[FREE PDF sample] Reference frame theory : development and applications 1st edition paul c. krause e

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/reference-frame-theory-development-and-application s-1st-edition-paul-c-krause/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Care in Healthcare: Reflections on Theory and Practice

1st Edition Franziska Krause

https://ebookmass.com/product/care-in-healthcare-reflections-ontheory-and-practice-1st-edition-franziska-krause/

Advances In Questionnaire Design, Development, Evaluation And Testing Paul C. Beatty

https://ebookmass.com/product/advances-in-questionnaire-designdevelopment-evaluation-and-testing-paul-c-beatty/

Mechanical Design: Theory and Applications T. H. C. Childs

https://ebookmass.com/product/mechanical-design-theory-andapplications-t-h-c-childs/

Talking About: An Intentionalist Theory of Reference

1st Edition Elmar Unnsteinsson

https://ebookmass.com/product/talking-about-an-intentionalisttheory-of-reference-1st-edition-elmar-unnsteinsson/

C How to Program: With Case Studies in Applications and Systems Programming, Global Edition Paul Deitel

https://ebookmass.com/product/c-how-to-program-with-case-studiesin-applications-and-systems-programming-global-edition-pauldeitel/

Pediatric reference intervals 8th Edition Edward C. Wong

https://ebookmass.com/product/pediatric-reference-intervals-8thedition-edward-c-wong/

Multiscale

Biomechanics: Theory And Applications 1st Edition Soheil Mohammadi

https://ebookmass.com/product/multiscale-biomechanics-theory-andapplications-1st-edition-soheil-mohammadi/

Electromagnetic Metasurfaces: Theory and Applications (Wiley - IEEE) 1st Edition Karim Achouri

https://ebookmass.com/product/electromagnetic-metasurfacestheory-and-applications-wiley-ieee-1st-edition-karim-achouri/

Applied Financial Econometrics: Theory, Method and Applications 1st Edition Maiti

https://ebookmass.com/product/applied-financial-econometricstheory-method-and-applications-1st-edition-maiti/

ReferenceFrameTheory

SeriesEditor:M.E.El-Hawary,DalhousieUniversity,Halifax,NovaScotia, Canada

ThemissionofIEEEPressSeriesonPowerEngineeringistopublishleading-edge booksthatcoverthebroadspectrumofcurrentandforward-lookingtechnologiesinthisfast-movingarea.Theseriesattractshighlyacclaimedauthorsfrom industry/academiatoprovideaccessiblecoverageofcurrentandemergingtopics inpowerengineeringandalliedfields.Ourtargetaudienceincludesthepower engineeringprofessionalwhoisinterestedinenhancingtheirknowledgeandperspectiveintheirareasofinterest.

1.ElectricPowerSystems:DesignandAnalysis,RevisedPrinting MohamedE.El-Hawary

2.PowerSystemStability

EdwardW.Kimbark

3.AnalysisofFaultedPowerSystems

PaulM.Anderson

4.InspectionofLargeSynchronousMachines:Checklists,FailureIdentification, andTroubleshooting

IsidorKerszenbaum

5.ElectricPowerApplicationsofFuzzySystems MohamedE.El-Hawary

6.PowerSystemProtection

PaulM.Anderson

7.SubsynchronousResonanceinPowerSystems

PaulM.Anderson,B.L.Agrawal,andJ.E.VanNess

8.UnderstandingPowerQualityProblems:VoltageSagsandInterruptions MathH.Bollen

9.AnalysisofElectricMachinery

PaulC.Krause,OlegWasynczuk,andS.D.Sudhoff

10.PowerSystemControlandStability,RevisedPrinting PaulM.AndersonandA.A.Fouad

11.PrinciplesofElectricMachineswithPowerElectronicApplications, SecondEdition MohamedE.El-Hawary

12.PulseWidthModulationforPowerConverters:PrinciplesandPractice D.GrahameHolmesandThomasA.Lipo

13.AnalysisofElectricMachineryandDriveSystems,SecondEdition PaulC.Krause,OlegWasynczuk,andScottD.Sudhoff

14.RiskAssessmentforPowerSystems:Models,Methods,andApplications WenyuanLi

15.OptimizationPrinciples:PracticalApplicationstotheOperationofMarkets oftheElectricPowerIndustry NarayanS.Rau

16.ElectricEconomics:RegulationandDeregulation GeoffreyRothwellandTomasGomez

17.ElectricPowerSystems:AnalysisandControl FabioSaccomanno

18.ElectricalInsulationforRotatingMachines:Design,Evaluation,Aging, Testing,andRepair,SecondEdition

GregC.Stone,IanCulbert,EdwardA.Boulter,andHusseinDhirani

19.SignalProcessingofPowerQualityDisturbances MathH.J.BollenandIreneY.H.Gu

20.InstantaneousPowerTheoryandApplicationstoPowerConditioning HirofumiAkagi,EdsonH.Watanabe,andMauricioAredes

21.MaintainingMissionCriticalSystemsina24/7Environment PeterM.Curtis

22.ElementsofTidal-ElectricEngineering RobertH.Clark

23.HandbookofLargeTurbo-GeneratorOperationandMaintenance, SecondEdition

GeoffKlempnerandIsidorKerszenbaum

24.IntroductiontoElectricalPowerSystems MohamedE.El-Hawary

25.ModelingandControlofFuelCells:DistributedGenerationApplications M.HashemNehrirandCaishengWang

26.PowerDistributionSystemReliability:PracticalMethodsandApplications AliA.ChowdhuryandDonO.Koval

27.IntroductiontoFACTSControllers:Theory,Modeling,andApplications KalyanK.SenandMeyLingSen

28.EconomicMarketDesignandPlanningforElectricPowerSystems JamesMomohandLamineMili

29.OperationandControlofElectricEnergyProcessingSystems

JamesMomohandLamineMili

30.RestructuredElectricPowerSystems:AnalysisofElectricityMarketswith EquilibriumModels Xiao-PingZhang

31.AnIntroductiontoWaveletModulatedInverters S.A.SalehandM.AzizurRahman

32.ControlofElectricMachineDriveSystems Seung-KiSul

33.ProbabilisticTransmissionSystemPlanning WenyuanLi

34.ElectricityPowerGeneration:TheChangingDimensions DigambarM.Tagare

35.ElectricDistributionSystems

AbdelhayA.SallamandOmP.Malik

36.PracticalLightingDesignwithLEDs RonLenkandCarolLenk

37.HighVoltageandElectricalInsulationEngineering RavindraAroraandWolfgangMosch

38.MaintainingMissionCriticalSystemsina24/7Environment,SecondEdition PeterM.Curtis

39.PowerConversionandControlofWindEnergySystems BinWu,YongqiangLang,NavidZargari,andSamirKouro

40.IntegrationofDistributedGenerationinthePowerSystem MathH.J.BollenandFainanHassan

41.DoublyFedInductionMachine:ModelingandControlforWindEnergy Generation

GonzaloAbad,JesúsLópez,MiguelRodrigues,LuisMarroyo,andGrzegorz Iwanski

42.HighVoltageProtectionforTelecommunications StevenW.Blume

43.SmartGrid:FundamentalsofDesignandAnalysis

JamesMomoh

44.ElectromechanicalMotionDevices,SecondEdition PaulKrause,OlegWasynczuk,andStevenPekarek

45.ElectricalEnergyConversionandTransport:AnInteractiveComputer-Based Approach,SecondEdition

GeorgeG.KaradyandKeithE.Holbert

46.ARCFlashHazardandAnalysisandMitigation J.C.Das

47.HandbookofElectricalPowerSystemDynamics:Modeling,Stability,and Control MirceaEremiaandMohammadShahidehpour

48.AnalysisofElectricMachineryandDriveSystems,ThirdEdition PaulKrause,OlegWasynczuk,ScottSudhoff,andStevenPekarek

49.ExtrudedCablesforHigh-VoltageDirect-CurrentTransmission:Advancesin ResearchandDevelopment

GiovanniMazzantiandMassimoMarzinotto

50.PowerMagneticDevices:AMulti-ObjectiveDesignApproach

S.D.Sudhoff

51.RiskAssessmentofPowerSystems:Models,Methods,andApplications, SecondEdition WenyuanLi

52.PracticalPowerSystemOperation EbrahimVaahedi

53.TheSelectionProcessofBiomassMaterialsfortheProductionofBio-Fuels andCo-Firing NajibAltawell

54.ElectricalInsulationforRotatingMachines:Design,Evaluation,Aging, Testing,andRepair,SecondEdition

GregC.Stone,IanCulbert,EdwardA.Boulter,andHusseinDhirani

55.PrinciplesofElectricalSafety

PeterE.Sutherland

56.AdvancedPowerElectronicsConverters:PWMConvertersProcessingAC Voltages

EuzeliCiprianodosSantosJr.andEdisonRobertoCabraldaSilva

57.OptimizationofPowerSystemOperation,SecondEdition JizhongZhu

58.PowerSystemHarmonicsandPassiveFilterDesigns J.C.Das

59.DigitalControlofHigh-FrequencySwitched-ModePowerConverters LucaCorradini,DraganMaksimovic,PaoloMattavelli,andReganZane

60.IndustrialPowerDistribution,SecondEdition

RalphE.Fehr,III

61.HVDCGrids:ForOffshoreandSupergridoftheFuture DirkVanHertem,OriolGomis-Bellmunt,andJunLiang

62.AdvancedSolutionsinPowerSystems:HVDC,FACTS,andArtificial Intelligence

MirceaEremia,Chen-ChingLiu,andAbdel-AtyEdris

63.OperationandMaintenanceofLargeTurbo-Generators GeoffKlempnerandIsidorKerszenbaum

64.ElectricalEnergyConversionandTransport:AnInteractiveComputer-Based Approach

GeorgeG.KaradyandKeithE.Holbert

65.ModelingandHigh-PerformanceControlofElectricMachines JohnChiasson

66.RatingofElectricPowerCablesinUnfavorableThermalEnvironment GeorgeJ.Anders

67.ElectricPowerSystemBasicsfortheNonelectricalProfessional StevenW.Blume

68.ModernHeuristicOptimizationTechniques:TheoryandApplicationsto PowerSystems KwangY.LeeandMohamedA.El-Sharkawi

69.Real-TimeStabilityAssessmentinModernPowerSystemControlCenters SavuC.Savulescu

70.OptimizationofPowerSystemOperation JizhongZhu

71.InsulatorsforIcingandPollutedEnvironments MasoudFarzanehandWilliamA.Chisholm

72.PIDandPredictiveControlofElectricDevicesandPowerConvertersUsing MATLAB®/Simulink® LiupingWang,ShanChai,DaeYoo,LuGan,andKiNg

73.PowerGridOperationinaMarketEnvironment:EconomicEfficiencyand RiskMitigation HongChen

74.ElectricPowerSystemBasicsfortheNonelectricalProfessional, SecondEdition StevenW.Blume

75.EnergyProductionSystemsEngineering ThomasHowardBlair

76.ModelPredictiveControlofWindEnergyConversionSystems VenkataYaramasuandBinWu

77.UnderstandingSymmetricalComponentsforPowerSystemModeling J.C.Das

78.High-PowerConvertersandACDrives,SecondEdition BinWuandMehdiNarimani

79.CurrentSignatureAnalysisforConditionMonitoringofCageInduction Motors:IndustrialApplicationandCaseHistories WilliamT.ThomsonandIanCulburt

80.IntroductiontoElectricPowerandDriveSystems PaulKrause,OlegWasynczuk,TimothyO’Connell,andMaherHasan

81.InstantaneousPowerTheoryandApplicationstoPowerConditioning, SecondEdition HirofumiAkagi,EdsonHirokazuWatanabe,andMauricioAredes

82.PracticalLightingDesignwithLEDs,SecondEdition RonLenkandCarolLenk

83.IntroductiontoACMachineDesign

ThomasA.Lipo

84.AdvancesinElectricPowerandEnergySystems:LoadandPriceForecasting MohamedE.El-Hawary

85.ElectricityMarkets:TheoriesandApplications JeremyLinandFernandoH.Magnago

86.MultiphysicsSimulationbyDesignforElectricalMachines,Power Electronics,andDrives MariusRosu,PingZhou,DingshengLin,DanIonel,MirceaPopescu,Frede Blaabjerg,VandanaRallabandi,andDavidStaton

87.ModularMultilevelConverters:Analysis,Control,andApplications SixingDu,ApparaoDekka,BinWu,andNavidZargari

88.ElectricalRailwayTransportationSystems MorrisBrenna,FedericaFoiadelli,andDarioZaninelli

89.EnergyProcessingandSmartGrid

JamesA.Momoh

90.HandbookofLargeTurbo-GeneratorOperationandMaintenance, ThirdEdition GeoffKlempnerandIsidorKerszenbaum

91.AdvancedControlofDoublyFedInductionGeneratorforWindPower Systems

DehongXu,FredeBlaabjerg,WenjieChen,andNanZhu

92.ElectricDistributionSystems,SecondEdition AbdelhayA.SallamandOmP.Malik

93.PowerElectronicsinRenewableEnergySystemsandSmartGrid: TechnologyandApplications BimalK.Bose

94.PowerSystemandControlandStability,ThirdEdition VijayVittal,JamesD.McCalley,PaulM.Anderson,andA.A.Fouad

95.ElectromechanicalMotionDevices:RotatingMagneticField-Based AnalysisandOnlineAnimations,ThirdEdition PaulKrause,OlegWasynczuk,StevenD.Pekarek,andTimothyO’Connell

ReferenceFrameTheory DevelopmentandApplications

PaulC.Krause

Copyright©2020byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrights reserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requeststo thePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother damages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,please contactourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidethe UnitedStatesat(317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsin printmaynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts, visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationData

Names:Krause,PaulC.,author.

Title:Referenceframetheory:developmentandapplications/PaulC. Krause,PCKrauseandAssociates.

Description:Firstedition.|Hoboken,NewJersey:Wiley-IEEEPress, [2020]|Includesbibliographicalreferenceandindex.

Identifiers:LCCN2020029315(print)|LCCN2020029316(ebook)|ISBN 9781119721635(cloth)|ISBN9781119721635(paperback)|ISBN 9781119721628(adobepdf)|ISBN9781119721659(epub)

Subjects:LCSH:Relativity(Physics)

Classification:LCCQC173.5.K732020(print)|LCCQC173.5(ebook)|DDC 530.11–dc23

LCrecordavailableathttps://lccn.loc.gov/2020029315

LCebookrecordavailableathttps://lccn.loc.gov/2020029316

Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Chennai,India

PrintedintheUnitedStatesofAmerica. 10987654321

Contents

AbouttheAuthor xv

Preface xvii

1ABriefHistoryofReferenceFrameTheory 1 References 3

2Tesla’sRotatingMagneticField 5

2.1Introduction 5

2.2RotatingMagneticFieldforSymmetricalTwo-PhaseStator Windings 5

2.3RotatingMagneticFieldforSymmetricalThree-PhaseStator Windings 11

2.4RotatingMagneticFieldforSymmetricalTwo-PhaseRotor Windings 13

2.5RotatingMagneticFieldforSymmetricalThree-PhaseRotor Windings 15

2.6ClosingComments 17 References 17

3Tesla’sRotatingMagneticFieldandReferenceFrame Theory 19

3.1Introduction 19

3.2TransformationofTwo-PhaseSymmetricalStatorVariablestothe ArbitraryReferenceFrame 20

3.3TransformationofTwo-PhaseSymmetricalRotorVariablestothe ArbitraryReferenceFrame 24

3.4TransformationofThree-PhaseStatorandRotorVariablestothe ArbitraryReferenceFrame 26

3.5BalancedSteady-StateStatorVariablesViewedfromAnyReference Frame 31

3.6ClosingComments 35 References 35

4EquivalentCircuitsfortheSymmetricalMachine 37

4.1Introduction 37

4.2Flux-LinkageEquationsforaMagneticallyLinearTwo-Phase SymmetricalMachine 37

4.3Flux-LinkageEquationsintheArbitraryReferenceFrame 39

4.4TorqueExpressioninArbitraryReferenceFrame 41

4.5InstantaneousandSteady-StatePhasors 42

4.6Flux-LinkageEquationsforaMagneticallyLinearThree-Phase SymmetricalMachineandEquivalentCircuit 45

4.7ClosingComments 49 References 50

5SynchronousMachines 51

5.1Introduction 51

5.2SynchronousMachine 51

5.3EquivalentCircuitForThree-PhaseSynchronous Generator 53

5.4ClosingComment 57 Reference 57

6BrushlessdcDrivewithFieldOrientation 59

6.1Introduction 59

6.2ThePermanent-MagnetacMachine 59

6.3InstantaneousandSteady-StatePhasors 62

6.4FieldOrientationofaBrushlessdcDrive 65

6.5TorqueControlofaBrushlessdcDrive 75

6.6ClosingComments 78 References 79

7FieldOrientationofInductionMachineDrives 81

7.1Introduction 81

7.2FieldOrientationofaSymmetricalMachine 81

7.3TorqueControlofField-OrientatedSymmetrical Machine 86

7.4ClosingComments 89 References 89

8AdditionalApplicationsofReferenceFrameTheory 91

8.1Introduction 91

8.2NeglectingStatorTransients 91

8.3SymmetricalComponentsDerivedbyReferenceFrameTheory 93

8.4MultipleReferenceFrames 97

8.5ClosingComments 97 References 97

Index 99

AbouttheAuthor

PaulC.Krause receivedaBSEEin1956,aBSMEin1957,andaMSEEin1958 fromtheUniversityofNebraska.HereceivedaPhDinEEin1961fromKansas University.Hetaughtatseveralcollegesfor52yearsretiringin2009,after39 yearsasafullprofessor,withPurdueUniversity.Heisthe2010recipientofthe IEEENikolaTeslaAward.Hehaspublishedover100technicalpapersandfour textbooksinElectricMachinesandDriveswithtwointheirthirdedition.

Preface

ThechangeofvariableswasintroducedtomeatthebeginningofthePhD program.Atthattime,itwasamysteryastowherethetransformationoriginated, anditremainedamysteryfornearly60years.AlthoughtherehasbeenconsiderableworkintheareasinceParkwrotehis1929paper,noonetomyknowledge hassetforththebasisofthetransformation.Withtheadventofthecomputerand powerelectronics,referenceframetheoryhasbecomenecessaryintheteaching ofmachinesanddrives.However,theconceptofreferenceframetheorywas difficulttoteachsincethetransformationseemedtoappearfromoutoftheblue. Onehadtomoreorlessacceptthatitworked.

In2016,duringthewritingof“IntroductiontoPowerandDriveSystems,”the connectionbetweenTesla’srotatingmagneticfieldandreferenceframetheorywas uncovered,anditthenbecameclearthatthechangeofvariablesmadethesubstitutevariablesportraythecorrectviewofTesla’srotatingmagneticfieldfrom agivenreferenceframe.Thisgavemeaningtothetransformation,anditisnow easiertounderstand.Thisinformationwaslaterpublishedinthethirdeditionof “ElectromechanicalMotionDevices”andanIEEEPaper.

Thisbookcoverssomeoftheaspectsofreferenceframetheorythattheauthor hasbeeninvolvedwithduringthepast60years,fromthearbitraryreferenceframe tothebasisofreferenceframetheoryandfieldorientation.Otherworkincludingneglectingstatortransients,multiplereferenceframes,andtherelationofthe transformationtosymmetricalcomponentsarealsodiscussed.

ItisinterestingthatreferenceframetheoryiscontainedinTesla’srotatingmagneticfield,whichisthebasisofallknownrealtransformations.Moreover,since thearbitraryreferenceframecanbeusedtoderivesymmetricalcomponents, Tesla’srotatingmagneticfield,althoughnotasdirect,canalsobeconsidered thebasisforcomplextransformationssuchasthesymmetricalcomponent transformation.Thus,itappearsthatalltransformations,realandcomplex,used inthepoweranddrivesareascanbetracedbacktoTesla’srotatingmagnetic field.

Preface

Thisbookiswrittenfortheengineersworkinginthepoweranddrivesareas asareferenceandforthegraduatestudentswhowanttoknowmoreaboutthe historyandbasisofreferenceframetheory.Itcanbeusedasatextbook,andsome instructorsmaywanttheirclasstobecomemoreinformedregardingreference frametheoryandrequireitasareferencetext.

PaulKrause

ABriefHistoryofReferenceFrameTheory

Inthelate1920s,R.H.Park,ayoungMITgraduateworkingforGE,wroteapaper onanewmethodofanalyzingasynchronousmachine[1].Heformulatedachange ofvariablesthat,ineffect,replacedthevariables(voltages,currents,andfluxlinkages)associatedwiththestatorwindingsofasynchronousmachinewithvariables associatedwithfictitious,sinusoidallydistributedwindingsrotatingattheelectricalangularvelocityoftherotor.Thischangeofvariables,whicheliminated theposition-varyinginductancesfromthevoltageequations,isoftendescribed astransformingorreferringthestatorvariablestotherotorreferenceframe. Althoughhedidnotrefertothisas“referenceframetheory,”itwasitsbeginning.

Thisnewapproachtomachineanalysisfoundlimiteduseuntiltheadventof thecomputer.PerhapsadiscussionwrittenbyC.H.Thomasinthelate1950s wasthefirsttosetforthamethodofusingParksequationstoestablishastable computersimulationofasynchronousmachinewhichisstillbeingusedtoday [2].Thisopenedthedoortotheuseofachangeofvariablestoanalyzeproblems involvingelectricmachinessincethissamemethodofsimulationisusedtodayfor thesimulationofallsynchronousandinduction-typemachines.

Therehavebeennumerouschangesofvariablesthathavebeensetforthafter Park’swork.Inthelate1930s,C.H.Stanley[3]employedachangeofvariablesin theanalysisofinductionmachines.Heshowedthattherotor-position-dependent inductancesinthevoltageequationsofaninductionmachine,whicharedue toelectriccircuitsinrelativemotion,couldbeeliminatedbyreplacingthe rotorvariableswithsubstitutevariablesassociatedwithsinusoidallydistributed stationarywindings.Thisisoftendescribedastransformingorreferringtherotor variablestoaframeofreferencefixedinthestatororthestationaryreference frame.Aboutthesametime,E.Clarke[4]setforthanalgebraictransformation forthree-phasestationarycircuitstofacilitatetheirsteady-stateandtransient analysesofthree-phaseacpowersystems.Shereferredtothesesubstitute variablesasalpha,beta,andzerocomponents.

ReferenceFrameTheory:DevelopmentandApplications, FirstEdition.PaulC.Krause. ©2021JohnWiley&Sons,Inc.Published2021byJohnWiley&Sons,Inc.

In[5],G.Kronintroducedachangeofvariablesthateliminatedthe rotor-position-dependentinductancesofasymmetricalinductionmachine bytransformingboththestatorandtherotorvariablestoareferenceframerotatinginsynchronismwiththefundamentalelectricalangularvelocityofthestator variables.Thisreferenceframeiscommonlyreferredtoasthesynchronously rotatingreferenceframe.

D.S.Breretonetal.[6]employedachangeofvariablesthatalsoeliminatedthe rotor-position-varyinginductancesofasymmetricalinductionmachine.Thiswas accomplishedbytransformingthestatorvariablestoareferenceframerotatingat theelectricalangularvelocityoftherotor.

Park,Stanley,Kron,andBreretonetal.developedchangesofvariableseachof whichappearedtobeunique.Consequently,eachtransformationwasderivedand treatedseparatelyintheliteratureuntilitwasnotedin1965[7]thatallknownreal transformationsusedinmachineanalysiswerecontainedinonetransformation. TheArbitraryReferenceFramewasintroducedin[7]asageneralreferenceframe thatcontainedallknowntransformationssimplybyassigningthespeedofthereferenceframe.Forexample,when ��,thespeedofthe q and d axes,issetequalto zero,wehaveStanley’sandClarke’stransformations;with �� = ��r ,wehavePark’s andBrereton’stransformations;andwhen �� = ��e ,wehaveKron’s.Althoughthis wasaninterestingobservation,theconnectiontoTesla’srotatingmagneticfield wasnotmade.Althoughitshouldhavebeen,sincemovingfromonereference frametoanotherchangesonlythefrequencythatweobserveTesla’srotatingmagneticfield.

Inarecentpaper[8],theconnectionbetweenTesla’srotatingmagneticfield andthearbitraryreferenceframewassetforth.ItwasshownthatthetransformationtothearbitraryreferenceframewascontainedinTesla’sexpressionforthe rotatingmagneticfield.Moreover,oncethesymmetricalstatorandrotoraretransformedtothearbitraryreferenceframe,wehavethe q and d voltageequations forallmachines.Theonlythingthatmustbetransformedaretheflux-linkage equationsforthemachinebeingconsidered[9].

Upuntilthewritingof[10],thetransformationsweregivenwithoutanyexplanationastothebasisofthetransformation.Itwasacceptedwithoutquestion. Althoughitwaspossibletoobtainthetransformationbyreferringthe abc axes toa qd-axis,therewasnotananalyticalbasisforthetransformation.Thisplagued machineanalystsfornearlyahundredyears.

Duringthewritingof[10]itwasfoundthattheequationforTesla’srotating magneticfieldcontainedthebasiswehadallbeentryingtofindsincePark’swork. Thisformsthemachineanalysisin[10]andwasexplainedin[9].Thisapproach tomachineanalysisisthesubjectofthenexttwochapters.InChapter2,werefer Tesla’srotatingmagneticfieldtoarotatingaxis.InChapter3,weestablishthe connectionbetweenTesla’srotatingmagneticfieldandreferenceframetheory.

References

1 Park,R.H.(1929).Two-reactiontheoryofsynchronousmachines–generalized methodofanalysis–partI. AIEETrans. 48:716–727.

2 Riaz,M.(1956).Analoguecomputerrepresentationsofsynchronousgenerators involtage-regulationstudies. Trans.AIEEPowerApp.Syst. 75:1178–1184.See discussionbyC.H.Thomas.

3 Stanley,C.H.(1938).Ananalysisoftheinductionmotor. AIEETrans. 57(Supplement):751–755.

4 Clarke,E.(1943). CircuitAnalysisofA-CPowerSystems,Vol.1–Symmetrical andRelatedComponents.NewYork:Wiley.

5 Kron,G.(1951). EquivalentCircuitsofElectricMachinery.NewYork:Wiley.

6 Brereton,D.S.,Lewis,D.G.,andYoung,C.G.(1957).Representationofinductionmotorloadsduringpowersystemstabilitystudies. AIEETrans. 76: 451–461.

7 Krause,P.C.andThomas,C.H.(1965).Simulationofsymmetricalinduction machinery. IEEETrans.PowerApp.Syst. 84:1038–1053.

8 Krause,P.C.,Wasynczuk,O.,O’Connell,T.C.,andHasan,M.(2018).Tesla’s contributiontoelectricmachineanalysis.Presentedatthe2018Summer MeetingofIEEE(5-9August2018),Portland,OR.

9 Krause,P.C.,Wasynczuk,O.,Pekarek,S.D.,andO’Connell,T.C.(2020). ElectromechanicalMotionDevices,3e.Wiley,IEEEPress.

10 Krause,P.C.,Wasynczuk,O.,O’Connell,T.C.,andHasan,M.(2017). IntroductiontoPowerandDriveSystems.NewYork:Wiley,IEEEPress.

Tesla’sRotatingMagneticField

2.1Introduction

ItistoldthatwhenTeslawasastudenthearguedwithhisprofessorthatthere mustbeabetterwaytodesignanelectricmachinethanthedcmachinebeing demonstratedinclass.Nearlyadecadelater,Teslainventedtheinductionmachine whereheemployedtherotatingmagneticfield[1].Therotatingmagneticfield hasbeenreferredtoastherotatingair-gapmmf,rotatingmagneticpoles,andthe rotatingfield.NotonlyisTesla’srotatingmagneticfieldthebackboneoftheac machineoperation,itisalsothekeytotheanalysisofacmachines.Theimportance ofviewingTesla’srotatingmagneticfieldfromanyframeofreferencecannotbe overemphasized.Weshowthatthetransformtoareferenceframeestablishesthe substitutevariablesassociatedwiththefictitiouscircuitstoportrayTesla’srotatingmagneticfieldasviewedfromthatreferenceframe[2,3].Understandingthis connectionisveryhelpfultomachineandelectricdriveanalysis.Thischapteris devotedtoestablishingtheconceptofviewingTesla’srotatingmagneticfieldin thearbitraryreferenceframe.

2.2RotatingMagneticFieldforSymmetrical Two-PhaseStatorWindings

AnidealizedsinusoidallydistributedwindingisshowninFigure2.2-1.Eachcircle, ⊗ or ⊙,has ncs coils.Forthepositivecurrent ias thewindingdistributionfrom 0 <��s < 2�� maybeapproximatedas

ReferenceFrameTheory:DevelopmentandApplications, FirstEdition.PaulC.Krause. ©2021JohnWiley&Sons,Inc.Published2021byJohnWiley&Sons,Inc.

Sinusoidal approximate

Figure2.2-1 Sinusoidallydistributedstatorwinding.(a)Approximatesinusoidal distribution.(b)Developeddiagramof(a).(c)Sinusoidalapproximationof(b).

where Np isthepeakturnsdensityinturns/radian.If Ns representsthenumberof turnsoftheequivalentsinusoidallydistributedwinding,then,using �� asadummy variableofintegration

= ∫ �� 0 Np sin �� d�� = 2Np (2.2-3)

ThedevelopeddiagramisthelinearversionofFigure2.2-1a,and ��s ispositive fromrighttoleft.Thisdiagramisvalidsincetheair-gaplengthisverysmallcomparedtotheradiusoftherotor.Also,the ⊗ and ⊙ arethenotationthatweuse fromhereonforasinusoidallydistributedwinding.

WecanobtainaplotofthemmfbyapplyingAmperesLaw, ∮ H ⋅ dL = in ,as showninFigure2.2-2,whereonehalfofthemmfisdroppedacrosseachequal

2.2RotatingMagneticFieldforSymmetricalTwo-PhaseStatorWindings

Figure2.2-2 Closedpathsofintegrationandtheplotof mmf as . airgap.Figure2.2-3isaplotofthesinusoidalapproximationofmmf as shownin Figure2.2-2g.

Asetofsymmetrical,two-polestatorwindingsisshowninFigure2.2-4.The windingsareidenticalandsinusoidallydistributed,andtheairgapisuniform. Currententersthepaperat ⊗ andoutofthepaperat ⊙.Therotorwindingsare notshown.

Themmfforeachwindingmaybeexpressedas mmf as = Ns 2 ias cos ��s (2.2-4)

as-axis

as=ias cos ϕs

Figure2.2-3 Plotofsinusoidalapproximationof mmf as showninFigure2.2-2g.

bs-axis

Figure2.2-4 Elementarysymmetrical, two-poletwo-phasesinusoidallydistributed statorwindings. mmf bs = Ns 2 ibs sin ��s

axis

Thetotalair-gapmmfduetothetwo-polestatorwindings,whichisTesla’srotatingmagneticfieldwouldbe

mmf s = mmf as + mmf bs = Ns 2 (ias cos ��s + ibs sin ��s )

Thisisaveryimportantrelationship.Letthesteady-statecurrentsbeabalanced two-phaseset

Ibs = √2Is sin[��e t + ��esi (0)]

where Is isthermsvalueofthephasecurrent, ��e istheelectricalangularvelocityin rad/s,and ��esi (0) isthephaseangleofthecurrents.Forthisbalancedset, Ibs =−jIas . Ifwesubstitute(2.2-7)and(2.2-8)into(2.2-6),weseethatforthisbalancedset therotatingmagneticfieldtravelscounterclockwiseat ��e .Letuslookattherotatingmagneticfieldfromarotatingaxis.Todothisweintroducethe q-axis,which rotatesatanangularvelocity ��.Ifwelet �� betheangularpositionfromthe as-axis,

2.2RotatingMagneticFieldforSymmetricalTwo-PhaseStatorWindings 9

Figure2.2-5 Symmetrical,two-pole two-phasesinusoidallydistributedstator windingswithathirdmagneticaxis(q-axis).

Thedisplacementorcoordinate �� showninFigure2.2-5isfromthe q-axisjust as ��s isthedisplacementorcoordinatefromthe as-axis.Letusrelatethisdisplacementtoanadjacentdisplacementonthestator.FromFigure2.2-5

Ifwesubstitute(2.2-10)into(2.2-6),weobtain

TheconceptofTesla’srotatingfieldcanbeexplainedbyassumingthatthe steady-statephasecurrentsare(2.2-7)and(2.2-8)with �� esi (0) = 0.Attimezero, I as ismaximumand I bs iszero.Theair-gapmmfisorientedalongthe as-axis. Whenthetimehasadvancedtowhere ��e t = �� 2 , I as = 0,and I bs ismaximum,the air-gapmmfhasrotatedfromthe as-axistothe bs-axiswithanangularvelocityof ��e .Thatis,themmfhasrotatedcounterclockwiseat ��e relativetoanobserveron thestator.

Equation(2.2-11)iscornerstonetoreferenceframetheorywhichweconsiderin Chapter3;however,letusfirstdealwithsteady-stateconditions.Ifwesubstitute balancesteady-statecurrentsgivenby(2.2-7)and(2.2-8)into(2.2-11)andafter somework

Now, ��e istheangularfrequencyoftheelectricalsystem,and �� istheangular velocityofthe q-axis,where �� isthedisplacementfromthe q-axis,and �� (0)isthe timezeropositionofthe q-axis(2.2-9)whichwehavelettobezeroin(2.2-12).We continuetoset �� (0)equaltozerounlessotherwisespecified.

Ifnowwelettheangularvelocityofthe q-axistobezero(�� = 0)and �� (0) = 0, then �� = ��s ,andwewouldbeviewingTesla’srotatingmagneticfieldasastationaryobserver.Inthiscase,(2.2-12)becomes

wherewehaveaddedasuperscript s toemphasizethatweareobservingTesla’s rotatingmagneticfieldfromastationaryframeofreference.If ��esi (0) and ��s are constants,mmf s s isviewedasasinusoidalvariationoffrequency ��e .If,forexample, ��s iszero,wewouldbepositioned(fixed)atthe as-axis(��s = 0inFigure2.2-5), andthemmf s s wouldbepulsatingat ��e andthemmfisrotatingcounterclockwise. Letusthinkaboutthisforaminute.WeareobservingTesla’srotatingmagnetic fieldaswestandonthestator.Weseetherotatingmagneticfieldpulsatingat ��e .It seemslogicalforthistwo-poledevicethatthevariablesassociatedwiththisrotatingmagneticfieldinthisframeofreferencewouldvaryat ��e .Thisissomethingwe alreadyknew.Thatis,thebalancedsetofcurrentsthatproducesthisviewofthe rotatingmagneticfieldisthebalancedsteady-statesetgivenby(2.2-7)and(2.2-8). Ifwenowlet �� = ��e ,(2.2-12)becomes

where ��e isthedisplacementfromthe q-axiswhichisrotatingat ��e .Since ��esi (0) isconstantforbalancedsteady-stateconditions,(2.2-14)isasinusoidalfunction ofthespatialvariable ��e (thedisplacementfromthe q-axis).Itsmaximumvalue occursat ��e = ��esi (0) , whichisthephaseangleofthebalancedsteady-statestator currents.Inotherwords,weareobservingTesla’srotatingmagneticfieldaswerun at ��e inthecounterclockwisedirectionaroundtheairgap,andthisfieldappears constanttousforbalancedsteady-stateconditionsandthevariablesmustbedc. Since ��e istheangularfrequencyof Ias and Ibs ,andthe q-axisisalsorotatingat ��e orinsynchronismwiththeelectricalsystem,thisisreferredtoasthe synchronously rotatingframeofreference.Therein,sincewehave360∘ vision,Tesla’srotating magneticfieldappearstousasasinusoidalfunctionof ��e (aspacesinusoid)with themaximumvalueat ��e = ��esi (0) fromthe q-axisandstationaryrelativetous sincewearerotatingat ��e counterclockwise.ThisisdepictedinFigure2.2-6, where ��esi (0) isselectednegativetocorrespondtoinductivecircuits.Apositive mmf e s isasouthpoleduetothestatorcurrents (Ss ) withthemaximumintensityat ��e = ��esi (0).Anegativemmf e s representsastatornorthpole (Ns ). WecanviewTesla’srotatingmagneticfieldfromframesofreferenceotherthan astationaryobserver.InFigure2.2-6,thereferenceframeisrotatingat ��e inthe counterclockwisedirection.TheimportanceofFigure2.2-6cannotbeoveremphasized.Itistheconnectionbetweendisplacementandtime.Wefindthatthis conceptenablesaclearvisualizationoftheoperationofelectricmachinesand

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.