponthecorticalprimordium(apoptosis,proliferation,andgeneexpression)(Furutaetal., 1997).BMP4aloneisalsosuf ficienttorescueCPEfateinroofplate ablatedexplants(Chengetal.,2006),toinduceCPE ectopicallyinwild-typeexplants(Srinivasanetal.,2014),andtoinduceCPEfateinmouseandhumanEScell derived

systems(Watanabeetal.,2012).Morerecently,BMP4hasbeenshowntosuf ficeforconcentration-dependentand temporally-appropriateinductionofCPEandcorticalhemfatesinareducedculturesystem(Watanabeetal.,2016). Additionalevidenceforsuf ficiencycomesfromnestin-drivenexpressionofconstitutivelyactiveBMPtypeIreceptors, whichresultsinexcessivesimpleepitheliumresemblingchoroidplaqueandCPE(althoughperhapsmorechoroidplaquelikebecauselittletonopapillaryhistologywasobserved)(Panchisionetal.,2001).WhenappliedtoE12.5cortical progenitors,BMP4caninduceconcentration-dependentchangesingeneexpressionthatcharacterizeCPEandchoroid plaque(Huetal.,2008)andevendifferentEC50 valuesforDTMgenes(Msx1 and Msx2)thatreflecttheirborderpositions invivo(Srinivasanetal.,2014).These fi ndingssuggestBMP4suf ficiencytospecifymultipleDTMfatesandborder positionsinaconcentration-dependentfashion,asexpectedforamorphogen.

1.3.5LinearconversionofBMPsignalingbycorticalcells

WhiletheDTMisnotrequiredforcorticalfate,itisrequiredfornormalDVpatterningoftheearlycortex.Asdescribed earlier,theneurogeniccorticalprimordiumischaracterizedbymyriadtranscriptionfactor(TF)gradientsratherthan thresholds,andtheorientationsofmanyoftheseTFgradientsalignwiththatoftheBMPsignalinggradient.TFgradients arenotapparentuntilafterE10.5andthereforeafterthespeci ficationofDTMandcorticalfatesandtheonsetofcortical neurogenesis.

AlthoughlinearityofBMP-to-cor ticalTFregulationhasnotbeenrig orouslyestablished,itisdif fi culttoimagine otherwise.ThesimplefactthatcorticalTFexpressionpatternsaregradedimplieslin earinterpretationsofBMP signaling,ifBMPsignalingindeedregulatescorticalTFexpression,andthereisevidenceforthisbeingthecase.The gradientof Emx2 ,anessentialcorticalpatterninggene,matchesthat oftheBMPsignalinggradient(i.e.,italsohasaDV orientation).Correspondingly,the Emx2 genehasaSmad-bindingenhancerthatupregulatesitsexpression( Theiletal., 2002).Thecorticalselectorgene Lhx2 alsohasaDVgradient,andLhx2canbeupregulatedinexplantsatadistance fromBMP4-soakedbeads( Monukietal.,2001).Followingroofplateablation,theEmx2andLhx2gradientsare reducedand fl attenedinafashionthatcorrelatesstronglywiththeabnormalBMPsignalinggradient( Chengetal., 2006).Interestingly,thegradientsofthreeotherTFs(Pax6,Foxg1,andNgn2)withopposingVDpolaritiesarenot affectedbyroofplateablation,andthesameselectivityforDVgradedgeneswasobservedatintermediateBMP4 concentrationsinareducedculturesystem(Watanabeetal.,2016 ).Together,these fi ndingssuggestthatBMPs selectivelyupregulateDVgenesanddosoinalineargradedfashion.

1.3.6NonlinearconversionofBMPsignalingbyDTMcells

Incontrasttocorticalprogenitors,DTMprogenitorsmustsomehowconvertgradedBMPsignalingintothresholdTFand cellfateresponses,andanonlinearconversionmechanism cell-intrinsicultrasensitivitytoBMP4 hasbeendescribed (Fig.1.3D F )(Huetal.,2008 ).Ultrasensitivitydescribesanyprocesstha tdisplaysnonlinearswitch-likebehaviorin responsetoagradedstimulus.Inthedorsaltelencephalon,ultrasensitivitytoBMP4occursat thelevelofthewell-known BMPtargetandDTMgene, Msx1 ,indissociatedcorticalpr ogenitors,inexplantstreatedwithBMP4-soakedbeads, andinnormalandroofplate ablatedcontextsinvivo(Huetal.,2008).Otherfeaturesofthisultrasensitivity phenomenon includingitsmagnitudeandimm ediate-earlylikekinetics suggestitsutilityformakingcrude initialbordersintheDTM,whicharethenre fi nedandsharpened.Themechanismunderlyingthisformofultrasensitivity turnsouttoinvolvemutuallyinhibitoryinterac tionsbetweenBMPsandothersignalingpathways speci fi cally,theFGF andEGFsignalingpathways whichoccursintracellularlyabovethelevelofindividualBMPtargetgenes.In theabsenceofFGF/EGFsignaling, Msx1 (and Msx2)doseresponsestoBMP4becomeentirelygraded(Fig.1.3E) (Srinivasanetal.,2014 ).

Isthereevidenceforlaterre fi nementofbordersinthedorsaltelencephalon?Theanswerhereisalso “ yes. ” A commonmechanismusedtore fi nebordersiscellsortingbetweenneighboringcells,whichresultsfromdifferentialcell af fi nitiesspeci fi edbyselectorgenes.Inthedorsaltelencephalon, Lhx2 actsasaclassicselectorgeneforthe cortex( Mangaleetal.,2008 ).Amongitsselectoractivities,Lhx2speci fi esacorticalaf fi nitystatethatdiffersfromLhx2negativecorticalhemcells.Thesedifferentialaf fi nitiesresultinsharpsegregationsofLhx2-on(cortical)fromLhx2-off (hem)cellsininducedmosaiccontextsinvivoandinvitro,whichsuggestsanLhx2-dependentcellsortingprocessatthe normalcortex-hemboundary.SimilarroleshavebeenascribedtoPax6atalateralcorticalborder(pallial subpallial boundary)( Stoykovaetal.,1997;Gotzetal.,1998 ).

1.3.7Summary theBMPsignalinggradient

Thedescribed findingsleadtothefollowingmodelofhowtheearlydorsaltelencephalonispatternedbyBMPsignaling:

1. SeveralBMPsareproducedbycellsofthemidlineroofplate,withBMPproductionthenextendingtosecondary signalingcentersandintothecorticalprimordiumviahomeogeneticinduction.

2. ThevariousBMPsourcesgiverisetoadecliningexponentialgradientofBMPsignaling,suggestinglinearinterpretationofextracellularBMPconcentrationbydorsaltelencephaliccellsanduniformBMPclearancefromthepreneurogenicneuroepithelium.

3. DTMcellsconvertthegradedBMPsignalinginformationintothreenonlinear,ultrasensitivethresholdsthatseparate choroidplaque,CPE,corticalhem,andhippocampus.

4. DTMcellsuseacell-intrinsicformofultrasensitivitytoBMP4,whichrequiresmutuallyinhibitoryinteractionswith FGF/EGFsignalingasaninitialnonlinearconversionmechanism.

5. Dorsaltelencephalicbordersarethenrefinedbycomplementarymechanismssuchascellsorting,whichisgovernedby selectorgenessuchasLhx2.

6. Aftercellfatesandbordersarespeci fied,BMPsignalingisinterpretedinalineargradedfashiontoregulateDV patterningofthecorticalprimordium.

Manyfeaturesofthesystemremaintobediscoveredandunderstood.Inadditiontoelucidatinghomeogeneticinduction andcell-intrinsicultrasensitivitymechanismsfurther,itwillbeimportanttodeterminewhetherlinksexistbetweenthe BMPsignalinggradientandothergradedphenomenainthecortex,suchascellcyclelength,self-renewalprobability,and neurogenesis.UnderstandingbetterthespecificBMPsinvolved(BMPhomodimersandheterodimers)andtheir interactionswithBMPinhibitors(e.g.,noggin),transporters(chordin)andothermorphogensshouldalsobeilluminating, aswillstudiesonBMPdiffusivity,clearance,anddistribution.Fascinatingquestionsabouttime,scalingofpatterntotissue size,andtelencephalicgrowthregulationalsoremaintobeanswered.Systems-levelapproacheswillberequiredto understandhowthesystemworksandwhythesystemevolvedthewayitdid.Asthebest-studiedmorphogensystemstell us,attainingafullquantitativeunderstandingofdorsaltelencephalicpatterningwillnotbeeasy.Nonetheless,systemslevelunderstandingwillundoubtedlyprovideinsightsintomanyimportantquestions,includinghowmorphogenetic patterningminimizesfragilitieswhilemaximizingrobustnessandtheadaptabilityneededtoincreaseneocorticalsizein humansandotherspecies.

1.4FGF8asamorphogenintelencephalicpatterning

Asnotedpreviously,thereisnowsubstantialevidencethatFGF8andFGF17,fromtheRPC,patterntheneocorticalarea map(Fukuchi-ShimogoriandGrove,2001;Gareletal.,2003;CholfinandRubenstein,2007,2008;Toyodaetal.,2010), andthistopicisthesubjectofasubsequentchapter.MostrelevanthereisevidencethatFGF8actsasaclassicmorphogen topatterntheneocortexandpossiblytheearlier-stagetelencephalon.

IncreasingevidencesupportsanearlyroleforFGF8inthel argerdivisionofthetelencephalicvesicleintoadorsal partthatwillgeneratethecerebralcortexandaventralpa rtthatwillgeneratesubcorti calnuclei.Forexample,in zebra fi sh,knockingdowneither Fgf8 or Fgf8 and Fgf3 expressiontogethercausesreductionorlossofventraltelencephaliccells(Shanmugalingametal.,2000;WalsheandMason,2003).Inmouse, Fgf3 appearslessimportant(Theil etal.,2008),butreduced Fgf8 causesastrikingreductionoftheseptumand lateralandmedialganglioniceminences (LGE,MGE)(Stormetal.,2006).Furthermore,inmicede fi cientin Fgfr1 and Fgfr2 ,theventraltelencephalonisgreatly reduced,re fl ectingashiftfromaventraltoadorsaltelencephaliccellfate(Gutinetal.,2006 ).Finally,characteristically ventralgeneexpressioncanbeinducedbyFGF8indorsaltelencephalicexplants(Kuscheletal.,2003 )andindorsal telencephaloninvivo(Assimacopoulos,Taylor,andGrove,unpublis hedresults).These fi ndingsmaybesurprisingin thecontextofthewell-establishedroleforShhinspecifyingventralcelltypesinthespinalcord(Fuccilloetal.,2006 ). TherelativecontributionofShh,FGF8,andotherfactorshasbeeninvestigatedrecentlybyrecapitulatingventral telencephalicdevelopmentinmouseEScellculture(Danjoetal.,2011).Corticalandsubcorticalcellidentitieswere judgedbypatternsofexpressionofgenescharacteristicofcellsinvivo.ApplicationofmoderatelevelsofShhbeginning earlyintheEScellcultureandcontinuingforseveraldaysinducedLGEprogenitors.StrongerShhsignalingspeci fi ed MGEandcaudalganglioniceminence(CGE)progenitors;however,MGEspeci fi cationalsorequiredFGF8,andthe

CGErequiredFGF15.TheextenttowhichFGF8,FGF15,andShheachcontroltelencephalicventralizationinvivo needsadditionalstudyandislikelytoinvolveanincreasedunderstandingofinteractionsbetweentheShhandFGF signalingpathways,asdiscussedfurtherbelow.

Oncetheneocorticalprimordium(NP)isestablished,FG F8dispersesfromtheRPCthroughtheentireNP,creatinga proteingradientwithanexponential declinefromanteriortoposterior(Fig.1.4 )(Toyodaetal.,2010 ).Ifweassumethat FGF8dispersesbydiffusionfromsourcecells,theexponen tialdeclineimpliesuniformclearanceofFGF8throughout theNP(seeabove).ThishasnotyetbeenshownforthemouseNP,butFGF8dispersionfromasourcefollowedby ubiquitousendocytosisanddegradationoftheproteinhasbeendemonstratedinzebrafi sh( ScholppandBrand,2004; Yuetal.,2009 ).

TheRPCbecomesevidentjustafterneuraltubeclosureataboutE9inthemouse.AtE9.5,whentheFGF8gradient wasquanti fi edfromFGF8immuno fl uorescence,theNPisabout300micronslongfromanteriortoposterior(Fig.1.4D), or70 80cellwidths( Toyodaetal.,2010 ),consistentwiththesizeofaclassicmorphogenetic fi eld(seeabove).The measuredhalf-decayofFGF8intheE9.5NPoccurredoverabout10cellwidths( Toyodaetal.,2010 ).Giventhatas littleasatwofolddifferenceinmorphogenconcentrationcaninducecellsto adoptdifferentfates(GreenandSmith, 1990),thehalf-declineofFGF8comparedwiththetotallengthoftheNPatE9.5suggeststhatseveraldifferentareafates couldbeobtainedfromtheestimatedFGF8gradient.Ectopicsourcesofmyc-taggedFGF8wereintroducedby electroporation,andFGF8-mycimmuno fl uorescenceshowedgradeddispersionfromtheelectroporationsite.FGF8-myc musthavediffusedfromthenewsourceorutilizedanothermechanismfordispersionthatresultsinagradient.Ectopic FGF8-mycsourcesinducedexpressionofdifferentFGF8targetgenesatdifferentdistancesindicatingthatupregulation oftheexpressionofthesetargetgenesrequireddifferentlevelsofFGF8(Toyodaetal.,2010).

Akeyfeatureofamorphogenisthatitactsdirectlyatad istance,ratherthanbyarelayofseveralsignaling molecules.Totestthis,adominantnega tiveFGFreceptorwithhighinvitroaf fi nityforFGF8(Ornitzetal.,1996; Chellaiahetal.,1999;Zhangetal.,2006)waselectroporatedintoth ecentralregionoftheNP(Toyodaetal.,2010).The dominantnegativereceptor,dnFGFR3c,capturedFGF8atadistancefromtheFGF8source,andthereductionofFGF8 inducedcellstoadoptamoreposteriorareaidentity,demonstratingdir ect,long-rangepatterningbyFGF8( Toyoda etal.,2010).TheseobservationssupportFGF8asaclassicdiffusiblemorphogeninneocortex.

1.5Interactionsamongsignalingcentersintelencephalicpatterning

Evidencetodateindicatesthatinteractionsamongsignalingcentersinthetelencephalon(1)regulatetheexpressionof genesencodingspeci ficsignalingmoleculesintheothersignalingcenterand(2)modifytheactivityoftheothersignaling centerbyregulationofadownstreamsignalingcomponent.

FIGURE1.4 CharacterizationoftheFGF8gradientintheneocorticalprimordiumatE9.5. (A)Sagittalmidlinesectionthroughoneofninemouse brainsusedinquantification.FGF8IFlwasmeasuredinastandardizedsegmentoftheneocorticalprimordium(ncxp)(yellowband;whitelinesmark anteriorandposteriorncxpboundaries).(B,C)FGF8IFl(grayscale)inadigitallystraightenedsegmentshowsanA/Pintensitygradient(B),asdoes FGF8 IFl(false-colored)averagedfromninesegments(C).(D)PlotofmeanFGF8IFlinarbitraryunits(AU)againstdistancefromtheanteriorFGF8source. An IFlintensityplateauinthemostanteriorportion(C)wasnotplottedin(D).Adecliningexponentialcurve(red)was fittedtotheremainingdata(blue).The x and y axesoftheplotinDdonotstartatzerotoalloweasieridentificationofhalf-declinepointsofthegradient.MaximumFGF8IFlintensityis(1), sequentialhalf-declinepointsarelabeled(2),(3),and(4).TheA/Pdistanceofthehalf-declineisabout45microns(seebrokengreenlinesinD),roughly thewidthof10DAPI-stainednuclei(whitearrows,E).Scalebars:0.1mmin(A);0.04mmin(E).

1.5.1FGF8,Shh,andBMPsignaling

Twocompanionpapersdescribedthe firstdirectstudyofinteractionsamongjuxtaposedtelencephalicsignalingcentersin chickandmouse(Crossleyetal.,2001;Ohkuboetal.,2002).ThesestudiesproposedthatFGF8,BMP4,andMGE-derived Shhregulateeachother’sgeneexpression,andtherebythegrowthofthetelencephalicvesicle,inamannersimilarto interactionsofFGF8,BMPs,andShhinthelimbbud(Ohkuboetal.,2002).BMP4wasfoundtorepress Fgf8 and Shh expression,whereasShhrepressed Bmp expressionandmaintainedexpressionof Fgf8.Bothexperimentallyincreasedand decreasedBMPsignalingcorrelatedwithdecreasedgrowthofthetelencephalicvesicles,suggestingthatnormalgrowth requiresabalanceofBMP,FGF8,andShhsignaling(Ohkuboetal.,2002).

1.5.2Cross-regulationofBMP,FGF,andWNTsignaling

OnefunctionofinteractionsbetweentheRPCandthecorticalhemistoregulatetheothersignalingcenter ’sboundaries. IncreasedFGF8signalingdecreases Wnt2b, 3a,and 5a expressioninthehem,withaconsequentreductioninthesizeof thehippocampus.Conversely,BMPsignalingfromthehemregioninbothchickandmousedecreases Fgf8 expression (Ohkuboetal.,2002;Shimogorietal.,2004).Thus, Wnt signalinginthehemisprotectedbyBMPactivitythatholdsback Fgf8 expression.Surprisingly,theBMPantagonist,noggin,cancausewidespreadupregulationof Fgf8 expression, suggestingthatalargepartofthecorticalprimordiumiscompetenttoexpress Fgf8 andwoulddosointheabsenceof activerepression(Shimogorietal.,2004).Giventhatthecorticalselectorgene Lhx2 suppressescorticalhemandantihem tissuefates(Mangaleetal.,2008),theNPmightdefaultintoaconglomerationofhem,antihem,andRPC,wereitnot blockedfromdoingsobyBMPsignalingandLhx2.

Thetranscriptionfactor,EMX2(anorthologof Drosophila emptyspiracles),seemstobeatthehubofinteractions betweenFGFandWntsignalinginthedorsaltelencephalon.FGF8downregulatesexpressionof Emx2,whereasWnt3a upregulatesitsexpression(Fukuchi-ShimogoriandGrove,2001;Caronia-Brownetal.,2014).Emx2,inturn,regulatesthe twosignalingcenters(Fukuchi-ShimogoriandGrove,2003).Micedefi cientin Emx2 haveacombinationofsignaling centerdefects. Fgf8 and Fgf17 expressionincreases,expandingpastnormallimitsoftheRPC,andexpressionof Wnt2b, 3a, 5a,and 8b isreducedinthedorsomedialtelencephalon,includingthehem,asdoestheotherdownstreamcomponents ofcanonicalWntsignalingsuchasLef1(Fukuchi-ShimogoriandGrove,2003).Cellcyclecontrol,likelytobeinfluenced byWntsignaling,isaberrantinthe Emx2 mutanttelencephalon,andthehippocampusisshrunken(Toleetal.,2000b; Muzioetal.,2002,2005;Fukuchi-ShimogoriandGrove,2003;Shimogorietal.,2004;CholfinandRubenstein,2008). ReducingexcessFGF8partiallyrescuesboth Wnt geneexpressionandthehippocampal fields(Shimogorietal.,2004),and reactivatingWntsignalingwithlithiumtreatmentpartiallyrestoresnormalcellcycledynamicsinthe Emx2 mutant(Muzio etal.,2005).WhetherreducedWntsignalinginthe Emx2 mutantmouseiscauseddirectlybylossofEmx2(Muzioetal., 2005),indirectlybyincreasedFGF8signaling(Shimogorietal.,2004),orboth(CholfinandRubenstein,2008)remainsto befullyclari fied.WhatseemsclearisthatthehemandRPChaveoppositeeffectsontheexpressionof Emx2 andthatthis islikelytoshapethecaudomedialhightorostrallowgradientof Emx2 expressionintheNP.Aswillbedescribedina subsequentchapter,theNP Emx2 gradienthasamajorroleinneocorticalareapatterning.

1.5.3InteractionsofShh,FGFs,andGli3

ShhsignalingismediatedbytheGligenes,andinthepresenceofShh,allthreeGlitranscriptionfactorsworkas transactivators.IntheabsenceofShh,however,Gli3remainsinarepressorstate(Gli3R)( Fuccilloetal.,2006 ). Observationsofthe extra-toes mutantmouse,whichlacks Gli3 altogether,indicatethatGli3Rrepressesexpressionof Fgf8 , Fgf17,and Fgf15 ( Aotoetal.,2002;RashandGrove,2007).Thatis,in extra-toes ,theexpressiondomainofeach ofthese Fgf genesgreatlyexpands.Notably,inthe extra-toes mouse,thecerebralcortexhasahighlydisrupted morphology;moreovergeneexpressiontypicaloftheventraltelencephalonextendsintotherostrodorsaltelencephalon (Toleetal.,2000a;Kuscheletal.,2003 ).Thus,undernormalcircumstances,thedorsaltelencephalonisprotectedby Gli3R-mediatedsuppressionfromtheventralizingeffectsofFGFsignaling( Kuscheletal.,2003).

1.6Morphogensinhumanbraindisease

1.6.1HoloprosencephalyandKallmannsyndrome

Amajorhumandisorderassociatedwithdefectivemorphogen-mediatedpatterningisholoprosencephaly(HPE,OMIM 236100),themostcommoncongenitalbirthdefectofthehumanforebrain(1in16,000livebirths,1in250conceptions)

(Monuki,2007).HPEhaslongfascinatedcliniciansandscientistsbecauseofitsstrikingphenotype,whichcanincludea singleforebrain “holosphere” ratherthanhemispheres(Fig.1.5)andmidlinecraniofacialdefectssuchasasinglemidline eye(cyclopia).ThesephenotypesreflecttheprimaryfailuresinmidlineinductionthatdefineHPE(Golden,1998).Human HPEisdividedintotwocategorieswithdistinctphenotypes:(1)classicand(2)middleinterhemispheric(MIH,alsoknown assyntelencephaly).Themore-commonclassicHPEisdividedintoalobar,semilobar,andlobarsubtypesbasedon severity,withalobarbeingthemostsevere.AnewHPEsubtype,referredtoasseptopreopticHPE(Hahnetal.,2010), probablyrepresentsamilder “formfruste” ofclassicHPE.OtherHPEspectrumdisordersincludearrhinencephaly (absenceofolfactorybulbs),septoopticdysplasia(OMIM182230),andKallmannsyndrome(OMIM308700),which combinesanosmiawithhypogonadotropichypogonadismduetodefectsinolfactoryandhypothalamicdevelopment. Humanandanimalgeneticsdirectlyimplicatesignalingbyfourfamiliesofmorphogens NODAL,SHH,FGF,and BMP intheinductionandpathogenesisofHPE(Monuki,2007).Althoughchromosomalabnormalities(mostoften trisomies)aremoreoftenthegeneticculprits,overadozensinglegeneshavenowbeendirectlyassociatedwithhuman HPE(Table1.1)(Solomonetal.,2011;Dubourgetal.,2016).ThesegenesincludeseveralfactorsthataffectNODALand

TABLE1.1 Holoprosencephalygenesimplicatedinmorphogensignaling.

NODALSHHFGF8 Chordin

TDGF1/CRIPTOPTCH1FGFR1 Noggin

FOXH1/FAST1DHCR7 Twsg1

TGIF1GLI2 BmpRIa/Ib

Cyclops DISP1 Squint GAS1 One-eyedpinhead CDON SUFU Smo (ZIC2)(SIX3)(SIX3)(ZIC2) (Megalin) (TGIF1) (Megalin)

Genesorwell-establishedmodifiersfromhumansandexperimentalorganismslinkedtoholoprosencephalyand/orcyclopicphenotypes,groupedby morphogensignalingpathway.Humangenesareshowninbolduppercase;geneswithtentativeplacementsareparenthesizedandlistedtowardsthe bottom.

FIGURE1.5 Morphogeninteractionsinholoprosencephaly. (A,B)Anteriorviewsofthecentralnervoussystemfromanormal13-weekfetus(A)and an18-weekgestationhumanfetuswithalobarholoprosencephaly(B).Thefetuswithholoprosencephalyhasasingleforebrainvesicle(“holosphere”)and acortexthatiscontinuousacrosstheventrobasal,rostral,anddorsalmidlines.(C)Morphogeninteractionnetworkthatcanaccountforclassicholoprosencephaly(HPE)subtypeswithvariableextensiontothedorsalmidline,aswellasMIHHPE,whichselectivelyinvolvesthedorsalmidlineregion. ModifiedfromMonuki,E.S.,Walsh,C.A.,2001.Mechanismsofcerebralcorticalpatterninginmiceandhumans.Nat.Neurosci.4Suppl.,1199 1206; andMonuki,E.S.,2007.Themorphogensignalingnetworkinforebraindevelopmentandholoprosencephaly.J.Neuropathol.Exp.Neurol.66,566 575.

Bmp4
Fgf8
Shh
Nodal
(C)
(B)
(A)

SHHsignalingandmorerecently FGF8 and FGFR1 (Arauzetal.,2010;Rosenfeldetal.,2010;McCabeetal.,2011; Dubourgetal.,2016).Theassociationof FGF8 mutationswithbothmildHPEandKallmannsyndromesupportthe conceptthatthesemalformationslieonadiseasecontinuum.Atthispoint,animalstudiesaloneimplicateBMPsignaling inclassicandMIHforms(Chengetal.,2006;Fernandesetal.,2007).MajorhumanHPEgenesthatdonotencodefor morphogensthemselves(TGIF, ZIC2,and SIX3)regulatemorphogensormorphogensignaling.Forexample, Tgif mutationsdisruptShhandNodalsignaling(Taniguchietal.,2012),while Zic2 mutationsresultindefectivenodeand prechordalplatedevelopment,therebyimpactingShhandNodalsignaling(Warretal.,2008). Six3,ontheotherhand,is requiredforShhtranscriptionalactivation(Gengetal.,2008).

ThefundamentaldefectinHPEisfailedmidlineinduction(Golden,1998),andallfourofthemorphogenfamilies implicatedareexpressedathighestlevelsinmidlinetissues(Monuki,2007).Asdiscussedabove,NODALandSHHare bothmainlyproducedbyventralmidlinetissues(prechordal,preoptic,andhypothalamicregions),FGF8isexpressedin theRPC,andBMPsareproducedbothinventralmidline(BMP7intheprechordalplate)andDTM(roofplate,CPE,and corticalhem).

Importantly,interactionsbetweenthefourmorphogenfamiliescanaccountforhumanHPEphenotypesand,in particular,forthelong-standingconundrumofhowprimarydefectsinventralsignalingcanleadtoDTMfailures (Fig.1.5C)(Monuki,2007).Briefl y,andasdetailedabove,NODALisupstreamofSHH,whichthenengagesinpositive feedbackwithrostralFGF8.Ontheotherhand,dorsalBMPsnegativelyregulatetheSHH-FGF8circuit,whileFGF8can havebothpositiveandnegativeeffectsondorsalBMPs.Thismorphogensignalingnetworkcanthenexplainhow NODAL,SHH,andFGF8signalingdefectscanextendtoincludetheDTMregion,butwhythisextensionisquitevariable (perhapsduetothemorecomplexFGF dorsalBMPinteractions),evenwithinfamiliesharboringidenticalmutations. ThisnetworkcanalsoexplainwhyrostralandventralregionsarenotaffectedinMIHHPE(i.e.,whendorsalBMP signalingisthesuspectedculprit).

1.6.2Gradientsinholoprosencephalyneuropathology

Withregardtothemorphogengradienthypothesis,itisimportanttoconsideraspectsofHPEneuropathologythatare themselvesgraded.Thegradedneuropathologythat firstcomestomindisthegradedinvolvementofventralversusdorsal forebrainregionsinclassicHPE,inwhichventrobasalandrostralregionsaremoreseverelyaffectedthandorsaland posteriorones.ThisspatialgradientissimplesttovisualizeinsemilobarHPE,butitisevidentinmostclassicHPEcases (perhapswiththeexceptionofthemostcompleteformsofalobarHPE).However,thisgradientofneuropathologycannot beexplainedbythespatiotemporalgradientofanysinglemorphogen.Instead,networkinteractionsbetweenmidline morphogensmustbeinvoked(Fig.1.5C)(Monuki,2007).

AnothersetofgradientsobservedinHPE whicharemoredirectlyrelevanttothemorphogengradient hypothesis aretheneuropathologicalgradientsrelativetothemidline.Becauseallofthemorphogensimplicatedin classicHPEareexpressedathighestlevelsinmidlinetissues,itmakessensethatHPEneuropathologyisgreatesttoward themidline(Monuki,2007).Equallyimportant,neuropathologicseveritydiminishesawayfromthemidline (e.g.,neocortexisalwayspresentinsevereclassicHPEcases),andinmilderforms,midlinetissuessuchasolfactorybulbs orseptopreoptictissuesappeartobetheonlystructuresinvolved.ThegradedneuropathologyinMIHHPEisalso consistentwiththemorphogengradienthypothesis.MIHHPEpatientsuniformlyhavetotaltonear-totalabsenceofCPEin thelateralventricles,whiletheirhippocampiareoften,butnotalways,smallanddysplastic(Chengetal.,2006).Thus,as inclassicHPE,MIHHPEneuropathologyismoreseveremedially(CPE)thanlaterally(hippocampus).

1.6.3Gradientsinotherhumanbraindisorders

AlthoughlesswellappreciatedthaninHPE,manydevelopmentaldiseasesexhibitcharacteristicgradientsinneuropathology.Oneexampleisadrenoleukodystrophy(OMIM300100),anX-linkedperoxisomaldisorderthatresultsin widespreaddysmyelination/demyelinationofCNSwhitematter.Withinthecerebrum,adrenoleukodystrophyhasa characteristicneuropathologicalgradient,withposterior(occipital)whitemattermoreseverelyaffectedthananterior (frontal).Anotherexampleislissencephaly(OMIM607423),aseverecorticalmalformation.Thetwogenesmost commonlyassociatedwithlissencephalyare LIS1 and DCX (alsoknownas LISX1),andtheneuropathologiesdueto mutationsinthesetwogenesexhibitopposinggradients LIS1-associatedlissencephalyisposteriorpredominant,whereas DCX mutationscauseanteriorpredominantlissencephaly(GuerriniandMarini,2006).Patterningdisordersofthe brainstemalsodisplayAPgradientsinneuropathology(Barkovichetal.,2009).

Theseandotherexamplesreflectanaspectofdevelopmentalbraindisordersthatremainspoorlyunderstood,but experimentallytractableinanimalmodels theroleofmorphogeneticgradientsindeterminingthegradedpatternsof disease.Whetherprimarymorphogengradientsareresponsibleforthegradedneuropathologiesintheseandother disordersisunknown,andifresponsible,itremainstobeseenwhethertheresponsibilitiesaredirectorindirect (e.g.,morphogengradientsinthedorsaltelencephaloncouldindirectlydeterminethegradedlissencephalyphenotypesby regulatinggradientswithinthecorticalplate).Regardless,carefulexaminationsoftheneuropathologiesinhumansand animalmodelsshouldprovidecluestothepotentialgradientsimpingingupondiseaseprocessesandwhetherlinearor nonlinearconversionsofgradedinformationareinvolved.Inthisregard,understandinghowgradedorswitch-like signalingisachievedcouldalsoimpactotherhumanbraindiseaseslinkedtomorphogens,butnottogradientsofthese morphogensperse(e.g.,theroleofSHHandWNTsignalinginmedulloblastoma).

References

Affolter,M.,Basler,K.,2007.TheDecapentaplegicmorphogengradient:frompatternformationtogrowthregulation.Nat.Rev.8,663 674. Alexandre,P.,Wassef,M.,2003.Theisthmicorganizerlinksanteroposterioranddorsoventralpatterninginthemid/hindbrainbygeneratingroofplate structures.Development130,5331 5338.

Aoto,K.,Nishimura,T.,Eto,K.,Motoyama,J.,2002.MouseGLI3regulatesFgf8expressionandapoptosisinthedevelopingneuraltube,face,andlimb bud.Dev.Biol.251,320 332.

Arauz,R.F.,Solomon,B.D.,Pineda-Alvarez,D.E.,Gropman,A.L.,Parsons,J.A.,Roessler,E.,Muenke,M.,2010.AhypomorphicalleleintheFGF8 genecontributestoholoprosencephalyandisallelictogonadotropin-releasinghormonedeficiencyinhumans.Mol.Syndromol.1,59 66. Arnold,S.J.,Maretto,S.,Islam,A.,Bikoff,E.K.,Robertson,E.J.,2006.Dose-dependentSmad1,Smad5andSmad8signalingintheearlymouseembryo. Dev.Biol.296,104 118.

Ashe,H.L.,Briscoe,J.,2006.Theinterpretationofmorphogengradients.Development133,385 394.

Ashe,H.L.,Mannervik,M.,Levine,M.,2000.DppsignalingthresholdsinthedorsalectodermoftheDrosophilaembryo.Development127,3305 3312. Assimacopoulos,S.,Grove,E.A.,Ragsdale,C.W.,2003.IdentificationofaPax6-dependentepidermalgrowthfactorfamilysignalingsourceatthelateral edgeoftheembryoniccerebralcortex.J.Neurosci.23,6399 6403.

Bachler,M.,Neubuser,A.,2001.ExpressionofmembersoftheFgffamilyandtheirreceptorsduringmidfacialdevelopment.Mech.Dev.100,313 316. Barkai,N.,Shilo,B.Z.,2009.Robustgenerationanddecodingofmorphogengradients.ColdSpringHarb.Perspect.Biol.1,a001990.

Barkovich,A.J.,Millen,K.J.,Dobyns,W.B.,2009.Adevelopmentalandgeneticclassificationformidbrain-hindbrainmalformations.Brain132, 3199 3230.

Bhardwaj,R.D.,Curtis,M.A.,Spalding,K.L.,Buchholz,B.A.,Fink,D.,Bjork-Eriksson,T.,Nordborg,C.,Gage,F.H.,Druid,H.,Eriksson,P.S., Frisen,J.,2006.Neocorticalneurogenesisinhumansisrestrictedtodevelopment.Proc.Natl.Acad.Sci.U.S.A.103,12564 12568. Bier,E.,DeRobertis,E.M.,2015.EMBRYODEVELOPMENT.BMPgradients:aparadigmformorphogen-mediateddevelopmentalpatterning.Science 348. https://doi.org/10.1126/science.aaa5838.

Bishop,K.M.,Goudreau,G.,O’Leary,D.D.,2000.RegulationofareaidentityinthemammalianneocortexbyEmx2andPax6.Science288,344 349. Boveri,T.,1901.Diepolaritätvonovocyte,ei,undlarvedesstrongylocentruslividus.Zool.Jahrb.-Abt.Anat.Ontog.Tiere384.

Briscoe,J.,Small,S.,2015.Morphogenrules:designprinciplesofgradient-mediatedembryopatterning.Development142,3996 4009.

Carlson,J.M.,Doyle,J.,2002.Complexityandrobustness.Proc.Natl.Acad.Sci.U.S.A.99(Suppl.1),2538 2545.

Caronia,G.,Wilcoxon,J.,Feldman,P.,Grove,E.A.,2010.Bonemorphogeneticproteinsignalinginthedevelopingtelencephaloncontrolsformationof thehippocampaldentategyrusandmodifiesfear-relatedbehavior.J.Neurosci.30,6291 6301.

Caronia-Brown,G.,Yoshida,M.,Gulden,F.,Assimacopoulos,S.,Grove,E.A.,2014.Thecorticalhemregulatesthesizeandpatterningofneocortex. Development141,2855 2865.

Chellaiah,A.,Yuan,W.,Chellaiah,M.,Ornitz,D.M.,1999.Mappingligandbindingdomainsinchimeric fibroblastgrowthfactorreceptormolecules. Multipleregionsdetermineligandbindingspecificity.J.Biol.Chem.274,34785 34794.

Cheng,X.,Hsu,C.M.,Currle,D.S.,Hu,J.S.,Barkovich,A.J.,Monuki,E.S.,2006.Centralrolesoftheroofplateintelencephalicdevelopmentand holoprosencephaly.J.Neurosci.26,7640 7649.

Chiang,C.,Litingtung,Y.,Lee,E.,Young,K.E.,Corden,J.L.,Westphal,H.,Beachy,P.A.,1996.Cyclopiaanddefectiveaxialpatterninginmicelacking Sonichedgehoggenefunction.Nature383,407 413.

Cholfin,J.A.,Rubenstein,J.L.,2007.PatterningoffrontalcortexsubdivisionsbyFgf17.Proc.Natl.Acad.Sci.U.S.A.104,7652 7657.

Cholfin,J.A.,Rubenstein,J.L.,2008.FrontalcortexsubdivisionpatterningiscoordinatelyregulatedbyFgf8,Fgf17,andEmx2.J.Comp.Neurol.509, 144 155.

Crick,F.,1970.Diffusioninembryogenesis.Nature225,420 422.

Crossley,P.H.,Martin,G.R.,1995.ThemouseFgf8geneencodesafamilyofpolypeptidesandisexpressedinregionsthatdirectoutgrowthand patterninginthedevelopingembryo.Development121,439 451.

Crossley,P.H.,Martinez,S.,Ohkubo,Y.,Rubenstein,J.L.,2001.CoordinateexpressionofFgf8,Otx2,Bmp4,andShhintherostralprosencephalon duringdevelopmentofthetelencephalicandopticvesicles.Neuroscience108,183 206.

Morphogens,patterningcenters,andtheirmechanismsofaction Chapter|1 19

Currle,D.S.,Cheng,X.,Hsu,C.M.,Monuki,E.S.,2005.DirectandindirectrolesofCNSdorsalmidlinecellsinchoroidplexusepitheliaformation. Development132,3549 3559.

Danjo,T.,Eiraku,M.,Muguruma,K.,Watanabe,K.,Kawada,M.,Yanagawa,Y.,Rubenstein,J.L.,Sasai,Y.,2011.Subregionalspecificationof embryonicstemcell-derivedventraltelencephalictissuesbytimedandcombinatorytreatmentwithextrinsicsignals.J.Neurosci.31,1919 1933. Dekanty,A.,Milan,M.,2011.Theinterplaybetweenmorphogensandtissuegrowth.EMBORep.12,1003 1010.

Driever,W.,Nusslein-Volhard,C.,1988a.ThebicoidproteindeterminespositionintheDrosophilaembryoinaconcentration-dependentmanner.Cell54, 95 104.

Driever,W.,Nusslein-Volhard,C.,1988b.AgradientofbicoidproteininDrosophilaembryos.Cell54,83 93. Dubourg,C.,Carre,W.,Hamdi-Roze,H.,Mouden,C.,Roume,J.,Abdelmajid,B.,Amram,D.,Baumann,C.,Chassaing,N.,Coubes,C.,FaivreOlivier,L.,Ginglinger,E.,Gonzales,M.,Levy-Mozziconacci,A.,Lynch,S.A.,Naudion,S.,Pasquier,L.,Poidvin,A.,Prieur,F.,Sarda,P., Toutain,A.,Dupe,V.,Akloul,L.,Odent,S.,deTayrac,M.,David,V.,2016.MutationalsepctruminholoprosencephalyshowsthatFGFisanew majorsignalingpathway.Hum.Mutat.37,1329 1339.

Dyson,S.,Gurdon,J.B.,1998.Theinterpretationofpositioninamorphogengradientasrevealedbyoccupancyofactivinreceptors.Cell93,557 568. Ferguson,E.L.,Anderson,K.V.,1992.Decapentaplegicactsasamorphogentoorganizedorsal-ventralpatternintheDrosophilaembryo.Cell71, 451 461.

Fernandes,M.,Gutin,G.,Alcorn,H.,McConnell,S.K.,Hebert,J.M.,2007.MutationsintheBMPpathwayinmicesupporttheexistenceoftwo molecularclassesofholoprosencephaly.Development134,3789 3794.

Ferri,R.T.,Levitt,P.,1995.RegulationofregionaldifferencesinthedifferentiationofcerebralcorticalneuronsbyEGFfamily-matrixinteractions. Development121,1151 1160.

Freeman,M.,Gurdon,J.B.,2002.Regulatoryprinciplesofdevelopmentalsignaling.Annu.Rev.CellDev.Biol.18,515 539.

Fuccillo,M.,Joyner,A.L.,Fishell,G.,2006.Morphogentomitogen:themultiplerolesofhedgehogsignallinginvertebrateneuraldevelopment.Nat.Rev. Neurosci.7,772 783.

Fukuchi-Shimogori,T.,Grove,E.A.,2001.NeocortexpatterningbythesecretedsignalingmoleculeFGF8.Science294,1071 1074.

Fukuchi-Shimogori,T.,Grove,E.A.,2003.Emx2patternstheneocortexbyregulatingFGFpositionalsignaling.Nat.Neurosci.6,825 831.

Furuta,Y.,Piston,D.W.,Hogan,B.L.,1997.Bonemorphogeneticproteins(BMPs)asregulatorsofdorsalforebraindevelopment.Development124, 2203 2212.

Galceran,J.,Farinas,I.,Depew,M.J.,Clevers,H.,Grosschedl,R.,1999.Wnt3a-/–likephenotypeandlimbdeficiencyinLef1(-/-)Tcf1(-/-)mice.Genes Dev.13,709 717.

Garcia-Bellido,A.,1975.GeneticcontrolofwingdiscdevelopmentinDrosophila.CibaFound.Symp.0,161 182.

Garel,S.,Huffman,K.J.,Rubenstein,J.L.R.,2003.MolecularregionalizationoftheneocortexisdisruptedinFgf8hypomorphicmutants.Development 130,1903 1914.

Geng,X.,Speirs,C.,Lagutin,O.,Inbal,A.,Liu,W.,Solnica-Krezel,L.,Jeong,Y.,Epstein,D.J.,Oliver,G.,2008.Haploinsuf ficiencyofSix3failsto activateSonichedgehogexpressionintheventralforebrainandcausesholoprosencephaly.Dev.Cell15,236 247.

Goentoro,L.A.,Reeves,G.T.,Kowal,C.P.,Martinelli,L.,Schupbach,T.,Shvartsman,S.Y.,2006.QuantifyingtheGurkenmorphogengradientin Drosophilaoogenesis.Dev.Cell11,263 272.

Golden,J.A.,1998.Holoprosencephaly:adefectinbrainpatterning.J.Neuropathol.Exp.Neurol.57,991 999. Gotz,M.,Stoykova,A.,Gruss,P.,1998.Pax6controlsradialgliadifferentiationinthecerebralcortex.Neuron21,1031 1044.

Grove,E.A.,Tole,S.,Limon,J.,Yip,L.,Ragsdale,C.W.,1998.ThehemoftheembryoniccerebralcortexisdefinedbytheexpressionofmultipleWnt genesandiscompromisedinGli3-deficientmice.Development125,2315 2325.

Green,J.B.,Smith,J.C.,1990.GradedchangesindoseofaXenopusactivinAhomologueelicitstepwisetransitionsinembryoniccellfate.Nature347 (6291),391 394.

Guerrini,R.,Marini,C.,2006.Geneticmalformationsofcorticaldevelopment.Exp.BrainRes.173,322 333.ExperimentelleHirnforschung.

Gulacsi,A.,Anderson,S.A.,2006.ShhmaintainsNkx2.1intheMGEbyagli3-independentmechanism.Cerebr.Cortex16(Suppl.1),i89 95. Gutin,G.,Fernandes,M.,Palazzolo,L.,Paek,H.,Yu,K.,Ornitz,D.M.,McConnell,S.K.,Hebert,J.M.,2006.FGFSignallingGeneratesVentral TelencephalicCellsIndependentlyofSHH.Development.

Hahn,J.S.,Barnes,P.D.,Clegg,N.J.,Stashinko,E.E.,2010.Septopreopticholoprosencephaly:amildsubtypeassociatedwithmidlinecraniofacial anomalies.AJNRAm.J.Neuroradiol.31,1596 1601.

Hebert,J.M.,Mishina,Y.,McConnell,S.K.,2002.BMPsignalingisrequiredlocallytopatternthedorsaltelencephalicmidline.Neuron35,1029 1041. Hoch,R.V.,Clarke,J.A.,Rubenstein,J.L.,2015.FgfsignalingcontrolsthetelencephalicdistributionofFgf-expressingprogenitorsgenerated intherostral patterningcenter.NeuralDev.10,8.

Holley,S.A.,Neul,J.L.,Attisano,L.,Wrana,J.L.,Sasai,Y.,O’Connor,M.B.,DeRobertis,E.M.,Ferguson,E.L.,1996.TheXenopusdorsalizingfactor nogginventralizesDrosophilaembryosbypreventingDPPfromactivatingitsreceptor.Cell86,607 617.

Hu,J.S.,Doan,L.T.,Currle,D.S.,Paff,M.,Rheem,J.Y.,Schreyer,R.,Robert,B.,Monuki,E.S.,2008.BorderformationinaBmpgradientreducedto singledissociatedcells.Proc.Natl.Acad.Sci.U.S.A.105,3398 3403.

Kicheva,A.,Gonzalez-Gaitan,M.,2008.TheDecapentaplegicmorphogengradient:aprecisedefinition.Curr.Opin.CellBiol.20,137 143.

Kim,A.S.,Anderson,S.A.,Rubenstein,J.L.,Lowenstein,D.H.,Pleasure,S.J.,2001.Pax-6regulatesexpressionofSFRP-2andWnt-7binthedeveloping CNS.J.Neurosci.21,RC132.

Kuschel,S.,Ruther,U.,Theil,T.,2003.AdisruptedbalancebetweenBmp/WntandFgfsignalingunderliestheventralizationoftheGli3mutant telencephalon.Dev.Biol.260,484 495.

Lander,A.D.,2007.Morpheusunbound:reimaginingthemorphogengradient.Cell128,245 256. Lander,A.D.,Nie,Q.,Wan,F.Y.,2002.Domorphogengradientsarisebydiffusion?Dev.Cell2,785 796.

Lander,A.D.,Lo,W.C.,Nie,Q.,Wan,F.Y.,2009a.Themeasureofsuccess:constraints,objectives,andtradeoffsinmorphogen-mediatedpatterning ColdSpringHarb.Perspect.Biol.1,a002022.

Lander,A.D.,Gokoffski,K.K.,Wan,F.Y.,Nie,Q.,Calof,A.L.,2009b.Celllineagesandthelogicofproliferativecontrol.PLoSBiol.7,e15. Lee,S.M.,Tole,S.,Grove,E.,McMahon,A.P.,2000.AlocalWnt-3asignalisrequiredfordevelopmentofthemammalianhippocampus.Development 127,457 467.

Lehtinen,M.K.,Zappaterra,M.W.,Chen,X.,Yang,Y.J.,Hill,A.D.,Lun,M.,Maynard,T.,Gonzalez,D.,Kim,S.,Ye,P.,D’Ercole,A.J.,Wong,E.T., LaMantia,A.S.,Walsh,C.A.,2011.Thecerebrospinal fluidprovidesaproliferativenicheforneuralprogenitorcells.Neuron69,893 905. Li,G.,Pleasure,S.J.,2005.Morphogenesisofthedentategyrus:whatwearelearningfrommousemutants.Dev.Neurosci.27,93 99.

LiemJr.,K.F.,Tremml,G.,Roelink,H.,Jessell,T.M.,1995.DorsaldifferentiationofneuralplatecellsinducedbyBMP-mediatedsignalsfromepidermal ectoderm.Cell82,969 979.

Machon,O.,Backman,M.,Machonova,O.,Kozmik,Z.,Vacik,T.,Andersen,L.,Krauss,S.,2007.AdynamicgradientofWntsignalingcontrols initiationofneurogenesisinthemammaliancortexandcellularspecificationinthehippocampus.Dev.Biol.311,223 237.

Mallamaci,A.,Muzio,L.,Chan,C.H.,Parnavelas,J.,Boncinelli,E.,2000.AreaidentityshiftsintheearlycerebralcortexofEmx2-/-mutantmice. Nat. Neurosci.3,679 686.

Mangale,V.S.,Hirokawa,K.E.,Satyaki,P.R.,Gokulchandran,N.,Chikbire,S.,Subramanian,L.,Shetty,A.S.,Martynoga,B.,Paul,J.,Mai,M.V.,Li,Y., Flanagan,L.A.,Tole,S.,Monuki,E.S.,2008.Lhx2selectoractivityspecifiescorticalidentityandsuppresseshippocampalorganizerfate.Science 319,304 309.

McCabe,M.J.,Gaston-Massuet,C.,Tziaferi,V.,Gregory,L.C.,Alatzoglou,K.S.,Signore,M.,Puelles,E.,Gerrelli,D.,Farooqi,I.S.,Raza,J.,Walker,J., Kavanaugh,S.I.,Tsai,P.S.,Pitteloud,N.,Martinez-Barbera,J.P.,Dattani,M.T.,2011.NovelFGF8mutationsassociatedwithrecessiveholoprosencephaly,craniofacialdefects,andhypothalamo-pituitarydysfunction.J.Clin.Endocrinol.Metab.96,E1709 E1718.

Meinhardt,H.,2009.Modelsforthegenerationandinterpretationofgradients.ColdSpringHarb.Perspect.Biol.1,a001362.

Moldrich,R.X.,Gobius,I.,Pollak,T.,Zhang,J.,Ren,T.,Brown,L.,Mori,S.,DeJuanRomero,C.,Britanova,O.,Tarabykin,V.,Richards,L.J.,2010 Molecularregulationofthedevelopingcommissuralplate.J.Comp.Neurol.518,3645 3661.

Monuki,E.S.,2007.Themorphogensignalingnetworkinforebraindevelopmentandholoprosencephaly.J.Neuropathol.Exp.Neurol.66,566 575.

Monuki,E.S.,Porter,F.D.,Walsh,C.A.,2001.Patterningofthedorsaltelencephalonandcerebralcortexbyaroofplate-lhx2pathway.Neuron32, 591 604.

Morgan,T.H.,1901.Regenerationandliabilitytoinjury.Science14,235 248.

Muzio,L.,Soria,J.M.,Pannese,M.,Piccolo,S.,Mallamaci,A.,2005.AmutuallystimulatingloopinvolvingEmx2andcanonicalWntsignalling specificallypromotesexpansionofoccipitalcortexandhippocampus.Cerebr.Cortex15,2021 2028.

Muzio,L.,DiBenedetto,B.,Stoykova,A.,Boncinelli,E.,Gruss,P.,Mallamaci,A.,2002.Emx2andPax6controlregionalizationofthepre-neuronogenic corticalprimordium.Cerebr.Cortex12,129 139.

Ohkubo,Y.,Chiang,C.,Rubenstein,J.L.,2002.CoordinateregulationandsynergisticactionsofBMP4,SHHandFGF8intherostralprosencephalon regulatemorphogenesisofthetelencephalicandopticvesicles.Neuroscience111,1 17.

Ornitz,D.M.,Xu,J.,Colvin,J.S.,McEwen,D.G.,MacArthur,C.A.,Coulier,F.,Gao,G.,Goldfarb,M.,1996.Receptorspecificityofthe fibroblastgrowth factorfamily.J.Biol.Chem.271,15292 15297.

Panchision,D.M.,Pickel,J.M.,Studer,L.,Lee,S.H.,Turner,P.A.,Hazel,T.G.,McKay,R.D.,2001.SequentialactionsofBMPreceptorscontrolneural precursorcellproductionandfate.GenesDev.15,2094 2110.

Ragsdale,C.W.,Grove,E.A.,2001.Patterningthemammaliancerebralcortex.Curr.Opin.Neurobiol.11,50 58. Rash,B.G.,Grove,E.A.,2007.Patterningthedorsaltelencephalon:aroleforsonichedgehog?J.Neurosci.27,11595 11603.

Rogers,K.W.,Schier,A.F.,2011.Morphogengradients:fromgenerationtointerpretation.Annu.Rev.CellDev.Biol.27,377 407.

Rosenfeld,J.A.,Ballif,B.C.,Martin,D.M.,Aylsworth,A.S.,Bejjani,B.A.,Torchia,B.S.,Shaffer,L.G.,2010.Clinicalcharacterizationofindividuals withdeletionsofgenesinholoprosencephalypathwaysbyaCGHrefinesthephenotypicspectrumofHPE.Hum.Genet.127,421 440. Rubenstein,J.L.,Beachy,P.A.,1998.Patterningoftheembryonicforebrain.Curr.Opin.Neurobiol.8,18 26.

Sagner,A.,Briscoe,J.,2017.Morphogeninterpretation:concentration,time,competence,andsignalingdynamics.WileyInterdiscip.Rev.Dev.Biol.6 https://doi.org/10.1002/wdev.271.

Sansom,S.N.,Hebert,J.M.,Thammongkol,U.,Smith,J.,Nisbet,G.,Surani,M.A.,McConnell,S.K.,Livesey,F.J.,2005.Genomiccharacterisationofa Fgf-regulatedgradient-basedneocorticalprotomap.Development132,3947 3961. Scholpp,S.,Brand,M.,2004.EndocytosiscontrolsspreadingandeffectivesignalingrangeofFgf8protein.Curr.Biol.14,1834 1841. Schwank,G.,Basler,K.,2010.Regulationoforgangrowthbymorphogengradients.ColdSpringHarb.Perspect.Biol.2,a001669.

Shanmugalingam,S.,Houart,C.,Picker,A.,Reifers,F.,Macdonald,R.,Barth,A.,Griffin,K.,Brand,M.,Wilson,S.W.,2000.Ace/Fgf8isrequiredfor forebraincommissureformationandpatterningofthetelencephalon.Development127,2549 2561. Shimamura,K.,Rubenstein,J.L.R.,1997.Inductiveinteractionsdirectearlyregionalizationofthemouseforebrain.Development124,2709 2718. Shimmi,O.,Umulis,D.,Othmer,H.,O’Connor,M.B.,2005.FacilitatedtransportofaDpp/ScwheterodimerbySog/Tsgleadstorobustpatterningofthe Drosophilablastodermembryo.Cell120,873 886.

Shimogori,T.,Banuchi,V.,Ng,H.Y.,Strauss,J.B.,Grove,E.A.,2004.EmbryonicsignalingcentersexpressingBMP,WNTandFGFproteinsinteractto patternthecerebralcortex.Development131,5639 5647.

Skeath,J.B.,1998.TheDrosophilaEGFreceptorcontrolstheformationandspecificationofneuroblastsalongthedorsal-ventralaxisoftheDrosophila embryo.Development125,3301 3312.

Solomon,B.D.,Gropman,A.,Muenke,M.,2011.HoloprosencephalyOverview.

Spalding,K.L.,Bhardwaj,R.D.,Buchholz,B.A.,Druid,H.,Frisen,J.,2005.Retrospectivebirthdatingofcellsinhumans.Cell122,133 143. Spemann,H.,Mangold,H.,1924.ÜberInduktionvonEmbryonanlagendurchImplantationartfremderOrganisatoren.Roux’ Arch.F.Entw.Mech.100, 599 638.

Srinivasan,S.,Hu,J.S.,Currle,D.S.,Fung,E.S.,Hayes,W.B.,Lander,A.S.,Monuki,E.S.,2014.ABMP-FGFmorphogentoggleswitchdrivesthe ultrasensitiveexpressionofmultiplegenesinthedevelopingforebrain.PLoSComput.Biol.10,e1003463.

Storm,E.E.,Garel,S.,Borello,U.,Hebert,J.M.,Martinez,S.,McConnell,S.K.,Martin,G.R.,Rubenstein,J.L.,2006.Dose-dependentfunctionsofFgf8 inregulatingtelencephalicpatterningcenters.Development133,1831 1844.

Stoykova,A.,Gotz,M.,Gruss,P.,Price,J.,1997.Pax6-dependentregulationofadhesivepatterning,R-cadherinexpressionandboundaryformationin developingforebrain.Development124,3765 3777.

Sussel,L.,Marin,O.,Kimura,S.,Rubenstein,J.L.,1999.LossofNkx2.1homeoboxgenefunctionresultsinaventraltodorsalmolecularrespecification withinthebasaltelencephalon:evidenceforatransformationofthepallidumintothestriatum.Development126,3359 3370.

Taniguchi,K.,Anderson,A.E.,Sutherland,A.E.,Wotton,D.,2012.LossofTgiffunctioncausesholoprosencephalybydisruptingtheSHHsignaling pathway.PLoSGenet.8,e1002524.

Theil,T.,Dominguez-Frutos,E.,Schimmang,T.,2008.DifferentialrequirementsforFgf3andFgf8duringmouseforebraindevelopment.Dev.Dynam. 237,3417 3423.

Theil,T.,Aydin,S.,Koch,S.,Grotewold,L.,Ruther,U.,2002.WntandBmpsignallingcooperativelyregulategradedEmx2expressioninthedorsal telencephalon.Development129,3045 3054.

Thomas,T.,Dziadek,M.,1993.Capacitytoformchoroidplexus-likecellsinvitroisrestrictedtospecificregionsofthemouseneuralectoderm. Development117,253 262.

Tole,S.,Ragsdale,C.W.,Grove,E.A.,2000a.Dorsoventralpatterningofthetelencephalonisdisruptedinthemousemutantextra-toesJ.Dev.Biol. 217, 254 265.

Tole,S.,Goudreau,G.,Assimacopoulos,S.,Grove,E.A.,2000b.Emx2isrequiredforgrowthofthehippocampusbutnotforhippocampal field specification.J.Neurosci.20,2618 2625.

Toyoda,R.,Assimacopoulos,S.,Wilcoxon,J.,Taylor,A.,Feldman,P.,Suzuki-Hirano,A.,Shimogori,T.,Grove,E.A.,2010.FGF8actsasaclassic diffusiblemorphogentopatterntheneocortex.Development137,3439 3448.

Turing,A.M.,1952.Thechemicalbasisofmorphogenesis.Philos.Trans.R.Soc.Lond.Ser.BBiol.Sci.237,37 72. vonOhlen,T.,Doe,C.Q.,2000.Convergenceofdorsal,dpp,andegfrsignalingpathwayssubdividesthedrosophilaneuroectodermintothreedorsalventralcolumns.Dev.Biol.224,362 372.

Walshe,J.,Mason,I.,2003.UniqueandcombinatorialfunctionsofFgf3andFgf8duringzebrafishforebraindevelopment.Development130, 4337 4349.

Warr,N.,Powles-Glover,N.,Chappell,A.,Robson,J.,Norris,D.,Arkell,R.M.,2008.Zic2-associatedholoprosencephalyiscausedbyatransientdefect intheorganizerregionduringgastrulation.Hum.Mol.Genet.17,2986 2996.

Wartlick,O.,Kicheva,A.,Gonzalez-Gaitan,M.,2009.Morphogengradientformation.ColdSpringHarb.Perspect.Biol.1,a001255.

Watanabe,M.,Kang,Y.-J.,Davies,L.M.,Meghpara,S.,Lau,K.,Chung,C.-Y.,Kathirya,J.,Hadjantonakis,A.-K.,Monuki,E.S.,2012.BMP4sufficiencytoinducechoroidplexusepithelialfatefromembryonicstemcell-derivedneuroepithelialprogenitors.J.Neurosci.32,15934 15945.

Watanabe,M.,Fung,E.S.,Chan,F.B.,Wong,J.S.,Coutts,M.,Monuki,E.S.,2016.BMP4actsasadorsaltelencephalicmorphogeninamouseembryonicculturesystem.Biol.Open5,1834 1843.

White,R.J.,Nie,Q.,Lander,A.D.,Schilling,T.F.,2007.Complexregulationofcyp26a1createsarobustretinoicacidgradientinthezebrafishembryo. PLoSBiol.5,e304.

Wolpert,L.,1969.Positionalinformationandthespatialpatternofcellulardifferentiation.J.Theor.Biol.25,1 47.

Yoshida,M.,Assimacopoulos,S.,Jones,K.R.,Grove,E.A.,2006.MassivelossofCajal-Retziuscellsdoesnotdisruptneocorticallayerorder. Development133,537 545.

Yu,S.R.,Burkhardt,M.,Nowak,M.,Ries,J.,Petrasek,Z.,Scholpp,S.,Schwille,P.,Brand,M.,2009.Fgf8morphogengradientformsbyasource-sink mechanismwithfreelydiffusingmolecules.Nature461,533 536.

Zhang,X.,Ibrahimi,O.A.,Olsen,S.K.,Umemori,H.,Mohammadi,M.,Ornitz,D.M.,2006.Receptorspecificityofthe fibroblastgrowthfactorfamily. ThecompletemammalianFGFfamily.J.Biol.Chem.281,15694 15700.

Zhou,S.,Lo,W.C.,Suhalim,J.L.,Digman,M.A.,Gratton,E.,Nie,Q.,Lander,A.D.,2012.Freeextracellulardiffusioncreatesthedppmorphogen gradientoftheDrosophilawingdisc.Curr.Biol.22,668 675.

Telencephalonpatterning

ShubhaTole1 andJeanHe´bert2

1DepartmentofBiologicalSciences,TataInstituteofFundamentalResearch,Mumbai,Maharashtra,India; 2Neuroscience,Genetics,StemCells, AlbertEinsteinCollegeofMedicine,Bronx,NY,UnitedStates

Chapteroutline

2.1.Introduction23

2.2.Telencephaloninduction24

2.2.1.Theanteriorneuralridge24

2.2.2.FGFsignaling24

2.2.3.Wntantagonism26

2.2.4.InteractionsoflowWntwithFGFsandBMPs26

2.3.Overviewofearlytelencephalicsubdivisions27

2.4.Establishingdorsalversusventraldomains27

2.4.1. Shh and Gli3,twokeyplayers27

2.4.2. Foxg1 andFGFscooperativelypromoteventral development30

2.4.3.Establishingthedorsaltelencephalicdomain30

2.4.4.Sharpeningthedorsal ventralborder31

2.4.5.Theolfactorybulbs32

2.5.BoundarystructuresasorganizingcentersandCRcell sources32

2.5.1.Nomenclatureofdomainsintheearlytelencephalic neuroepithelium32

2.5.2.Specificationofthehemandtheantihem33

2.1Introduction

2.5.2.1.Molecularmechanismsthatacttoposition andspecifythecorticalhem33

2.5.2.2.Molecularmechanismsthatacttospecify andpositiontheantihem34

2.5.3.Cajal Retziuscellsarisefromfourtelencephalic boundarystructures34

2.5.4.Organizerfunctionsoftelencephalicboundary structures35

2.5.4.1.Rostralsignalingcenter/septum36

2.5.4.2.Antihem37

2.6.Subdividingventraldomains37

2.6.1.Thestriatumandpallidum37 2.6.2.Theamygdala38

2.6.3.Anevolutionaryperspectiveforhowtheneocortex arose39

2.6.4.Lineageandfatemappingintheventral telencephalon40 2.7.Conclusions41 Acknowledgments41 References41

Theneuralnetworksoftheadultcerebralhemispheres,whichareoneofthemostcomplexstructuresknowntous,underlie thevastrangeofhumanbehaviors.Despitethiscomplexity,thecerebralhemispheresstartoffduringembryonicdevelopmentasasimplesheetofneuroepithelialcells.Thisneuroepitheliumconstitutesthenascenttelencephalon,located towardtheanteriorendoftheneuralplate.Asdevelopmentproceeds,thetelencephalicneuroepitheliumbecomespatterned intodistinctprogenitorregions,whichlatergiverisetospeci ficneuronalsubtypes,aprocessthatisessentialfortheproper wiringofthecerebrum.Defectsintheseearlypatterningprocesses,evensubtleones,canresultinseriousintellectualand behavioraldeficits.

Here,howtheneuroepitheliumattheanteriorendoftheneuralplateisspeci fiedtobecomethetelencephalonis discussed.Also,themechanismsthatpatternthetelencephalicneuroepitheliumintothediscreteprogenitordomains destinedtogeneratespeci ficneuronsubtypesarereviewed.Finally,whatisknownaboutthemigrationofneuroblastsfrom severalprogenitordomainsandhowthisresultsindistinctcombinationsofneuronsineachfunctionallydifferenttelencephalicareaareexamined.

Amolecularframeworkisemergingthatexplainshowthefatesofprecursorcellslocatedindifferentareaswithinthe telencephalicneuroepitheliumandatdifferentdevelopmentalstagesareregulated.Aninterplaybetweencell-extrinsic factorssecretedfromsignalingcentersandcell-intrinsicfactorsintheneuroepitheliumiscentraltotheregulationof theratesofcellproliferation,differentiation,andapoptosisoftelencephalicprecursorsandthetypesofneuronsthatthey generate.Notsurprisingly,asinmostdevelopingtissuesthroughoutthebody,thecell-extrinsicfactorsincludemembersof the fibroblastgrowthfactor(FGF),bonemorphogeneticprotein(BMP),andWntfamiliesaswellasSonichedgehog (SHH).However,thecell-intrinsicfactors,whicharethusfarmostlytranscriptionfactors,aremorespeci fictothe developinganteriornervoussystemandincludefactorsencodedbygenessuchas Foxg1, Gli3, Pax6, Lhx2, Gsx2 (Gsh2), Nkx2.1,and Emx2.Thischapterattemptstodescribethecriticalgeneticinteractionsthatlinkextrinsicandintrinsicfactors intelencephalonpatterning.

Aswellasbeingafascinatingundertaking,understandingthemolecularmechanismsthatregulatetelencephalon developmentcouldbekeyindesigningeffectiveregenerativetherapiesforarangeofforebraindisordersfromdevelopmental todegenerativeones.Inparticular,knowingwhatfactorscontrolthefatesofneuralprecursorsduringdevelopmentprovidesa frameworkforhowspecifictypesoftelencephalicneuronscouldpotentiallybeobtainedusingcultureparadigmsfor regenerativepurposes.

2.2Telencephaloninduction

2.2.1Theanteriorneuralridge

Theinitialformationofthetelencephalonsharesfeatureswiththeinductionofothertissues,suchasthelimbs,branchial arches,andmidbrain hindbrain.Mostnotably,ineachcase,thereisadiscretegroupofadjacentcellsthatactsasan organizertoinducetheformationofthesetissues.Forthetelencephalon,theinducingcellsarethoseoftheanteriorneural ridge(ANR;foundinmice)oranteriorneuralborder(foundinzebra fish;forsimplicity,ANRisusedhenceforth).The ANRislocatedattheanteriorendoftheembryoandcomprisestheedgebetweentheneuroectodermandtheunderlying ectoderm.Cellsattherostrolateralendoftheneuralplatearefatedtobecomethetelencephalon(Cobosetal.,2001; Eaglesonetal.,1995;Inoueetal.,2000;Hochetal.,2015a).Thesecellsturnonexpressionof Foxg1,atranscriptionfactor geneoftheforkheadfamily.RNAinsituhybridizationanalysisandlineagetracingusing Foxg1Cre micehaveshownthat Foxg1 expressionintheanteriorneuroepitheliumspeci ficallymarkstelencephalicprecursorcellsanddelineatesmostof theembryonictelencephalon(HébertandMcConnell,2000;ShimamuraandRubenstein,1997;Shimamuraetal.,1995; TaoandLai,1992).

Inculturedexplantsofmice,iftheANRisdissectedawayfromtheanteriorneuroepithelium,expressionof Foxg1 fails tobeinduced(ShimamuraandRubenstein,1997).Similarly,removalofANRcellsinzebra fishresultsinafailureto inducethenormalexpressionofothertelencephalicmarkers, emx1 and dlx2,twotranscriptionfactorgenesexpressedin presumptivedorsalandventraltelencephalicdomains,respectively(Houartetal.,1998).Conversely,iftheANRis transplantedtomorecaudalregionsoftheneuralplate,itinducesectopicexpressionof emx1, dlx2,and foxg1 (Houart etal.,1998,2002).Takentogether,thesestudiessuggestthattheANRisnecessaryandsuf ficienttoinducetelencephalic characterintheadjacentanteriorneuralplate.InadditiontotheANR,cellablationstudiesinmiceandchicksandRNAi knockdownofSmad1inchicksindicatethatthenonneuralectodermnexttotheANRaswellasthefacialneuralcrestalso playrolesininducingtelencephalictissue(Cajaletal.,2014;Aguiaretal.,2014).

2.2.2FGFsignaling

Telencephaloninductionalsosharesmolecularmechanismswithothertissues.Forseveralpartsoftheembryo,including thelimbsandmidbrain hindbrain,theinductionofthetissuebyanorganizerseemstobemediatedinpartbyFGFs.FGFsoakedbeadsplacedectopicallyinthepresumptivediencephalicregionor flankofchickembryosinduceectopicmidbrains andlimbs,respectively,whereasdeletionof Fgf8 intheinducingcellsleadstolossofthemidbrainandlimbs(Chietal., 2003;Cohnetal.,1995;Crossleyetal.,1996a,b;Lewandoskietal.,2000).FGFgenes,including Fgf8,alsoareexpressed intheANR,wheretheylikelymediateorganizeractivityforthetelencephalon(Fig.2.1).AbeadsoakedinFGF8and placedonaculturedexplantofanteriorneuralplatecaninduce Foxg1 expression(ShimamuraandRubenstein,1997). Conversely,abolishingFGFsignalingintheanteriorneuralplatebyknockingoutthreeFGFreceptorgenes, Fgfr1, Fgfr2, and Fgfr3,leadstolossofmostorall Foxg1-expressingcellsandafailuretoformthetelencephalon(Paeketal.,2009). ThisphenotypeisnotobservedwhenanysingleFGFreceptorgeneorapairofthemisdeleted,indicatingthatatthe earlieststagesoftelencephalondevelopment, Fgfr1, Fgfr2,and Fgfr3,cancompensateforeachotherfunctionally

FIGURE2.1 IllustrationofthecentralroleofFGFsintelencephalonformation.FGFsinducecellstoadoptatelencephalicfateattheneuralplatestage, buttheeffectsofreducingFGFsignalingintheanteriorneuralplatearebetterdepictedlater,asinthemidgestation(E12.5)mousetelencephalon (A).WithdecreasingFGFsignaling,thereisaprogressivelossoftelencephalictissuestartingwithanterior ventral medialareasprogressingto posterior dorsal lateralones(B,coronalviews;C,sagittalviews).Onlythemostdorsomedialarea(choroidplexusandcorticalhem)isspared.Seetext fordetails.

(Gutinetal.,2006).Thesameistruefortheligands(Fig.2.2).Deletionof Fgf8 alonedoesnotleadtolossofthe telencephalon(Stormetal.,2006),indicatingthatotherFGFligandgenesmustbecompensatingforitsloss(e.g., Theil etal.,2008).Consistentwiththispossibility,fourotherFGFligandgenes, Fgf3, Fgf15, Fgf17,and Fgf18,areexpressedat theanteriorendofthedevelopingneuraltube(CrossleyandMartin,1995;Maruokaetal.,1998;McWhirteretal.,1997; Shinyaetal.,2001).

AlthoughitisclearthatFGFsplayacentralroleintheearlieststepsoftelencephalonformation,ithasnotbeenstrictly demonstratedthattheymediateclassicorganizeractivityatthisstage. SpemannandMangold(1924) definedanorganizer asagroupofcellsthathasthepotentialtoectopicallyinduceneighboringcellstoformanormallystructuredtissue,usually withmirror-imagesymmetrytothenormaltissue,aswasthecaseintheirexperimentswithtadpolebodyaxisduplication andasisthecasewithmidbrainduplicationduetoabeadofFGF8placedinthepresumptivediencephalicregion(Crossley etal.,1996a).Fortelencephaloninduction,thisexperimentwouldbetechnicallydif ficulttoexecuteinthemouse,although perhapspossibleinthechick.Nevertheless,evidencediscussedinthe “Rostralsignalingcenter/septum ” subsection supportsaroleforFGFsasmediatorsoforganizeractivityinthetelencephalon.Whatremainsalmostentirelyunresolvedis howFGFactivityitselftranslatesintothecomplexunfoldingoftelencephalongrowthandpatterning.

Theregulationofcellsurvivalislikelytoplaysomerole. IfeithertheANRisablatedorFGFsignalingisabolished intheanteriorneuralplate,a llormosttelencephalicprecursorcellsundergoapoptosis(Houartetal.,1998;Paeketal., 2009 ),similartowhatoccursinlimbandmidbrain hindbrainprecursors,forexample,when Fgf8 isdeleted.Whythe cellsdieintheabsenceofFGFsignalingisnotunderstood.Theanswermaycomefromelucidatinghowtheexpression ofgenesthatcontrolcellsurvivalandproliferationisregulated.Forexample,inglioblastomacellsandperhapsforebrain neuroepithelialce lls,thecytostatic/proapoptoticgene Cdkn1a (p21Cip1)isdirectlyregulatedinitspromoterregionby intracellularmediatorsofbothc ytostaticandmit ogenicfactors(Seoaneetal.,2004).The Cdkn1a promotercontainsan

Fgfr1/;2/ orFgf8/

FIGURE2.2 Anearlysomite stagemouseembryoisusedtoillustratetwokeyfactorsatworkininducingthetelencephalon.(A)Wholeembryo showingtheplaneofsectionoftheschematicin(B).LowWntsignaling(yellow)alongwithFGFs(green)inducecellsintheanterior lateralneuralplate toadoptatelencephalicfate(blue).

HeadTail
Choroid plexus Fgfr1/Fgfr1/;2/;3/

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.