Instant ebooks textbook Natural gas hydrates: a guide for engineers 4th edition john carroll downloa

Page 1


Natural

Gas Hydrates: A Guide for Engineers 4th Edition John Carroll

Visit to download the full and correct content document: https://ebookmass.com/product/natural-gas-hydrates-a-guide-for-engineers-4th-editio n-john-carroll/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Geological Controls for Gas Hydrates and Unconventionals 1st Edition Sanjeev Rajput

https://ebookmass.com/product/geological-controls-for-gashydrates-and-unconventionals-1st-edition-sanjeev-rajput/

Cryogenic Valves for Liquefied Natural Gas Plants Karan Sotoodeh

https://ebookmass.com/product/cryogenic-valves-for-liquefiednatural-gas-plants-karan-sotoodeh/

A Practical Guide to Gas Analysis by Gas Chromatography

John Swinley

https://ebookmass.com/product/a-practical-guide-to-gas-analysisby-gas-chromatography-john-swinley/

Technical Writing for Engineers & Scientists, 4th Edition Leo Finkelstein

https://ebookmass.com/product/technical-writing-for-engineersscientists-4th-edition-leo-finkelstein/

Technical Writing for Engineers & Scientists 4th

Edition Leo Finkelstein

https://ebookmass.com/product/technical-writing-for-engineersscientists-4th-edition-leo-finkelstein-2/

Fortran for Scientists and Engineers 4th Edition

Stephen J. Chapman

https://ebookmass.com/product/fortran-for-scientists-andengineers-4th-edition-stephen-j-chapman/

Fundamentals of Phonetics: A Practical Guide for Students (4th Edition ) 4th…

https://ebookmass.com/product/fundamentals-of-phonetics-apractical-guide-for-students-4th-edition-4th/

Schaum's Outline Of Thermodynamics For Engineers 4th

Edition Merle C. Potter

https://ebookmass.com/product/schaums-outline-of-thermodynamicsfor-engineers-4th-edition-merle-c-potter/

Contamination Control in the Natural Gas Industry Wines

Thomas H.

https://ebookmass.com/product/contamination-control-in-thenatural-gas-industry-wines-thomas-h/

NATURALGAS HYDRATES AGuideforEngineers

FourthEdition

JOHNCARROLL

GasLiquidsEngineering,Calgary,Canada

GulfProfessionalPublishingisanimprintofElsevier

50HampshireStreet,5thFloor,Cambridge,MA02139,UnitedStates TheBoulevard,LangfordLane,Kidlington,Oxford,OX51GB,UnitedKingdom

Copyright©2020ElsevierInc.Allrightsreserved.

Nopartofthispublicationmaybereproducedortransmittedinanyformorbyanymeans, electronicormechanical,includingphotocopying,recording,oranyinformationstorage andretrievalsystem,withoutpermissioninwritingfromthepublisher.Detailsonhowto seekpermission,furtherinformationaboutthePublisher’spermissionspoliciesandour arrangementswithorganizationssuchastheCopyrightClearanceCenterandtheCopyright LicensingAgency,canbefoundatourwebsite: www.elsevier.com/permissions . Thisbookandtheindividualcontributionscontainedinitareprotectedundercopyrightby thePublisher(otherthanasmaybenotedherein).

Notices

Knowledgeandbestpracticeinthis fieldareconstantlychanging.Asnewresearchand experiencebroadenourunderstanding,changesinresearchmethods,professional practices,ormedicaltreatmentmaybecomenecessary.

Practitionersandresearchersmustalwaysrelyontheirownexperienceandknowledgein evaluatingandusinganyinformation,methods,compounds,orexperimentsdescribed herein.Inusingsuchinformationormethodstheyshouldbemindfuloftheirownsafety andthesafetyofothers,includingpartiesforwhomtheyhaveaprofessionalresponsibility.

Tothefullestextentofthelaw,neitherthePublishernortheauthors,contributors,or editors,assumeanyliabilityforanyinjuryand/ordamagetopersonsorpropertyasa matterofproductsliability,negligenceorotherwise,orfromanyuseoroperationofany methods,products,instructions,orideascontainedinthematerialherein.

LibraryofCongressCataloging-in-PublicationData

AcatalogrecordforthisbookisavailablefromtheLibraryofCongress

BritishLibraryCataloguing-in-PublicationData

AcataloguerecordforthisbookisavailablefromtheBritishLibrary

ISBN:978-0-12-821771-9

ForinformationonallGulfProfessionalPublishingpublicationsvisit ourwebsiteat https://www.elsevier.com/books-and-journals

Publisher: JoeHayton

SeniorAcquisitionsEditor: KatieHammon

EditorialProjectManager: MeganAshdown

ProductionProjectManager: PremKumarKaliamoorthi

CoverDesigner: MatthewLimbert

TypesetbyTNQTechnologies

ThisbookisdedicatedtomybeautifulwifeYing(Alice)Wu,whoIlove deeply.Sheisaconstantsourceofinspirationtome.

Prefacetothefourthedition

Naturalgashydratescontinuetobeproblematicintheproduction, transportation,andprocessingofnaturalgas.Companiesspendmillionsof dollarsattemptingtomitigateproblemsthatarisefromtheseice-likesolid materials.Thepurposeofthisbookistwofold.Firstistoprovidethereader withanunderstandingofthesemysteriouscompounds.Secondisto providethetoolsnecessarytocombattheirformationortoremedythe situationwhentheyform.

Thebookstructureissimilartothepreviousedition,butthereare severalnewsectionsandsubsections.Therearenewtopicsdiscussedin almosteverychapter.Manyoftheseideascomefrompeoplewhohave attendedmyone-daycourseonhydrates.

Onapersonallevel,I findhydratestobefascinatingandstudyingthem istrulyrewarding.Therearealwaysnewdiscoveriesanddeeperresearch intotheirbehavior.

Aswithpasteditions,thefourtheditionofthisbookisintendedfor engineers.However,otherswhohavetodealwithhydrateswill findsome valueinthematerialpresented.Itisnotreallyabookforresearchersbut moredirectedtopeopleinthe fieldwhomustconfrontthesepestmaterials.

Prefacetothethirdedition

Theobjectiveofthethirdeditionisthesameasthe firsttwo togive engineersinthe fieldtheconceptstounderstandhydrates.Fromthis understandingtheyshouldbeabletoimplementstrategiestopreventthem fromformingandtocombatthemwhentheyform.Gashydratescontinue tobeasignificantconcerninthenaturalgasbusiness.Companiesspend millionsofdollarsattemptingtomitigateproblemsthatarisefromthese ice-likesolidmaterials.

Witheachneweditiontherearenewdiscoveriestoexplore;new conceptstoexamine.Althoughthechapterstructureremainsunchanged fromtheSecondEdition,thereareseveralnewtopicsincludedinalmost everychapter.Mostoftheseideascomefrompeoplewhohaveattended myone-daycourseonhydrates.

Fortheauthor,hydratesremainacontinuinginterestbecauseoftheir unusualpropertiesandnewdiscoveries.Thismakesthemanengaging researchtopic.Butasaprocessengineer,theyremainaconcerninmydaily workastheyareformanyotherengineers.

Althoughthebookisintendedforengineers,otherswhohavetodeal withhydrateswill findsomevalueinthematerialpresented.

Prefacetothesecondedition

Thegoalofthesecondeditionisthesameasthe first toprovidepracticingengineersthetoolstodealwithhydrates.

Oneofthereasonsthattheauthor findshydratessointerestingistheir unusualproperties.Sincethetimeofthe firsteditionseveralnewproperties havecometolightandarediscussedinthesecondedition.Theseinclude thetypeofhydrateformedfrommixturesofmethaneandethane,hydrates ofhydrogen,theroleofisopropanolinhydrateformation,etc.Allofthese topicswillbediscussed.

Anotheradditiontothebookisdiscussionofafewotherhydrate formers.Notably,thehydratesofethyleneandpropyleneareincluded.

Moreexamplesaretakenfromtheliteratureandadditionalcomparisons aremade.Anewsectiononthepredictionofhydrateformationinsourgas isalsoincluded.

Prefacetothe firstedition

Gashydratesareofparticularinteresttothoseworkinginthenaturalgas industry.Thusthemainaudienceforthisbookistheengineersand scientistswhoworkinthis field.Providedinthisbookarethetoolsfor predictinghydrateformationanddetailsonhowtocombatthem.

Thereasonforthegenesisofthisbookwasaone-daycoursepresented toengineerswhoworkinthenaturalgasbusiness.Inparticular,these companiesproduce,process,andtransportnaturalgas.Thebookhasbeen expandedfromtheoriginalsetofclassnotes.Muchofthenewmaterial camefromfeedbackfromattendees.

Manypeopleoutsidethe fieldofnaturalgashavealsoattendedthe courseandfoundsomevalueinthematerial.Theseincludeoceanographers studyingthehydratedepositsontheseabedsthroughouttheworld. Astronomersinvestigatingthepossibilityofhydratesontheplanetsofthe solarsystemaswellasothercelestialbodiesmayalso findsomeofthe materialinthisbookofsomeuse.Andthosewhoaresimplycuriousabout theseinterestingcompoundswill findthisbooktobeuseful.

Thestructureofthebookisalittleunusual.Thechaptersaremeantto beapproximatelyindependent;however,theydofollowfromthemore simpleintroductorytopicstothemoreadvancedapplications.Occasionally itisnecessarytotakeaconceptfromasubsequentchapterinordertomake apointinthecurrentchapter.Thisisunfortunate,butitisalsonecessary.

Thepurposeofthisbookistoexplainexactlywhatgashydratesare, underwhatconditionstheyform,andwhatcanbedonetocombattheir formation.Anotherpurposeofthisbookistoexploresomeofthemyths associatedwithgashydrates.Thematerialisorganizedandpresentedin suchawaythattheaverageengineercanusetheinformationintheir day-to-daywork.

Insomesectionsofthebook,especiallythosedealingwithdehydration, pipelineheatlosscalculations,andlineheaterdesign,thereaderwould benefitgreatlyiftheyhavetheabilitytocalculatethephysicalpropertiesof naturalgas.Thepropertiesofnaturalgasarenotcoveredinthisbook.

Acknowledgments

TherearemanypeoplewhomImustthank.Withouttheirhelpand support,thisbookwouldnothavebeenpossible.

First,IwouldliketothankmyemployerGasLiquidsEngineeringLtd., Calgary,Alberta,Canada,andinparticulartheprincipalsofthecompany DouglasMacKenzieandJamesMaddocks.Theyallowedmethetimeto buildthehydratescourseuponwhichthisbookisbasedandprovidedme thetimetowritethemanuscript.Iwouldalsoliketothankthemforthe otherresourcestheyprovided.Thisbookwouldhavebeenimpossible withoutthem.IwouldalsoliketothankmycolleaguePeterGriffin,also fromGasLiquidsEngineering,forhisencouragement.WithhishelpIhave beenabletopresentthismaterialthroughouttheworld.

WordscannotexpressmythankstoAlanE.MatheroftheUniversityof Alberta,Edmonton,Alberta,Canada.Hewasmypatientsupervisorduring mytimeasagraduatestudent,andhecontinuestobemymentor.Thecore ofmyknowledgeofthermodynamics,andinparticularhowitrelatesto phaseequilibrium,isaresultofhisteaching.Overtheyearswehave collaboratedonmanyinterestingprojects.Inaddition,heproofreadearly versionsofthemanuscript,whichwasenormouslyvaluable.

Thebookistheresultofaone-daycourseongashydratesthatI conducted.Ihavereceivedpositivefeedbackfrommanyofthosewho attended.Someoftheirideashavebeenaddedtothebook.Thus,Ithank allofthosewhoattendedthecourse.Manyoftheadditionstothebookare adirectresultoffeedbackfromattendees.

IwouldbeamissifIdidnotalsothankmylovingwife,YingWu,for herendlesssupport,encouragement,andlove.

IwouldliketoexpressmygratitudetotheGasProcessorsAssociation (GPA)andtheGasProcessorsSuppliersAssociation(GPSA),bothofTulsa, Oklahoma,forpermissiontoreproduceseveral fi guresfromthe GPSA EngineeringDataBook (11thed.).Furthermore,overtheyearstheseassociationshavesponsoredasigni fi cantamountofresearchintogashydrates.This researchhasbeenvaluablebothtotheauthorofthisbookandothers workinginthe fi eld.

TheauthorwouldalsoliketothanktheCenterforHydratesResearch attheColoradoSchoolofMinesinGolden,ColoradoanditsDirector Dr.CarolynKohandDirectorEmeritusDr.E.DendySloan.TheCenteris

asourceofprimaryresearchintohydratesincludingexperimentalwork, theoreticalmodels,andsoftwaredevelopment.Theirworkisnoted throughoutthisbook.Inparticular,theCenterforHydratesResearch, throughDr.Koh,hasgiventhisauthorpermissiontousetheirsoftware CSMHYD and CSMGEM andtoreproducescreencapturesfromthem.I amverygratefulforthisaccess.

IwouldalsoliketothankmyfriendProf.RobertMarriottatthe UniversityofCalgary,Calgary,Alberta.Prof.Marriott’slabhasexpanded intothe fieldofhydrates,makingsomeimportantmeasurementssomeof whicharereportedhere.Prof.Marriottisalsoaleaderinthe fieldof measuringwatercontentofgasmixtures;asubjectimportanttogashydrates.Ihaveenjoyedourmanyconversationsregardingthesesubjects.

CHAPTER1 Introduction

Thischapterisanattempttointroducehydrates,withoutmuchbackgroundmaterial.Manyofthewordsandprincipleswillbebetterdefinedin subsequentchaptersofthisbook.However,theyareneededheretopresent thebasicintroductoryconcepts.Ifyouarealittleconfusedasyoureadthis chapter,hopefullythingswillbecomeclearerasyouprogressthroughthe book.

Let’sbeginwiththemainfocusofthebook,hydrates.Initsmost generalsense,ahydrateisacompoundcontainingwater.Forexample, thereisaclassofinorganiccompoundscalled “solidhydrates.” Theseare ionicsolidswheretheionsaresurroundedbywatermoleculesandform crystallinesolids.However,asusedinthisbook,andcommonlyinthe naturalgasindustry,ahydrateissolidphasecomposedofacombinationof certainsmallmoleculesandwater.

Hydratesarecrystallinesolidcompoundsformedfromwaterandsmall molecules,withoutwatertherearenohydratesandwithoutthesmall moleculesthatstabilizethestructuretherearenohydrates.Theyarea subsetofcompoundsknownasclathratesorinclusioncompounds. Aclathratecompoundisonewhereamoleculeofonesubstanceisenclosed inastructurebuiltupfrommoleculesofanothersubstance.Onetypeof moleculeisliterallytrappedinacagecomposedofthemoleculesofa differentsubstance.Herewaterbuildsupthestructureandtheother moleculeresideswithin.Thesizeoftheothermoleculemustbesuchthatit can fitwithinthewaterstructures.Moredetailsofthenatureofthese structuresformedbywaterandthemoleculeswithinarepresentedin Chapter2ofthisbook.

Althoughtheclathratesofwater,theso-calledhydrates,arethefocusof thiswork,theyarenottheonlyclathratecompounds.Forexample,urea formsinterestinginclusioncompoundsaswell.

Althoughhydrateswereprobablyencounteredbyothersearlier,credit fortheirdiscoveryisusuallygiventothefamousEnglishchemist,Sir HumphreyDavy.Hereportedofthehydrateofchlorineintheearly19th century.Inparticular,henoted(1)thattheice-likesolidformedat

NaturalGasHydrates

ISBN978-0-12-821771-9

https://doi.org/10.1016/B978-0-12-821771-9.00001-X

temperaturesgreaterthanthefreezingpointofwaterand(2)thatthesolid wascomposedofmorethanjustwater.Whenmelted,thehydrateof chlorinereleasedchlorinegas.

Davy’sequallyfamousassistant,MichaelFaraday,alsostudiedthehydrateofchlorine.In1823,Faradayreportedthecompositionofthe chlorinehydrate.Althoughhisresultwasinaccurate,itwasthe firsttimethe compositionofahydratewasmeasured.

Throughoutthe19thcentury,hydratesremainedbasicallyanintellectualcuriosity.Earlyeffortsfocusedon findingwhichcompoundsformed hydratesandunderwhattemperaturesandpressurestheywouldform. Manyoftheimportanthydrateformerswerediscoveredduringthisera.

Amongthe19th-century,hydrateresearcheswhodeservementionare theFrenchchemistsVillardanddeForcrand.Theymeasuredthehydrate conditionsforawiderangeofsubstances,includinghydrogensulfide.

The firstcrystallographicstudiesofgashydrateswerepublishedbyvon StackelbergfromtheUniversityofBonninGermanyinthe1940sand50s. VonStackelbergandhisgroupestablishedthatthereweretwodistinct typesofhydratecrystalstructures.Wewilldiscussthesehydratetypesin Chapter2.

However,itwouldnotbeuntilthe20thcenturythattheindustrial importanceofgashydrateswouldbeestablished,especiallyforthenatural gasindustry(Hammerschmidt,1934).

Overtheyears,therehavebeenmany,manyexperimentalstudiesof hydrateformation.Theseincludethehydratesforsinglecomponents, binarymixtures,andmulticomponentmixtures.Someofthesestudiesare discussedinthechaptersthatfollow.Ifthereaderhasdoubtsaboutmethods usedinthework,theyshouldconsulttheliterature.Theymaynot findthe exactdatafortheirsituation,buttheymay finddatawhichareusefulfor testingthemodelstheychosetoemploy.

1.1Whatiswater?

Thismayseemlikeastrangequestion,butitismorecomplicatedthanyou mightthink.Manyofthetermsusedinthisbookwillnodoubtcause confusion,anditmightbesurprisingthatwaterisoneofthem.Someofthe confusionarisesfromtheEnglishlanguageandour,sometimesmy,useof it.Forexample,wecandefinewateras “acolorless,transparent,odorless liquid,” whichisprobablywhatmostpeoplethinkwhentheyhearthe wordandatypicaldictionarydefinition.Butitcouldbedefinedas

“achemicalcompoundmadeupofhydrogenandoxygenwiththeformula H2O(regardlessofthephaseitisin),” whichisamoregeneraldefinition butsoundsmorelikeachemist.InthisbookIwillusethetermaqueous liquidtomeanwaterintheliquidphaseandhopefullyavoidthisconfusion. Inaddition,inthisbook,thetermwaterwillbeusedinthechemicalsense, thatis,acompoundmadefromtwohydrogenatomsandoneoxygenatom.

Ifthewaterispureornearlysoandexistsinthevaporphase,wecallthis “steam.” Ifthegascontainswaterbutthewaterisdilute,suchasintheair, weusuallyrefertothisas “moisture.” Thisfurtherleadstotermslike “moisturecontent,” howmuchwaterisinthegas, “moisturemeasurement,” andmoistureanalyzer,adeviceusedtomeasurethemoisture content.

Wealsohavethetermshumidity,whichreferstotheamountofwater inagas,againtypicallytheair,andrelativehumidity.Soiftheairis50% relativehumidity,itcontainsonlyhalfthewateritcanhold.Therelative humidityisafunctionofthetemperatureandthepressure.

Thegeneraltermforsolidwaterinthepurestateisice.However,ifyou thinkaboutit,wehavemanytermsforsolidwaterdependinguponits physicalnature,suchasfrost,snow,hail,glacier,etc.

Hydrateisnotice,butitisice-like,similarinappearanceandphysical properties.Butahydrateisasolutioncomposedofwaterandother components,whereasiceispurewater.

However,thetermfrostpointisthetemperaturewhereasolid first appearswhetheritisiceorhydrateorsomeothersolid.Soifonecoolsagas streamisobaricallyuntilasolidforms,thatisthefrostpointtemperature regardlessofwhetherornotthesolidisiceorhydrate.

1.2Naturalgas

Althoughallterrestrialgases(air,volcanicemissions,swampgas,etc.)are natural,theterm “naturalgas” iscustomarilyreservedforthemineralgases foundinsubsurfacerockreservoirs.Thesegasesareoftenassociatedwith crudeoil.Naturalgasisamixtureofhydrocarbons(suchasmethane, ethane,propane,etc.)andafewnonhydrocarbons(hydrogensulfide, carbondioxide,nitrogen,etc.)andwater.

Thelighthydrocarbonsinnaturalgashavevalueasfuelsandasfeedstockforpetrochemicalplants.Asafuel,theyareusedforheatingand cookinginprivatehomes,togenerateelectricity,andincreasinglyasfuelfor motorvehicles.Inthechemicalplants,theyareconvertedtoahostof

consumerproducts,everythingfromindustrialchemicals,suchasmethanol, toplastics,suchaspolyethylene.

Thenonhydrocarbonstendtobelessvaluable.However,depending uponthemarketsituation,hydrogensulfidehassomevalueasaprecursor tosulfur.Sulfurinturnhasseveralapplications,themostimportantof whichisprobablytheproductionofchemicalfertilizer.Carbondioxideand nitrogenhavenoheatingvalueandthusareuselessasfuels.

Naturalgasthatcontainssignificantamountsofsulfurcompounds,and hydrogensulfideinparticular,isreferredtoas “ sour. ” Incontrast,natural gaswithonlyminuteamountsofsulfurcompoundsiscalled “sweet.” Unfortunately,thereisnostrictdefiningsulfurcontentthatseparatessour gasfromsweetgas.Aswehavenoted,salesgastypicallycontainslessthan about15ppmandisindeedsweet,butforotherapplicationsthereareother definitions.Forexample,intermsofcorrosion,thesweetgasmaycontain moresulfurcompoundsandnotrequirespecialmaterials.

Strictlyspeaking,gasthatcontainscarbondioxidebutnosulfurcompoundsisnotsour.However,gasthatcontainscarbondioxidesharesmany characteristicswithsourgasandisoftenhandledinthesameway.Probably, themostsignificantdifferencebetweencarbondioxideandhydrogen sulfidearethephysiologicalpropertiesandthisiswhatreallyseparatesthe two.Hydrogensulfideishighlytoxic,whereascarbondioxideisessentially nontoxic,exceptatveryhighconcentrations.Furthermore,hydrogen sulfidehasanobnoxiousodorwhilecarbondioxideisodorless.

1.2.1Salesgas

Anarrangementismadebetweenthecompanyproducingthenaturalgas andthepipelinecompanyforthequalityofthegasthepurchaserwill accept.Limitsareplacedontheamountsofimpurities,heatingvalue, hydrocarbondewpoint,andotherconditions.Thisarrangementiswhat defines “salesgas.”

Amongtheimpuritiesthatarelimitedinthesalesgasiswater.Oneof thereasonswhywatermustberemovedfromnaturalgasistohelpprevent hydrateformation.

Intermsofwatercontent,atypicalsalesgasspecificationwouldbeless thanapproximately10lbofwaterpermillionstandardcubicfeetofgas (10lb/MMCF).IntheUnitedStates,thevalueisusually7lb/MMCF, whereasinCanadaitis4lb/MMCFandotherjurisdictionshaveother values.ForthosewhopreferSIunits,10lb/MMCFisequalto0.16grams

perstandardcubicmeter(0.16g/Sm3)or160milligramsperstandardcubic meter(160mg/Sm3).Morediscussionofunitsandstandardconditionsis presentedlaterinthischapter.

Thereareseveralotherrestrictionsonthecompositionofsalesgas.For example,thereisalimitontheamountofhydrogensul fidepresent (typicallyontheorderofabout10partspermillionor10ppm)andthe amountofcarbondioxide(typicallyaround2molepercent).Thesetoo varyfromjurisdictiontojurisdiction,contracttocontract.

1.2.2Hydrates

Incombinationwithwater,manyofthecomponentscommonlyfoundin naturalgasformhydrates.Oneoftheproblemsintheproduction,processing,andtransportationofnaturalgasandliquidsderivedfromnatural gasistheformationofhydrates.Hydratescostthenaturalgasindustry millionsofdollarsannually.Infact,individualincidentscancost$1,000,000 ormoredependinguponthedamageinflicted.Thereisalsoahumanprice tobepaidbecauseofhydrates.Sadly,therehavebeendeathseitherdirectly orindirectlyassociatedwithhydrateandtheirmishandling.

However,theimportanceofnaturalgashydrateswasnotapparentin theearlyeraofthegasbusiness.Intheearlyeraofthenaturalgasbusiness, gaswasproducedanddeliveredatrelativelylowpressure.Thus,hydrates wereneverencountered.Inthe20thcentury,withtheexpansionofthe naturalgasindustry,theproduction,processing,anddistributionofgas becamehigh-pressureoperations.Underpressure,itwasdiscoveredthat pipelinesandprocessingequipmentwerebecomingpluggedwithwhat appearedtobeice,excepttheconditionsweretoowarmforicetoform.It wasnotuntilthe1930sthat Hammerschmidt(1934) clearlydemonstrated thatthe “ice” wasactuallygashydrates.Andthatthehydrateswerea mixtureofwaterandthecomponentsofnaturalgas.

Inthepetroleumindustry,theterm “hydrate” isreservedforsubstances thatareusuallygaseousatroomtemperature.Theseincludemethane, ethane,carbondioxide,andhydrogensulfide.Thisleadstotheterm “ gas hydrates” andalsoleadstooneofthepopularmisconceptionsregarding thesecompounds.Itiscommonlybelievedthatnonaqueousliquidsdonot formhydrates.However,liquidsmayalsoformhydrates.Anexampleofa compoundthatisliquidatroomconditions,yetformsahydrate,is dichlorodifluoromethane(Freon12).Butwearegettingaheadofourselves.

Moredetailsaboutwhatcompoundsformhydrateswillbegivenin Chapter2.

Oneoftheiconicimagesofahydrateisthe “iceon fire ” burningofa hydrate.Becausethehydrateiscomposedofbothhost(water)andguest,as thehydratemeltstheguestisreleased.Withamethanehydrateoranatural gashydrate,sufficienthydrocarbonisreleasedsuchthatitcanbeliton fire. Fig.1.1 isaphotographshowingtheiceon fire.Itisimportanttonotethat notallhydratescanbeignited.Onlythosethatcontainasuf ficientamount ofhydrocarboncanbeseton fire.Forexample,tryasyoumayyouwill neverbeabletoigniteacarbondioxidehydrate CO2 doesnotburn.

1.3Thewatermolecule

Manyoftheusualpropertiesofwater(andyes,ifyouarenotawareofit, waterdoeshavesomeunusualproperties)canbeexplainedbythestructure ofthewatermoleculeandtheconsequencesofthisstructure.

Ofparticularinteresttousisthefactthatthestructureofthewater moleculeleadstothepossibilityofhydrateformation.Inthenextsections, itwillbedemonstratedthatwaterdoesindeedhavesomeunusual properties.

Figure1.1 Iconic “IceonFire” pictureshowingamethanehydrateburning. (Credit:J. PinkstonandL.Stern(USGS),USGS.Publicdomain.)

1.3.1Thenormalboilingpointofwater

Asanexampleoftheunusualpropertiesofwater,considertheboiling point.Wewillusesomesimplechemistrytodemonstratethattheboiling pointofwaterisunusuallyhigh.Theboilingpointsusedinthisdiscussion aretakenfrom Dean(1973).

Theperiodictableofelementsisnotjustanicewaytodisplaythe elements.Theoriginaldesignofthetablecamefromaligningelements withsimilarproperties.Thus,elementsintherowsofthetableshavesimilar propertiesoratleastpropertiesthatvaryinaperiodic,predictablemanner. The6Acolumninthetableconsistsofoxygen,sulfur,selenium,and tellurium.Wewouldexpecttheseelementsandtheircompoundstohave similarproperties,oratleasttobehaveinapredictablepattern.

Thehydrogencompoundsofthecolumn6Aelementsarewater (hydrogenoxide),hydrogensulfide,hydrogenselenide,andhydrogen telluride.AllhavethechemicalformulaH2X,whereXrepresentsthe group6Aelement.IfwelookatthenormalboilingpointsofH2S,H2Se, andH2Te,weshouldbeabletopredicttheboilingpointofwater. Fig.1.2

showsaplotofthenormalboilingpointsforthesethreecompounds.Note thatasthesizeofthemoleculeincreases,sodoesthenormalboilingpoint. Althoughitisnotexactlylinear,wecanusealinearapproximationto estimatetheboilingpointofwater.Thisextrapolationyieldsanestimated boilingpointof 74 C!Astheboilingpointofwateris100 C,thisis clearlyaverypoorestimation.Thereisprobablysomethingunusualabout water.

Itisworthnotingthatasimilarplotcouldbeconstructedshowingthe meltingpointsforthesecompounds.Againthepredictedmeltingpointof water,basedontheothersubstances,ismuchtoolow.

Asasecondexample,considerthehomologousseriesofnormalalcohols. Fig.1.3 showsaplotofthenormalboilingpointsofthealcoholsasa functionoftheirmolarmass(molecularweight).Inthiscase,therelationis nearlylinear.Assumethatwateristhesmallestmemberofthisgroupof compounds,andextrapolatethecorrelationtoestimatetheboilingpoint. Thisyields43 Cfortheboilingpoint,whichissignificantlylowerthanthe actualvalue.

Whydoeswaterhavesuchananomalouslylargeboilingpoint?

1.3.2Enthalpyofvaporization

In Table1.1,theenthalpiesofvaporizationofseveralcomponentsattheir boilingpointarelisted.Admittedly,itisasmalllist,butthetableincludes bothpolarandnonpolarsubstances.Fromthistableitcanbeseenthat waterhasafairlylargeenthalpyofvaporization,evenincomparisonto otherpolarsubstances.

Ittakessignificantlymoreenergytoboil1kgofwaterthanitdoesto boilanyofthehydrocarbonslistedinthetable approximately5timesas muchenergy.

Again,wemustaskthequestion,whydoeswaterbehaveso anomalously?

1.3.3Expansionuponfreezing

Anotherunusualpropertyofwateristhatitexpandsuponfreezing.In commonterms,thismeansthatice floatsonwater.Inengineeringterms, thedensityofice(917kg/m3 or57.2lb/ft3)islessthanthatofliquidwater (1000kg/m3 or62.4lb/ft3)atthefreezingpoint.

Table1.1 Theenthalpyofvaporizationofseveralsubstancesattheirnormalboiling point.

CompoundNatureEnthalpyofvaporization(kJ/kg)

WaterPolar2257 MethanolPolar1100

EthanolPolar855

AcetonePolar521

EthyleneglycolPolar800

AmmoniaPolar1369

MethaneNonpolar510 n-pentaneNonpolar357 n-octaneNonpolar306

BenzeneNonpolar394 o-xyleneNonpolar347

CyclohexaneNonpolar358

DatatakenfromDean,J.A.(ed.),1973.Lange’sHandbookofChemistry,eleventhed.McGraw-Hill, NewYork,NY,pp.9 85to9 95.

Thesimplereasonforthisexpansionisthatthewateratomsarrange themselvesinanorderedfashionandthemoleculesinthecrystaloccupy morespacethanthoseintheliquidwater.Thereasonforthisbehavioris alsobecauseoftheshapeofthewatermoleculeandsomethingcalledthe hydrogenbond.

Themoleculesinsolidwaterformahexagonalcrystal.Thisismost obviousinsnowwithitscharacteristicpatternstructures(seeforexample Fig.1.4).

Figure1.4 Microphotographsofssnowflakes. (CourtesyoftheNationalOceanicand AtmosphericAdministration(NOAA),Washington,DC http://www.photolib.noaa.gov OriginalphotographsbyWilsonBentley(1865 1931),whichwerenotcopyright.)

1.3.4Theshapeofthewatermoleculeandthehydrogen bond

Virtuallyalloftheunusualpropertiesofwaternotedearliercanbe explainedbytheshapeofthewatermoleculeandtheinteractionsthat resultfromitsshape.

Thewatermoleculeconsistsofasingleatomofoxygenbondedtotwo hydrogenatoms,asdepictedin Fig.1.5.Inthewatermoleculethebond betweentheoxygenandhydrogenatomsisacovalentbond.Acovalent bondisessentiallyasharedpairofelectrons.Theanglebetweenthetwo hydrogenatomsinthewatermoleculeisabout105degrees.

What Fig.1.5 doesnotshowisthattherearetwopairsofunbonded electronsonthe “back” oftheoxygenmolecule.Theseelectronsinduce negativechargesontheoxygenmoleculeandasmallpositivechargeonthe hydrogenatoms.Theinducedelectrostaticchargesonthemolecule (denoted dþ forthepositivechargeand d forthenegative)areshownin Fig.1.5A.Thus,thewatermoleculeswilltendtoalignwithahydrogen moleculeliningupwithanoxygen.

Figure1.5 Theshapeofthewatermolecule.(A)Stickrepresentationshowinginduced charges,whichresultinhydrogenbonding,and(B)ballmodelshowingtheangle betweenthehydrogenmolecules.

Thisaligningofthehydrogenandoxygenatomsiscalleda “hydrogen bond.” Thehydrogenbondisessentiallyanelectrostaticattractionbetween themolecules.Itshouldbenotedthateachwatermoleculehastwopairof unbondelectronsandthushastwohydrogenbonds twowatermolecules “stick” toeachwatermolecule.Thehydrogenbondisonly1/10or1/20as strongasacovalentbond,whichiswhatholdstheoxygenandhydrogen atomstogetherinthewatermolecule,butthisisstillstrongenoughto explainthepropertiesdiscussedearlier.

Thehydrogenbondsareparticularlystronginwater,althoughtheyare presentinothersubstances,suchasthealcoholsdiscussedearlier.Itisforthis reasonthatthenormalboilingpointsofthealcoholsaresignificantlylarger thantheirparaffinanalogues.

Whenthewatermoleculeslineup,theyformahexagonalpattern.This isthehexagonalcrystalstructurediscussedearlier.Fromelementarygeometry,itiswellknowthattheanglebetweenthesidesofaregular hexagonis120degrees,whichisgreaterthanthe105degreesangleinthe watermolecule.Thisseemingparadoxisovercomebecausethehexagonal patternofthewatermoleculesisnotplanar.Thehexagonalpatternofthe watermoleculesintheicecrystalisshownin Fig.1.6.Inthis figurethe circlesrepresentthewatermoleculesandthelinesthehydrogenbonds.

1.4Hydrates

Itisaresultofthehydrogenbondthatwatercanformhydrates.The hydrogenbondcausesthewatermoleculestoaligninregularorientations. Thepresenceofcertaincompoundscausesthealignedmoleculestostabilize andasolidmixtureprecipitates.

Thewatermoleculesarereferredtoasthe “host” moleculesandthe othercompounds,whichstabilizethecrystal,arecalledthe “guest” molecules.Inthisbooktheguestmoleculesaremoreoftenreferredtoas

Figure1.6 Thethree-dimensionalhexagonalarrangementofthewatermoleculesin anicecrystal.

“formers.” Thehydratecrystalshavecomplex,three-dimensionalstructures wherethewatermoleculesformacageandtheguestmoleculesare entrappedinthecages.

Thestabilizationresultingfromtheguestmoleculeispostulatedtobe duetovanderWaalsforces,whichistheattractionbetweenmoleculesthat isnotasaresultofelectrostaticattraction.Asdescribedearlier,thehydrogen bondisdifferentfromthevanderWaalsforcebecauseitisduetostrong electrostaticattraction,althoughsomeclassifythehydrogenbondasavan derWaalsforce.

Anotherinterestingthingaboutgashydratesisthatthereisnobonding betweentheguestandhostmolecules.Theguestmoleculesarefreeto rotateinsidethecagesbuiltupfromthehostmolecules.Thisrotationhas beenmeasuredusingadvancedchemicaltechniquessuchasspectroscopic, diffraction,etc.Therefore,thesecompoundsarebestdescribedasasolid solution.

Theformationofahydraterequiresthefollowingthreeconditions:

1. Therightcombinationoftemperatureandpressure.Hydrateformation isfavoredbylowtemperatureandhighpressure.

2. Ahydrateformermustbepresent.Hydrateformersincludemethane, ethane,andcarbondioxide.

3. Asufficientamountofwater nottoomuch,nottoolittle.

Fig.1.7 givesavisualofthethreecriteriaforhydrateformation.The threeareinterconnected violateoneandahydratedoesnotform.

Figure1.7 Simplifieddiagramofthethreecriteriaforhydrateformation.

Althoughthis figuregivesaquickvisualimage,itlacksthedetailprovided bythediscussionpresentedearlier.However,itprovidesausefulvisual.

Thesethreepointswillbeexaminedinsomedetailinsubsequent chapters,buttheydeserveafewcommentsatthispoint.Aswasnoted,low temperatureandhighpressurefavorhydrateformation.Theexacttemperatureandpressuredependsuponthecompositionofthegas.However, hydratesformattemperaturesgreaterthan0 C(32 F),thefreezingpointof water.ThenatureofhydrateformersisdiscussedindetailinChapter2.

Topreventhydrateformation,onemerelyhastoeliminateoneofthe threeconditionsstatedabove.Typicallywecannotremovethehydrate formersfromthemixture.Inthecaseofnaturalgas,itisthehydrateformers thatarethedesiredproduct.Soweattackhydratesbyaddressingtheother twoconsiderations.

Otherphenomenathatenhancehydrateformationincludethe following:

1. Turbulence

a. Highvelocity

Hydrateformationisfavoredinregionswherethe fluidvelocity ishigh.Thismakeschokevalvesparticularlysusceptibletohydrate formation.First,thereisusuallyasignificanttemperaturedrop whennaturalgasischokedthroughavalveduetotheJoule Thomsoneffect.Second,thevelocityishighthroughthenarrowing inthevalve.

b. Agitation

Mixinginapipeline,processvessel,heatexchanger,etc.,enhanceshydrateformation.Themixingmaynotbeduetoanactual mixerbutperhapsatortuousroutingoftheline.

2. Nucleationsites

Ingeneralterms,anucleationsiteisapointwhereaphasetransition isfavored,andinthiscasetheformationofasolidfroma fluidphase.An exampleofnucleationisthedeepfryerusedtomakeFrenchfriesinfastfoodrestaurantsthroughouttheworld.Inthefryertheoilisveryhot butitdoesnotundergothefullrollingboilbecausetherearenosuitable nucleationsites.However,whenthepotatoesareplacedintotheoil,it vigorouslyboils.TheFrenchfriesprovideanexcellentnucleationsite. Goodnucleationsitesforhydrateformationincludeanimperfection inthepipeline,aweldspot,orapipeline fitting(elbow,tee,valve,etc.).

Corrosionby-products,silt,scale,dirt,andsandallmakegoodnucleationsitesaswell.

3. Freewater

No,thisisnotacontradictiontoearlierstatements.Freewaterisnot necessaryforhydrateformation,butthepresenceoffreewatercertainly enhanceshydrateformation.

Thepresenceoffreewateralsoassuresthatthereisplentyofwater present,whichismorelikelytoformaplug.

Inaddition,thewater gasorthewater oilinterfaceisagood nucleationsiteforhydrateformation.

Theitemsintheabovelistenhancetheformationofahydrate,butare notnecessary.Onlythethreeconditionsgivenearlierarenecessaryfor hydrateformation.

Anotherimportantaspectofhydrateformationistheaccumulationof thesolid.Thehydratedoesnotnecessarilyagglomerateinthesamelocation asitisformed.Inapipeline,thehydratecan flowwiththe fluidphase, especiallytheliquid.Itwouldtendtoaccumulateinthesamelocationas theliquiddoes.Usuallyitistheaccumulationsofthehydratesthatcausethe problems.Inamultiphasepipeline,itistheaccumulationsthatblockline andpluganddamageequipment.

Oftenpiggingissufficienttoremovethehydratefromthepipeline. Piggingistheprocessofinsertingatool(calleda “pig”)intotheline. Modernpigshavemanyfunctions,butthemainoneremainspipeline cleaning.Thepig fitstightlyintothelineandscrapstheinsideofthepipe.It istransportedalongthelinewiththe flowofthe fluidandbydoingsoit removesanysolids(hydrate,wax,dirt,etc.)frominsidetheline.The piggingcanalsobeusedtoremoveaccumulationsofliquids.

However,thepiggingmustbescheduledsuchthattheaccumulationsof hydratesdonotbecomeproblematic.Usuallypiggingisnotusedtoclean hydratesfromaline.Othermeasuresaremorecommonlyusedtodealwith hydratesandthesearedetailedinsubsequentchaptersofthisbook.

Anotherbenefitofpiggingistheremovalofsalt,scale,etc.,whichis importantfortheproperoperationofapipeline.Italsomeansthatpotential nucleationsitesforhydrateformationareremoved.

1.4.1Temperatureandpressure

Aswasnotedearlier,hydrateformationisfavoredbylowtemperatureand highpressure.Foreachgasitispossibletogenerateahydratecurvethat mapstheregioninthepressure temperatureplanewherehydratescan form.Muchoftherestofthisbookisdedicatedtothetoolsusedtopredict

thislocus.Again,withoutgettingtofaraheadofourselves,somepreliminarydiscussionofhydratecurvesisappropriate.

Fig.1.8 showsatypicalhydratecurve(labeled “hydratecurve”).The regiontotheleftandabovethiscurve(highpressure,lowtemperature)is wherehydratescanform.Intheregiontotherightandbelowthehydrate curve,hydratescanneverform inthisregion,the firstcriterionisviolated. Therefore,ifyourprocess,pipeline,well,etc.,operatesintheregion labeled “nohydrates,” thenhydratesarenotaproblem.Ontheotherhand, ifitisintheregionlabeled “hydratesregion,” thensomeremedialactionis requiredtoavoidhydrates.

Itmightseemasthoughwecantreatthetemperatureandpressureas separatevariablesbutwhendiscussinghydrates,theyarelinked.For example,youcannotsay “Ahydratewillnotformat10 Cforthegas mixtureshownin Fig.1.8.” Youmustqualifythiswithapressure.Soat 10 Cand5MPa,theprocessisinthe “hydrateregion,” whereasat10 C and1MPa,theprocessisintheregionwhereahydratewillnotform. Thus,wemusttalkaboutacombinationoftemperatureandpressureand noteachvariableonitsown.

withnohydrates,andasafetymargin.

Figure1.8 Pressure temperaturediagramshowingthehydrateregion,theregion

Furthermore,itiscommontoaddamarginofsafety,eventothebest hydratepredictionmethods.Thismargincanbe3to5Celsiusdegrees(5to 10Fahrenheitdegrees),buttypically3Celsiusdegreesisused.Theauthor typicallyuses3Celsiusdegreesbutthereadermayhavetheirownmargin orperhapsthereisonespecifiedbytheircompany.Amarginofsafetyis shownin Fig.1.8 (“plus3Celsius”)andthebufferzonebetweenthe estimatedhydratecurveandthe þ3Celsiuscurveisnoted.

Throughouttheremainderofthebook,usuallyonlythecalculated hydratecurveswillbeshownbuttheusershouldkeepthissafetymarginin mind.

1.5Waterandnaturalgas

Waterisoftenassociatedwithnaturalgas.Inthereservoirwaterisalways present.Thus,producednaturalgasisalwayssaturatedwithwater.In addition,formationwaterisoccasionallyproducedalongwiththegas.As thetemperatureandpressurechangeduringtheproductionofthegas, watercancondenseout.Methodsforestimatingthewatercontentof naturalgasarepresentedinChapter10.

Inaddition,waterisofteninvolvedintheprocessingofnaturalgas.The processtosweetennaturalgas(i.e.,toremovehydrogensulfideandcarbon dioxide,theso-called “acidgases”)oftenemploysaqueoussolutions.The mostcommonoftheseprocessesinvolveaqueoussolutionsofalkanolamines.Thesweetgas(i.e.,theproductofthesweeteningprocess)from theseprocessesissaturatedwithwater.

Thereareseveralprocessesthataredesignedtoremovewaterfrom naturalgas.ThesewillbediscussedinChapter6ofthisbook.

Thisassociationofwaterandnaturalgasmeansthathydrateswillbe encounteredinallaspectsoftheproductionandprocessingofnaturalgas.

Alargeportionofthisbookisdedicatedtothepredictionofthe conditionsatwhichhydrateswillform.Armedwiththisknowledge,engineersworkinginthenaturalgasindustryknowwhetherornothydrates willbeaproblemintheirapplication.

Onceithasbeendeterminedthathydratesareaproblem,orpotentially aproblem,whatcanbedone?Anotherlargesegmentofthisbookaddresses thistopic.

1.5.1Free-water

Thereisamythinthenaturalgasindustrythat “freewater” (i.e.,an aqueousphase)mustbepresenttoformahydrate.Insubsequentsectionsof thisbook,wewilldemonstratethatthisisnotcorrect.Freewatercertainly increasesthepossibilitythatahydratewillform,butitisnotanecessity.

Astrongargumentdemonstratingthatfreewaterisnotnecessaryfor hydrateformationispresentedinChapter9onphasediagrams.

Anotherargument,theso-called “frostargument,” asksthesimple question:Isitnecessarytohavefreewatertoformice?Theanswerisno. Frostformswithoutliquidwaterforming.Thefrostsublimesfromtheair ontomycaronwinternights.Thewatergoesdirectlyfromtheairtothe solidphasewithoutaliquidbeingencountered.Theair watermixtureisa gas,andthewaterisnotpresentintheairinaliquidform.Ifyouhavean old-fashionedfreezer,i.e.,onethatisnotfrost-free,justlookinside.Alayer offrostbuildswithoutliquidwatereverforming.Hydratescan “frost” via thesamemechanism.

Oneofthereasonswhyitisbelievedthatfreewaterisrequiredfor hydrateformationisthathydratesformedwithoutfreewatermaynotbe problematic.Theinsideofapipemay “frost” withhydrates,butstill functionproperly.Ortheamountofhydratemaybesmallandthusdoes notpluglinesordamageprocessingequipment.Such “frost” hydratescan beeasilycleanedusingthepiggingprocessdiscussedearlier.

Theprocessofgoingdirectlyfromthegastothesolidiscalledsublimationanditisnotthatrare.Forexample,carbondioxidesublimesat atmosphericpressure.SolidCO2,commonlycalled “dryice,” goesdirectly fromthesolidtothevaporwithoutformingaliquid.Atatmospheric pressure,CO2 goesdirectlyfromthesolidtothevaporatatemperatureof about 78 C( 108 F).Anotherexampleofasolidthatsublimesatatmosphericpressureisnaphthalene,themaincomponentofmothballs.The reasonwhyyoucansmellmothballsisbecausethenaphthalenegoes directlyfromthesolidtothevaporanditisthevaporthatyoucansmell.In reality,allpuresubstancessublimeatpressuresbelowtheirtriplepoint pressureandthisincludespurewater.Soitshouldcomeasnosurprisethat hydrates,undertherightsetofconditions,cansublimedirectlyfromthegas phasetothesolidphase.

1.6Heavywater

Deuteriumisanisotopeofhydrogen.Inthesimplehydrogenmolecule, thereisoneproton,oneelectron,andnoneutrons,protons,electrons,and neutronsbeingtheelementaryparticlesthatmakeuptheatom.Deuterium, ontheotherhand,iscomposedofoneproton,oneelectron,andone neutron.Becauseoftheadditionalparticle,deuteriumis “heavier” than normalhydrogen.

Wateriscomposedoftwohydrogenatomsandanoxygenatom.Heavy water,alsocalleddeuteriumoxide,iscomposedoftwodeuteriumatoms andanoxygenatom.

Nowthequestionarises,doesheavywaterformahydrate?Theanswer isyes.Heavywaterstillexhibitshydrogenbonding thekeytohydrate formation.However,itrequiresslightlymorepressuretoformhydratesin heavywaterthaninregularwater(forexample,see Chunetal.,1996).

1.7Thehydratetoolbox

Whatwillbepresentedinthisbookareasetoftoolsforstudyinghydrates, predictingtheconditionsatwhichtheywillform,preventingtheirformation,and finallywhattodowhenoneoccurs.Thesearethetoolsinour hydratetoolbox.

Wefocusontwoaspectsofhydrates:(1)preventionand(2)remediation.Whatcanwedotopreventhydratesfromformingandwhatcanwe doifahazardoushydrateforms.Isitpossibletohaveabenignhydrate?

Theengineermusthaveatoolkittocombathydrates.Thisincludes firmware(suchasheaters),softwaretopredicthydratebehavior,andintelligencetoanalyzethesituation,interpretpredictions,andapplythe correctmeasures.Thisbookwilladdresstheseitemsinmoredetail;infact thisisthemajorthemeofthebook.However,anoverviewisprovided here.

First,theengineershouldhavethetoolstopredicthydrateformation. Herewehavesplitthemintotwobroadcategories:(1)handcalculations and(2)computer-based.Althoughthehandcalculationmethodseems antiquated,theyarestillusedinsomecirclesandthusdeservediscussion,in particularthelimitedaccuracyofthesepredictions.Forthecomputer-based applications,wewilldiscussthebasisofthemodelsaswellasdemonstrate theaccuracyofsomeofthecommercialsoftwarepackages.

Nextarethetoolswecanuse:(1)conditions,(2)chemicals,and(3) dehydration.

Basically,conditionsmeanoperatingattemperaturesandpressuressuch thathydratesdonotform.First,theengineermustusetechniquesdiscussed inthisbooktoestablishtheconditionsatwhichhydrateswillform.The applicationofheaters,heattracing,andinsulationcanbeusedtokeepthe fluidabovethehydratetemperature.

Theinjectionofchemicalsinhibitshydrateformation.Thesecomein twobroadclasses:(1)thermodynamicand(2)lowdosage,whichare subdividedinto(a)kineticand(b)antiagglomerant.Theapplicationofthese chemicalsisalsodiscussed.

Thetoolsareappliedsuchthatengineerscanbuildadesignthatwill minimizetheriskofhydrateformationandhowwecanusethetoolsto dealwiththeunfortunatesituationwherehydratesform.

Thethermodynamicinhibitorscanbemodeledusingthermodynamics, bothsimpleandmorerigorous.Wewillexaminesomeofthesemodelsin laterchaptersofthebook.Therearekineticmodelsavailableforboththe formationanddissociationofhydrates,buthowthesemodelsareappliedto individualinhibitorsisnotexactlyclear.Wewillexamineboththekinetic modelsandtheapplicationofkineticinhibitsinsubsequentchapters.

Table1.2 summarizesthetoolsavailabletotheengineeranddirects themtotheappropriatechapterformorediscussiononthegiventopic.

1.8Additionalreading

Althoughthisbookismeanttoprovidethedesignengineerwithtoolsfor dealingwithhydrates,itisnotmeanttobethedefinitivevolumeonthe subject.ThereaderisreferredtotheworkslistedintheBibliographyatthe endofthechapterforadditionalinformationonthesubjectofgashydrates.

1.9Units

BothAmericanEngineeringUnits(ft-lb-sec)andSIUnits(m-kg-s)are commonlyemployedinthenaturalgasbusinessthroughouttheworld. Dependinguponthelocationonesystemtendstodominateovertheother, butbothareinwidespreaduse.Thus,toreachaswideanaudienceas possible,bothsetsofunitsareusedinthisbook.Usuallytheappropriate conversionsaregiven.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.