[FREE PDF sample] Continuous functions, volume 2 jacques simon ebooks

Page 1


Continuous Functions, Volume 2 Jacques Simon

Visit to download the full and correct content document: https://ebookmass.com/product/continuous-functions-volume-2-jacques-simon/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Distributions, Volume 3 1st Edition Jacques Simon

https://ebookmass.com/product/distributions-volume-3-1st-editionjacques-simon/

The New Academic 2. Edition Simon Clews

https://ebookmass.com/product/the-new-academic-2-edition-simonclews/

Oceans: Evolving Concepts Guy Jacques

https://ebookmass.com/product/oceans-evolving-concepts-guyjacques/

CORe JaVa Volume 1 Fundamental volume 2 twelfth edition Cay

https://ebookmass.com/product/core-java-volume-1-fundamentalvolume-2-twelfth-edition-cay/

https://ebookmass.com/product/spatial-gems-volume-2-john-krumm/

Continuous Emission Monitoring 3rd Edition James A. Jahnke

https://ebookmass.com/product/continuous-emission-monitoring-3rdedition-james-a-jahnke-2/

Continuous Emission Monitoring 3rd Edition James A. Jahnke

https://ebookmass.com/product/continuous-emission-monitoring-3rdedition-james-a-jahnke/

Continuous Integration (CI) and Continuous Delivery (CD): A Practical Guide to Designing and Developing Pipelines 1st Edition Henry Van Merode

https://ebookmass.com/product/continuous-integration-ci-andcontinuous-delivery-cd-a-practical-guide-to-designing-anddeveloping-pipelines-1st-edition-henry-van-merode/

The Parody Exception in Copyright Law Sabine Jacques

https://ebookmass.com/product/the-parody-exception-in-copyrightlaw-sabine-jacques/

Continuous Functions

To Claire and Patricia, By your gaiety, “joie de vivre”, and femininity, you have embellished my life, and you have allowed me to conserve the tenacity needed for this endeavor

Analysis for PDEs Set coordinated by Jacques Blum

Volume 2

Continuous Functions

Jacques Simon

First published 2020 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

John Wiley & Sons, Inc.

27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030 UK USA

www.iste.co.uk

www.wiley.com

© ISTE Ltd 2020

The rights of Jacques Simon to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2020933955

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library

ISBN 978-1-78630-010-2

FamiliarizationwithSemi-normedSpaces xiii

Notations .......................................xv

Chapter1.SpacesofContinuousFunctions ...............1

1.1.Notionsofcontinuity............................1

1.2.Spaces C (Ω; E ), Cb (Ω; E ), CK (Ω; E ), C(Ω; E ) and Cb (Ω; E ) ....3

1.3.Comparisonofspacesofcontinuousfunctions..............6

1.4.Sequentialcompletenessofspacesofcontinuousfunctions.......10

1.5.Metrizabilityofspacesofcontinuousfunctions.............11

1.6.Thespace K (Ω; E ) .............................14

1.7.Continuousmappings............................20

1.8.Continuousextensionandrestriction...................22

1.9.Separationandpermutationofvariables..................23

1.10.Sequentialcompactnessin Cb (Ω; E ) ..................28

Chapter2.DifferentiableFunctions .....................31

2.1.Differentiability...............................31

2.2.Finiteincrementtheorem..........................34

2.3.Partialderivatives..............................37

2.4.Higherorderpartialderivatives.......................40

2.5.Spaces C m (Ω; E ), C m b (Ω; E ), C m K (Ω; E ), Cm b (Ω; E ) and K m (Ω; E ) .42

2.6.Comparisonandmetrizabilityofspacesofdifferentiablefunctions..45

2.7.Filteringpropertiesofspacesofdifferentiablefunctions........47

2.8.Sequentialcompletenessofspacesofdifferentiablefunctions.....49

2.9.Thespace C m (Ω; E ) andtheset C m (Ω; U ) ................52

viContinuousFunctions

Chapter3.DifferentiatingCompositeFunctionsandOthers .....55

3.1.Imageunderalinearmapping.......................55

3.2.Imageunderamultilinearmapping:Leibnizrule............59

3.3.DualformulaoftheLeibnizrule......................63

3.4.Continuityoftheimageunderamultilinearmapping..........65

3.5.Changeofvariablesinaderivative.....................69

3.6.Differentiationwithrespecttoaseparatedvariable...........72

3.7.Imageunderadifferentiablemapping...................73

3.8.Differentiationandtranslation.......................77

3.9.Localizingfunctions.............................79

Chapter4.IntegratingUniformlyContinuousFunctions ........83

4.1.Measureofanopensubsetof Rd ......................83

4.2.Integralofauniformlycontinuousfunction................87

4.3.Casewhere E isnotaNeumannspace...................92

4.4.Propertiesoftheintegral..........................93

4.5.Dependenceoftheintegralonthedomainofintegration........96

4.6.Additivitywithrespecttothedomainofintegration...........99

4.7.Continuityoftheintegral..........................101

4.8.Differentiatingundertheintegralsign...................103

Chapter5.PropertiesoftheMeasureofanOpenSet .........105

5.1.Additivityofthemeasure..........................105

5.2.Negligiblesets................................107

5.3.Determinantof d vectors..........................112

5.4.Measureofaparallelepiped........................115

Chapter6.AdditionalPropertiesoftheIntegral .............119

6.1.Contributionofanegligiblesettotheintegral..............119

6.2.Integrationanddifferentiationinonedimension.............120

6.3.Integrationofafunctionoffunctions...................123

6.4.Integratingafunctionofmultiplevariables................125

6.5.Integrationbetweengraphs.........................130

6.6.Integrationbypartsandweakvanishingconditionforafunction....133

6.7.Changeofvariablesinanintegral.....................135

6.8.Someparticularchangesofvariablesinanintegral...........142

Chapter7.WeightingandRegularizationofFunctions ........147

7.1.Weighting...................................147

7.2.Propertiesofweighting...........................150

7.3.Weightingofdifferentiablefunctions...................153

7.4.Localregularization.............................157

7.5.Globalregularization............................162

7.6.Partitionofunity...............................166

7.7.Separabilityof K ∞ (Ω) ...........................170

Chapter8.LineIntegralofaVectorFieldAlongaPath ........173

8.1.Paths.....................................173

8.2.Lineintegralofafieldalongapath....................176

8.3.Lineintegralalongaconcatenationofpaths...............181

8.4.Tubularflowandtheconcentrationtheorem...............183

8.5.Invarianceunderhomotopyofthelineintegralofalocalgradient...186

Chapter9.PrimitivesofContinuousFunctions .............191

9.1.Explicitprimitiveofafieldwithlineintegralzero............191

9.2.Primitiveofafieldorthogonaltothedivergence-freetestfields....194

9.3.Gluingoflocalprimitivesonasimplyconnectedopenset.......195 9.4.Explicitprimitiveonastar-shapedset:Poincaré’stheorem.......197 9.5.ExplicitprimitiveundertheweakPoincarécondition..........199 9.6.Primitivesonasimplyconnectedopenset................203 9.7.Comparisonoftheexistenceconditionsforaprimitive.........205 9.8.Fieldswithlocalprimitivesbutnoglobalprimitive...........208 9.9.Uniquenessofprimitives..........................210 9.10.Continuousprimitivemapping......................211

Chapter10.AdditionalResults:IntegrationonaSphere .......213

10.1.Surfaceintegrationonasphere......................213

10.2.Propertiesoftheintegralonasphere...................215 10.3.Radialcalculationofintegrals.......................218

10.4.Surfaceintegralasanintegralofdimension d 1 ...........220 10.5.AStokesformula..............................224

Appendix .......................................227

Introduction

Objective. Thisbookisthesecondofsixvolumesinaseriesdedicatedtothe mathematicaltoolsforsolvingpartialdifferentialequationsderivedfromphysics:

Volume1: Banach,Fréchet,HilbertandNeumannSpaces;

Volume2: ContinuousFunctions;

Volume3: Distributions;

Volume4: LebesgueandSobolevSpaces;

Volume5: Traces;

Volume6: PartialDifferentialEquations.

Thissecondvolumeisdevotedtothepartialdifferentiationoffunctionsandthe constructionofprimitives,whichisitsinversemapping,andtotheirproperties,which willbeusefulforconstructingdistributionsandstudyingpartialdifferentialequations later.

Targetaudience. Weintendedtofindsimplemethodsthatrequireaminimallevel ofknowledgetomakethesetoolsaccessibletothelargestaudiencepossible–PhD candidates,advancedstudents1 andengineers–withoutlosinggeneralityandeven generalizingsomestandardresults,whichmaybeofinteresttosomeresearchers.

1 Students? WhatmightIhaveansweredifoneofmyMASstudentsin1988hadaskedformoredetails aboutthe deRhamdualitytheorem thatIusedtoobtainthepressureintheNavier–Stokesequations? PerhapsIcouldsaythat“Jacques-LouisL IONS ,mysupervisor,wrotethatitfollowsfromthedeRham cohomologytheorem,ofwhichIunderstandneitherthestatement,northeproof,norwhyitimpliesthe resultthatweareusing.”Whatadespicablyunscientificappealtoauthority! Thisquestionwasthestartingpointofthiswork:writingproofsthatIcanexplaintomystudentsfor everyresultthatIuse.Ittookme5yearstofindthe“elementary”proofofthe orthogonalitytheorem

xContinuousFunctions

Originality. Theconstructionofprimitives,theCauchyintegralandtheweighting withwhichtheyareobtainedareperformedforafunctiontakingvaluesina Neumann space,thatis,aspaceinwhicheveryCauchysequenceconverges.

Neumannspaces. Thesequentialcompletenesscharacterizingthesespacesisthe mostgeneralpropertyof E thatguaranteesthattheintegralofacontinuousfunction takingvaluesin E willbelongtoit,see Casewhere E isnotaNeumannspace (§4.3, p.92).Thispropertyismoregeneralthanthemorecommonlyconsideredproperty ofcompleteness,thatistheconvergenceofallCauchyfilters;forexample,if E is aninfinite-dimensionalHilbertspace,then E -weak isaNeumannspacebutisnot complete[Vol.1,Property(4.11),p.82].

Moreover,sequentialcompletenessismorestraightforwardthancompleteness. Semi-norms. Weusefamiliesofsemi-norms,insteadoftheequivalentnotionof locallyconvextopologies,tobeabletodefinedifferentiability(p.73)bycomparing thesemi-normsofavariationofthevariabletothesemi-normsofthevariationofthe value.Asectionon FamiliarizationwithSemi-normedSpaces canbefoundonp.xiii. Semi-normscanbemanipulatedinasimilarfashiontonormedspaces,exceptthatwe areworkingwithseveralsemi-normsinsteadofasinglenorm.

Primitives. Weshowthatanycontinuousfield q =(q1 ,...,qd ) onanopenset Ω of Rd hasaprimitive f ,namelythat ∇f = q ,ifandonlyifitisorthogonaltothe divergence-freetestfields,thatis,if Ω q . ψ =0E forevery ψ =(ψ1 ,...,ψd ) such that ∇ . ψ =0.Thisisthe orthogonalitytheorem (Theorem9.2).

When Ω issimplyconnected,foraprimitive f toexist,itisnecessaryandsufficient for q tohavelocalprimitives.Thisisthe localprimitivegluingtheorem (Theorem9.4). Onanysuchopenset,itisalsonecessaryandsufficientthatitverifiesPoincaré’s condition ∂i qj = ∂j qi forevery i and j tobesatisfiedifthefieldis C 1 (Theorem9.10), oraweakversionofthiscondition, Ω qj ∂i ϕ = Ω qi ∂j ϕ foreverytestfunction ϕ,if thefieldiscontinuous(Theorem9.11).

Weexplicitlydetermineallprimitives(Theorem9.17)andconstructonethat dependscontinuouslyon q (Theorem9.18).

Integration. WeextendtheCauchyintegraltouniformlycontinuousfunctionstaking valuesinaNeumannspace,becausethiswillbeanessentialtoolforconstructing primitives.

(Theorem9.2,p.194)ontheexistenceoftheprimitivesofafield q .Ineededawaytoobtain Γ q . d =0 foreveryclosedpath Γ fromthecondition Ω q . ψ =0 foreverydivergence-free ψ .Itgavemethegreatest mathematicalsatisfactionIhaveeverexperiencedtoexplicitlyconstructanincompressibletubularflow(see p.184).Twenty-fiveyearslater,Iamfinallyreadytoansweranyotherquestionsfrommy(verypersistent) students.

Introductionxi

Thepropertiesestablishedhereforcontinuousfunctionswillalsobeusedto extendthemtointegrabledistributionsinVolume4,bycontinuityortransposition. Indeed,oneoftheobjectivesofthe AnalysisforPDEs seriesistoextendintegration andSobolevspacestotakevaluesinNeumannspaces.However,itseemedmore straightforwardtofirstconstructdistributions(inVolume3)usingjustcontinuous functionsbeforeintroducingintegrabledistributions(inVolume4),whichplaythe roleusuallyfulfilledby classesofalmosteverywhereequalintegrablefunctions

Weighting. Theweightedfunction f μ ofafunction f definedonanopenset Ω bytheweight μ,arealfunctionwithcompactsupport D ,isafunctiondefinedonthe openset ΩD = {x ∈ Rd : x + D ⊂ Ω} by (f μ)(x)= ˚ D f (x + y ) μ(y )dy .This conceptwillberepeatedlyuseful.Itplaysananalogousroletoconvolution,whichis equivalenttoituptoasymmetryof μ when Ω= Rd .

Novelties. Manyresultsarenaturalextensionsofpreviousresults,butthefollowing seemedmostnoteworthy:

—Theconstructionofthetopologyofthespace K (Ω; E ) ofcontinuousfunctions withcompactsupportusingthesemi-norms f K(Ω;E );q =supx∈Ω q (x) f (x) E ;ν indexedby q ∈C + (Ω) and ν ∈NE (Definition1.17).Thisisequivalenttoandmuch simplerthantheinductivelimittopologyofthe CK (Ω; E )

—Thefactthatifafunction f ∈C (Ω) satisfies supx∈Ω q (x)|f (x)| < ∞ forevery q ∈C + (Ω),thenitssupportiscompact(Theorem1.22).Thisisthebasisfordefining thesemi-normsof D (Ω) inVolume3.

—The concentrationtheorem fortheintegralandtheconstructionofan incompressible tubularflow (Theorems8.18and8.17),whicharekeystepsinour constructionoftheprimitivesofafieldtakingvaluesinaNeumannspace,asitis explainedinthecomment Utilityoftheconcentrationtheorem,p.186.

Prerequisites. Theproofsinthemainbodyofthetextonlyusedefinitionsandresults establishedinVolume1,whosestatementsarerecalledeitherinthetextorinthe Appendix.Detailedproofsaregiven,includingargumentsthatmayseemtrivialto experiencedreaders,andthetheoremnumbersaresystematicallyreferenced.

Comments. Commentswithasmallerfontsizethanthemainbodyofthetextappealtoexternalresultsor resultsthathavenotyetbeenestablished.TheAppendixon Reminders isalsowrittenwithasmallerfont size,sinceitscontentsareassumedtobefamiliar.

Historicalnotes. Whereverpossible,theoriginoftheconceptsandresultsisgiven asafootnote2.

2 Appealtothereader. ManyimportantresultslackhistoricalnotesbecauseIamnotfamiliarwiththeir origins.Ihopethatmyreaderswillforgivemefortheseomissionsandanyinjusticestheymaydiscover. AndIencouragethescholarsamongyoutonotifymeofanyimprovementsforfutureeditions!

xiiContinuousFunctions

Navigationthroughthebook:

—The TableofContents atthestartofthebookliststhetopicsdiscussed.

—The TableofNotations,p.xv,specifiesthemeaningofthenotationincasethere isanydoubt.

—The Index,p.243,providesanalternativeaccesstospecifictopics.

—Allhypothesesarestateddirectlywithinthetheoremsthemselves.

—Thenumberingschemeissharedacrosseverytypeofstatementtomakeresults easiertofindbynumber(forinstance,Theorem2.9isfoundbetweenthestatements 2.8and2.10,whichareadefinitionandatheorem,respectively).

Acknowledgments. EnriqueF ERNÁNDEZ -C ARA suggestedtomealargenumberof improvementstovariousversionsofthiswork.JérômeL EMOINE waskindenough toproofreadthecountlessversionsofthebookandcorrectjustasmanymistakesand oversights.

OlivierB ESSON ,FulbertM IGNOT ,NicolasD EPAUW ,andDidierB RESCH also providedmanyimprovements,informandinsubstance.

PierreD REYFUSS gavemeinsightintothenecessityofsimplyconnecteddomains fortheexistenceofprimitiveswithPoincaré’scondition,asexplainedonp.209inthe comment Issimpleconnectednessnecessaryforgluingtogetherlocalprimitives?

JoshuaP EPPER spentmuchtimediscussingaboutthebestwaytoadaptthiswork inEnglish.

Thankyou,myfriends.

JacquesS IMON Chapdes-Beaufort April2020

FamiliarizationwithSemi-normedSpaces

A semi-normedspace E isavectorspaceendowedwithafamily { E ;ν : ν ∈NE } ofsemi-norms.

—Theset NE indexingthesemi-normsis, apriori,arbitrary.

—A normed spaceisthespecialcasewherethisfamilysimplyconsistsofasinglenorm.

—Everylocallyconvextopologicalvectorspacecanbeendowedwithafamilyofsemi-normsthat generatesitstopology(Neumann’stheorem).

—Weonlyconsider separated spaces,namelyinwhich u E ;ν =0 forevery ν ∈NE ,then u =0E

Workingwithsemi-normedspaces:

un → u in E meansthat un u E ;ν → 0 forevery ν ∈NE

U is bounded in E meansthat supu∈U u E ;ν < ∞ forevery ν ∈NE

T is continuous from F into E atthepoint u meansthat,forevery ν ∈NE and > 0,thereexistsa finiteset M of NF and η> 0 suchthat supμ∈M v u F ;μ ≤ η implies T (v ) T (u) E ;ν ≤

Examples—real-valuedfunctionspaces:

—Thespace Cb (Ω) ofcontinuousandboundedfunctionsisendowedwiththenorm f Cb (Ω) =supx∈Ω |f (x)|

C (Ω) isendowedwiththesemi-norms f C (Ω);K =supx∈K |f (x)| indexedbythecompactsets K ⊂ Ω

Lp (Ω) isendowedwiththenorm f Lp (Ω) =( Ω |f |p )1/p

Lp loc (Ω) isendowedwiththesemi-norms f Lp loc (Ω);ω =( ω |f |p )1/p indexedbythebounded opensets ω suchthat ω ⊂ Ω

Examples—abstract-valuedfunctionspaces:

Cb (Ω; E ) isendowedwiththesemi-norms f Cb (Ω;E );ν =supx∈Ω f (x) E ;ν indexedby ν ∈NE

C (Ω; E ) isendowedwiththesemi-norms f C (Ω;E );K,ν =supx∈K f (x) E ;ν indexedbythe compactsets K ⊂ Ω and ν ∈NE

Lp (Ω; E ) isendowedwiththesemi-norms f Lp (Ω;E );ν =( Ω f p E ;ν )1/p indexedby ν ∈NE

Examples—weakspace,dualspace:

E -weak isendowedwiththesemi-norms e E -weak;e = | e ,e | indexedby e ∈ E

E isendowedwiththesemi-norms e E ;B =supe∈B | e ,e | indexedbytheboundedsets B of E

E -weak isendowedwiththesemi-norms e E -weak;e = | e ,e | indexedby e ∈ E

E -∗weak isendowedwiththesemi-norms e E -∗weak;e = | e ,e | indexedby e ∈ E

xivContinuousFunctions

Neumannspacesandothers:

—A sequentiallycomplete spaceisaspaceinwhicheveryCauchysequenceconverges.

—A Neumann spaceisasequentiallycompleteseparatedsemi-normedspace.

—A Fréchet spaceisasequentiallycompletemetrizablesemi-normedspace.

—A Banach spaceisasequentiallycompletenormedspace.

Advantagesofusingsemi-normsratherthantopology:

—Semi-normsallowthedefinitionof Lp (Ω; E ) (byraisingthesemi-normsof E tothepower p).

—Theyallowthedefinitionofthedifferentiabilityofamappingfromasemi-normedspaceintoanother (bycomparingthesemi-normsofanincreaseinthevariabletothesemi-normsoftheincreaseinthevalue).

—Theyareeasytomanipulate:workingwiththemisjustlikeworkingwithnormedspaces,themain differencebeingthatthereareseveralsemi-normsornormsinsteadofasinglenorm.

—Somedefinitionsaresimpler,forexamplethatofaboundedset U :“supv ∈U v E ;ν < ∞ forany semi-norm E ;ν of E ”wouldbeexpressed,intermsoftopology,inthemoreabstractform“forany openset V containing 0E ,thereis t> 0 suchthat tU ⊂ V ”.

Notations

S PACESOFFUNCTIONS

B (Ω; E ) spaceofuniformlycontinuousfunctionswithboundedsupport ......87

C (Ω; E ) spaceofcontinuousfunctions ...............3

Cb (Ω; E ) spaceofboundedcontinuousfunctions ............3

CK (Ω; E ) spaceofcontinuousfunctionswithsupportincludedinthecompactset K ⊂ Ω .6

C∇ (Ω; E d ) spaceofgradientsofcontinuousfunctions ...........205

C + (Ω) setofpositivecontinuousrealfunctions ............14

C m (Ω; E ) spaceof m timescontinuouslydifferentiablefunctions,andthecase m = ∞ 43,44

C m b (Ω; E ) id. withboundedderivatives,andthecase m = ∞ ........43,44

C m K (Ω; E ) id. withsupportincludedinthecompactset K ⊂ Ω,andthecase m = ∞ .43,44

C m (Ω; E ) space C m definedontheclosureofaboundedopenset ........52

C m (Ω; U ) setoffunctionsin C m takingvaluesintheset U ..........54

C(Ω; E ) spaceofuniformlycontinuousfunctions ............4

Cb (Ω; E ) spaceofboundeduniformlycontinuousfunctions .........4

CD (Ω; E ) id. withsupportincludedinthecompactsubset D of Rd .......6

Cm b (Ω; E ) space C m withuniformlycontinuousboundedderivatives,andthecase m = ∞ 43,44

K(Ω; E ) spaceofcontinuousfunctionswithcompactsupport .........14

Km (Ω; E ) id. m timescontinuouslydifferentiable,andthecase m = ∞ .....43,44

O PERATIONSONAFUNCTION f f extensionby 0E ...................47

f imageunderpermutationofvariables .............27

f imageunderthesymmetry x →−x ofthevariable .........151

f imageunderseparationofvariables .............23

τx f translationby x ∈ Rd .................77

Rn f globalregularization ..................163

f μ functionweightedby μ .................148

f ρn localregularization ..................157

f μ convolutionwith μ ..................149

f ⊗ g tensorproductwith g .................129

f ◦ T compositionwith T ..................69

xviContinuousFunctions

supp f support .....................4 Lf or L ◦ f compositionwiththelinearmapping L

D ERIVATIVESOFAFUNCTION f

f or df/dx derivativeofafunctionofasinglerealvariable ..........32 ∂i f partialderivative:

derivativeoforder

positivemulti-integer:

differentiabilityorder:

derivativeoforder

gradient:

primitivethatdependscontinuouslyon

explicitprimitive:

I NTEGRALSANDPATHS

ω f Cauchyintegral

Sn ω f approximateintegral

Sr f ds surfaceintegraloverasphere

Γ q . d lineintegralofavectorfieldalongapath

Γ path

[Γ] imageofapath: [Γ]= {Γ(t): ti ≤ t

reversepath ....................174 Γ{a} pathconsistingofasinglepoint

rectilinearpath

pathconcatenation

tubearoundapath: T =[Γ]+ B

homotopy .....................186 [H ] imageofahomotopy .................186

S EPARATEDSEMI - NORMEDSPACES

E separatedsemi-normedspace

;ν semi-normof E ofindex ν

setindexingthesemi-normsof E

equalityoffamiliesofsemi-norms

topologicalequality

≈ ↔ topologicalequalityuptoanisomorphism

topologicalinclusion .................7

E -weak space E endowedwithpointwiseconvergencein E .........236

E dualof E .....................236

E d Euclideanproduct E × × E ..............31

E1 ×···× E productofspaces ...................59

E sequentialcompletionof E ................93

U interioroftheset U

U closureof U

∂U boundaryof U ...................229

[u,v ] closedsegment: [u,v ]= {tu +(1 t)v :0 ≤ t ≤ 1} .......34

L(E ; F ) spaceofcontinuouslinearmappings .............56

L (E1 × × E ; F ) spaceofcontinuousmultilinearmappings .........59

P OINTSANDSETSIN Rd

Rd Euclideanspace: Rd = {x =(x1 ,...,xd ):

|x| Euclideannorm: |x| =(x2 1 + + x2 d )1/2 ...........232

x . y Euclideanscalarproduct: x . y = x1 y1 + + xd yd ........232

ei ithbasisvectorof Rd .................32

Ω domainonwhichafunction f isdefined ............3

ΩD domainof f μ: ΩD = {x : x + D ⊂ Ω},anditsfigure

Ω1/n Ω withaneighborhoodoftheboundaryofsize 1/n removed .....13,158

Ωn 1/n Ω1/n truncatedby |x| <n : Ωn 1/n = {x : |x| <n,B (x, 1/n) ⊂ Ω} ...13

Ω∗a 1/n partof Ω1/n whichisstar-shapedwithrespectto a,anditsfigure...197,200

Ωn r potato-shapedset: Ωn r = {x : |x| <n,B (x,r ) ⊂ Ω} ........13

κn crown-shapedset: κn =Ωn+2 1/(n+2) \ Ωn 1/n 166,167

ω subsetof Rd ....................3

|

ω | Lebesguemeasureoftheopenset ω .............84

σ negligiblesubsetof Rd .................107

B (x,r ) closedball B (x,r )= {y ∈ Rd : |y x|≤ r } ..........13

˚ B (x,r ) openball ˚ B (x,r )= {y ∈ Rd : |y x| <r } ..........13

υd measureoftheunitball: υd = | ˚ B (0, 1)| ............107

C (x,ρ,r ) opencrown C (x,ρ,r )= {y ∈ Rd : ρ< |y x| <r } .......107

S (x,r ) sphere: S (x,r )= {y ∈ Rd : |y x| = r } ...........109 Δs,n closedcubeofedgelength 2 n centeredat 2 ns .........84

P (v 1 ,...,v d ) openparallelepipedwithedges v 1 ,..., v d ...........115

OTHERSETS

N∗ setofnaturalnumbers: N∗ = {0, 1, 2,...} ...........227

N setofnon-zeronaturalnumbers: N = {1, 2,...} .........227

Z setofintegers: Z = {..., 2, 1, 0, 1, 2,...} ..........227

Q setofrationalnumbers .................227 R spaceofrealnumbers .................228

m,n integerinterval: m,n = {i ∈ N∗ : m ≤ i ≤ n} .........227 m, ∞ extendedintegerinterval: m, ∞ = {i ∈ N∗ : i ≥ m}∪{∞} .....227 (a,b) openinterval: (a,b)= {x ∈ R : a<x<b} ..........228 [a,b] closedinterval: [a,b]= {x ∈ R : a ≤ x ≤ b} ..........228 compactinclusionin Rd ................80

⊂ algebraicinclusion

\ setdifference: U \ V = {u ∈ U : u/ ∈ V }

× product: U × V = {(u,v ): u ∈ U,v ∈ V }

∅ emptyset

S PECIALFUNCTIONS

det determinant ....................112

e exponentialnumber ..................238

xviiiContinuousFunctions

log logarithm .....................238

δΓ concentratedflow ..................184

α localizingfunction,partitionofunity ..........80, 163,167

ρn regularizingfunction ..................157

ψ divergence-freetestfield ................194

Ψ tubularflow ....................183

Υ functionwhosegraphdefinesasurface ............130

T YPOGRAPHY

endofstatement endofprooforremark

SpacesofContinuousFunctions

Thischapterisdedicatedtothepropertiesofspacesofcontinuousfunctionstakingvaluesinaseminormedspace E thatwewillneedlater.Definitionsofthespace C (Ω; E ) ofcontinuousfunctions,the space C(Ω; E ) ofuniformlycontinuousfunctionsandvariantsofthesespacesaregivenin§1.2.We thencomparethesespaces(§1.3)andstudytheircompletions(§1.4)andmetrizabilityproperties(§1.5). Thespace K(Ω; E ) offunctionswithcompactsupportisinvestigatedin§1.6.Wealsostudycontinuous extensions(§1.8),separationofvariables(§1.9)andsequentialcompactness(§1.10)inthesespaces.

Thesetopicsaremorenecessarythanoriginal,withtheexceptionofourconstructionofthetopology of K(Ω; E ) usingthesemi-norms f K(Ω;E );q =supx∈Ω q (x) f (x) E ;ν indexedby q ∈C + (Ω) and ν ∈NE .Thesesemi-normsyieldpropertiesthatareusuallyobtainedusingthe inductivelimittopology ofthe CK (Ω; E ).Ausefultoolforthis,whichisalsonew,isTheorem1.23:ifafamily F offunctionsin C (Ω) satisfies supf ∈F supx∈Ω q (x)|f (x)| < ∞ forevery q ∈C + (Ω),theirsupportsareallincludedin thesamecompactset.

1.1.Notionsofcontinuity

Wereservetheterm function formappingsdefinedonasubsetof Rd ,whichis writtenas Ω ingeneral.

Letusbeginbydefiningseparatedsemi-normedspaces1 (thedefinitionsofvector spacesandsemi-normsarerecalledintheAppendix,§A.2).Wewillthenconsider functionstakingvaluesinthesespaces.

D EFINITION 1.1. – A semi-normedspace isavectorspace E endowedwithafamily ofsemi-norms { E ;ν : ν ∈NE }

1 Historyofthenotionofsemi-normedspace. John VON N EUMANN introducedsemi-normedspaces in1935[59](withasuperfluouscountabilitycondition).Healsoshowed[59,Theorem26,p.19]that theycoincidewiththelocallyconvextopologicalvectorspacesthatAndreyK OLMOGOROV hadpreviously introducedin1934[49,p.29].

2ContinuousFunctions

Anysuchspaceissaidtobe separated if u =0E istheonlyelementsuchthat u E ;ν =0 forevery ν ∈NE

A normedspace isavectorspace E endowedwithanorm E

Caution. Definition1.1isgeneralbutnotuniversal.ForLaurentS CHWARTZ [67,p.240],asemi-normed spaceisaspaceendowedwitha filtering familyofsemi-norms(Definition2.21).Thisdefinitionis equivalent,sinceeveryfamilyisequivalenttoafilteringfamily[Vol.1,Theorem3.15].ForNicolas B OURBAKI [12,editionspublishedafter1981,ChapterIII,p.III.1]andRobertE DWARDS [32,p.80],a semi-normedspaceisaspaceendowedwith asingle semi-norm,whichdrasticallychangesthe meaning.

Letusdefinevariousnotionsrelatingtothecontinuity2 ofafunctiontakingvalues inasemi-normedspace.ThesearespecialcasesofDefinition1.24ofacontinuous mappingfromasemi-normedspaceintoanother.

D EFINITION 1.2. – Let f beafunctionfromasubset Ω of Rd intoaseparatedseminormedspace E withafamilyofsemi-norms { E ;ν : ν ∈NE }

(a) Wesaythat f is continuousatthepoint x of Ω if,forevery ν ∈NE and > 0, thereexists η> 0 suchthat,if y ∈ Ω and |y x|≤ η ,then

f (y ) f (x) E ;ν ≤ .

Wesaythat f is continuous ifitiscontinuousateverypointof Ω

(b) Wesaythat f is uniformlycontinuous if,forevery ν ∈NE and > 0,there exists η> 0 suchthat,if x and y belongto Ω and |y x|≤ η ,then

f (y ) f (x) E ;ν ≤ .

(c) Wesaythat f is sequentiallycontinuousatthepoint x of Ω if,foreverysequence (xn )n∈N in Ω suchthat xn → x in Rd ,wehave f (xn ) → f (x) in E .

Wesaythat f is sequentiallycontinuous ifitissequentiallycontinuousatevery pointof Ω

2 Historyofthenotionofcontinuousmapping. AugustinC AUCHY definedsequentialcontinuityfora realfunctiononanintervalin1821in[20].BernardPlacidusJohannNepomukB OLZANO alsocontributed totheemergenceofthisnotion.

Historyofthenotionofuniformlycontinuousfunction. EduardH EINE definedthenotionofuniform continuityoffunctionson(asubsetof) Rd in1870in[46].Thisnotionhadpreviouslybeenimplicitlyused byAugustinC AUCHY in1823todefinetheintegralofarealfunction[21,pp.122–126]andwaslater explicitlyusedbyPeterD IRICHLET

SpacesofContinuousFunctions3

(d) Wesaythat f is bounded ifitsimage f (Ω)= {f (x): x ∈ Ω} isaboundedset (of E ),orinotherwords,if,forevery ν ∈NE , sup x∈Ω f (x) E ;ν < ∞

Wesaythatasequence (un )n∈N inaseparatedsemi-normedspace E converges toalimit u ∈ E ,andwedenote un → u as n →∞,if,foreverysemi-norm E ;ν of E , un u E ;ν → 0 as n →∞.

Recallthatafunctioniscontinuousifandonlyifitissequentiallycontinuous (TheoremA.293,since Rd isanormedspace).

1.2.Spaces C (Ω; E ), Cb (Ω; E ), CK (Ω; E ), C(Ω; E ) and Cb (Ω; E )

Additionoffunctionstakingvaluesinavectorspaceandmultiplicationbyascalar t ∈ R aredefinedby (f + g )(x) def = f (x)+ g (x), (tf )(x) def = tf (x) (1 1)

Letusfirstdefinespacesofcontinuousfunctions4

D EFINITION 1.3. – Let Ω ⊂ Rd and E beaseparatedsemi-normedspacewitha familyofsemi-norms { E ;ν : ν ∈NE }

(a) Wedenoteby C (Ω; E ) thevectorspaceofcontinuousfunctionsfrom Ω into E endowedwiththesemi-normsandindexedbythecompactsets K ⊂ Ω and ν ∈NE , f C (Ω;E );K,ν def =sup x∈K f (x) E ;ν .

(b) Wedenoteby Cb (Ω; E ) thevectorspaceofcontinuousandboundedfunctions from Ω into E endowedwiththesemi-normsandindexedby ν ∈NE , f Cb (Ω;E );ν def =sup x∈Ω f (x) E ;ν .

3 TheoremA.29. TheoremswithnumbersintheformA.n canbefoundintheAppendix.

4 Historyofthenotionoffunctionspace. BernhardR IEMANN introducedtheconceptof(infinitedimensional)functionspacein1892inhisinaugurallecture OntheHypothesesWhichLieattheBases ofGeometry [64,p.276](seetheextractcitedin[14,p.176]).

4ContinuousFunctions

Justification. Additionandscalarmultiplicationoffunctionsmake C (Ω; E ) and Cb (Ω; E ) vectorspaces.

In(a),themapping f → supx∈K f (x) E ;ν isasemi-normon C (Ω; E ),sincethe upperenvelopeofafamilyofsemi-normsisasemi-normwheneveritiseverywhere finite(TheoremA.6).Thisisindeedthecasehere,since,forevery x,themapping f → f (x) E ;ν isasemi-normon C (Ω; E ) and,foreach f , supx∈K f (x) E ;ν < ∞ becausecontinuousfunctionsareboundedoncompactsets(TheoremA.34).

In(b), supx∈Ω f (x) E ;ν similarlydefinesasemi-normon Cb (Ω; E )

Thesespacesarewrittenas C (Ω) and Cb (Ω),respectively,inthecasewhere

E = R.

Thetopologywithwhichwehaveendowed C (Ω; E ) issaidtobethe topologyof uniformconvergenceoncompactsets,andthetopologyof Cb (Ω; E ) issaidtobe the topologyofuniformconvergence

Letusnowdefinespacesofuniformlycontinuousfunctions.

D EFINITION 1.4. – Let Ω ⊂ Rd and E beaseparatedsemi-normedspace.

(a) Wedenoteby C(Ω; E ) thevectorspaceofuniformlycontinuousfunctionsfrom Ω into E .

(b) Wedenoteby Cb (Ω; E ) thevectorspaceofuniformlycontinuousandbounded functionsfrom Ω into E endowedwiththesemi-normsof Cb (Ω; E )

Wedenotethesespacesby C(Ω) and Cb (Ω),respectively,inthecasewhere E = R.

Absenceofatopologyon C(Ω; E ). Weshallnotendow C(Ω; E ) withsemi-norms,sincewedonot requirethem.

Next,letusdefinethesupportofafunction(recallthat denotestheclosure).

D EFINITION 1.5. – The support ofafunction f fromasubset Ω of Rd intoa separatedsemi-normedspace E istheset supp f def = {x ∈ Ω: f (x) =0E }∩ Ω

SpacesofContinuousFunctions5

Letusstatesomepropertiesofthesupportofafunctiondefinedonanopenset5

T HEOREM 1.6. – Let f beafunctionfromasubset Ω of Rd intoaseparatedseminormedspace E .If Ω isanopenset:

(a) Then supp f =Ω \O ,where O isthelargestopensubsetof Rd onwhich f =0E ; inotherwords, O istheinteriorof {x ∈ Ω: f (x)=0E }

(b) If f isalsocontinuous,then {x ∈ Ω: f (x) =0E } isopenandincludedinthe interior ˚ supp f ofthesupportof f ,and f =0E on Ω \ ˚ supp f

ProofofTheorem1.6. (a)Let

O =Ω \ supp f =Ω ∩ (Rd \ {x ∈ Ω: f (x) =0E })

Thisisanopenset,asafiniteintersectionofopensets(TheoremA.10),and f iszero onit.

If U isanotheropensetincludedin Ω onwhich f iszero,thentheset {x ∈ Ω: f (x) =0E } isincludedin Rd \ U .Sincethelatterisclosed, supp f ⊂ {x ∈ Ω: f (x) =0E }⊂ Rd \ U.

Hence, U ⊂ Ω ∩ (Rd \ supp f )= O .Therefore, O isindeedthelargestsuchopenset U or,inotherwords,theinterior(DefinitionA.8)of {x ∈ Ω: f (x)=0E }. (b)If f (x) =0E ,thereexistsasemi-normonthespace E ofvaluesof f such that f (x) E ;ν = a> 0.If f iscontinuous,thereexists η> 0 suchthat y ∈ Ω and |y x|≤ η imply f (y ) f (x) E ;ν ≤ a/2,so f (y ) E ;ν ≥ a/2,andhence f (y ) =0E .Since Ω isopen,itcontainsaball B (x,η ).Thus,theball B (x,r ),where r =inf {η,η } isincludedintheset {x ∈ Ω: f (x) =0E },whichshowsthatthisset isindeedopen.

Theset {x ∈ Ω: f (x) =0E } isanopensetincludedinthesupportof f andso isincludedintheinterior ˚ supp f ofthesupport.Therefore, f =0E outsideofthis set.

Letusfinallydefinespacesofcontinuousfunctionswithsupportinanarbitrary compactset.Recallthat,in Rd ,acompactsetisaclosedandboundedsetbythe Borel–Lebesguetheorem[TheoremA.23(b)].

D EFINITION 1.7. – Let Ω ⊂ Rd and E beaseparatedsemi-normedspace.

5 Numberingofstatements. Thesamenumberingschemeisusedforallstatements–Definitions1.1–1.5, Theorem1.6,Definition1.7,etc.–,tomakeiteasiertofindagivenresultbynumber.Forexample,the readerwillstruggletofindTheorems1.1–1.5,becausethesenumberswereassignedtodefinitions.

6ContinuousFunctions

(a) Givenacompactsubset K of Rd includedin Ω,wedenote

CK (Ω; E ) def = {f ∈C (Ω; E ):supp f ⊂ K }, endowedwiththesemi-normsof Cb (Ω; E ).

(b) Givenacompactsubset D of Rd (notnecessarilyincludedin Ω),wedenote

CD (Ω; E ) def = {f ∈ C(Ω; E ):supp f ⊂ D }, endowedwiththesemi-normsof Cb (Ω; E ).

Justification. (a)Thevectorspace CK (Ω; E ) canbeendowedwiththesemi-normsof Cb (Ω; E ) becauseeveryfunction f inthisspaceisbounded,since f iszerooutside of K andboundedon K ,notingthatcontinuousfunctionsareboundedoncompact sets(TheoremA.34).

(b)Thevectorspace CD (Ω; E ) canbeendowedwiththesemi-normsof Cb (Ω; E ) becauseeveryfunction f inthisspaceisbounded,since f iszerooutsideof D andboundedon Ω ∩ D .Indeed,since D isprecompact(TheoremA.19(a)),the subset Ω ∩ D isalsoprecompact(TheoremA.20),andsoisitsimage f (Ω ∩ D ) (TheoremA.33),whichisthereforebounded(TheoremA.19(a)).

Wedenotethesespacesby CK (Ω) and CD (Ω),respectively,inthecasewhere E = R

Cautionaboutbehaviorattheboundary. When Ω isanopenset,functionsin CK (Ω; E ) mustbezero onsomeneighborhoodoftheboundary ∂ Ω,since K isincludedin Ω

Bycontrast,functionsin CD (Ω; E ) donotnecessarilyvanishonaneighborhoodof ∂ Ω (regardlessof whether Ω isopen,unlessitisthewholeof Rd )when D isnotincludedin Ω.Tohighlightthisdifference, wehavechosennotationthatdifferentiatesbetweenarbitrarycompactsets D andcompactsets K thatare includedin Ω

Utilityofthespaces CK (Ω; E ) and CD (Ω; E ). Thespace CK (Ω; E ),or,moreprecisely,its generalization C m K (Ω; E ),willbeusefulforourstudyofdistributionsinVolume3,sincethespace D (Ω) oftestfunctionsistheunionofthe C ∞ K (Ω)

Thespace CD (Ω; E ) willbeusefulforourstudyoftheCauchyintegralofcontinuousfunctions(for exampleinTheorem4.22),since B (Ω; E ) (Definition4.7)istheunionofthe CD (Ω; E )

1.3.Comparisonofspacesofcontinuousfunctions

Letusfirstdefinethetopologicalequalitiesandinclusionsofseparated semi-normedspaces.Wewillthendiscussinclusionsbetweenspacesofcontinuous functions.

SpacesofContinuousFunctions7

D EFINITION 1.8. – Let { 1;ν : ν ∈N1 } and { 2;μ : μ ∈N2 } betwofamilies ofsemi-normsonthesamevectorspace E .Wesaythatthefirstfamily dominates the secondif,forevery μ ∈N2 ,thereexistsafiniteset N1 in N1 and c1 ∈ R suchthat, forevery u ∈ E ,

Wesaythatthetwofamiliesare equivalent ifeachfamilydominatestheother.Wealso saythatthey generatethesametopology

Terminology. The topology of E isthesetofitsopensets.Wecansaythattwofamiliesofsemi-norms generatethesametopology insteadofsayingthatthey areequivalent becauseequivalenceoftwofamilies ofsemi-normsimpliesequalityoftheiropensets[Vol.1,Theorem3.4]andtheconversealsoholds[Vol.1, Theorem7.14(a)and8.2(a),with L = T = Identity].

D EFINITION 1.9. – Let E and F betwosemi-normedspaces.

(a) Wewrite E ≡ ↔ F if E = F andiftheiradditions,multiplicationsandfamiliesof semi-normscoincide,or,inotherwords,iftheyhavethesamevectorspacestructures andthesamesemi-norms.

(b) Wesaythat E is topologicallyequal to F ,written E = ↔ F ,if E = F ,their additionsandmultiplicationscoincide,andtheirfamiliesofsemi-normsare equivalent.

(c) Wesaythat E is topologicallyincluded in F ,written E ⊂ → F ,if E isavector subspaceof F andifthefamilyofsemi-normsof E dominatesthefamilyofrestrictions to E ofthesemi-normsof F .Inotherwords,if,forevery μ ∈NF ,thereexistsafinite set N in NE and c ∈ R suchthat,forevery u ∈ E , u F ;μ ≤ c sup ν ∈N u E ;ν .

(d) Wesaythat E isa topologicalsubspace of F ifitisa vectorsubspace of F ,i.e. avectorspaceundertheadditionandmultiplicationof E ,anditisendowedwiththe restrictionsofthesemi-normsof F ,or,moregenerally,withafamilyequivalenttothis familyofrestrictions.

Letusnowshowthatspacesofcontinuousfunctionsareseparatedandcompare them.

T HEOREM 1.10. – Let Ω ⊂ Rd , E beaseparatedsemi-normedspace, K acompact setincludedin Ω and D acompactsubsetof Rd .Then:

8ContinuousFunctions

(a) C (Ω; E ), Cb (Ω; E ), CK (Ω; E ), Cb (Ω; E ) and CD (Ω; E ) areseparatedseminormedspaces.

(b) CK (Ω; E ), Cb (Ω; E ) and CD (Ω; E ) areclosedandhencesequentiallyclosed topologicalsubspacesof Cb (Ω; E )

(c) CK (Ω; E ) ≡ ↔ CK (Ω; E ) ⊂ → Cb (Ω; E ) ⊂ → Cb (Ω; E ) ⊂ → C (Ω; E ).

(d) If Ω isbounded, Cb (Ω; E )= C(Ω; E )

(e) If Ω iscompact,

Proof. (a)Thesespacesaresemi-normedspaces(Definition1.1)byconstruction.

Thespace C (Ω; E ) isseparated(Definition1.1)because,ifeverysemi-normof oneofitselements f iszero,then(Definition1.3(a)),forevery x ∈ Ω and ν ∈NE , wehave f (x) E ;ν =0,so f (x)=0E because E isseparatedandtherefore f is zero.Thesameproofworksfor Cb (Ω; E ) (Definition1.3(b))andhenceforthespaces CK (Ω; E ), Cb (Ω; E ) and CD (Ω; E ),sincetheyareendowedwiththesemi-normsof Cb (Ω; E )

(b)Thevectorspaces CK (Ω; E ) and CD (Ω; E ) areincludedin Cb (Ω; E ),aswesaw earlierinthejustificationofDefinition1.7,andsois Cb (Ω; E ).Thesespacesare topologicalsubspaces(Definition1.9(d))of Cb (Ω; E ) becausetheyareendowedwith itssemi-norms.Letuscheckthattheyareclosed.

Closednessof CK (Ω; E ) in Cb (Ω; E ). Letusshowthatthecomplementisopen.Thus, let f ∈Cb (Ω; E ) \CK (Ω; E ).Thereexists x ∈ Ω \ K suchthat f (x) =0E andhence ν ∈NE suchthat f (x) E ;ν = a> 0.Therefore, g f Cb (Ω;E );ν ≤ a/2 implies g (x) > 0,andso g ∈Cb (Ω; E ) \CK (Ω; E ),showingthatthecomplementisopen.

Closednessof Cb (Ω; E ) in Cb (Ω; E ) Letusshowthatthecomplementisopen.Thus, let f ∈Cb (Ω; E ) \ Cb (Ω; E ).Thereexists ν ∈NE , a> 0 and,forall n ∈ N, xn and yn in Ω suchthat |xn yn |≤ 1/n and f (xn ) f (yn ) E ;ν ≥ a.Therefore, g f Cb (Ω;E );ν ≤ a/3 implies g (xn ) g (yn ) E ;ν ≥ a/3,andso g ∈Cb (Ω; E ) \ Cb (Ω; E ),showingthatthecomplementisopen.

Closednessof CD (Ω; E ) in Cb (Ω; E ) Theset CD (Ω; E ) istheintersectionof Cb (Ω; E ) and CD (Ω; E ),whichareclosed(forthelatter,considertheaboveproof with D insteadof K ),andsoitisitselfclosed(TheoremA.10).

SpacesofContinuousFunctions9

(c) Identity CK (Ω; E ) ≡ ↔ CK (Ω; E ) Algebraicequalityissatisfiedbecauseevery functionin CK (Ω; E ) isuniformlycontinuousonthecompactset K byHeine’s theorem(TheoremA.34)andthereforeonthewholeof Ω (sinceitvanisheson ∂K ). Topologicalidentityfollowsbecausethesetwospacesarebothendowedwiththe semi-normsof Cb (Ω; E ).

Inclusion CK (Ω; E ) ⊂ → Cb (Ω; E ) Algebraicinclusionfollowsfromthefactthatevery functionin CK (Ω; E ) isboundedonthecompactset K (Heine’stheoremagain)and isthereforeboundedonthewholeof Ω.Topologicalinclusionfollowsbecauseboth spacesareendowedwiththesemi-normsof Cb (Ω; E )

Inclusion Cb (Ω; E ) ⊂ → Cb (Ω; E ). Thistopologicalinclusionfollowsfromthefactthat everyuniformlycontinuousfunctioniscontinuous,notingthat Cb (Ω; E ) isendowed withthesemi-normsof Cb (Ω; E )

Inclusion Cb (Ω; E ) ⊂ → C (Ω; E ). Thistopologicalinclusionfollowsfromthefactthat, byDefinition1.3ofthesemi-normsof C (Ω; E ) and Cb (Ω; E ),forevery f ∈Cb (Ω; E ) and ν ∈NE andeverycompactset K ⊂ Ω, f C (Ω;E );K,ν =sup x∈K

(Ω;E );ν

(d) Casewhere Ω isbounded. Inthiscase, Cb (Ω; E )= C(Ω; E ) because,given that Ω isprecompact(TheoremA.23(b)),uniformlycontinuousfunctionson Ω are bounded.Indeed,theirimagesareprecompact(TheoremA.33)andhencebounded (TheoremA.19(a)).

(e) Casewhere Ω iscompact.Equality Cb (Ω; E )= Cb (Ω; E )= C (Ω; E ) This algebraicequalityfollowsfromthefactthateverycontinuousfunctiononacompact setisuniformlycontinuousandboundedonthisset(Heine’stheoremonceagain, TheoremA.34).

Identity Cb (Ω; E ) ≡ ↔ Cb (Ω; E ). Thisidentityfollowsfromthealgebraicequality becausebothspacesareendowedwiththesemi-normsof Cb (Ω; E )

Equality Cb (Ω; E ) = ↔ C (Ω; E ). Here,wecantake K =Ω inDefinition1.3(a),which gives f Cb (Ω;E );ν = f C (Ω;E );Ω,ν andhence C (Ω; E ) ⊂ → Cb (Ω; E ) (because Cb (Ω; E ) isendowedwiththesemi-normsof Cb (Ω; E )).Thetopologicalequality followsbecausetheinverseinclusionholdsby(c).

Non-closednessof C(Ω) in C (Ω). If Ω isanopenset(ormoregenerallyasetthatisnotcompact), C(Ω) isnot(sequentially)closedin C (Ω) (1 2)

Forexample,thefunctions fn definedon (0, 1) by fn (x)=inf {n, 1/x} areuniformlycontinuousand, as n →∞,theyconvergein C ((0, 1)) tothefunction f (x)=1/x,whichisnotuniformlycontinuous.

10ContinuousFunctions

1.4.Sequentialcompletenessofspacesofcontinuousfunctions

Letusdefinesequentialcompleteness.

D EFINITION 1.11. – A Neumannspace isaseparatedsemi-normedspacethatis sequentiallycomplete,namelyoneinwhicheveryCauchysequenceconverges.

Asequence (un )n∈N inaseparatedsemi-normedspace E issaidtobe Cauchy if, foreverysemi-norm E ;ν of E ,

Terminology. Wenamedthesespaces Neumannspaces inVolume1inhonorofJohn VON N EUMANN , whointroducedthemin1935[59].Thus,readerswillneedtorecallthisdefinitionbeforeusingitelsewhere.

Letusshowthatspacesofcontinuousfunctionsaresequentiallycomplete wheneverthespace E ofvaluesisitselfsequentiallycomplete6

T HEOREM 1.12. – Let Ω ⊂ Rd , K beacompactsetincludedin Ω,and D acompact subsetof Rd

If E isaNeumannspace,then C (Ω; E ), Cb (Ω; E ), CK (Ω; E ), Cb (Ω; E ) and CD (Ω; E ) arealsoNeumannspaces.

Proof. Let { E ;ν : ν ∈NE } bethefamilyofsemi-normsof E

Sequentialcompletenessof C (Ω; E ) Let (fn )n∈N beaCauchysequencein C (Ω; E ) ByDefinition1.3(a)ofthesemi-normsof C (Ω; E ),foreverycompactset K ⊂ Ω, every ν ∈NE and > 0,thereexists ∈ N suchthat sup n≥ sup x∈K fn (x) f (x) E ;ν =sup n≥ fn f C (Ω;E );K ν ≤ .

Then,forevery x ∈ Ω, (fn (x))n∈N isaCauchysequencein E ;since E isaNeumann space,thissequencehasalimit,whichweshalldenoteas f (x).Takingthelimitas n →∞,thepreviousinequalityyields

6 HistoryofTheorem1.12. Inaseriesofunpublishedbutnonethelesshugelyinfluentiallectures,Karl W EIERSTRASS showedthatthelimitofasequenceofsequentiallycontinuousrealfunctionsthatconverge uniformlyisitselfsequentiallycontinuous.Inotherwords,heshowedthataninequalityoftype(1.3)implies thesequentialcontinuityof f .Thisisthekeypointintheproofofthesequentialcompletenessof C (R)

SpacesofContinuousFunctions11

Letusprovebycontradictionthat f issequentiallycontinuous.Supposenot.Then thereexists > 0, ν ∈NE , x ∈ Ω,andasequence (xm )m∈N in Ω suchthat xm → x and f (xm ) f (x) E ;ν ≥ 3 .Applyingtheinequality(1.3)tothecompactset K = {xm : m ∈ N}∪{x} thengives,forevery m ∈ N,

Therefore, f isnotsequentiallycontinuous.Thisprovesthat f issequentially continuous.

Hence, f iscontinuous(TheoremA.29,since Rd isanormedspace),andthus f ∈C (Ω; E ).Equation(1.3)thenshowsthat fn → f in C (Ω; E ),whichprovesthat C (Ω; E ) issequentiallycomplete.

Sequentialcompletenessof Cb (Ω; E ). Thespace Cb (Ω; E ) maybeshowntobe sequentiallycompletebyrepeatingtheaboveproofwith Ω insteadof K (the boundednessofthelimit f thenfollowsfromtheinequality(1.3)).

Sequentialcompletenessof CK (Ω; E ), Cb (Ω; E ) and CD (Ω; E ) Sinceeveryclosed topologicalsubspaceofasequentiallycompletespaceissequentiallycomplete (TheoremA.27),thesubspaces CK (Ω; E ), Cb (Ω; E ) and CD (Ω; E ) of Cb (Ω; E ) are sequentiallycomplete(theyareclosedbyTheorem1.10(b)).

Anotherproofofthesequentialcompletenessof Cb (Ω; E ) Theproofabovecanberevisitedwith Ω insteadof K toshowthatthelimit f thusobtainedisuniformlycontinuousbyusingtwosequences (xm )m∈N and (ym )m∈N in Ω suchthat |xm ym |≤ 1/m insteadof xm → x

1.5.Metrizabilityofspacesofcontinuousfunctions

Letusdefinemetrizability7

D EFINITION 1.13. – Wesaythatasemi-normedspaceis metrizable ifitisseparated anditsfamilyofsemi-normsiscountableorequivalenttoacountablefamilyofseminorms.

A Fréchetspace isametrizablesemi-normedspacethatissequentiallycomplete. A Banachspace isasequentiallycompletenormedspace.

7 Historyofthenotionofmetrizablespace. MauriceF RÉCHET gavethegeneraldefinitionofametric spacein1906in[38].

12ContinuousFunctions

Justificationoftheterm“metrizable”. Wespeakofa metrizable spacebecauseanycountablefamily,or equivalentlyanysequence ( k )k ∈N ofsemi-norms,maybeassociatedwitha metric d,thatgenerates thesametopology,givenby

Strictlyspeaking,Definition1.13definesa separatedcountablysemi-normable space.Weprefertospeak insteadofa metrizable spacebyabuseoflanguagebecausethisequivalentnotionismorefamiliar.A metrizable spaceis,moreprecisely,aspacethatis“topologicallyequaltoametricspace.”

Superiorityofasequenceofsemi-normsoverametric. Thesemi-normsofametrizablespace E characterizeitsboundedsetsby supu∈U u E ;k < ∞ forevery k ∈ N (DefinitionA.7).

Bycontrast, if E isnotnormable and d isametricthatgeneratesitstopology,itsboundedsetsare notcharacterizedby supu∈U d(u, 0E ) < ∞.Evenworse,noneofthe“balls” {u ∈ E : d(u,z ) ≤ r } are bounded(if r> 0).Iftheywere, {u : d(u,z ) <r } wouldbeanon-emptyboundedopenset.Butthe existenceofsuchanopensetisequivalenttonormabilityby Kolmogorov’stheorem8

Letusstatesomemetrizabilityandnormabilitypropertiesofspacesofcontinuous functions.

T HEOREM 1.14. – Let Ω ⊂ Rd , E beaseparatedsemi-normedspace, K acompact setincludedin Ω and D acompactsubsetof Rd .Then:

(a) If E ismetrizable,then Cb (Ω; E ), CK (Ω; E ), Cb (Ω; E ) and CD (Ω; E ) are metrizable.

(b) If E ismetrizableand Ω isopen,then C (Ω; E ) ismetrizable.

(c) If E isanormedspace,then Cb (Ω; E ), CK (Ω; E ), Cb (Ω; E ) and CD (Ω; E ) are normedspaces.

Proof. (a)If E ismetrizable,then,byDefinition1.13,wemayendowitwitha familyofsemi-normsindexedbyacountableset NE .Therefore, Cb (Ω; E ) is metrizablebecauseitssemi-normsareindexedby NE (Definition1.3(b)).

Furthermore, Cb (Ω; E ), CK (Ω; E ) and CD (Ω; E ) arealsometrizable,sincetheyare endowed(Definitions1.4(b)and1.7)withthesemi-normsof Cb (Ω; E )

(c)If E isanormedspace,thefamilyofsemi-normsof Cb (Ω; E ) reducestothenorm f Cb (Ω;E ) =supx∈Ω f (x) E .Thus,bydefinition,thespaces CK (Ω; E ), Cb (Ω; E ) and CD (Ω; E ) areendowedwiththisnormaswell.

8 HistoryofKomogorov’stheorem. AndreyK OLMOGOROV showedin1934[49,p.33]thatatopological vectorspaceisnormableifandonlyifthereexistsaboundedconvexneighborhoodoftheorigin,which hereisequivalenttotheexistenceofaboundedopenset.

SpacesofContinuousFunctions13

(b)Supposethat Ω isopen.Forevery n ∈ N,let

Ωn 1/n def = {x ∈ Rd : |x| <n,B (x, 1/n) ⊂ Ω},

where B (x, 1/n) denotestheclosedball {y ∈ Rd : |y x|≤ 1/n}.Asweshallcheck inLemma1.15,everycompactset K ⊂ Ω isincludedinoneofthecompactsets Kn = Ωn 1/n ,sothefamilyofsemi-normsof C (Ω; E ) (Definition1.3(a))isequivalent tothesub-familyassociatedwiththe Kn ,whichisindexedby N ×NE .If,moreover, E ismetrizable,byDefinition1.13,wecanchoose NE tobecountable,inwhichcase N ×NE isalsocountable(TheoremA.2),andso C (Ω; E ) ismetrizable.

Westillneedtoshowthefollowinglemma.

L EMMA 1.15. – Let Ω beanopensubsetof Rd , r> 0, n ∈ N,and Ωr def = {x ∈ Rd : B (x,r ) ⊂ Ω}, Ωn r def = {x ∈ Rd : |x| <n,B (x,r ) ⊂ Ω}, where B (x,r ) def = {y ∈ Rd : |y x|≤ r }.

Then, Ωr and Ωn r areopen,theclosure Ωn r isacompactsetincludedin Ω,the (Ωn 1/n )n∈N formsanincreasingopencoveringof Ω andeverycompactset K included in Ω isincludedinoneofthe Ωn 1/n

Proof. Theset Ωr = {x ∈ Rd : B (x,r ) ⊂ Ω} isopenbecauseif x ∈ Ωr ,thenthe closedball B (x,r ) isacompactsetincludedin Ω,sothestronginclusiontheorem (TheoremA.22)provides s> 0 suchthat B (x,r )+ B (0,s) ⊂ Ω,andhence B (x,s) ⊂ Ωr

Theintersection Ωn r withtheopenball {x ∈ Rd : |x| <n} isthereforealsoopen (TheoremA.10).

Theclosure Ωn r ,whichisclosedbydefinitionandbounded,iscompactin Rd by theBorel–Lebesguetheorem(TheoremA.23(b)).Itisincludedin Ωn+1 r/2 andhence in Ω

Finally,thesets Ωn 1/n increasewith n andformacoveringof Ω.Everycompactset K ⊂ Ω istherefore,byDefinitionA.17(a),includedinoneofthesesets,and,finally, inoneoftheirclosures Ωn 1/n .

Letusstateafewconsequencesoftheprevioustwotheorems.

T HEOREM 1.16. – Let Ω ⊂ Rd , E beaseparatedsemi-normedspace, K acompact setincludedin Ω and D acompactsubsetof Rd .Then:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
[FREE PDF sample] Continuous functions, volume 2 jacques simon ebooks by Education Libraries - Issuu