Immediate download Biorefinery of inorganics (wiley series in renewable resource) erik meers (editor

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/biorefinery-of-inorganics-wiley-series-in-renewable-re source-erik-meers-editor/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Trapped: Brides of the Kindred Book 29 Faith Anderson

https://ebookmass.com/product/trapped-brides-of-the-kindredbook-29-faith-anderson/

Gifts, Glamping, & Glocks (A Camper & Criminals Cozy Mystery Series Book 29) Tonya Kappes

https://ebookmass.com/product/gifts-glamping-glocks-a-campercriminals-cozy-mystery-series-book-29-tonya-kappes/

Neuroscience for Neurosurgeons (Feb 29, 2024)_(110883146X)_(Cambridge University Press) 1st Edition Farhana Akter

https://ebookmass.com/product/neuroscience-for-neurosurgeonsfeb-29-2024_110883146x_cambridge-university-press-1st-editionfarhana-akter/

Chronic Total Occlusions-A Guide to Recanalization, 3e (Nov 29, 2023)_(1119517273)_(Wiley-Blackwell) Ron Waksman

https://ebookmass.com/product/chronic-total-occlusions-a-guideto-recanalization-3e-nov-29-2023_1119517273_wiley-blackwell-ronwaksman/

Cardiology-An Integrated Approach (Human Organ Systems) (Dec 29, 2017)_(007179154X)_(McGraw-Hill) 1st Edition Elmoselhi

https://ebookmass.com/product/cardiology-an-integrated-approachhuman-organ-systems-dec-29-2017_007179154x_mcgraw-hill-1stedition-elmoselhi/

Netter Atlas of Human Anatomy-Classic Regional Approach, 8e (Mar 29, 2022)_(0323793738)_(Elsevier) NOT TRUE PDF Frank H. Netter

https://ebookmass.com/product/netter-atlas-of-human-anatomyclassic-regional-approach-8e-mar-29-2022_0323793738_elsevier-nottrue-pdf-frank-h-netter/

Health Professions and Academia-How to Begin Your Career (Jun 29, 2022)_(3030942228)_(Springer).pdf John Paul (J.P) Sánchez

https://ebookmass.com/product/health-professions-and-academiahow-to-begin-your-career-jun-29-2022_3030942228_springer-pdfjohn-paul-j-p-sanchez/

The High Stakes Rescue: A K9 Handler Romance (Disaster City Search and Rescue, Book 29) 1st Edition Jenna Brandt

https://ebookmass.com/product/the-high-stakes-rescuea-k9-handler-romance-disaster-city-search-and-rescue-book-29-1stedition-jenna-brandt/

Critical Care EEG Basics-Rapid Bedside EEG Reading for Acute Care Providers (Feb 29, 2024)_(1009261169)_(Cambridge University Press) Jadeja

https://ebookmass.com/product/critical-care-eeg-basics-rapidbedside-eeg-reading-for-acute-care-providersfeb-29-2024_1009261169_cambridge-university-press-jadeja/

BiorefineryofInorganics

WileySeries in RenewableResources

SeriesEditor:

ChristianV.Stevens,FacultyofBioscienceEngineering,GhentUniversity,Belgium

TitlesintheSeries:

WoodModification:Chemical,ThermalandOtherProcesses

CallumA.S.Hill

Renewables-BasedTechnology:SustainabilityAssessment

JoDewulf,HermanVanLangenhove

Biofuels

WimSoetaert,ErikVandamme

HandbookofNaturalColorants

ThomasBechtold,RitaMussak

SurfactantsfromRenewableResources

MikaelKjellin,IngegärdJohansson

IndustrialApplicationsofNaturalFibres:Structure,PropertiesandTechnicalApplications JörgMüssig

ThermochemicalProcessingofBiomass:ConversionintoFuels,ChemicalsandPower

RobertC.Brown

BiorefineryCo-Products:Phytochemicals,PrimaryMetabolitesandValue-AddedBiomass Processing

ChantalBergeron,DanielleJulieCarrier,ShriRamaswamy

AqueousPretreatmentofPlantBiomassforBiologicalandChemicalConversiontoFuelsand Chemicals

CharlesE.Wyman

Bio-BasedPlastics:MaterialsandApplications

StephanKabasci

IntroductiontoWoodandNaturalFiberComposites

DouglasD.Stokke,QinglinWu,GuangpingHan

CellulosicEnergyCroppingSystems

DouglasL.Karlen

IntroductiontoChemicalsfromBiomass,2ndEdition

JamesH.Clark,FabienDeswarte

LigninandLignansasRenewableRawMaterials:Chemistry,TechnologyandApplications FranciscoG.Calvo-Flores,JoseA.Dobado,JoaquínIsac-García,FranciscoJ.Martin-Martínez

SustainabilityAssessmentofRenewables-BasedProducts:MethodsandCaseStudies JoDewulf,StevenDeMeester,RodrigoA.F.Alvarenga

CelluloseNanocrystals:Properties,ProductionandApplications

WadoodHamad

Fuels,ChemicalsandMaterialsfromtheOceansandAquaticSources

FrancescaM.Kerton,NingYan

Bio-BasedSolvents

FrançoisJérômeandRafaelLuque

NanoporousCatalystsforBiomassConversion Feng-ShouXiaoandLiangWang

ThermochemicalProcessingofBiomass:ConversionintoFuels,ChemicalsandPower,2nd Edition

RobertC.Brown

ChitinandChitosan:PropertiesandApplications

LambertusA.M.vandenBroekandCarmenG.Boeriu

TheChemicalBiologyofPlantBiostimulants

DannyGeelen,LinXu

ForthcomingTitles:

WasteValorization:WasteStreamsinaCircularEconomy

SzeKiLin,ChongLi,GuneetKaur,XiaofengYang

ProcessSystemsEngineeringforBiofuelsDevelopment

AdriánBonilla-Petriciolet,GadePanduRangaiah

BiobasedPackaging:Material,EnvironmentalandEconomicAspects MohdSapuanSalit,RushdanAhmadIlyas

Biorefineryof Inorganics

Editedby

ERIKMEERS

DepartmentofGreenChemistry&Technology,GhentUniversity,Belgium

GERARDVELTHOF

WageningenEnvironmentalResearch,TheNetherlands

EVIMICHELS

DepartmentofGreenChemistry&Technology,GhentUniversity,Belgium

RENÉRIETRA

WageningenEnvironmentalResearch,TheNetherlands

Thiseditionfirstpublished2020

©2020JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,in anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedby law.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableat http://www.wiley.com/ go/permissions.

TherightofErikMeers,GerardVelthof,EviMichelsandRenéRietratobeidentifiedastheauthorsofthe editorialmaterialinthisworkhasbeenassertedinaccordancewithlaw

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitus at www.wiley.com

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstant flowofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedto reviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceof equipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusageand foraddedwarningsandprecautions.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparing thiswork,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthe contentsofthisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedby salesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatan organization,website,orproductisreferredtointhisworkasacitationand/orpotentialsourceoffurther informationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservicestheorganization, website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthat thepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmay notbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshould beawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswritten andwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Meers,Erik,1976-editor.|Velthof,Gerard,1964-editor.|Michels,Evi,1980-editor.|Rietra, Rene,1967-editor.

Title:Biorefineryofinorganics:recoveringmineralnutrientsfrom biomassandorganicwaste/editedbyErikMeers,FacultyofBioscience Engineer,LaboratoryofAnalyticalChem,GerardVelthof,EviMichels,ReneRietra, WageningenUniversity.

Description:Firstedition.|Hoboken,NJ:JohnWiley&Sons,Inc.,[2020] |Series:Wileyseriesinrenewableresources|Includesbibliographical referencesandindex.

Identifiers:LCCN2020005302(print)|LCCN2020005303(ebook)|ISBN 9781118921456(hardback)|ISBN9781118921463(adobepdf)|ISBN 9781118921470(epub)

Subjects:LCSH:Sewage–Purification–Nutrientremoval.|Factoryandtrade waste–Purification.|Nutrientpollutionofwater

Classification:LCCTD758.5.N58.B562020(print)|LCCTD758.5.N58 (ebook)|DDC631.8/69–dc23

LCrecordavailableat https://lccn.loc.gov/2020005302

LCebookrecordavailableat https://lccn.loc.gov/2020005303

CoverDesign:Wiley

CoverImage:©NataschaKaukorat/Shutterstock,Educationglobe©IngramPublishing/AlamyStockPhoto Setin10/12ptTimesLTStdbySPiGlobal,Chennai,India

PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY 10987654321

SectionIGlobalNutrientFlowsandCyclinginFoodSystems1

1GlobalNutrientFlowsandCyclinginFoodSystems3 QianLiu,JingmengWang,YongHou,KimovanDijk,WeiQin,JanPeter Lesschen,GerardVelthof,andOeneOenema

1.1Introduction3

1.2PrimaryandSecondaryDrivingForcesofNutrientCycling4 1.3AnthropogenicInfluencesonNutrientCycling6 1.4TheGlobalNitrogenCycle7

1.5TheGlobalPhosphorusCycle9

1.6ChangesinFertilizerUseDuringtheLast50Years12

1.7ChangesinHarvestedCropProductsandinCropResiduesDuring theLast50Years14

1.8ChangesintheAmountsofNandPinAnimalProductsand Manures15

1.9ChangesintheTradeofFoodandFeed16

1.10ChangesinNutrientBalances16

1.11GeneralDiscussion17 References20

SectionIITheRoleofPolicyFrameworksintheTransition TowardNutrientRecycling23

2.1TowardaFrameworkthatStimulatesMineralRecoveryinEurope25 NicolasDeLaVegaandGregoryReuland

2.1.1TheImportanceofManagingOrganicResidues25

2.1.2TheRiseofNutrientandCarbonRecycling26

2.1.3TheEuropeanFrameworkforNutrientRecoveryandReuse(NRR)27

2.1.4EUWasteLegislation27

2.1.5MovingfromWastetoProductLegislationandtheInterplaywith OtherEULegislation29

2.1.6ComplyingwithExistingEnvironmentalandHealth&Safety Legislation30

2.1.7Conclusion32 References32

2.2LivestockNutrientManagementPolicyFrameworkintheUnitedStates33 GeorgineYorgeyandChadKruger

2.2.1Introduction33

2.2.2TheLegal-RegulatoryFrameworkforManureNutrient Management34

2.2.3CurrentManure-ManagementPractices35

2.2.4PublicInvestmentsforImprovementofManure-Management Practices36

2.2.5TheRoleoftheJudicialProcessandConsumer-DrivenPreferences37

2.2.6LimitationsoftheCurrentFramework38

2.2.7Conclusion39 References40

2.3BiomassNutrientManagementinChina:TheImpactofRapidGrowth andEnergyDemand43 PaulThiers

2.3.1Introduction43

2.3.2TheImpactofEconomicLiberalizationPolicyinthe1980sand 1990s43

2.3.3EnvironmentalProtectionEffortsandUnintendedConsequences44

2.3.4RenewableEnergyPolicyandItsImpactonBiomassManagement46 2.3.5Conclusion49 References50

2.4NutrientCyclinginAgricultureinChina53 LinMa,YongHou,andZhaohaiBai

2.4.1Introduction53

2.4.2NutrientCyclinginChina54

2.4.3EffectsontheEnvironment55

2.4.4NutrientManagementPolicies57

2.4.5FuturePerspectives59

2.4.5.1NationalNutrientManagementStrategy59

2.4.5.2ChallengesofTechnologyTransferinManureManagement59

2.4.5.3EnvironmentalProtection60

2.4.6Conclusion61 References63

SectionIIIStateoftheArtandEmergingTechnologiesin NutrientRecoveryfromOrganicResidues65

3.1ManureasaResourceforEnergyandNutrients67

IvonaSigurnjak,ReinhartVanPoucke,CélineVaneeckhaute,EviMichels, andErikMeers

3.1.1Introduction67

3.1.2EnergyProductionfromAnimalManure68

3.1.2.1AnaerobicDigestion71

3.1.2.2ThermochemicalConversionProcess73

3.1.3NutrientRecoveryTechniques76

3.1.3.1PhosphorusPrecipitation77

3.1.3.2AmmoniaStrippingandScrubbing77

3.1.3.3MembraneFiltration78

3.1.3.4PhosphorusExtractionfromAshes79

3.1.4Conclusion79 References79

3.2MunicipalWastewaterasaSourceforPhosphorus83

AleksandraBogdan,AnaAlejandraRoblesAguilar,EviMichels, andErikMeers

3.2.1Introduction83

3.2.2PhosphorusRemovalfromWastewater84

3.2.3SludgeManagement84

3.2.4CurrentStateofPRecoveryTechnologies85

3.2.4.1PhosphorusSaltsPrecipitation85

3.2.4.2PhosphorusRecoveryViaWet-ChemicalProcesses87

3.2.4.3PhosphorusRecoveryViaThermalProcesses88

3.2.4.4ChoiceofPhosphorusTechnologiesToday89

3.2.5FuturePRecoveryTechnologies90

3.2.5.1PhosphorusSaltRecoveryUpgrades90

3.2.5.2ThermalProcesses91

3.2.5.3NaturalProcessfortheRecoveryofPhosphorus91

3.2.6Conclusion92 References92

3.3AmmoniaStrippingandScrubbingforMineralNitrogenRecovery95 ClaudioBrienza,IvonaSigurnjak,EviMichels,andErikMeers

3.3.1Introduction95

3.3.2AmmoniaStrippingandScrubbingfromBiobasedResources96

3.3.2.1AcidScrubbingofExhaustAir97

3.3.2.2StrippingandScrubbingfromManure97

3.3.2.3StrippingandScrubbingfromAnaerobicDigestate97

3.3.2.4ManureandDigestateProcessingbyEvaporation98

3.3.3AlternativeScrubbingAgents98

3.3.3.1OrganicAcids98

3.3.3.2NitricAcid98

3.3.3.3Gypsum99

3.3.4IndustrialCasesofStrippingandScrubbing99

3.3.4.1WasteAirCleaningViaAcidScrubbing99

3.3.4.2RawDigestateProcessingViaStrippingandScrubbingand RecirculationoftheN-DepletedDigestate99

3.3.4.3LiquidFractionDigestateProcessingViaStrippingand Scrubbing100

3.3.4.4LiquidFractionofDigestateProcessingViaMembrane SeparationandStrippingandScrubbing100

3.3.5ProductQualityofAmmoniumSulfateandAmmoniumNitrate100

3.3.5.1AmmoniumSulfate101

3.3.5.2AmmoniumNitrate102

3.3.6Conclusion102 References103

SectionIVInspiringCasesinNutrientRecoveryProcesses107

4.1StruviteRecoveryfromDomesticWastewater109 AdrienMarchi,SamGeerts,BartSaerens,MarjoleineWeemaes, LiesDeClercq,andErikMeers

4.1.1Introduction109

4.1.2ProcessDescription110

4.1.3AnalysesandTests111

4.1.3.1MassBalance111

4.1.3.2StruvitePurity112

4.1.4OperationalBenefits114

4.1.4.1EnhancedDewaterability114

4.1.4.2EnhancedRecoveryPotential115

4.1.4.3ReducedScaling115

4.1.4.4ReducedPhosphorusContentintheSludgePellets116

4.1.4.5ReducedPandNLoadintheRejectionWater116

4.1.5EconomicEvaluation116

4.1.6FutureChallenges117

4.1.6.1In-DepthQualityScreening117

4.1.6.2ImprovedCrystalSeparation117

4.1.7Conclusion118 References118

4.2MineralConcentratesfromMembraneFiltration121 PaulHoeksmaandFridtjofdeBuisonjé

4.2.1Introduction121

4.2.2ProductionofMineralConcentrates121

4.2.2.1GeneralSet-up121

4.2.2.2Solid/LiquidSeparation122

4.2.2.3Pre-treatmentoftheLiquidFraction(Effluentfrom MechanicalSeparation)123

4.2.2.4ReverseOsmosis123

4.2.2.4.1Full-ScalePilotProductionPlants124

4.2.3MassBalance124

4.2.4CompositionofRawSlurry,SolidFraction,andRO-Concentrate125

4.2.4.1RawSlurry125

4.2.4.2SolidFraction128

4.2.4.3RO-Concentrate128

4.2.4.3.1NutrientsandMinerals128

4.2.4.3.2SecondaryNutrientsandTraceElements129

4.2.4.3.3InorganicMicrocontaminants129

4.2.4.3.4OrganicMicrocontaminants129

4.2.4.3.5VolatileFattyAcids129

4.2.5QualityRequirements129

4.2.6Conclusion130 References130

4.3PyrolysisofAgro-Digestate:NutrientDistribution133 EvertLeijenhorst

4.3.1Introduction133

4.3.1.1Background133

4.3.1.2ThePyrolysisProcess133

4.3.1.3PyrolysisofAgro-Digestate134

4.3.2Investigation135

4.3.2.1MaterialsandMethods135

4.3.2.2ProductAnalysisandEvaluation136

4.3.3ResultsandDiscussion138

4.3.3.1FastPyrolysis:InfluenceofTemperature138

4.3.3.1.1ProductDistribution138

4.3.3.1.2NutrientRecovery138

4.3.3.1.3ProductComposition142

4.3.3.2InfluenceofHeatingRate143

4.3.3.2.1ProductDistribution143

4.3.3.2.2NutrientRecovery143

4.3.4Conclusion143 Acknowledgment145 References146

4.4AgronomicEffectivityofHydratedPoultryLitterAsh147 PhillipEhlert

4.4.1Introduction147

4.4.2EnergyProductionProcess147

4.4.3CompositionofHPLA149

4.4.4AgronomicEffectivityofHPLA149

4.4.5Phosphorus152

4.4.6Potassium154

4.4.7RyeGrass155

4.4.8Acid-NeutralizingValue157

4.4.9Efficacy157

4.4.10Conclusion158 References159

4.5BioregenerativeNutrientRecoveryfromHumanUrine:Closingthe LoopinTurningWasteintoWealth161 JayantaKumarBiswas,SukantaRana,andErikMeers

4.5.1Introduction161

4.5.2CompositionandFertilizerPotential162

4.5.3StateoftheArtofRegenerativePractices162

4.5.3.1HUinAgriculture162

4.5.3.2HUinAquaculture164

4.5.4Cautions,Concerns,andConstraints168

4.5.5Conclusion171 References172

4.6Pilot-ScaleInvestigationsonPhosphorusRecoveryfromMunicipal Wastewater177

Marie-EdithPloteau,DanielKlein,JohanteMarvelde,LucSijstermans, AndersNättorp,Marie-LineDaumer,HervéPaillard,CédricMébarki, AniaEscudero,OlePahl,Karl-GeorgSchmelz,andFrankZepke

4.6.1Introduction177

4.6.2EuropeanandNationalIncentivestoActonMarketDrivers178

4.6.3PilotInvestigations179

4.6.3.1AcidLeachingSolutionstoRecoverPhosphorusfrom SewageSludgeAshes179

4.6.3.2PilotDemonstrationofThermalSolutionstoRecover PhosphorusfromSewageSludge:TheEuPhoRe® Process180

4.6.3.3Demonstrationofstruvitesolutionwithbiological acidificationtoincreasethePrecoveryfromsewagesludge182

4.6.3.4InnovativeTechnicalSolutionstoRecoverPfrom Small-ScaleWWTPs:DownscalingStruvitePrecipitation forRuralAreas182

4.6.3.5Algal-BasedSolutionstoRecoverPhosphorusfrom Small-ScaleWWTPs:APromisingApproachforRemote, Rural,andIslandAreas184 References186

SectionVAgriculturalandEnvironmentalPerformanceof BiobasedFertilizerSubstitutes:OverviewofFieldAssessments189

5.1FertilizerReplacementValue:LinkingOrganicResiduestoMineral Fertilizers191

RenéSchils,JaapSchröder,andGerardVelthof

5.1.1Introduction191

5.1.2NutrientPathwaysfromLandApplicationtoCropUptake192

5.1.2.1Nitrogen195

5.1.2.2Phosphorus197

5.1.3FertilizerReplacementValue198

5.1.3.1CropResponse202

5.1.3.2ResponsePeriod202

5.1.4ReferenceMineralFertilizer202

5.1.4.1CropandSoilType202

5.1.4.2ApplicationTimeandMethod202

5.1.4.3AssessmentMethod203

5.1.5FertilizerReplacementValuesinFertilizerPlans204

5.1.6Conclusion205 References212

5.2AnaerobicDigestionandRenewableFertilizers:CaseStudiesin NorthernItaly215

FabrizioAdani,GiulianaD’Imporzano,FulviaTambone, CarloRiva,GabrieleBoccasile,andValentinaOrzi

5.2.1Introduction215

5.2.2AnaerobicDigestionasaTooltoCorrectlyManageAnimalSlurries216

5.2.3ChemicalandPhysicalModificationofOrganicMatterand NutrientsduringAnaerobicDigestion218

5.2.4FromDigestatetoRenewableFertilizers220

5.2.4.1N-FertilizerfromtheLFofDigestate220

5.2.4.2OrganicFertilizerfromtheSFofDigestate223

5.2.5EnvironmentalSafetyandHealthProtectionUsingDigestate224

5.2.6Conclusion227 References227

5.3NutrientsandPlantHormonesinAnaerobicDigestates: CharacterizationandLandApplication231 ShubiaoWuandRenjieDong

5.3.1Introduction231

5.3.2NutrientCharacterizationinAnaerobicDigestedSlurry233

5.3.2.1N,P,andKContents233

5.3.2.2BioactiveSubstances236

5.3.3UseofDigestatesasFertilizersforPlantGrowth237

5.3.4EffectofDigestateonSeedGermination238

5.3.5PositiveEffectsofDigestatesonSoil238

5.3.5.1EffectsonNutrientProperties238

5.3.5.2EffectsonMicrobialActivity239

5.3.5.3PotentialNegativeEffects240

5.3.6Conclusion243 References243

5.4EnhancingNutrientUseandRecoveryfromSewageSludgetoMeet CropRequirements247 RubenSakrabani

5.4.1TrendsinSewageSludgeManagementinAgriculture247

5.4.2OrganomineralFertilizerUseinCaseStudies249

5.4.3CaseStudy1:FieldTrialUsingOMF(Broxton)250

5.4.4CaseStudy2:FieldTrialUsingOMF(Silsoe)252

5.4.5Conclusion255 Acknowledgments255 References255

5.5ApplicationofMineralConcentratesfromProcessedManure259 GerardVelthof,PhillipEhlert,JaapSchröder,JantinevanMiddelkoop,Wim vanGeel,andGerardHolshof

5.5.1Introduction259

5.5.2ProductCharacterization260

5.5.3AgronomicResponse261

5.5.3.1PotExperiments261

5.5.3.2FieldExperiments262

5.5.4RiskofNitrogenLosses263

5.5.4.1AmmoniaEmission263

5.5.4.2NitrousOxideEmission264

5.5.4.3NitrateLeaching266

5.5.5Conclusion267 References267

5.6LiquidFractionofDigestateandAirScrubberWaterasSourcesfor MineralN271 IvonaSigurnjak,EviMichels,andErikMeers

5.6.1Introduction271

5.6.2MaterialsandMethods272

5.6.2.1ExperimentalDesign272

5.6.2.2FertilizerSampling274

5.6.2.3PlantandSoilSampling275

5.6.2.4StatisticalAnalysis275

5.6.2.5NitrogenUseEfficiency276

5.6.3ImpactofFertilizationStrategiesonCropProduction276

5.6.4ImpactofFertilizationStrategiesonSoilProperties279

5.6.5AdjustedNitrogenUseEfficiency279

5.6.6Conclusion281 References281

5.7EffectsofBiocharProducedfromWasteonSoilQuality283 KorZwart

5.7.1Introduction283

5.7.2BiocharProductionandProperties284

5.7.2.1Pyrolysis284

5.7.2.2BiocharFeedstock285

5.7.2.3BiocharComposition286

5.7.2.4BiocharStructure287

5.7.2.5FunctionalGroups288

5.7.3EffectofBiocharonSoilFertility288

5.7.3.1FactorsDeterminingSoilFertility288

5.7.3.2EffectsofBiocharonSoilFertilityFactors289

5.7.3.2.1SoilTextureandStructure289

5.7.3.2.2SoilOrganicMatter290

5.7.3.2.3WaterAvailability291

5.7.3.2.4NutrientAvailability291

5.7.3.2.5CationExchangeCapacity292

5.7.3.3BiocharasaFertilizerorSoilConditioner293

5.7.4TrendsinBiocharResearch294 References295

5.8AgronomicEffectofCombinedApplicationofBiocharandNitrogen Fertilizer:AFieldTrial301 WeiZhengandBrajendraK.Sharma

5.8.1Introduction301

5.8.2MaterialsandMethods303

5.8.2.1Biochars303

5.8.2.2SoilandSiteDescription303

5.8.2.3FieldExperimentalDesign303

5.8.2.4MeasurementsandAnalyses304

5.8.3ResultsandDiscussion305

5.8.3.1EffectofBiocharApplicationonAgronomicYields305

5.8.3.2EffectofBiocharasaSoilAmendmentonSoilQuality306 Acknowledgments308 References308

SectionVIEconomicsofBiobasedProductsandTheirMineral Counterparts311

6.1EconomicsofBiobasedProductsandTheirMineralCounterparts313 JeroenBuysseandJuanTurCardona

6.1.1Introduction313

6.1.2FertilizerDemand314

6.1.2.1CropDemand316

6.1.2.2DriversoftheIncreasedUseofMineralFertilizers317

6.1.2.3DriversofBiobasedFertilizerDemand318

6.1.2.4ImportanceofFertilizerUseintheCostofProduction319

6.1.3FertilizerSupply320

6.1.3.1GlobalProduction:StatisticsandRegionalDistribution320

6.1.3.2LinkBetweenFood,Fertilizer,andFuelPrices320

6.1.3.3ConcentrationandMarketPower322

6.1.3.4ImpactofaStrongFertilizerIndustryontheProductionof BiobasedFertilizers324

6.1.4Conclusion325 References326

SectionVIIEnvironmentalImpactAssessmentonthe ProductionandUseofBiobasedFertilizers329

7.1EnvironmentalImpactAssessmentontheProductionandUseof BiobasedFertilizers331 LarsStoumannJensen,MylesOelofse,MarieketenHoeve, andSanderBruun

7.1.1Introduction331

7.1.2LifeCycleAssessmentofBiobasedFertilizerProductionandUse332

7.1.2.1LifeCycleAssessment332

7.1.2.2TheFourPhasesofLCA333

7.1.2.2.1GoalandScope333

7.1.2.2.2InventoryAnalysis335

7.1.2.2.3ImpactAssessment336

7.1.2.2.4Interpretation339

7.1.3EnvironmentalImpactsfromtheProductionandUseofBiobased Fertilizers339

7.1.3.1ClimateChangeandGlobalWarmingPotential339

7.1.3.2Eutrophication340

7.1.3.3Acidification341

7.1.3.4Eco-andHumanToxicity341

7.1.3.5ResourceUse343

7.1.3.6LandUse:DirectandIndirectLandUseChange344

7.1.3.7OtherImpacts,IncludingOdor344

7.1.4BenefitsandValueofBiobasedFertilizersinAgriculturaland Non-AgriculturalSectors345

7.1.4.1CropYield,NutrientUseEfficiency,andSubstitutionof MineralFertilizers345

7.1.4.2SubstitutionofPeat-BasedProducts346

7.1.4.3SoilQualityEnhancement347

7.1.5IntegrativeComparisonsofSyntheticandBiobasedFertilizers347

7.1.5.1SyntheticFertilizers347

7.1.5.2UnprocessedAnimalManures348

7.1.5.3MechanicallySeparatedandProcessedAnimalManures351

7.1.5.4Manure-BasedDigestatesandPost-ProcessingProducts352

7.1.5.5MunicipalSolidWasteandWastewaterBiosolids ProcessedbyADorComposting353

7.1.5.6MineralConcentrates,Extracts,Precipitates,Chars,and AshesfromOrganicWastes356

7.1.6Conclusion356 Acknowledgments357 References357

7.2CaseStudy:AcidificationofPigSlurry363

LarsStoumannJensen,MylesOelofse,MarieketenHoeve, andSanderBruun

7.2.1Introduction363

7.2.2Conclusion367 Acknowledgments368 References368

7.3CaseStudy:CompostingandDrying&PelletizingofBiogasDigestate369 KatarzynaGolkowska,IanVázquez-Rowe,DanielKoster,ViooltjeLebuf, EnricoBenetto,CélineVaneekhaute,andErikMeers

7.3.1Introduction369

7.3.2TunnelComposting vs BaselineScenario370

7.3.3DryingandPelletizing vs BaselineScenario371

7.3.4AssumptionsandCalculationsRelatedtoBiomassFlow372

7.3.4.1CharacteristicsoftheInputandOutputStreams372

7.3.4.2Storage,Transport,andSpreading373

7.3.4.3SupportingData373

7.3.5Goal,Scope,andAssessmentMethods374

7.3.6Results374

7.3.6.1TunnelComposting377

7.3.6.2DryingandPelletizing377

7.3.6.3EcosystemQuality378

7.3.6.4Energy,Transport,andSpreading378

7.3.7Conclusion378 Acknowledgments379 References379

SectionVIIIModelingandOptimizationofNutrientRecovery fromWastes:AdvancesandLimitations381

8.1ModelingandOptimizationofNutrientRecoveryfromWastes: AdvancesandLimitations383 CélineVaneeckhaute,ErikMeers,EvangelinaBelia, andPeterVanrolleghem

8.1.1Introduction383

8.1.2FertilizerQualitySpecifications386

8.1.2.1GenericFertilizerQualityRequirements386

8.1.2.2PointsofAttentionforBiobasedProducts388

8.1.3ModelingandOptimization:AdvancesandLimitations388

8.1.3.1AnaerobicDigestion389

8.1.3.2PhosphorusPrecipitation/Crystallization390

8.1.3.3AmmoniaStrippingandAbsorption391

8.1.3.4AcidicAirScrubbing393

8.1.4ModelingObjectivesandFurtherResearch394

8.1.4.1DefinitionofModelingObjectives394

8.1.4.2TowardaGenericNutrientRecoveryModelLibrary394

8.1.4.3NumericalSolution396

8.1.5Conclusion397 Acknowledgments397 References397

8.2SoilDynamicModels:PredictingtheBehaviorofFertilizersintheSoil405 MariusHeinen,FalentijnAssinck,PietGroenendijk,andOscarSchoumans

8.2.1Introduction405

8.2.2SoilNandPProcesses406

8.2.2.1MainDynamicProcesses406

8.2.3OtherRelatedStateandRateVariables407

8.2.3.1WaterFlow407

8.2.3.2SoilWaterContent407

8.2.3.3SoilTemperature407

8.2.3.4SoilpH408

8.2.3.5GasTransport408

8.2.3.6CropGrowthandNutrientDemand408

8.2.3.7DynamicSimulation408

8.2.4OrganicMatter409

8.2.4.1Multi-PoolModelswithConstantDecomposition RateFactor410

8.2.4.2ModelswithaTime-DependentDecompositionRateFactor411

8.2.4.3EnvironmentalResponseFactors413

8.2.5Nitrogen414

8.2.5.1AdsorptionandDesorption414

8.2.5.2Nitrification415

8.2.5.3Denitrification415

8.2.5.4Leaching416

8.2.5.5GaseousNLosses416

8.2.6Phosphorus417

8.2.6.1Adsorption,Desorption,Fixation,andPrecipitation418

8.2.6.2CalculationofSoil-AvailableP419

8.2.6.3Leaching419

8.2.7IndicesofNutrientUseEfficiency420

8.2.8OtherNutrients420

8.2.9OverviewofProcessesinSelectedSoilDynamicsModels421

8.2.10ModelParameterizationofBiobasedFertilizers424

8.2.11Conclusion426 References429

ListofContributors

FabrizioAdani GruppoRicicla,Lab.-UniversitàdegliStudidiMilano,DISAA,AgricolturaeAmbiente,Milano,Italy

FalentijnAssinck WageningenEnvironmentalResearch,WageningenUniversity& Research,Wageningen,TheNetherlands

ZhaohaiBai CenterforAgriculturalResourcesResearch,InstituteofGeneticand DevelopmentalBiology,CAS,Shijiazhuang,Hebei,China

EvangelinaBelia PrimodalInc.,Québec,Canada

EnricoBenetto LuxembourgInstituteofScienceandTechnology(LIST),EnvironmentalResearchandInnovation(ERIN),Luxemburg

JayantaKumarBiswas DepartmentofEcologicalStudies,UniversityofKalyani,West Bengal,India

InternationalCentreforEcologicalEngineering,UniversityofKalyani,WestBengal,India

GabrieleBoccasile RegioneLombardiaDG-Agricoltura,Milan,Italy

AleksandraBogdan DepartmentofGreenChemistry&Technology,FacultyofBioscienceEngineering,GhentUniversity,Ghent,Belgium

ClaudioBrienza DepartmentGreenChemistryandTechnology,FacultyofBioscience Engineering,GhentUniversity,Ghent,Belgium

SanderBruun DepartmentofPlantandEnvironmentalSciences,UniversityofCopenhagen,Denmark

FridtjofdeBuisonjé WageningenLivestockResearch,WageningenUniversity& Research,WageningenTheNetherlands

JeroenBuysse DepartmentofAgriculturalEconomics,FacultyofBioscienceEngineering,GhentUniversity,Belgium

JuanTurCardona DepartmentofAgriculturalEconomics,FacultyofBioscienceEngineering,GhentUniversity,Belgium

LiesDeClercq DepartmentofPhysicalandAnalyticalChemistry,GhentUniversity, Ghent,Belgium

GiulianaD’Imporzano GruppoRicicla,Lab.-UniversitàdegliStudidiMilano, DISAA,AgricolturaeAmbiente,Milano,Italy

Marie-LineDaumer Institutnationalderechercheensciencesettechnologiespour l’environnementetl’agriculture,Rennes,France

KimovanDijk WageningenEnvironmentalResearch,TheNetherlands SoilQualityDepartment,WageningenUR,Wageningen,TheNetherlands

RenjieDong KeyLaboratoryofCleanUtilizationTechnologyforRenewableEnergyin MinistryofAgriculture,CollegeofEngineering,ChinaAgriculturalUniversity,Beijing, PRChina

PhillipEhlert WageningenEnvironmentalResearch,WageningenUniversity& Research,Wageningen,TheNetherlands

AniaEscudero GlasgowCaledonianUniversity,Glasgow,Scotland

WimvanGeel WageningenPlantResearch,WageningenUniversity&Research, Wageningen,TheNetherlands

SamGeerts Aquafinn.v.,Aartselaar,Belgium

KatarzynaGolkowska LuxembourgInstituteofScienceandTechnology(LIST), EnvironmentalResearchandInnovation(ERIN),Luxemburg

PietGroenendijk WageningenEnvironmentalResearch,WageningenUniversity& Research,Wageningen,theNetherlands

MariusHeinen WageningenEnvironmentalResearch,WageningenUniversity& Research,Wageningen,theNetherlands

PaulHoeksma WageningenLivestockResearch,WageningenUniversity&Research, WageningenTheNetherlands

MarieketenHoeve DepartmentofPlantandEnvironmentalSciences,Universityof Copenhagen,Denmark

GertjanHolshof WageningenLivestockResearch,WageningenUniversity&Research, Wageningen,TheNetherlands

YongHou SoilQualityDepartment,WageningenUniversity&Research,Wageningen, TheNetherlands

CollegeofResourcesandEnvironmentalSciences,ChinaAgriculturalUniversity

YongHou CollegeofResourcesandEnvironmentSciences,ChinaAgriculturalUniversity,Beijing,China

LarsStoumannJensen DepartmentofPlantandEnvironmentalSciences,University ofCopenhagen,Denmark

DanielKlein Lippeverband,Essen,Germany

DanielKoster LuxembourgInstituteofScienceandTechnology(LIST),Environmental ResearchandInnovation(ERIN),Luxemburg

ChadKruger CenterforSustainingAgric&NaturalResources,WA,USA

ViooltjeLebuf FlemishCoordinationCentreforManureProcessing,Belgium

EvertLeijenhorst BTGBiomassTechnologyGroupB.V.Enschede,TheNetherlands

JanPeterLesschen WageningenEnvironmentalResearch,WageningenUniversity& Research,Wageningen,TheNetherlands

QianLiu SoilQualityDepartment,WageningenUniversity&Research,Wageningen, TheNetherlands

LinMa CenterforAgriculturalResourcesResearch,InstituteofGeneticandDevelopmentalBiology,CAS,Shijiazhuang,Hebei,China.

AdrienMarchi Aquafinn.v.,Aartselaar,Belgium

JohanteMarvelde Lippeverband,Essen,Germany

ErikMeers DepartmentofGreenChemistry&Technology,FacultyofBioscienceEngineering,GhentUniversity,Ghent,Belgium

EviMichels DepartmentofGreenChemistry&Technology,FacultyofBioscienceEngineering,GhentUniversity,Ghent,Belgium

JantinevanMiddelkoop WageningenLivestockResearch,WageningenUniversity& Research,Wageningen,TheNetherlands

AndersNättorp SchoolofLifeSciencesFHNW,Muttenz,Switzerland

MylesOelofse DepartmentofPlantandEnvironmentalSciences,UniversityofCopenhagen,Denmark

OeneOenema SoilQualityDepartment,WageningenEnvironmentalResearch, WageningenUniversity&Research,Wageningen,TheNetherlands

ValentinaOrzi GruppoRicicla,Lab.-UniversitàdegliStudidiMilano,DISAA,AgricolturaeAmbiente,Milano,Italy

OlePahl GlasgowCaledonianUniversity,Glasgow,Scotland

HervéPaillard VéoliaEnvironnement,Aubervilliers,France

MarieEdithPloteau Lippeverband,Essen,Germany

ReinhartVanPoucke DepartmentofGreenChemistry&Technology,FacultyofBioscienceEngineering,GhentUniversity,Ghent,Belgium

WeiQin SoilQualityDepartment,WageningenUniversity,TheNetherlands CollegeofResourcesandEnvironmentalSciences,ChinaAgriculturalUniversity

SukantaRana InternationalCentreforEcologicalEngineering,UniversityofKalyani, WestBengal,India

GregoryReuland EuropeanBiogasAssociation,RenewableEnergyHouse,Belgium DepartmentofGreenChemistry&Technology,FacultyofBioscienceEngineering,Ghent University,Ghent,Belgium

CarloRiva GruppoRicicla,Lab.-UniversitàdegliStudidiMilano,DISAA,Agricoltura eAmbiente,Milano,Italy

AnaRobles DepartmentofGreenChemistry&Technology,FacultyofBioscienceEngineering,GhentUniversity,Ghent,Belgium

BartSaerens Aquafinn.v.,Aartselaar,Belgium

RenéSchils WageningenUniversity&Research,WageningenPlantResearch, WageningenUniversity&Research,Wageningen,TheNetherlands

Karl-GeorgSchmelz Emschergenossenschaft,Essen,Germany

OscarSchoumans WageningenEnvironmentalResearch,WageningenUniversity& Research,Wageningen,theNetherlands

JaapSchröder WageningenPlantResearch,WageningenUniversity&Research, Wageningen,TheNetherlands

BrajendraK.Sharma IllinoisSustainableTechnologyCenter,UniversityofIllinoisat Urbana-Champaign,Champaign,Illinois,USA

IvonaSigurnjak DepartmentofGreenChemistry&Technology,FacultyofBioscience Engineering,GhentUniversity,Ghent,Belgium

LucSijstermans SlibverwerkingNoord-Brabant,Moerdijk,theNetherlands

FulviaTambone GruppoRicicla,Lab.-UniversitàdegliStudidiMilano,DISAA,AgricolturaeAmbiente,Milano,Italy

PaulThiers DepartmentofPoliticalScience,WashingtonStateUniversity–Vancouver, VancouverUSA

IanVázquez-Rowe PontificiaUniversidadCatólicadelPerú,DepartmentofEngineering,PeruvianLCANetwork,Peru UniversityofSantiagodeCompostela,DepartmentofChemicalEngineering,Santiagode Compostela,Spain

CélineVaneeckhaute BioEngine,ResearchTeamonGreenProcessEngineeringand Biorefineries,ChemicalEngineeringDepartment,UniversitéLaval,Quebec,Canada

PeterVanrolleghem BioEngine,ChemicalEngineeringDepartment,UniversitéLaval, Québec,Canada

NicolasDeLaVega EuropeanBiogasAssociation,Brussels,Belgium

GerardVelthof WageningenEnvironmentalResearch,WageningenUniversity& Research,Wageningen,TheNetherlands

JingmengWang SoilQualityDepartment,WageningenUniversity&Research, Wageningen,TheNetherlands

MarjoleineWeemaes Aquafinn.v.,Aartselaar,Belgium

ShubiaoWu KeyLaboratoryofCleanUtilizationTechnologyforRenewableEnergyin MinistryofAgriculture,CollegeofEngineering,ChinaAgriculturalUniversity,Beijing, PRChina

GeorgineYorgey CenterforSustainingAgric&NaturalResources,WA,USA

FrankZepke EuPhoReGmbH,Telgte,Germany

WeiZheng IllinoisSustainableTechnologyCenter,UniversityofIllinoisat Urbana-Champaign,Champaign,Illinois,USA

KorZwart WageningenEnvironmentalResearch,WageningenUniversity&Research, TheNetherlands

SeriesPreface

Renewableresources,theiruseandmodificationareinvolvedinamultitudeofimportant processeswithamajorinfluenceonoureverydaylives.Applicationscanbefoundinthe energysector,paintsandcoatings,andthechemical,pharmaceutical,andthetextileindustry,tonamebutafew.

Theareainterconnectsseveralscientificdisciplines(agriculture,biochemistry, chemistry,technology,environmentalsciences,forestry,...),whichmakesitverydifficult tohaveanexpertviewonthecomplicatedinteraction.Therefore,theideatocreateaseries ofscientificbooksthatwillfocusonspecifictopicsconcerningrenewableresourceshas beenveryopportuneandcanhelptoclarifysomeoftheunderlyingconnectionsinthisarea.

Inaveryfastchangingworld,trendsarenotonlycharacteristicforfashionandpolitical standpoints;scienceisnotfreefromhypesandbuzzwords.Theuseofrenewableresources isagainmoreimportantnowadays;however,itisnotpartofahypeorafashion.Asthe livelydiscussionsamongscientistscontinueabouthowmanyyearswewillstillbeableto usefossilfuels-opinionsrangingfrom50to500years-theydoagreethatthereserveis limitedandthatitisessentialnotonlytosearchfornewenergycarriersbutalsofornew materialsources.

Inthisrespect,renewableresourcesareacrucialareainthesearchforalternatives forfossil-basedrawmaterialsandenergy.Inthefieldofenergysupply,biomassand renewable-basedresourceswillbepartofthesolution,alongsideotheralternativessuch assolarenergy,windenergy,hydraulicpower,hydrogentechnologyandnuclearenergy. Inthefieldofmaterialsciences,theimpactofrenewableresourceswillprobablybeeven bigger.Integralutilizationofcropsandtheuseofwastestreamsincertainindustrieswill growinimportance,leadingtoamoresustainablewayofproducingmaterials.

Althoughoursocietywasmuchmore(almostexclusively)basedonrenewableresources centuriesago,thisdisappearedintheWesternworldinthenineteenthcentury.Nowitistime tofocusagainonthisfieldofresearch.However,thisshouldnotmeana‘retouràlanature’, butitshouldbeamultidisciplinaryeffortonahighlytechnologicalleveltoperformresearch towardsnewopportunities,todevelopnewcropsandproductsfromrenewableresources. Thiswillbeessentialtoguaranteealevelofcomfortforagrowingnumberofpeopleliving onourplanet.Itis‘the’challengeforthecominggenerationsofscientiststodevelopmore sustainablewaystocreateprosperityandtofightpovertyandhungerintheworld.Aglobal approachiscertainlyfavoured.

Thischallengecanonlybedealtwithifscientistsareattractedtothisareaandare recognizedfortheireffortsinthisinterdisciplinaryfield.Itis,therefore,alsoessentialthat consumersrecognizethefateofrenewableresourcesinanumberofproducts.

Furthermore,scientistsdoneedtocommunicateanddiscusstherelevanceoftheirwork. Theuseandmodificationofrenewableresourcesmaynotfollowthepathofthegenetic

engineeringconceptinviewofconsumeracceptanceinEurope.Relatedtothisaspect,the serieswillcertainlyhelptoincreasethevisibilityoftheimportanceofrenewableresources.

Beingconvincedofthevalueoftherenewablesapproachfortheindustrialworld,aswell asfordevelopingcountries,Iwasmyselfdelightedtocollaborateonthisseriesofbooks focusingondifferentaspectsofrenewableresources.Ihopethatreadersbecomeawareof thecomplexity,theinteractionandinterconnections,andthechallengesofthisfieldand thattheywillhelptocommunicateontheimportanceofrenewableresources.

IcertainlywanttothankthepeopleofWiley’sChichesteroffice,especiallyDavid Hughes,JennyCosshamandLynRoberts,inseeingtheneedforsuchaseriesofbookson renewableresources,forinitiatingandsupportingit,andforhelpingtocarrytheprojectto theend.

Lastbutnotleast,Iwanttothankmyfamily,especiallymywifeHildeandmychildren PaulienandPieter-Jan,fortheirpatienceandforgivingmethetimetoworkontheseries whenotheractivitiesseemedtobemoreinviting.

ChristianV.Stevens, FacultyofBioscienceEngineering GhentUniversity,Belgium SeriesEditor,‘RenewableResources’ June2005

Preface

TheRecoveryandUseofNutrientsfromOrganic Residues

Inthetransitionfromafossil-basedtoacircularandbiobasedeconomy,ithasbecome animportantchallengetomaximallyclosethenutrientcyclesandmigratetoamoresustainableresourcemanagement,bothfromaneconomicalperspectiveandfromanecologicalone.Nutrientresourcesarerapidlydepleting,significantamountsoffossilenergyare usedfortheproductionofchemicalfertilizers,andthecostsofenergyandfertilizersare increasing.Biorefinery(i.e.therefiningofchemicals,materials,energy,andproductsfrom biobased[waste]streams)isgainingmoreandmoreinterest.

Theaimofthisbookistopresentthestateoftheartregardingtherecoveryanduse ofmineralnutrientsfromorganicresidues,withafocusonuseinagriculture.ContributorscomefromEurope,theUnitedStates,Canada,India,andChina.Thetargetgroups arestudents(MScandPhD),scientists,policyadvisors,andprofessionalsinthefieldsof agriculture,wastetreatment,environment,andenergy.

Theintroductorysection(SectionI)givesinsightsintotheglobalnutrientflowsinfood systems,withafocusonnitrogen(N)andphosphorus(P)flowsandbalances.

Thetransitionfromafossil-basedtoacircularandbiobasedeconomyisdifficult,dueto obstaclesinlegislativesystems,lackofintegrationofinstitutionalandgovernancestructures,andlackofcoordinationbetweenthedifferentstakeholders.Thelegislative,socioeconomic,andtechnicalconstraintstotheuseofrecoverednutrientsintheEuropeanUnion, UnitedStates,andChinaaredescribedinSectionII.

Aseriesofemergingtechnologiesintherecoveryofnutrientsfromlivestockmanure, wastes,wastewater,andhumanexcretaarepresentedinSectionIII.Casesofnutrient recoveryprocessesin(agro-industrial)practiceareillustratedinSectionIV,including struviterecoveryfromdomesticwastewater,mineralconcentratesfrommanures,biochar fromagro-digestates,andtheuseofmineralsfromtheashproducedbyincinerationof chickenmanure.

SectionsV–VIIdealwithagronomic,environmental,andeconomicassessmentsofthe recoveryofnutrientsandtheuseofbiobasedproducts.Fieldassessmentsofagricultural andenvironmentalperformanceofbiobasedfertilizersubstitutesaredescribedinSection V.Aneconomicassessmentofbiobasedproductsincomparisontocurrentfossil-based counterpartsisgiveninSectionVI.Environmentalimpactassessmentsoftheproduction anduseofbiobasedmineralfertilizersaredescribedinSectionVII.

Mathematicalmodelshavebecomeimportanttoolsforthedesignandoptimizationof waste-treatmentfacilities.Moreover,modelsareusedtoextrapolateresultsobtainedunder controlledconditionstoalargerscale.SectionVIIIdealswiththemodelingofnutrient recoveryfromwaste(water)flowsanddynamicmodelingofnutrientcyclinginsoils. Wegratefullyacknowledgealltheauthorsfortheircontributionstothisbook.

ErikMeers UniversityofGhent,Belgium

GerardVelthof WageningenUniversity&Research,TheNetherlands

EviMichels UniversityofGhent,Belgium

RenéRietra WageningenUniversity&Research,TheNetherlands November2019

SectionI

GlobalNutrientFlowsandCyclingin FoodSystems

GlobalNutrientFlowsandCycling inFoodSystems

QianLiu1,3 ,JingmengWang1,3 ,YongHou1,3 ,KimovanDijk1,2 , WeiQin1,3 ,JanPeterLesschen2 ,GerardVelthof2 ,and OeneOenema1,2

1 SoilQualityDepartment,WageningenUniversity,Wageningen,TheNetherlands

2 WageningenEnvironmentalResearch,Wageningen,TheNetherlands

3 CollegeofResourcesandEnvironmentalSciences,ChinaAgriculturalUniversity,Beijing,China

1.1Introduction

Plantsrequire14nutrientelements(N,P,K,Mg,Ca,S,Fe,Mn,Zn,Cu,B,Mo,Cl,and Ni)inspecificamountsforgrowthanddevelopment,inadditiontocarbondioxide(CO2 ), water(H2 O),andphotosyntheticactiveradiation(sunlight).Thegrowthanddevelopment ofplantsaredistortedwhenthesupplyofoneormoreofthesenutrientelementsissuboptimal[1].Forgrowth,development,reproduction,andmaintenanceofbodyfunctions, animalsandhumansrequiresome22nutrients(N,P,K,Mg,Ca,S,Fe,Mn,Zn,Cu,Mo, Cl,Co,Na,Se,I,Cr,Ni,V,Sn,As,andF)inspecificamountsinadditiontowater,carbohydrates,aminoacids(protein),andvitamins[2–4].Thehealth,growth,production,and reproductionofanimalsaredistortedwhenthesupplyofoneormoreofthesenutrientsis suboptimal.Over-optimalsupplyofnutrientsmayleadtotoxiceffectsandimbalancesin nutrientsupply,andtherebyalsotomalfunctioning.

Thesupplyofnutrientsinmostsoilstoplantrootsislimited,andthatiswhyfarmers applyanimalmanuresandfertilizerstocropland.Themostlimitingelementsarenitrogen (N),phosphorus(P),andpotassium(K),butotherelementsmayalsolimitplantgrowthand

BiorefineryofInorganics:RecoveringMineralNutrientsfromBiomassandOrganicWaste,FirstEdition. EditedbyErikMeers,GerardVelthof,EviMichelsandRenéRietra. ©2020JohnWiley&SonsLtd.Published2020byJohnWiley&SonsLtd.

development.Excessiveorinappropriateuseofnutrientsincropandanimalproduction leadstolargenutrientlossestothewiderenvironmentandcreatesarangeofunwanted environmentaleffectsandpossiblenegativehumanhealtheffects[5].ExcessPinsurface watersisassociatedwithwaterpollution,eutrophication,andbiodiversityloss.LossesofN createacascadeofthreatstowater,air,andsoils,affectingbiodiversity,climate,andpotentiallyhumanhealth[6].ThecurrentlossesofNandPtotheatmosphereandsurfacewaters exceedtheso-calledsafeplanetaryboundaries[7].Transgressingaboundaryincreases theriskthathumanactivitiescouldinadvertentlydrivetheEarthSystemintoamuch lesshospitablestate,damagingeffortstoreducepovertyandleadingtoadeteriorationof humanwellbeinginmanypartsoftheworld,includingwealthycountries.Thisindicates thatlossesofNandPtotheenvironmenthavetobedecreasedbypropermanagement. Nutrientmanagementisgenerallydefinedbyacoherentsetofactivitieswiththeobjective ofachievingbothagronomictargets(foodproductionandquality,aswellasincomefor farmers)andenvironmentalones(minimallossesofnutrientstothewiderenvironment).

Nutrientmanagementhastoconsideralsothatthegeologicalreserves(e.g.phosphorus, potassium,magnesium,copper,zinc,selenium-richrocks)usedtomanufacturefertilizers andnutrientsupplementsarefiniteandmaybecomedepletedwithinafewgenerations [8,9].Thisindicatesthatactionsareneededtoreducenutrientlosses,torealigncurrent nutrientuse,torecoverandrecyclenutrientsfromwastes,andpossiblytoredefinefood systems[10].Thisisalsothebackgroundtothechapterspresentedinthisbook:which techniques,technologies,andmanagementsareavailableandcanbeusedtoimprovethe utilizationofnutrientsfromanimalmanures,residues,andwastes?

Thisintroductorychapterbrieflysummarizesthedrivingforcesofnutrientcycling andthechangesinglobalnutrientflowsandbalancesinagriculturalsystemsand foodsystemsduringthelastcoupleofdecades.TheemphasisisonNandPinfood production–consumptionsystems;thesenutrientsmostlimitglobalfoodproduction amongessentialnutrientelements,whilelossesofNandPtothewiderenvironmenthave significantnegativehumanhealthandecologicaleffects[5,11].

1.2PrimaryandSecondaryDrivingForcesofNutrientCycling

Interrestrialsystems,nutrientscyclebetweensoils,plants,andanimalsandthenbackto soilsagain.Somenutrientsalsocyclethroughtheatmosphere(e.g.NandS),whilefractionsofbasicallyallnutrientsaretransportedtogroundwaterbodiesortheseaandthento sediments.

Fourprimary energy sourcesaredistinguishedinnaturalsystems(Figure1.1).These fuelanumberofsecondarydrivingforces,whichsubsequentlyfuelnutrienttransformation andtransportprocesses.Sunlightfuelsphotosynthesis,thehydrologicalcycle(evapotranspiration),andwindandwatercurrents(incombinationwithgravitationalenergyand internalparticleenergy).Naturalgravityandtheinternalenergyofparticlesgovernthe earthmotion(seasonalanddiurnalcycles),thephysicalinteractionbetweenelementary particles(includingdiffusion),andthephysicaltransportofparticles,followingthelaws ofthermodynamics.Theheat(energy)inthecoreoftheearthgovernstectonicupliftand volcanicactivity[12].

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Immediate download Biorefinery of inorganics (wiley series in renewable resource) erik meers (editor by Education Libraries - Issuu