Where can buy Process systems engineering for biofuels development adrian bonilla-petriciolet ebook

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/process-systems-engineering-for-biofuels-developme nt-adrian-bonilla-petriciolet/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Biofuels engineering process technology 2nd Edition

Caye M. Drapcho

https://ebookmass.com/product/biofuels-engineering-processtechnology-2nd-edition-caye-m-drapcho/ Process Systems Engineering for Pharmaceutical Manufacturing 1st Edition Ravendra Singh

https://ebookmass.com/product/process-systems-engineering-forpharmaceutical-manufacturing-1st-edition-ravendra-singh/

Applications of Artificial Intelligence in Process Systems Engineering Jingzheng Ren

https://ebookmass.com/product/applications-of-artificialintelligence-in-process-systems-engineering-jingzheng-ren/

Biomass, Biofuels, Biochemicals: Green-Economy: Systems Analysis for Sustainability Ganti S. Murthy

https://ebookmass.com/product/biomass-biofuels-biochemicalsgreen-economy-systems-analysis-for-sustainability-ganti-s-murthy/

Formulation and Process Development Strategies for Manufacturing Biopharmaceuticals

https://ebookmass.com/product/formulation-and-processdevelopment-strategies-for-manufacturing-biopharmaceuticals/

Systems Architecture. Strategy and product development for complex systems Bruce Cameron

https://ebookmass.com/product/systems-architecture-strategy-andproduct-development-for-complex-systems-bruce-cameron/

Geometry for Naval Architects Adrian Biran

https://ebookmass.com/product/geometry-for-naval-architectsadrian-biran/

Chemical Engineering Process Simulation 1st Edition Nishanth G. Chemmangattuvalappil

https://ebookmass.com/product/chemical-engineering-processsimulation-1st-edition-nishanth-g-chemmangattuvalappil/ (Original PDF) Engineering Design Process, 3rd Edition

https://ebookmass.com/product/original-pdf-engineering-designprocess-3rd-edition/

ProcessSystems EngineeringforBiofuels Development

SeriesEditor:

WileySeries in RenewableResources

ChristianV.Stevens,FacultyofBioscienceEngineering,GhentUniversity,Belgium

TitlesintheSeries:

WoodModification:Chemical,ThermalandOtherProcesses

CallumA.S.Hill

Renewables-BasedTechnology:SustainabilityAssessment

JoDewulf,HermanVanLangenhove

Biofuels

WimSoetaert,ErikVandamme

HandbookofNaturalColorants

ThomasBechtold,RitaMussak

SurfactantsfromRenewableResources

MikaelKjellin,IngegärdJohansson

IndustrialApplicationsofNaturalFibres:Structure,PropertiesandTechnicalApplications JörgMüssig

ThermochemicalProcessingofBiomass:ConversionintoFuels,ChemicalsandPower

RobertC.Brown

BiorefineryCo-Products:Phytochemicals,PrimaryMetabolitesandValue-AddedBiomass Processing

ChantalBergeron,DanielleJulieCarrier,ShriRamaswamy

AqueousPretreatmentofPlantBiomassforBiologicalandChemicalConversiontoFuelsand Chemicals

CharlesE.Wyman

Bio-BasedPlastics:MaterialsandApplications

StephanKabasci

IntroductiontoWoodandNaturalFiberComposites

DouglasD.Stokke,QinglinWu,GuangpingHan

CellulosicEnergyCroppingSystems

DouglasL.Karlen

IntroductiontoChemicalsfromBiomass,2ndEdition

JamesH.Clark,FabienDeswarte

LigninandLignansasRenewableRawMaterials:Chemistry,TechnologyandApplications FranciscoG.Calvo-Flores,JoseA.Dobado,JoaquínIsac-García,FranciscoJ.Martin-Martínez

SustainabilityAssessmentofRenewables-BasedProducts:MethodsandCaseStudies JoDewulf,StevenDeMeester,RodrigoA.F.Alvarenga

CelluloseNanocrystals:Properties,ProductionandApplications

WadoodHamad

Fuels,ChemicalsandMaterialsfromtheOceansandAquaticSources

FrancescaM.Kerton,NingYan

Bio-BasedSolvents

FrançoisJérômeandRafaelLuque

NanoporousCatalystsforBiomassConversion Feng-ShouXiaoandLiangWang

ThermochemicalProcessingofBiomass:ConversionintoFuels,ChemicalsandPower,2nd Edition

RobertC.Brown

TheChemicalBiologyofPlantBiostimulants

DannyGeelen,LinXu

ChitinandChitosan:PropertiesandApplications

LambertusA.M.vandenBroekandCarmenG.Boeriu

BiorefineryofInorganics:RecoveringMineralNutrientsfromBiomassandOrganicWaste

ErikMeers,EviMichels,ReneRietra,GerardVelthof

ProcessSystemsEngineeringforBiofuelsDevelopment AdriánBonilla-Petriciolet,GadePanduRangaiah

ForthcomingTitles:

WasteValorization:WasteStreamsinaCircularEconomy

CarolSzeKiLin,ChongLi,GuneetKaur,XiaofengYang

BiobasedPackaging:Material,EnvironmentalandEconomicAspects

MohdSapuanSalit,RushdanAhmadIlyas

High-PerformanceMaterialsfromBio-basedFeedstocks

AndrewJ.Hunt,NontipaSupanchaiyamat,KaewtaJetsrisuparb,JesperT.N.Knijnenburg

ProcessSystems EngineeringforBiofuels Development

ADRIÁNBONILLA-PETRICIOLET InstitutoTecnológicodeAguascalientes,México

GADEPANDURANGAIAH

NationalUniversityofSingapore,Singapore and VelloreInstituteofTechnology,India

Thiseditionfirstpublished2020 ©2020JohnWiley&SonsLtd.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Advice onhowtoobtainpermissiontoreusematerialfromthistitleisavailableat http://www.wiley.com/go/permissions.

TherightofAdriánBonilla-PetricioletandGadePanduRangaiahtobeidentifiedastheauthorsoftheeditorialmaterial inthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsin standardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowof informationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewand evaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment,reagent, ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusageandforaddedwarningsand precautions.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecifically disclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticular purpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotional statementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitationand/or potentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservices theorganization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththe understandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readers shouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswritten andwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Bonilla-Petriciolet,Adrián,editor.|Rangaiah,GadePandu,editor.

Title:Processsystemsengineeringforbiofuelsdevelopment/editedby AdriánBonilla-Petriciolet,Dept.ChemicalEngineering,Instituto TecnológicodeAguascalientes,Aguascalientes,México,GadePanduRangaiah, NationalUniversityofSingapore,Singapore.

Description:Firstedition.|Hoboken,NJ:JohnWiley&Sons,Inc.,[2020] |Series:Wileyseriesinrenewableresources|Includesbibliographicalreferencesandindex. Identifiers:LCCN2020016306(print)|LCCN2020016307(ebook)|ISBN 9781119580270(cloth)|ISBN9781119580317(adobepdf)|ISBN 9781119580331(epub)

Subjects:LCSH:Biomassenergy.|Chemicalprocesses.|Systemsengineering. Classification:LCCTP339.P7532020(print)|LCCTP339(ebook)|DDC 662/.88–dc23

LCrecordavailableathttps://lccn.loc.gov/2020016306

LCebookrecordavailableathttps://lccn.loc.gov/2020016307

CoverDesign:Wiley

CoverImage:©JimBarber/Shutterstock

Setin10/12pt,TimesLTStdbySPiGlobal,Chennai,India.

PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY 10987654321

1Introduction1

AdriánBonilla-PetricioletandGadePanduRangaiah

1.1ImportanceofBiofuelsandOverviewoftheirProduction1

1.2SignificanceofProcessSystemsEngineeringforBiofuels Production3

1.2.1ModelingofPhysicochemicalPropertiesof ThermodynamicSystemsRelatedtoBiofuels4

1.2.2IntensificationoftheBiomassTransformationRoutesfor theProductionofBiofuels5

1.2.3Computer-AidedMethodologiesforProcessModeling, Design,Optimization,andControlIncludingSupplyChain andLifeCycleAnalyses7

1.3OverviewofthisBook9 References11

2WasteBiomassSuitableasFeedstockforBiofuelsProduction15 MariaPapadaki

2.1Introduction15

2.1.1TheNeedforBiofuels15

2.1.2ProblemDefinition17

2.1.3TheBiomassPool18

2.2KindsofFeedstock20

2.2.1SpentCoffeeGrounds21

2.2.2LignocelluloseBiomass22

2.2.3Palm,Olive,Coconut,Avocado,andArganOilProduction Residues25

2.2.4Citrus33

2.2.5GrapeMarc36

2.2.6WasteOilandCookingOil37

2.2.7AdditionalSources38

2.3Conclusions40 Acknowledgment40 References40

3MultiscaleAnalysisfortheExploitationofBioresources:FromReactor DesigntoSupplyChainAnalysis49 AntonioSánchez,BorjaHernández,andMarianoMartín

3.1Introduction49

3.2UnitLevel50

3.2.1ShortCutMethods50

3.2.2MechanisticModels51

3.2.3RulesofThumb56

3.2.4DimensionlessAnalysis56

3.2.5SurrogateModels56

3.2.6ExperimentalCorrelations59

3.3ProcessSynthesis60

3.3.1HeuristicBased60

3.3.2SupestructureOptimization61

3.3.3EnvironmentalImpactMetrics65

3.3.4SafetyConsiderations66

3.4TheProductDesignProblem66

3.4.1ProductDesign:EngineeringBiomass66

3.4.2BlendingProblems68

3.5SupplyChainLevel68

3.5.1Introduction68

3.5.2ModelingIssues70

3.6MultiscaleLinksandConsiderations71 Acknowledgment74 Nomenclature74 References75

4ChallengesintheModelingofThermodynamicPropertiesandPhase EquilibriumCalculationsforBiofuelsProcessDesign85 RoumianaP.StatevaandGeorgiSt.Cholakov

4.1Introduction85

4.2ThermodynamicModelingFramework:Elements,Structure, andOrganization86

4.3ThermodynamicsofBiofuelSystems88

4.3.1PhaseEquilibria88

4.3.2ThermodynamicModels90

4.4SourcesofDataforBiofuelsProcessDesign98

4.5MethodsforPredictingDataforBiofuelsProcessDesign102

4.5.1GroupContributionMethodsforBiofuelsProcessDesign103

4.5.2QuantitativeStructure–PropertyRelationshipsforBiofuels ProcessDesign105

4.6ChallengesfortheBiofuelsProcessDesignMethods109

4.7InfluenceofUncertaintiesinThermophysicalPropertiesofPure CompoundsonthePhaseBehaviorofBiofuelSystems112 4.8Conclusions114

Acknowledgment114 Exercises114 References115

5Up-gradingofWasteOil:AKeyStepintheFutureofBiofuel Production121

LuigidiBitontoandCarloPastore

5.1Introduction121

5.2PhysicochemicalPretreatmentsofWasteOils:Removalof Contaminants124

5.3DirectTreatmentandConversionofFFAsintoMethylEsters125

5.3.1HomogeneousCatalysis:BrønstedandLewis Acids125

5.3.2HeterogeneousCatalysis127

5.3.3EnzymaticBiodieselProduction128

5.3.4ILsBiodieselProduction130

5.3.5UseofMetalHydratedSalts133

5.4FutureTrendsofthePretreatmentsofWasteOils139

5.5Conclusions140

Acknowledgment141 Abbreviations141 References142

6ProductionofBiojetFuelfromWasteRawMaterials:AReview149 AnaLauraMoreno-Gómez,ClaudiaGutiérrez-Antonio,FernandoIsrael Gómez-Castro,andSalvadorHernández

6.1Introduction149

6.2WasteTriglycerideFeedstock150

6.3WasteLignocellulosicFeedstock159

6.4WasteSugarandStarchyFeedstock164

6.5MainChallengesandFutureTrends165

6.6Conclusions167 Acknowledgments167 References167

7Computer-AidedDesignforGeneticModulationtoImproveBiofuel Production173 Feng-ShengWangandWu-HsiungWu

7.1Introduction173

7.2Method175

7.2.1FluxBalanceAnalysis175

7.2.2FluxVariabilityAnalysis176

7.2.3MinimizationofMetabolicAdjustment176

7.2.4RegulatoryOn-OffMinimization177

7.2.5OptimalStrainDesignProblem177

7.3Computer-AidedStrainDesignTool179 7.4Examples181

7.4.1E.coliCoreModel181

7.4.2Genome-ScaleMetabolicModelofE.coliiAF1260183

7.5Conclusions185

Appendix7.A:TheSBPProgram187 References187

8ImplementationofBiodieselProductionProcessUsing Enzyme-CatalyzedRoutes191 ThallesAllanAndrade,MassimilianoErrico,andKnudVillyChristensen 8.1Introduction191

8.2BiodieselProductionRoutes:ChemicalversusEnzymaticCatalysts194

8.2.1ChemicalCatalysts195

8.2.2EnzymaticCatalysts196

8.3OptimalReactionConditionsandKineticModeling198

8.3.1EvaluationoftheReactionConditions199

8.3.2KineticModeling201

8.4ProcessSimulationandEconomicEvaluation205

8.5ReuseofEnzymefortheTransesterificationReaction210

8.5.1RecoveryofEversaTransformbyMeansofCentrifugation210

8.5.2RecoveryofEversaTransformbyMeansofCeramic Membranes211

8.6EnvironmentalImpactandFinalRemarks215 Acknowledgments217 Nomenclature217 References217

9ProcessAnalysisofBiodieselProduction–KineticModeling, Simulation,andProcessDesign221

BrunaRicettiMargarida,WandersonRogerioGiacomin-Junior, LuizFernandodeLimaLuzJunior,FernandoAugustoPedersenVoll, andMarcosLucioCorazza

9.1Introduction221

9.1.1Homogeneous-BasedReactions222

9.1.2Heterogeneous-BasedReactions223

9.1.3Enzyme-CatalyzedReactions224

9.1.4SupercriticalRouteReactions224

9.1.5MethanolorEthanolforBiodieselSynthesis224

9.2GettingStartedwithAspenPlusV10224

9.2.1PureCompounds225

9.2.2MixtureParameters229

9.3KineticStudy232

9.3.1EsterificationReaction232

9.3.2ExperimentalReactionDataRegression234

9.3.3TransesterificationReaction236

9.3.4SupercriticalRoute238

9.4ProcessDesign239

9.4.1EsterificationReaction239

9.4.2MethanolRecycling243

9.4.3TransesterificationReaction244

9.4.4BiodieselPurification245

9.4.5AdditionalResources248

9.5EnergyandEconomicAnalysis252 9.6ConcludingRemarks254 Acknowledgment255 Exercises255 References256

10ProcessDevelopment,DesignandAnalysisofMicroalgalBiodiesel ProductionAidedbyMicrowaveandUltrasonication259 DipeshS.Patle,SavyasachiShrikhande,andGadePanduRangaiah 10.1Introduction259 10.2ProcessDevelopmentandModeling262 10.3SizingandCostAnalysis272 10.4ComparisonwiththeWCO-BasedProcessoftheSameCapacity277 10.4.1BiodieselProcessUsingWCOasRawMaterial277 10.4.2ComparativeAnalysis277 10.5ComparisonwiththeMicroalgae-BasedProcesses280 10.6Conclusions280 Acknowledgment281 Appendix10.A281 Exercises282 References282

11ThermochemicalProcessesfortheTransformationofBiomassinto Biofuels285 CarlosJ.Durán-Valle 11.1Introduction285 11.2BiomassandBiofuels288 11.3Combustion289 11.4Gasification290

11.4.1FixedBedGasification291

11.4.2FluidizedBedGasification292

11.4.3DualFluidizedBedGasification292

11.4.4HydrothermalGasification293

11.4.5SupercriticalWaterGasification294

11.4.6PlasmaGasification294

11.4.7CatalyzedGasification295

11.4.8Fischer–TropschSynthesis295

11.5Liquefaction296 11.6Pyrolysis296

11.6.1SlowPyrolysis297

11.6.2FastPyrolysis297

11.6.3FlashPyrolysis297

11.6.4CatalyticBiomassPyrolysis303

11.6.5MicrowaveHeating304

11.6.6ProductSeparation304 11.7Carbonization305

11.8Conclusions308 Acknowledgments309 References309

12IntensifiedPurificationAlternativeforMethylEthylKetone Production:Economic,Environmental,SafetyandControlIssues311

EduardoSánchez-Ramírez,JuanJoséQuiroz-Ramírez,and JuanGabrielSegovia-Hernández

12.1Introduction311

12.2ProblemStatementandCaseStudy316

12.3EvaluationIndexesandOptimizationProblem317

12.3.1TotalAnnualCostCalculation319

12.3.2EnvironmentalIndexCalculation319

12.3.3IndividualRiskIndex320

12.3.4ControllabilityIndexCalculation322

12.3.5Multi-ObjectiveOptimizationProblem323 12.4GlobalOptimizationMethodology324 12.5Results325 12.6Conclusions335 Acknowledgments335 Notation335 References336

13PresentandFutureofBiofuels341

JuanGabrielSegovia-Hernández,CésarRamírez-Márquez,and EduardoSánchez-Ramírez

13.1Introduction341

13.2SomeRepresentativeBiofuels344 13.2.1Bioethanol344 13.2.2Biodiesel347 13.2.3Biobutanol348 13.2.4BiojetFuel349 13.2.5Biogas351 13.3PerspectivesandFutureofBiofuels352 References354

Index 357

ListofContributors

ThallesAllanAndrade DepartmentofChemicalEngineering,Biotechnologyand EnvironmentalTechnology,UniversityofSouthernDenmark,OdenseM,Denmark

LuigidiBitonto IstitutodiRicercaSulleAcque(IRSA),ConsiglioNazionaledelle Ricerche(CNR),Bari,Italy

AdriánBonilla-Petriciolet InstitutoTecnológicodeAguascalientes,Aguascalientes, Mexico

GeorgiSt.Cholakov DepartmentofOrganicSynthesisandFuels,Universityof ChemicalTechnologyandMetallurgy,Sofia,Bulgaria

KnudVillyChristensen DepartmentofChemicalEngineering,Biotechnologyand EnvironmentalTechnology,UniversityofSouthernDenmark,OdenseM,Denmark

MarcosLucioCorazza DepartmentofChemicalEngineering,FederalUniversityof Paraná,PolytechnicCenter(DEQ/UFPR),Curitiba,Brazil

CarlosJ.Durán-Valle DepartamentodeQuímicaOrgánicaeInorgánica,Universidad deExtremadura,Badajoz,Spain

MassimilianoErrico DepartmentofChemicalEngineering,Biotechnologyand EnvironmentalTechnology,UniversityofSouthernDenmark,OdenseM,Denmark

WandersonRogerioGiacomin-Junior DepartmentofChemicalEngineering,Federal UniversityofParaná,PolytechnicCenter(DEQ/UFPR),Curitiba,Brazil

FernandoIsraelGómez-Castro DepartamentodeIngenieríaQuímica,Universidadde Guanajuato,Guanajuato,Guanajuato,México

ClaudiaGutiérrez-Antonio FacultaddeQuímica,UniversidadAutónomadeQuerétaro, Querétaro,Querétaro,México

BorjaHernández DepartmentofChemicalEngineering,UniversityofSalamanca, Salamanca,Spain

SalvadorHernández DepartamentodeIngenieríaQuímica,UniversidaddeGuanajuato, Guanajuato,Guanajuato,México

LuizFernandodeLimaLuzJunior DepartmentofChemicalEngineering,Federal UniversityofParaná,PolytechnicCenter(DEQ/UFPR),Curitiba,Brazil

MarianoMartín DepartmentofChemicalEngineering,UniversityofSalamanca, Salamanca,Spain

AnaLauraMoreno-Gómez FacultaddeQuímica,UniversidadAutónomadeQuerétaro, Querétaro,Querétaro,México

MariaPapadaki DepartmentofEnvironmentalEngineering,UniversityofPatras, Agrinio,Greece

CarloPastore IstitutodiRicercaSulleAcque(IRSA),ConsiglioNazionaledelle Ricerche(CNR),Bari,Italy

DipeshS.Patle ChemicalEngineeringDepartment,MotilalNehruNationalInstituteof Technology,Allahabad,India

FernandoAugustoPedersenVoll DepartmentofChemicalEngineering,Federal UniversityofParaná,PolytechnicCenter(DEQ/UFPR),Curitiba,Brazil

JuanJoséQuiroz-Ramírez CONACyT–CIATECA.C.CentrodeInnovaciónAplicada enTecnologíasCompetitivas,León,México

BrunaRicettiMargarida DepartmentofChemicalEngineering,FederalUniversityof Paraná,PolytechnicCenter(DEQ/UFPR),Curitiba,Brazil

CésarRamírez-Márquez DepartamentodeIngenieríaQuímica,Universidadde Guanajuato,Guanajuato,México

GadePanduRangaiah DepartmentofChemicalandBiomolecularEngineering, NationalUniversityofSingapore,SingaporeandSchoolofChemicalEngineering,Vellore InstituteofTechnology,Vellore,India

AntonioSánchez DepartmentofChemicalEngineering,UniversityofSalamanca, Salamanca,Spain

EduardoSánchez-Ramírez DepartamentodeIngenieríaQuímica,Universidadde Guanajuato,Guanajuato,México

JuanGabrielSegovia-Hernández DepartamentodeIngenieríaQuímica,Universidad deGuanajuato,Guanajuato,México

SavyasachiShrikhande SchoolofChemicalEngineering,VIT,Vellore,India

RoumianaP.Stateva InstituteofChemicalEngineering,BulgarianAcademyof Sciences,Sofia,Bulgaria

Feng-ShengWang DepartmentofChemicalEngineering,NationalChungCheng University,Chiya,Taiwan

Wu-HsiungWu DepartmentofChemicalEngineering,NationalChungCheng University,Chiya,Taiwan

SeriesPreface

Renewableresources,theiruseandmodificationareinvolvedinamultitudeofimportant processeswithamajorinfluenceonoureverydaylives.Applicationscanbefoundinthe energysector;paintsandcoatings;andthechemical,pharmaceutical,andtextileindustry, tonamebutafew.

Theareainterconnectsseveralscientificdisciplines(agriculture,biochemistry,chemistry,technology,environmentalsciences,forestry),whichmakesitverydifficulttohave anexpertviewonthecomplicatedinteraction.Therefore,theideatocreateaseriesofscientificbooks,focusingonspecifictopicsconcerningrenewableresources,hasbeenvery opportuneandcanhelptoclarifysomeoftheunderlyingconnectionsinthisarea.

Inaveryfast-changingworld,trendsarenotonlycharacteristicoffashionandpoliticalstandpoints;sciencetooisnotfreefromhypesandbuzzwords.Theuseofrenewable resourcesisagainmoreimportantnowadays;however,itisnotpartofahypeorafashion. Asthelivelydiscussionsamongscientistscontinueabouthowmanyyearswewillstillbe abletousefossilfuels–opinionsrangingfrom50to500years–theydoagreethatthe reserveislimited,andthatitisessentialnotonlytosearchfornewenergycarriersbutalso fornewmaterialsources.

Inthisrespect,thefieldofrenewableresourcesisacrucialareainthesearchforalternativesforfossil-basedrawmaterialsandenergy.Inthefieldofenergysupply,biomass-and renewables-basedresourceswillbepartofthesolutionalongsideotheralternativessuchas solarenergy,windenergy,hydraulicpower,hydrogentechnologyandnuclearenergy.Inthe fieldofmaterialsciences,theimpactofrenewableresourceswillprobablybeevenbigger. Integralutilizationofcropsandtheuseofwastestreamsincertainindustrieswillgrowin importance,leadingtoamoresustainablewayofproducingmaterials.Althoughoursocietywasmuchmore(almostexclusively)basedonrenewableresourcescenturiesago,this disappearedintheWesternworldinthenineteenthcentury.Nowitistimetofocusagain onthisfieldofresearch.However,itshouldnotmeana“retouràlanature,”butshouldbe amultidisciplinaryeffortonahighlytechnologicalleveltoperformresearchtowardnew opportunities,todevelopnewcropsandproductsfromrenewableresources.Thiswillbe essentialtoguaranteeanacceptablelevelofcomfortforthegrowingnumberofpeoplelivingonourplanet.Itis“the”challengeforthecominggenerationsofscientiststodevelop moresustainablewaystocreateprosperityandtofightpovertyandhungerintheworld.A globalapproachiscertainlyfavored.

Thischallengecanonlybedealtwithifscientistsareattractedtothisareaandarerecognizedfortheireffortsinthisinterdisciplinaryfield.Itis,therefore,alsoessentialthat consumersrecognizethefateofrenewableresourcesinanumberofproducts.Furthermore,scientistsdoneedtocommunicateanddiscusstherelevanceoftheirwork.Theuse andmodificationofrenewableresourcesmaynotfollowthepathofthegeneticengineering conceptinviewofconsumeracceptanceinEurope.Relatedtothisaspect,theserieswill certainlyhelptoincreasethevisibilityoftheimportanceofrenewableresources.Being convincedofthevalueoftherenewablesapproachfortheindustrialworld,aswellasfor developingcountries,Iwasmyselfdelightedtocollaborateonthisseriesofbooksfocusing onthedifferentaspectsofrenewableresources.Ihopethatreadersbecomeawareofthe complexity,theinteractionandinterconnections,andthechallengesofthisfield,andthat theywillhelptocommunicateontheimportanceofrenewableresources.

IcertainlywanttothankthepeopleofWiley’sChichesteroffice,especiallyDavid Hughes,JennyCosshamandLynRoberts,inseeingtheneedforsuchaseriesofbookson renewableresources,forinitiatingandsupportingit,andforhelpingtocarrytheprojectto theend.

Last,butnotleast,Iwanttothankmyfamily,especiallymywifeHildeandchildren PaulienandPieter-Jan,fortheirpatience,andforgivingmethetimetoworkontheseries whenotheractivitiesseemedtobemoreinviting.

ChristianV.Stevens, FacultyofBioscienceEngineeringGhentUniversity,Belgium SeriesEditor,“RenewableResources” June2005

Preface

Biofuels(e.g.biodiesel,bioalcohols,andbiojetfuel)arealternativeenergysolutionstothe environmentalandsafetyproblemsrelatedtotheuseofpetroleum-basedfuels.Thisrenewableenergycanbegeneratedfromawidevarietyoflow-costfeedstocksandtransformation routesthatalsoimplyaspectrumofprocessunitsbasedondifferenttechnologies.During thepasttwodecades,significantdevelopmentsandimprovementshavebeenachievedto increasethecommercialproductionofbiofuelsworldwide.However,thecreationandoperationofsustainablebiofuelproductionchainshaveimposednewchallengestothefieldof ProcessSystemsEngineering(PSE).Theanalysis,modeling,design,optimization,intensification,andcontrolofindividualunits(e.g.reactorsandseparators)andtheentirefacilities toproducebiofuelshavegenerateddriversforPSEresearchanddevelopment,whichshould beaddressedviatheoretical,computational,andexperimentalstudies.

ThePSEofbiofuelproductionschemesdemandsadvancesandnovelcontributions tohandlethechallengesassociatedwiththediversityofphysicochemicalpropertiesof availablefeedstocks,biofuelprocessingroutes,operatingconditions,andcharacteristics oftechnologiesappliedinpretreatmentunits,reactors,separators,andotherprocess equipment.TheopportunitiesofPSEintheproductionofrenewablebiofuelsinclude (i)developmentofareliablethermodynamicframeworkforestimatingtheproperties ofpurecomponentsandmixturesthatarerequiredinthedesign,control,andintensificationofbiomasstransformationroutes;(ii)intensificationandoptimizationofthe processingroutestohandleawidevarietyoffeedstocksforobtainingbiofuelsandother high-value-addedby-products;(iii)implementationofrealisticandpropermodelsforPSE analysis;(iv)applicationofreliableglobalandmultiobjectiveoptimizationtechniquesfor solvingdesignproblemsandimprovingtheperformanceofbiofuelproductionschemes; and(v)utilizationofcomputer-aidedmethodologiesforprocesscontrollability,mass andenergyintegration,andothertasksassociatedwithPSE.Therefore,theoretical, computational,andexperimentalstudiesintheseandothertopicsarerequiredtodevelop asustainablebiofuelproductionchain.

ThepresentbookisthefirstonespecificallydevotedtoPSEfortheproductionofbiofuels.Itcoversawiderangeoftopicsassociatedwiththeprocessengineeringofbiofuel productionincludingthethermodynamicmodeling,processdesignandcontrol,reaction engineering,separation,andpurificationofbiofuelsobtainedfromdifferentbiomassfeedstocksandtransformationroutes.Inall,thisbookcontains13chaptersdevotedtoPSE

forbiofuelproduction.Itprovidesanoverviewofthesubjectandcoverstheportfolioof availablebiomassfeedstocksforbiofuelproduction,multiscaleanalysisofbioresources, challengesinmodelingthermodynamicpropertiesandphaseequilibriumcalculations,the productionandseparationofbiofuels,computer-aideddesign,enzyme-catalyzedbiodiesel production,processanalysisofbiodieselproduction(includingkineticmodelingandsimulation),andtheuseofultrasonificationinbiodieselproduction,aswellasthermochemical processesforbiomasstransformationandproductionofalternativebiofuels.ItisacollectionofcontributionsfromleadingresearchersinPSEandbiofuels.Everychapterinthis bookhasbeenreviewedanonymouslybyatleasttwoexpertsandthenthoroughlyrevisedby therespectivecontributors.Thisreviewprocesshasbeenattemptedtoprovidehigh-quality andeducationalvalueforallchapters.

Thisbookwillprovideresearchersandpostgraduatestudentswithanoverviewofthe recentdevelopmentsandapplicationsofsomestate-of-the-arttechnologiesandPSEforbiofuelproduction.Weconsiderthatthisbookisausefulresourceforresearchersinrenewable energiesandpractitionersworkingontheproductionofbiofuels.

Wearegratefultoallthecontributorsandreviewersofthechaptersfortheircooperation tomeettherequirementsandscheduletofinalizethisbook.Wewouldliketothankthe bookpublishingteamofJohnWiley&Sons,Ltd,fortheirsupportandassistanceduring thepreparationofthisbook.

AdriánBonilla-Petriciolet InstitutoTecnológicodeAguascalientes,México GadePanduRangaiah NationalUniversityofSingapore,Singapore June2020

Introduction

AdriánBonilla-Petriciolet1 andGadePanduRangaiah2,3

1 InstitutoTecnológicodeAguascalientes,Aguascalientes20256,Mexico

2 DepartmentofChemicalandBiomolecularEngineering,NationalUniversityofSingapore,117585, Singapore

3 SchoolofChemicalEngineering,VelloreInstituteofTechnology,Vellore632014,India

1.1ImportanceofBiofuelsandOverviewoftheirProduction

Therelevanceandimportanceofbiofuelsarerecognizedworldwide,mainlyduetothe problemscausedbyfossilfueldepletionandenvironmentalpollution(e.g.climatechange) arisingfromthegenerationandconsumptionoftraditionalenergysources(Lietal.2019; Raudetal.2019;Quiroz-Perezetal.2019).Biofuelsbelongtothecategoryofsustainable energythatcanbeobtainedfrombiological(e.g.anaerobicdigestionandfermentation), physicochemical(e.g.transesterification),andthermochemical(e.g.liquefaction,gasification,andpyrolysis)processingroutes,whichcaninvolvetheapplicationofconventional andintensifiedtechnologies(Gutierrez-Antonioetal.2017;Lietal.2019;Quiroz-Perez etal.2019).Severalresearchershaveconcludedthatbiomassescanberegardedasaprimarysourceforobtaininggreenandrenewableenergybecausetheyaredistributedand generatedworldwide(Lietal.2019;Quiroz-Perezetal.2019;Weietal.2019).Infact,it hasbeenestimatedthatthebiomass-basedfuelsourcescanaccountfor70%ofallrenewable energyproduction(Raudetal.2019).

Diverseprocesseshavebeenstudiedandimplementedtoperformthetransformationofbiomass-basedfeedstockstosolid,liquidand/orgaseousproductsthatcontain energy-enrichedchemicals(Quiroz-Perezetal.2019).Lignocellulosicmaterials,food crops,urbanwastes,animalfats,vegetableoils,starch-richcompoundsandnon-edible

ProcessSystemsEngineeringforBiofuelsDevelopment,FirstEdition. EditedbyAdriánBonilla-PetricioletandGadePanduRangaiah. ©2020JohnWiley&SonsLtd.Published2020byJohnWiley&SonsLtd.

Table1.1 Classificationofbiofuelsbasedonthebiomassfeedstockanditstransformationroute.

Typeofbiofuelsaccordingtotheirprocessingroutes PrimarySecondary

1stgeneration2ndgeneration3rdgeneration4thgeneration Firewood,wood, pellets,chips, forestand agricultural residues,gas.

Bioethanolor butanolfrom fermentationof starchorsugars containedinfood crops.

Bioethanol, biobutanolor synthesizedbiofuels madefrom non-food lignocellulosic biomass.

Source:Raudetal.2019.ReproducedwithpermissionofElsevier.

Biodieselor bioethanolfrom microalgae, seaweedor microorganisms.

Biofuelsproduced usinggenetically modified microalgaeor microorganisms.

biomasseslikealgaeandmicroorganisms(withandwithoutgeneticmodifications)can beutilizedasfeedstockstoproducerenewablefuels(SawangkeawandNgamprasertsith 2013;LomanandJu2016;StephenandPeriyasamy2018).Biofuelsincludeendproducts knownasbiodiesel(amixtureoflong-chainalkylesters),biojetfuel(amixtureofC8–C16 alkanes,iso-alkanes,naphthenicderivatives,andaromaticcompounds),biogasoline (C6–C12hydrocarbons),andbioalcohols(e.g.bioethanolandbiobutanol)(Hassanetal. 2015;Gutierrez-Antonioetal.2017;Weietal.2019).Table1.1showsacommonand simpleclassificationofbiofuelsbasedonthebiomassusedasthestartingmaterialandits processingroute(Raudetal.2019).

Theproductionofbiofuelscomprisesseveralprocessunitsthatshouldbeanalyzed,modeled,designed,optimized,intensified,andcontrolled.Ingeneral,conventionalprocesses employedinbiofuelsproductionrelyonunitoperationsthatareperformedindependently withoutmassand/orenergyintegration,whoseprocessconditionsarenotoptimizedandthe tradeoffbetweenprocessefficiencyandcostmaynotbethebest(Quiroz-Perezetal.2019). Ontheotherhand,intensifiedprocessoperationsoutperformtheirconventionalcounterpartsintermsofenergyconsumption,profitability,andeffectiveness.Processintensificationgenerallyreducestheequipmentnumber,sizesand/orenergyconsumption,toincrease theproductivityandtoenhanceotherperformancemetricsviathesynergyobtainedfrom multifunctionalphenomenaatdifferentspatialandtimescales(StankiewiczandMoulijn 2000;Tianetal.2018).Itallowstheintegrationoftwoormoreoperationsinmultitaskingunits,thedevelopmentofalternativeconfigurationsanddesignofprocessequipment, besidestheapplicationofoptimizationtoolsandreliableprocesssynthesismethodologies toimprovethepathwaysforobtainingbiofuels(Nasiretal.2013;Quiroz-Perezetal.2019).

SustainabledevelopmentofbiofuelssupplychainsfromthevarietyofavailablefeedstocksandprocessroutesimplynewchallengesforChemicalEngineering.Inparticular, therearekeyprocessdesignaspectsofbiofuelsproductiontobeimprovedandintensified (Nasiretal.2013;Ohetal.2018;Raudetal.2019).Theyincludethecollection(harvesting/productionorrecovery)ofthebiomass,feedstockpretreatment,biomasstransformation routes,end-productsseparationandpurification,andthecorrespondinglogistictasksthat arelinkedtotheelementsofthesupplychain.Allthesefactorsimpacttheeconomicfeasibilityofthespecificpathwaytoproducethebiofuel.Forinstance,someauthorshave highlightedthattheproductionof4thgenerationrenewablefuelscouldimplyexpensive

andenergyintensiveoperationsthuslimitingitscurrentcommercialization(Dardaetal. 2019).Theapplicationofsustainabletechnologiesineachprocessstageisparamountto reachthegoalofagreenandfeasiblelarge-scaleproductionofbioenergy.Intermsofprocessmodeling,thereisalsothenecessityofimprovingthethermodynamicframeworkand conceptualdesignapproachesemployedinthebiofuelsprocessengineering.

Itisclearthatbiofuelsproductioncreatesnewapplicationsforprocesssystemengineering(PSE)intermsofbiomassvalorization,greenchemistry,thermodynamics,catalysts, reactionengineering,separationunits,processmodeling,optimization,design,andcontrol.Althoughseveraldevelopmentshavebeenachievedinthisdirection,therearestill technicallimitationsandbarrierstobeovercomewiththeobjectiveofminimizingcosts andenergyrequirementsofcommercialbiofuelsproductionfacilitiesutilizingaffordable feedstocksandconsequentprotectionoftheenvironmentviaenergyefficiencyandwaste reduction.Thisbookaimstocontributetothedevelopmentofsustainableproductionof renewablebiofuels.Specifically,itcoversdifferenttopicsassociatedwithPSEofbiofuels production.Theremainderofthischapterisorganizedasfollows:Section1.2providesan overviewofrelevantissuesofPSEassociatedwithbiofuelsproduction.Examplesofgaps andcurrentchallengesintheproductionofbiofuelsarebrieflydiscussed.Finally,Section 1.3outlinesthescopeofallthechaptersinthisbook.

1.2SignificanceofProcessSystemsEngineeringforBiofuelsProduction

PSEisdevotedtoanalyzingtheelementsassociatedwiththecreationandoperationof chemicalsupplychains(GrossmannandWesterberg2000).Thisimpliesthedevelopmentof systematicproceduresthatcanbeappliedinthediscovery,design,manufactureanddistributionofchemicalproductsstartingfromthemicrosystemleveluntilreachingtheindustrial scaleapplications(GrossmannandWesterberg2000);seeFigure1.1.Undoubtedly,these

Figure1.1 Conceptualdescriptionofachemicalsupplychainconsideringthetime,lengthandchemical scales. Source:GrossmannandWesterberg2000.ReproducedwithpermissionofJohnWiley&Sons.

PSEelementscanbeextrapolatedtothedevelopmentofbiofuelssupplychains,andthey includetheoretical,computationalandexperimentalstudies.

AsstatedbyGrossmannandWesterberg(2000),researchanddevelopmentinPSEcomprisetheprocessandproductdesign,processmodeling,integration,controlandoperation, supportingdesignmethodsandnumericaltools.Thefeasibleandenvironmentallyfriendly productionofbiofuelsalsoneedadvancesinthesePSEareas(Nasiretal.2013).Theexistenceofdiverseprocessingroutesforthebiomasstransformationandtheincorporation ofnoveltechnologieswiththecorrespondingdiscoveryofalternativefeedstocksarethe maindriversofPSEresearchinbiofuelsproduction.Thissectionprovidesanoverviewof opportunitiesofPSEareasfortheproductionofrenewablefuels.Manyofthesetopicsare analyzedindetailintheotherchaptersinthisbook.

1.2.1ModelingofPhysicochemicalPropertiesofThermodynamicSystemsRelated toBiofuels

Thermodynamicmodelingofpropertiesofpurecomponentsandtheirmixtures,includingthepredictionofthephaseequilibriumbehavior,isparamountfortheengineeringof biofuelsproductionbecauseitisthebasisofprocessdesign.Reliablepredictionofthermodynamicpropertiesisfundamentaltocalculatethetypeandsizeofdifferentequipment, profilesofstatevariables(e.g.concentrationsandtemperature)ofseparationunitsand energyconsumptionforseparationandpurificationtasks,andalsotoidentifyoptimaloperatingconditionsofreactionsystemsandotherprocessunits.Forexample,knowledgeof densityandviscosityofagiventhermodynamicsystemisrelevantforvesseldesign,piping, andcalculationofmasstransferrates.

Asstated,feedstocksfortheproductionofbiofuelsincludebiomassby-products(e.g. forestresidues,sugarcanebagasse,cerealstraw),urbanwastes(e.g.organiccompounds presentinindustrialandmunicipalsolidandliquidwastes),animalfats,vegetableoils, insectlipidsanddedicatedmaterialsasenergycrops(SawangkeawandNgamprasertsith 2013;LomanandJu2016;StephenandPeriyasamy2018;Kumaretal.2020).Consequently,mixturesinvolvedintheprocessoperationstosynthetizebiofuelsarecharacterized bythepresenceofawidespectrumoforganic(e.g.lipids,dyes,aromatichydrocarbonsand biopolymers)andinorganiccompounds(e.g.electrolytesandheavymetals).Thiscomplex compositionimposesdifferentchallengesinthedevelopmentandapplicationofsuitable thermodynamicmodelstopredictcorrectlyphysicochemicalbehavior.Forinstance,the fattyacidprofileoffeedstockscanaffectthephysicochemicalpropertiesofbiodiesel,and thisprofilecouldchangesubstantiallydependingonbiomassorigin(Sawangkeawand Ngamprasertsith2013).

Ontheotherhand,mixturespresentinbiofuelsproductionusuallyshownon-idealphase behaviorwithcomplexphasediagramsthatcouldbeverysensitivetochangesinpressure,temperatureandcomposition.Consequently,thermodynamiccalculationsrequired topredictphasebehavior/diagramsofbiofuels-basedsystemsusuallyposecomputational challenges.Thesecalculationsinvolvemultivariableandnonlinearproblemsthatarecharacterizedbythepotentialofmultiplesolutionsduetothecomplexityofthermodynamic models.Phaseequilibriumcalculationsmustbeperformednumeroustimesintheprocess simulatorsforthedesign,optimizationandcontrolofprocessunits.TheseincludeGibbs freeenergyminimizationtoestimatephasecompositions,phasestabilityanalysistoverify

thereliabilityofsolutionsobtainedforphaseequilibriumproblems,predictionofbubble anddewpoints,criticalconditions,azeotropicpoints,etc.

Reliabledeterminationofparametersofthermodynamicmodelsemployedinphase equilibriumcalculationsisanadditionalissuethatshouldberesolved.Theseadjustable parameterscanbeobtainedfromtheregressionanalysisofexperimentaldata,whose (un)availabilitylimitstheimplementationofsomethermodynamicmodelsforthe studyofbiofuels-relatedsystems.Therefore,theapplicationofpredictivemodelsand computer-aidedmethodologiesisnecessarytoestimatetherequiredphysicochemical properties.Fortunately,therearescientificdatabanksofexperimentalphysicaland chemicalpropertiesofmanycompounds(Suetal.2017).However,theyusuallycontain limitedinformationforthemoleculesinvolvedinthemixturesassociatedwithbiofuels systems.Thisissuealsohighlightstheimportanceofdevelopingarobustthermodynamic frameworkfortheprocessdesignandmodelingofthebiofuelssupplychain.

Computationalchemistryapproaches,groupcontributionmethodsandequationofstates canbeutilizedtoestimatethepropertiesrequiredinbiofuelsprocessdesignatdifferent modelingscales(i.e.atomic,group,andmolecular)(Suetal.2017).Theconventional thermodynamicmodels(e.g.cubicequationsofstateorlocalcompositionmodels)could failtopredictthephysicochemicalbehaviorofbiofuels-basedsystems(Reynel-Avilaetal. 2019).Consequently,reliablepredictivemethodsarerequiredtocalculatethephysicaland chemicalpropertiesofpurecomponentsandtheirmixturesintheprocessingroutesofbiofuels.Applicationofartificialintelligencetoolssuchasartificialneuralnetworksanddeep learningcanbeaninterestingoptiontoimprovetheavailablemodelsforpredictingthe physicochemicalperformanceofbiofuelssystems(Reynel-Avilaetal.2019).Reliableand improvednumericalmethodsforsolvingnonlinearequationsandglobaloptimizationproblemsshouldbedevelopedtoresolve,robustlyandefficiently,themathematicalproblems arisinginthephaseequilibriummodelingofbiofuels.Insummary,developmentofrobust andflexiblemodelswithimprovedcapabilities,effectivesolutionmethodsandsoftware toolsforpredictingthethermophysicalbehaviorandpropertiesofbiofuels-relatedsystems(frommoleculartomacroscopiclevel)isoneofthechallengesinPSEforbiofuels production.

1.2.2IntensificationoftheBiomassTransformationRoutesfortheProduction ofBiofuels

ProcessintensificationisarelevantareaofPSEtoenhancetheperformanceofbiofuels productionroutes(Nasiretal.2013;Quiroz-Perezetal.2019).Classicalschemesforbiofuelsproductionimplytheoperationofprocessunitsthatworkindependentlywithoutthe integrationofmassandenergy,wheretheirperformancemetricsareusuallynotoptimum. Strategiestointensifythebiofuelsprocessingrouteshaveincreasedsubstantiallyallowing significantreductionsintheproductioncostandenvironmentalimpact.Overall,process intensificationprincipleshavebeenappliedindifferentstagesofthepathwaysforthe transformationofbiomassestobiofuels(Nasiretal.2013;Quiroz-Perezetal.2019;Wong etal.2019).

Thediversityoftransformationroutesforbiofuelsproductionhaspromotedadvances incatalyticandnon-catalyticprocesses,biotechnology,separationandreactiontechnologies.Forinstance,catalyst-basedtransformationroutesareverycommontoobtainbiofuels (Wongetal.2019).Transesterification-basedprocessescanbeusedtoconvertedibleand

non-ediblefatsandoilsintobiodiesel,wherehomogeneousandheterogeneous(acid,base, orenzymatic)catalystsareemployed(Rezaniaetal.2019).Thisprocessingroutemay requireapretreatmentstage(e.g.esterificationreaction)ifthefeedstockcontainshighfatty acids(Nasiretal.2013).Theneedtoreducecostsintheseprocesseshasledtothesynthesisandapplicationofnovelcatalysts(Trombettonietal.2018),thestudyofnovelreaction mediasuchassupercriticalfluids(Deshpandeetal.2010)andtheproposalofalternative reactortechnologies(Tabatabaeietal.2019;Wongetal.2019).

Ontheotherhand,someauthorshaveconcludedthatmicrobialfermentationforobtainingbioalcoholsisasimpleandpromisingapproachtoproducebioenergy(Bhatiaetal. 2017).Inparticular,alcoholswithtwoormorecarbonatoms(e.g.ethanolandbutanol) havebeenconsideredasinterestingalternativestoconventionalpetroleum-basedfuels. However,fermentationprocessesutilizedintheproductionofthesealcoholshaveseveral disadvantagesthatlimittheirlarge-scaleindustrialapplications.Theprocessintensification ofthisrouteshouldaddresstheinhibitionofcompetitivepathwaysthataffectthealcohol productivityduetoby-productsformed,thegenomicadaptationofstrainstoenhancethe substrateutilizationcapabilitytouselowcostfeedstocks(e.g.lignocellulosicwastes),the geneticdiversificationofmicrobeswithimprovedalcoholproducingcapabilitiestointensifyspecificmetabolicperformanceforobtainingthedesiredend-productsandtodesign syntheticbiofuelspathways(Shanmugametal.2020).Indeed,advancesanddevelopments inmetabolicengineeringhavecontributedtotheprocessintensificationofbiofuelsproductionviatheoptimizationofbioprocessyieldsandproductivities(Shanmugametal. 2020).Microbialgenomeengineeringcanbeutilizedtomaximizetheefficiencyoffermentationprocessesviatheimprovementofthegenomiccharacteristicsofbiofuelsproducing microorganismstodirectthemetabolicfluxtowardthegenerationofdesirablebioproducts (Shanmugametal.2020).Severalauthorshaveanalyzedanddiscussedtheseandother advancesinmetabolicengineeringandsyntheticbiologyforbiofuelsproduction(e.g.Bilal etal.2018;Majidianetal.2018).

Separationunitsalsorepresentanimportantareaforprocessintensificationintheproductionofbiofuels.Separationtechnologiesareutilizedinthepretreatmentandpreprocessingstagesofbiomasstransformationduetotheheterogeneouscompositionoffeedstocks andinthepurificationofprocessstreamstorecoverbiofuelsandtheirby-products.Both non-intensiveandintensiveenergyseparationmethodshavebeenappliedinbiofuelsproduction.Distillation,extraction,adsorptionandmembrane-basedmethodsarepartofthe spectrumoftechnologiesforobtainingrenewablefuels(Atadashietal.2011;Levarioetal. 2012;Abdehaghetal.2014;Lietal.2019).Theapplicationofintensifiednon-reactiveseparationssuchasheat-integratedandmembrane-baseddistillation,hasbeenexploredinthe productionofbiofuels(DiazandTost2017;Kumaretal.2019).Also,intensifiedschemes thatcombinereactionandseparationunits(e.g.reactivedistillationandextraction)(Plesu etal.2015;Poddaretal.2017;Goretal.2020),andpurificationsystemsassistedwith microwave,ultrasoundandsupercriticalfluids(Patiletal.2018;Lietal.2019;Mahmood etal.2019)havebeenreportedtoproducebiofuels.

Separationandpurificationmethodsappliedinbiofuelsproductionshowdifferentlimitationsandadvantagesintermsofenergyconsumptionandproduct(s)recovery.Forexample, extractiontechniquesarerelevantforbiofuelsprocessingthatusuallyrequirelowenergy consumption(Lietal.2019).Extractionisakeysteptocarryouttherecoveryofthe desiredbioproductsandtoreducethecontentofundesiredsubstancesintheintermediate

streamtobeprocessed.Fattyacids,hydrocarbons,lipidsandbiosolidscanbeextractedfrom extractablefeedstocksforbiofuelsproductionsuchasanimalfats,energycrops,agriculturalresiduesandmicroalgae.Theselectionoftheextractiontechniqueisconstrainedbythe characteristicsofthefeedstocktobeprocessedandthespecificcomponentstoberecovered orconcentrated,whichimpacttheseparationefficacyandselectivity.Mechanical,physical andchemicalextractionmethodshavebeenutilizedintheproductionofdifferentgenerationbiofuels(Lietal.2019).Extractiontechniquescanbeintensifiedviatheapplication ofmicrowave,ultrasoundandsupercriticalfluids.Also,novelextractiveagentssuchas ionicliquidsandgreensolventshavebeenexploredtointensifytherecoveryofthetargetcompound(s).Lietal.(2019)haveanalyzedindetailtheadvantagesandlimitations ofextractiontechniquesutilizedinbiofuelsproduction.Theseextractionprocessesmay generateresiduesthatcouldcausehealthhazardsandenvironmentalpollution,whichisan issuetoberesolvedaspartofPSEchallenges.

Withrespecttoenergyintensiveseparationmethods,distillationistheprimarymethodin chemicalprocessindustriesbutitsapplicationintherecoveryofbiofuelsdependssignificantlyonthecharacteristicsofthestreamstobepurified.However,conventionaldistillation isnotaneffectiveapproachforthepurificationofbioalcoholsfromfermentationbrothsdue totheoccurrenceofhomogeneousazeotropes(Abdehaghetal.2014).Therefore,hybrid andintensifieddistillationschemeshavebeenappliedtorecovertheseandotherbiofuels. Forexample,Nagyetal.(2015)reportedthatthecombinationofdistillationandpervaporationcandecreasetheenergydemandfordownstreamseparationoffermentationbroths. Severalstudieshavealsoreportedtheapplicationofreactivedistillationfortheproduction ofbiofuels.Reactivedistillationallowssimultaneoustransesterificationandseparationof productswithinthesameequipment(Poddaretal.2017).Severalimprovementstothis reactiveseparationschemetoproducedifferentrenewablefuelshavealsobeenreported (Gutierrez-Antonioetal.2018;Gaoetal.2019).SeeSinghandRangaiah(2017)fora reviewofadvancesinseparationprocessesforbioethanolrecoveryanddehyration.

Overall,itisrequiredtodevelopimprovedprocessunitsthatshouldbeflexibleand robustforthetransformationoffeedstockswithchangingphysicochemicalcharacteristics tobiofuels.Advancedandlessenergy-intensityseparationtechniquesareneededto increasethesustainabilityofbiofuelsproduction.Thedevelopmentofgreentechnologies forthepurificationandrecoveryofbiofuelsandby-productsisconsideredarelevant PSEissue.Theapplicationofintensificationtechnologiesbasedonsupercriticalfluids, microwave,ultrasound,andionicliquidsopensnewopportunitiesforthedevelopment ofimprovedprocessesforbiofuelsproduction.Researchonthesetechnologiesshould beincreasedtoestablishtheirbenefitsandlimitationsforindustrialapplications.Efforts shouldalsobefocusedontherecoveryanduseofvalue-addedcompoundsgenerated duringbiomasstransformationsuchasglycerol.Theseandothershortcomingsshouldbe addressedwiththeaimofdevelopingcost-effectiveseparationandpurificationschemes fortheproductionofbiofuels.

1.2.3Computer-AidedMethodologiesforProcessModeling,Design,Optimization, andControlIncludingSupplyChainandLifeCycleAnalyses

Processdesignofbiofuelsproductionfacilitiesshouldconsiderperformancemetrics andobjectivesrelatedtoenvironment,economics,andsafety.Inparticular,currentand

anticipatedregulationsforenvironmentalprotectionimposeadditionalrestrictionsto thisdesignstage.Biofuelsprocessdesignrequirestheapplicationofpropermodels thataccuratelyrepresentthecharacteristicsandpropertiesofthesystems,unitsandall elementsinvolvedinthesupplychainrangingfromthemicroscopictomacroscopiclevel (Figure1.1).Therefore,developmentofrealisticmodelstobeusedinprocessdesignis animportantPSEchallengeforbiofuelsproduction.Notethathighlevelphysicochemical descriptioninthedesignproblemformulationischallenging.Forinstance,Quiroz-Perez etal.(2019)havehighlightedtheimportanceofcomputationalfluiddynamicsforprocess designandmodelingofequipmentinvolvedinbiofuelsproductionwheretransport phenomenaareparamounttoensurecorrectscaleupandindustrialoperation.Also,kinetic andthermodynamicdataofthereactingsystemsinvolvedinbiomasstransformationroutes arefundamentalforreliabledesignofreactorsincludingfermenters.

Processingroutesforbiofuelsproductioncanbeoptimizedviatheformulationofdesign problemswithoneormoreobjectivestobeminimizedormaximizedsimultaneously. Indeed,multi-objectiveoptimization(MOO)hasfoundnumerousapplicationsinchemical engineeringandrelatedareas(RangaiahandBonilla-Petriciolet2013;Rangaiahetal. 2015;Madoumieretal.2019).Optimizationcanbeemployedtoimprovetheperformance ofspecificprocessunitsandtheentireprocessingrouteforproducingbiofuels.Biofuels processoptimizationisnotaneasytaskandrobustnumericalmethodsarerequiredtosolve thedesignproblems,whichareusuallymultivariate,nonlinearandwithequality/inequality constraints.Deterministicandstochasticoptimizershavebeenappliedtosolvedesign problemsinthebiofuelsproduction.Inparticular,stochasticoptimizers(metaheuristics) haveshownseveraladvantagesforsolvingbothglobaloptimizationandMOOproblemsof biofuelsproductionduetotheireasyimplementation,computationalefficiencyandability tohandlebothdiscreteandcontinuousdesignvariables.Optimizationhasbeenusedfor thedesignofintensifiedseparationsequencesforbiofuelspurification(Sanchez-Ramirez etal.2019;Goretal.2020),fortheimprovementofprocessingroutestoobtainbiofuels (Woinaroschy2014),fortheintegrateddesignofbiorefineriestoproducebiodieselfrom differentfeedstocks(Prietoetal.2017),toidentifyprocessingpathsforobtainingbiofuels fromdifferentfeedstocks(EasonandCremaschi2014),andforbiodieselplantdesign (Patleetal.2014a;Alvaraesetal.2019).

Biofuelsproductionfacilitiescomprisealargesetofoperatingvariablesthatshouldbe manipulatedandregulated.Therefore,processcontrollabilityisanimportantissueforthe implementation,operationandsafetyofbiofuelproduction.Thecontrolproblemofacompletebiofuelsproductionprocessislargewithnonlinearfunctionsofstates,manyinputs andoutputs,andareducednumberofdegreesoffreedom(BildeaandKiss2011;Prunescu etal.2017).Consequently,nonlinearcontrolconceptsandplantwidecontrolarerequiredto achieveflexibleandstableoperationofprocessunitsinbiofuelsproduction.Forexample, plantwidecontrolhasbeenstudiedforacompletebiodieselplant(Patleetal.2014b).

Lifecycleanalysis(LCA)isdesirableforcomprehensiveassessmentofthesustainability ofbiofuelsprocessesintermsofenvironmental,social,energeticandeconomicindicators (Collottaetal.2019).SeveralauthorshavereportedLCAoftheproductionofrenewable fuelsusingdifferentlevelsofdetails,methodologies,analyticalboundaries,andimpact metrics(e.g.Muetal.2017;Liuetal.2018).However,ithasbeenpointedoutthatthestandardizationofmethodologiesutilizedforLCAofbiofuels,includinglifecycleinventory data,isarelevantissuetobeaddressedforperformingreliablecomparisonandsupporting

thedecision-makingprocesstoidentifythebestoptionsforbiofuelsproduction(Mayer etal.2020).

Finally,biofuelssupplychainsincludealltheactivitiesrelatedtothetransformationof biomassesintorenewablefuelsandtheirdeliverytotheend-users(Anetal.2011;Awudu andZhang2012).Thebiofuelssupplychainisaffectedbyseveraluncertaintiesinterms ofprices,demandandsupplyoffeedstocksandend-products,transportationandstorage issues,performanceofprocessingfacilities,amongotherfactors(AwuduandZhang2012). Consequently,thedesignofareliableandsustainablebiofuelssupplychainrequiresthe applicationofthelatestcomputer-aidedmethodologiestooptimizetheoperational,tactical andstrategicdecisions.

Insummary,PSEcontributionsanddevelopmentsarefundamentaltoconsolidate,optimizeandoperatethebiofuelssupplychainstoachievetheeconomic,environmentaland socialbenefitsofthistypeofrenewableenergy.

1.3OverviewofthisBook

Afterthischapter,thisbookcontains12chaptersthatdescribeandanalyzedifferentapplicationsofPSEforbiofuelsproduction.Chapters2–13arebrieflysummarizedinthissection. Chapter2providesanoverviewofdifferentbiomassesthatcanbeutilizedforbiofuels production.Ithighlightstherelevanceoffeedstockcompositionforbiofuelsproduction. Biomassesanalyzedinthischapterincludespentcoffeegrounds,differentlignocellulosic materials,residuesofoilproductionfrompalm,olive,coconut,avocadoandargan,residues fromcropssuchascitrusandgrapes,andwasteoilandwastecookingoil.Thischapterends statingtheimportanceofdevelopingnewmethodsandtechnologiestoexploitthevariety ofavailablefeedstocksforproducingbiofuels.

InChapter3,analysisanddiscussionofPSEcontributionsfortheprocessdesignof biorefineriesandbiomass-basedinfrastructurearepresented.Thischapterdescribesmethodsforthedesignofprocessunitsandapproachesforprocesssynthesis.Theproductdesign problemforbiomassprocessing,supplychainmodelingandtheimportanceofmultiscale analysisarealsodiscussed.

ThechallengesofthermodynamicpropertiesandphaseequilibriumcalculationsinbiofuelsprocessdesignarecoveredinChapter4.Elementsofthethermodynamicmodelingframeworkforthepredictionofpropertiesrequiredforprocessdesignofbiofuelsare described.Theformulationofphaseequilibriumproblemsandasurveyofavailablethermodynamicmodelsforphaseequilibriumcalculationsarepresented.Abriefanalysisofpropertydatabanksforbiofuelsprocessdesignandtheimpactofuncertaintiesofthermophysical propertiesarealsoprovidedinthischapter.Finally,somemethodsforthepredictionof thermodynamicpropertiesofcompoundsinvolvedinbiofuelsproductionaredescribed.

Chapters5reportspretreatmentmethodsandprocessingroutestotransformwasteoil intobiodiesel.Capabilitiesandlimitationsofhomogeneousandheterogeneouscatalysis, enzymatic-,ionicliquid-andhydratedsalts-basedconversionsforprocessingwasteoils arediscussed.Theauthorsofthischapterhavehighlightedthetechnicallimitationsand challengestointensifybiodieselproductionfromwasteoil.

BiojetfuelproductionfromwastesandresiduesisreviewedinChapter6.Thischapter discussestheimportanceofbiofuelsdevelopmentfortheaviationsector.Itcontainsthe

stateoftheartintheprocessingoftriglyceride-containingwastes,lignocellulosicmaterials, sugarandstarchyresiduesfortheproductionofbiojetfuel.Theauthorsofthischapterhave analyzedthechallengesandfuturetrendstopotentiatethisrenewablefuelfortheaviation industry.

Computer-aideddesignisimportanttodevelopnewprocessesfortheproductionof biofuels.Therefore,Chapter7focusesonthedevelopmentofasimulationplatformfor biologicalmodelsassociatedwithbiofuelssystems.Themodelingapproachinvolvesan optimizationproblemsubjecttospecificconstraints.Twoexamplesarereportedtoshow theapplicationofthismodelingapproach.Resultsshowthatthisapproachcanbeusedto assisttheindustrialproductionofbiofuelsviamutatedstrains.

DifferentaspectsofPSEofbiodieselproductionviaenzyme-catalyzedroutesareanalyzedinChapter8.Acomparisonofthebiodieselproductionrouteswithchemicaland enzymaticcatalystsisperformed.Theauthorshavediscussedtheoptimalreactionconditionsandthekineticmodelinginbiodieselproductionroutescatalyzedbyliquidenzymes. Detailsofprocesssimulationandeconomicevaluationofthistypeoftransformationroute, includingthereuseoftheenzymes,arealsoincludedinthischapter.

Chapter9dealswithsimulationanddesignofprocessscenariosforbiodieselproduction. Inparticular,thischapterdescribestheapplicationoftheAspenPlus® simulatortomodel thebiodieselprocess.Examplesaredescribedforthecalculationofthermodynamicpropertiesofbothpurecomponentsandmixtures,requiredforprocessdesign.Also,theauthors havediscussedsomeaspectsofutilizationofAspenPlustomodelreactionsinvolvedin biodieselproduction.Casestudiesrelatedtotheprocessdesignofesterificationandtransesterificationreactionswithdifferentreactormodelsaredescribed.Finally,useofAspen Plusforenergyandeconomicanalysesisillustrated.Thischapterprovidesasimpleand handyguideforstudentsandpractitionersintheuseofAspenPlusforbiofuelsprocess design.

Chapter10alsodescribesthemodelingandsimulationofacontinuousbiodieselprocessfrommicroalgaeusingAspenPlus.Forthis,processparametersandreactionkinetic datawerebasedonreportedexperimentalresults.Asensitivityanalysiswasperformedto analyzetheimpactofsomedesignvariablesofprocessunits.Thesizingandcostanalysis oftheequipmentutilizedinthebiodieselprocesssimulationwerecarriedout.Theauthors comparedtheperformanceofthisbiodieselprocessfrommicroalgaewiththeresultsfora biodieselprocessusingwastecookingoil.Basedonthis,someresearchtopicstoreduce thecostofbiodieselproductionfromwetmicroalgaearesuggested.

Astateoftheartofthermochemicalmethodsfortheproductionofrenewablefuels isgiveninChapter11.Thermochemicalmethodsthatareutilizedtoobtainsolid,liquid andgaseousbiofuelsaredescribedinthischapter.First,asimpleclassificationofthermochemicalmethodsisprovided.Combustion,gasification,liquefaction,pyrolysis,and carbonizationareanalyzed.Advantages,limitations,energyrequirementsandequipment usedinthesethermochemicalmethodsarealsocoveredinthischapter.

AperspectiveofthepresentandfutureofbiofuelsispresentedinChapter12.The importance,implicationsandadvantagesofutilizingbiomasstoproducerenewableenergy areanalyzed.Characteristicsofsomebiofuelsfeedstocksandtheirprocessingroutesare provided.Thischapterincludesadetaileddiscussionofbioethanol,biodiesel,biobutanol, biojetfuel,andbiogas.Itconcludesthatbiofuelsproductionfromsomespecificfeedstocks willbecommerciallyattractiveinthenextdecade.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.