Full download Theory and design for mechanical measurements 7th edition richard s. figliola pdf docx

Page 1


Theory and Design for Mechanical Measurements 7th Edition Richard S. Figliola

Visit to download the full and correct content document: https://ebookmass.com/product/theory-and-design-for-mechanical-measurements-7th -edition-richard-s-figliola/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Theory and Design for Mechanical Measurements, 6th Edition 6th Edition, (Ebook PDF)

https://ebookmass.com/product/theory-and-design-for-mechanicalmeasurements-6th-edition-6th-edition-ebook-pdf/

Mechanical Measurements 6th Edition Thomas G. Beckwith

https://ebookmass.com/product/mechanical-measurements-6thedition-thomas-g-beckwith/

Mechanical Design: Theory and Applications T. H. C. Childs

https://ebookmass.com/product/mechanical-design-theory-andapplications-t-h-c-childs/

Shigley's Mechanical Engineering Design (11th Ed.) 11th Edition Richard Budynas

https://ebookmass.com/product/shigleys-mechanical-engineeringdesign-11th-ed-11th-edition-richard-budynas/

Shigley's mechanical engineering design (11th Ed.) 11th Edition Richard G. Budynas

https://ebookmass.com/product/shigleys-mechanical-engineeringdesign-11th-ed-11th-edition-richard-g-budynas/

Shigley's Mechanical Engineering Design in SI Units (11th Ed.) 11th Edition Richard Budynas

https://ebookmass.com/product/shigleys-mechanical-engineeringdesign-in-si-units-11th-ed-11th-edition-richard-budynas/

Geometric Dimensioning and Tolerancing for Mechanical Design 2/E 2nd Edition

https://ebookmass.com/product/geometric-dimensioning-andtolerancing-for-mechanical-design-2-e-2nd-edition/

A Course in Luminescence Measurements and Analyses for Radiation Dosimetry Stephen W. S. Mckeever

https://ebookmass.com/product/a-course-in-luminescencemeasurements-and-analyses-for-radiation-dosimetry-stephen-w-smckeever/

Introducing Communication Theory: Analysis and Application 7th International Student edition Edition Richard West

https://ebookmass.com/product/introducing-communication-theoryanalysis-and-application-7th-international-student-editionedition-richard-west/

THEORYAND DESIGNFOR MECHANICAL MEASUREMENTS

THEORYAND DESIGNFOR MECHANICAL

MEASUREMENTS

RichardS.Figliola

ClemsonUniversity

DonaldE.Beasley

ClemsonUniversity

VPANDDIRECTORLaurieRosatone

EDITORIALDIRECTORDonFowley

EDITORJenniferBrady

EDITORIALMANAGERJudyHowarth

CONTENTMANAGEMENTDIRECTORLisaWojcik

CONTENTMANAGERNicholeUrban

SENIORCONTENTSPECIALISTNicoleRepasky

PRODUCTIONEDITORKavithaBalasundaram

COVERPHOTOCREDIT©RichardFigliola

Thisbookwassetin10/12ptTimesLTStd-RomanbySPiGlobalandprintedandboundbyQuadGraphics.

Foundedin1807,JohnWiley&Sons,Inc.hasbeenavaluedsourceofknowledgeandunderstandingformorethan200years,helpingpeoplearound theworldmeettheirneedsandfulfilltheiraspirations.Ourcompanyisbuiltonafoundationofprinciplesthatincluderesponsibilitytothecommunities weserveandwhereweliveandwork.In2008,welaunchedaCorporateCitizenshipInitiative,aglobalefforttoaddresstheenvironmental,social, economic,andethicalchallengeswefaceinourbusiness.Amongtheissuesweareaddressingarecarbonimpact,paperspecificationsandprocurement, ethicalconductwithinourbusinessandamongourvendors,andcommunityandcharitablesupport.Formoreinformation,pleasevisitourwebsite: www.wiley.com/go/citizenship.

Copyright©2019,2015,2006,2000,1995,1991JohnWiley&Sons,Inc.Allrightsreserved.Nopartofthispublicationmaybereproduced,storedin aretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,recording,scanningorotherwise,exceptas permittedunderSections107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,or authorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923(Web site:www.copyright.com).RequeststothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111 RiverStreet,Hoboken,NJ07030-5774,(201)748-6011,fax(201)748-6008,oronlineat:www.wiley.com/go/permissions.

Evaluationcopiesareprovidedtoqualifiedacademicsandprofessionalsforreviewpurposesonly,foruseintheircoursesduringthenextacademicyear. Thesecopiesarelicensedandmaynotbesoldortransferredtoathirdparty.Uponcompletionofthereviewperiod,pleasereturntheevaluationcopyto Wiley.Returninstructionsandafreeofchargereturnshippinglabelareavailableat:www.wiley.com/go/returnlabel.Ifyouhavechosentoadoptthis textbookforuseinyourcourse,pleaseacceptthisbookasyourcomplimentarydeskcopy.OutsideoftheUnitedStates,pleasecontactyourlocalsales representative.

ISBN:978-1-119-47566-8(PBK)

ISBN:978-1-119-49522-2(EVALC)

LibraryofCongressCataloging-in-PublicationData

Names:Figliola,R.S.,author.|Beasley,DonaldE.,author.

Title:Theoryanddesignformechanicalmeasurements/RichardS.Figliola, ClemsonUniversity,DonaldE.Beasley,ClemsonUniversity.

Description:Seventhedition.|Hoboken,NJ:Wiley,2019.|Includes bibliographicalreferencesandindex.|

Identifiers:LCCN2018056461(print)|LCCN2018056669(ebook)|ISBN 9781119495192(AdobePDF)|ISBN9781119475651(ePub)|ISBN9781119475668 (PBK)|ISBN9781119495222(EVALC)

Subjects:LCSH:Measurement.|Measuringinstruments.

Classification:LCCT50(ebook)|LCCT50.F542019(print)|DDC 530.8—dc23

LCrecordavailableathttps://lccn.loc.gov/2018056461

Theinsidebackcoverwillcontainprintingidentificationandcountryoforiginifomittedfromthispage.Inaddition,iftheISBNonthebackcover differsfromtheISBNonthispage,theoneonthebackcoveriscorrect.

PREFACE

Therevisededitionof TheoryandDesignforMechanicalMeasurements continuestoprovidea well-founded,fundamentalbackgroundinthetheoryandpracticeofengineeringmeasurements. Thiseditiontakesadvantageofweb-basedandinteractivetechnologytoimprovetheonlineand e-formataccesstomaterialsforimprovedpedagogywhileretainingarchivalmaterialinthepublishededition.Thisformatminimizesprintmaterialsinourefforttoreducetextcosts.

Aswitheachotheredition,wehaveintegratedthenecessaryelementstoconductengineering measurementsthroughthedesignofmeasurementsystemsandmeasurementtestplans,withan emphasisontheroleofstatisticsanduncertaintyanalysesinthatprocess.Thetextisappropriate forundergraduate-levelandgraduate-levelstudyinengineering.Thetextissuitablyadvancedand orientedtoserveasareferencesourceforprofessionalpractitioners.Ratherthanatopicalsource ofinformation,wehaveprovidedsufficientbackgroundmaterialtoenableintelligentselectionof instrumentsanddesignofmeasurementsystems.Thepedagogicalapproachinvitesindependent studyoruseinrelatedfieldsthatrequireanunderstandingofinstrumentationandmeasurements.

Theorganizationusedineacheditionofthistextdevelopsfromourviewthatcertainaspectsof measurementscanbegeneralized,suchastestplandesign,signalanalysisandreconstruction,and measurementsystemresponse.Topicssuchasstatisticsanduncertaintyanalysisrequireabasic developmentofprinciplesbutarethenbestillustratedbyintegratingthesetopicsthroughoutthe textmaterial.Otheraspectsarebettertreatedinthecontextofthemeasurementofaspecific physicalquantity,suchasstrainortemperature.

PedagogicalToolstoAidLearning

Wehaveretainedcertainsuccessfulelementsfromprioreditionsinthistextbook:

• Eachchapterbeginsbydefiningasetof learningoutcomes

• Thetextdevelopsan intuitiveunderstanding ofmeasurementconceptswithitsfocusontest systemmodeling,testplandesign,anduncertaintyanalysis.

• Eachchapterincludescarefullyconstructed exampleproblems thatillustratenewmaterialand problemsthatbuildonpriormaterial.Whereappropriatecasestudiesandvignettesillustrate currentapplicationsofmeasurementtheoryordesign.

• Exampleproblemsmakeuseofa KNOWN,FIND,SOLVE approachasanorganizationalaid towardsolution.Thismethodologyforproblemsolutionshelpsnewuserstolinkwordsand conceptswithsymbolsandequations.Manyproblemscontain COMMENTS thatexpandon thesolution,provideapropercontextforapplicationoftheprinciple,orofferdesignapplicationinsight.

• End-of-chapterpracticeproblems areincludedforeachchaptertoexercisenewconcepts.

• Practiceproblemsrangefromthosefocusedonconceptdevelopmenttobuildingof advancedskillstoopen-endeddesignapplications.Someproblemsrequireindependent researchforspecificapplicationsormeasurementtechniques.

• Withineachchapter,wehaveaddednewpracticeproblemsandremovedsomeoldproblems fromprioreditions.

• Weprovideonlineaccesstoasolutionsmanualforinstructorswhohaveadoptedthebook andregisteredwithWiley.Materialsarepostedonthetextbookwebsiteatwww.wiley.com/ go/figliola/Theory&designformechanicalmeasurements7e.

• Useofthesoftwareinproblemsolvingallowsin-depthexplorationofkeyconceptsthatwould beprohibitivelytimeconsumingotherwise.Thetextincludesonlineaccessto interactive software offocusedexamplesbasedonsoftwareusingNationalInstrumentsLabview® or Matlab®.TheLabviewprogramsareavailableasexecutablessothattheycanberundirectly withoutaLabviewlicense.ThesoftwareisavailableonboththeWileystudentandinstructor websites.

NewtoThisRevisedEdition

Withthisrevisededition,wehaveneworexpandedmaterialonanumberoftopics:

• Wehaveupdatedtheend-of-chapterpracticeproblemsbyremovingsomeolderproblemsand addingnewproblems.Wehavereplacedmorethan25%oftheproblemsinthetext.

• WehaveaddedadedicatedsetofStudentProblemswith“click-to-access”toviewsolutions. Theseareroughly25%oftheend-of-chapterproblems.Thiscapabilityisaccessibletoreaders whohavepurchasedthecapabilitythroughWiley.

• Giventhenewe-format,wehaveaddedsomedatafilesthatcanbeaccessedelectronicallyand usedinpracticeproblems.

• WehavesetasideadedicatedsetofInstructorProblemswithsolutionstoassistinlecturesor assessment.ThesearevisibleonlytoinstructorswhohaveregisteredwithWiley.

SuggestedCourseCoverage(fromSixthEdition)

Toaidincoursepreparation,Chapters1–5provideanintroductiontomeasurementtheorywith statisticsanduncertaintyanalysis,Chapters6and7provideabroadtreatmentofanalogand digitalsamplingmethods,andChapters8–12focusoninstrumentation.

Manyusersreporttousthattheyusedifferentcoursestructures—somanythatitmakesapreferredorderoftopicalpresentationdifficulttoanticipate.Toaccommodatethis,wehavewritten thetextinamannerthatallowsanyinstructortocustomizetheorderofmaterialpresentation. AlthoughthematerialofChapters4and5isintegratedthroughoutthetextandshouldbetaught insequence,theotherchapterscanstandontheirown.Thetextisflexibleandcanbeusedina varietyofcoursestructuresatboththeundergraduateandgraduatelevels.

Foracompletemeasurementscourse,werecommendthestudyofChapters1–7withuseof theremainingchaptersasappropriate.Foralabcoursesequence,werecommendusingchapters astheybestillustratethecourseexerciseswhilebuildingcompletecoverageovertheseverallab coursesnormallywithinacurriculum.Themannerofthetextallowsittobearesourcefora lab-onlycoursewithminimallecture.Overtheyearswehaveuseditinseveralforums,aswell asinprofessionaldevelopmentcourses,andwesimplyrearrangematerialandemphasistosuit ouraudienceandobjective.

Weexpressoursincerestappreciationtothestudents,teachers,andengineerswhohaveused ourearliereditions.Weareindebtedtothemanywhohavewrittenuswiththeirconstructivecommentsandencouragement.SpecialthankstoKathyHays-Stang,UniversityofTexas-Arlington, andToddSchweisinger,ClemsonUniversity,fortheirdetailedfeedbackandsuggestions.

RichardS.Figliola

DonaldE.Beasley

Clemson,SouthCarolina

1 BASIC CONCEPTSOF MEASUREMENT METHODS 1

1.1 Introduction,1

1.2 GeneralMeasurementSystem,2

SensorandTransducer,2

Signal-ConditioningStage,3

OutputStage,4

GeneralTemplateforaMeasurementSystem,4

1.3 ExperimentalTestPlan,5

Variables,6

NoiseandInterference,8

Randomization,9

ReplicationandRepetition,13

ConcomitantMethods,14

1.4 Calibration,14

StaticCalibration,14

DynamicCalibration,14

StaticSensitivity,15

RangeandSpan,15

Resolution,16

AccuracyandError,16

RandomandSystematicErrorsandUncertainty,16

SequentialTest,19

Hysteresis,19

RandomTest,19

LinearityError,19

SensitivityandZeroErrors,21

InstrumentRepeatability,21

Reproducibility,21

InstrumentPrecision,21

OverallInstrumentErrorandInstrumentUncertainty,22 VerificationandValidation,22

1.5 Standards,22

PrimaryUnitStandards,22

BaseDimensionsandTheirUnits,23

DerivedUnits,25

HierarchyofStandards,28

TestStandardsandCodes,29

1.6 PresentingData,30

RectangularCoordinateFormat,30

SemilogCoordinateFormat,30

Full-LogCoordinateFormat,30

SignificantDigits,30 Summary,33 Nomenclature,34 References,34

2 STATICAND DYNAMIC CHARACTERISTICSOF SIGNALS 35

2.1 Introduction,35

2.2 Input/OutputSignalConcepts,35 GeneralizedBehavior,36

ClassificationofWaveforms,36 SignalWaveforms,38

2.3 SignalAnalysis,39

SignalRoot-Mean-SquareValue,40

DiscreteTimeorDigitalSignals,40 DirectCurrentOffset,41

2.4 SignalAmplitudeandFrequency,42 PeriodicSignals,43 FrequencyAnalysis,45 FourierSeriesandCoefficients,48 FourierCoefficients,48

SpecialCase:Functionswith T = 2π,49 EvenandOddFunctions,49

2.5 FourierTransformandtheFrequencySpectrum,55 DiscreteFourierTransform,56 AnalysisofSignalsinFrequencySpace,60 Summary,62 References,63 SuggestedReading,63 Nomenclature,63

3 MEASUREMENT SYSTEM BEHAVIOR 64

3.1 Introduction,64

3.2 GeneralModelforaMeasurementSystem,64 DynamicMeasurements,65 MeasurementSystemModel,66

3.3 SpecialCasesoftheGeneralSystemModel,68 Zero-OrderSystems,68 First-OrderSystems,69 Second-OrderSystems,79

3.4 TransferFunctions,88

3.5 PhaseLinearity,90

3.6 Multiple-FunctionInputs,91

3.7 CoupledSystems,93

3.8 Summary,95 References,95 Nomenclature,96 Subscripts,96

4 PROBABILITYAND STATISTICS 97

4.1 Introduction,97

4.2 StatisticalMeasurementTheory,98 ProbabilityDensityFunctions,98

4.3 DescribingtheBehaviorofaPopulation,103

4.4 StatisticsofFinite-SizedDataSets,107 StandardDeviationoftheMeans,110 RepeatedTestsandPooledData,113

4.5 HypothesisTesting,114

4.6 Chi-SquaredDistribution,117 PrecisionIntervalinaSampleVariance,118 Goodness-of-FitTest,119

4.7 RegressionAnalysis,121

Least-SquaresRegressionAnalysis,121 LinearPolynomials,124

4.8 DataOutlierDetection,126

4.9 NumberofMeasurementsRequired,127

4.10 MonteCarloSimulations,129 Summary,131 References,132 Nomenclature,132

5 UNCERTAINTY ANALYSIS 133

5.1 Introduction,133

5.2 MeasurementErrors,134

5.3 Design-StageUncertaintyAnalysis,136 CombiningElementalErrors:RSSMethod,137 Design-StageUncertainty,137

5.4 IdentifyingErrorSources,140 CalibrationErrors,141 Data-AcquisitionErrors,141 Data-ReductionErrors,142

5.5 SystematicandRandomErrorsandStandardUncertainties,142 SystematicError,142 RandomError,143 OtherWaysUsedtoClassifyErrorandUncertainty,144

5.6 UncertaintyAnalysis:Multi-VariableErrorPropagation,144 PropagationofError,145 ApproximatingaSensitivityIndex,146 SequentialPerturbation,149 MonteCarloMethod,151

5.7 Advanced-StageUncertaintyAnalysis,151 Zero-OrderUncertainty,152 Higher-OrderUncertainty,152 Nth-OrderUncertainty,152

5.8 Multiple-MeasurementUncertaintyAnalysis,157 PropagationofElementalErrors,157 PropagationofUncertaintytoaResult,163

5.9 CorrectionforCorrelatedErrors,168

5.10 NonsymmetricalSystematicUncertaintyInterval,170

Summary,172 References,172 Nomenclature,172

6 ANALOG ELECTRICAL DEVICESAND MEASUREMENTS 174

6.1 Introduction,174

6.2 AnalogDevices:CurrentMeasurements,174 DirectCurrent,174 AlternatingCurrent,178

6.3 AnalogDevices:VoltageMeasurements,179 AnalogVoltageMeters,179 Oscilloscope,179 Potentiometer,181

6.4 AnalogDevices:ResistanceMeasurements,182 OhmmeterCircuits,182 BridgeCircuits,182 NullMethod,184 DeflectionMethod,185

6.5 LoadingErrorsandImpedanceMatching,188 LoadingErrorsforVoltage-DividingCircuit,189 InterstageLoadingErrors,190

6.6 AnalogSignalConditioning:Amplifiers,193

6.7 AnalogSignalConditioning:Special-PurposeCircuits,196 AnalogVoltageComparator,196 Sample-and-HoldCircuit,197 ChargeAmplifier,197 4–20mACurrentLoop,199 MultivibratorandFlip-FlopCircuits,199

6.8 AnalogSignalConditioning:Filters,201 ButterworthFilterDesign,202 ImprovedButterworthFilterDesigns,203 BesselFilterDesign,208 ActiveFilters,209

6.9 Grounds,Shielding,andConnectingWires,211 GroundandGroundLoops,211 Shields,212 ConnectingWires,213 Summary,213 References,214 Nomenclature,214

7 SAMPLING,DIGITAL DEVICES, AND DATA ACQUISITION 215

7.1 Introduction,215

7.2 SamplingConcepts,216 SampleRate,216 AliasFrequencies,218 AmplitudeAmbiguity,221 Leakage,221 WaveformFidelity,223

7.3 DigitalDevices:BitsandWords,223

7.4 TransmittingDigitalNumbers:HighandLowSignals,226

7.5 VoltageMeasurements,227

Digital-to-AnalogConverter,227

Analog-to-DigitalConverter,228

SuccessiveApproximationConverters,232

7.6 DataAcquisitionSystems,237

7.7 DataAcquisitionSystemComponents,238

AnalogSignalConditioning:FiltersandAmplification,238 ComponentsforAcquiringData,241

7.8

AnalogInput–OutputCommunication,242

DataAcquisitionModules,242

7.9 DigitalInput–OutputCommunication,246

DataTransmission,247

UniversalSerialBus,248

BluetoothCommunications,248

OtherSerialCommunications:RS-232C,249

ParallelCommunications,249

7.10 DigitalImageAcquisitionandProcessing,252

ImageAcquisition,252

ImageProcessing,253

Summary,256 References,256 Nomenclature,256

8 TEMPERATURE MEASUREMENTS 258

8.1 Introduction,258 HistoricalBackground,258

8.2 TemperatureStandardsandDefinition,259

FixedPointTemperaturesandInterpolation,259 TemperatureScalesandStandards,260

8.3 ThermometryBasedonThermalExpansion,261

Liquid-in-GlassThermometers,262 BimetallicThermometers,262

8.4 ElectricalResistanceThermometry,263

ResistanceTemperatureDetectors,264 Thermistors,271

8.5 ThermoelectricTemperatureMeasurement,276 SeebeckEffect,276

PeltierEffect,277 ThomsonEffect,277 FundamentalThermocoupleLaws,278

BasicTemperatureMeasurementwithThermocouples,279 ThermocoupleStandards,280

ThermocoupleVoltageMeasurement,287

Multiple-JunctionThermocoupleCircuits,289 ApplicationsforThermoelectricTemperatureMeasurement:Heat Flux,291

DataAcquisitionConsiderations,294

8.6 RadiativeTemperatureMeasurements,297 RadiationFundamentals,297 RadiationDetectors,299

Radiometer,299 Pyrometry,300 OpticalFiberThermometers,301

Narrow-BandInfraredTemperatureMeasurement,302 FundamentalPrinciples,302 Two-ColorThermometry,303 Full-FieldIRImaging,303

8.7 PhysicalErrorsinTemperatureMeasurement,304 InsertionErrors,305 ConductionErrors,306 RadiationErrors,308 RadiationShielding,310

RecoveryErrorsinTemperatureMeasurement,311 Summary,313 References,313 SuggestedReading,313 Nomenclature,314

9 PRESSUREAND VELOCITY MEASUREMENTS 315

9.1 Introduction,315

9.2 PressureConcepts,315

9.3 PressureReferenceInstruments,318 McLeodGauge,318 Barometer,319 Manometer,320 DeadweightTesters,324

9.4 PressureTransducers,325 BourdonTube,326 BellowsandCapsuleElements,326 Diaphragms,327 PiezoelectricCrystalElements,330

9.5 PressureTransducerCalibration,331 StaticCalibration,331 DynamicCalibration,331

9.6 PressureMeasurementsinMovingFluids,333 TotalPressureMeasurement,334 StaticPressureMeasurement,335

9.7 ModelingPressure–FluidSystems,336

9.8 DesignandInstallation:TransmissionEffects,337 Liquids,338 Gases,339 HeavilyDampedSystems,340

9.9 AcousticalMeasurements,341 SignalWeighting,341 Microphones,342

9.10 FluidVelocityMeasuringSystems,345 Pitot–StaticPressureProbe,346 ThermalAnemometry,348 DopplerAnemometry,350

ParticleImageVelocimetry,352 SelectionofVelocityMeasuringMethods,353

Summary,354 References,354 Nomenclature,355

10 FLOW MEASUREMENTS 357

10.1 Introduction,357

10.2 HistoricalBackground,357

10.3 FlowRateConcepts,358

10.4 VolumeFlowRatethroughVelocityDetermination,359

10.5 PressureDifferentialMeters,361

ObstructionMeters,361

OrificeMeter,364

VenturiMeter,366

FlowNozzles,368

SonicNozzles,373

ObstructionMeterSelection,374 LaminarFlowElements,376

10.6 InsertionVolumeFlowMeters,377

ElectromagneticFlowMeters,377

VortexSheddingMeters,379 Rotameters,381 TurbineMeters,382

TransitTimeandDoppler(Ultrasonic)FlowMeters,383 PositiveDisplacementMeters,384

10.7 MassFlowMeters,386

ThermalFlowMeter,386

CoriolisFlowMeter,387

10.8 FlowMeterCalibrationandStandards,391

10.9 EstimatingStandardFlowRate,392 Summary,393 References,393 Nomenclature,393

11 STRAIN MEASUREMENT 395

11.1 Introduction,395

11.2 StressandStrain,395 LateralStrains,397

11.3 ResistanceStrainGauges,398 MetallicGauges,398

StrainGaugeConstructionandBonding,400 SemiconductorStrainGauges,403

11.4 StrainGaugeElectricalCircuits,404

11.5 PracticalConsiderationsforStrainMeasurement,407 TheMultipleGaugeBridge,407 BridgeConstant,408

11.6 ApparentStrainandTemperatureCompensation,409 TemperatureCompensation,410 BridgeStaticSensitivity,412 PracticalConsiderations,413 AnalysisofStrainGaugeData,413

SignalConditioning,416

11.7 OpticalStrainMeasuringTechniques,418

BasicCharacteristicsofLight,418

PhotoelasticMeasurement,419

MoiréMethods,421

FiberBraggStrainMeasurement,422 Summary,424 References,424 Nomenclature,424

12 MECHATRONICS:SENSORS,ACTUATORS, AND CONTROLS 426

12.1 Introduction,426

12.2 Sensors,426

DisplacementSensors,426

MeasurementofAccelerationandVibration,430

VelocityMeasurements,437

AngularVelocityMeasurements,441

ForceMeasurement,444

TorqueMeasurements,447

MechanicalPowerMeasurements,448

12.3 Actuators,450

LinearActuators,450

PneumaticandHydraulicActuators,452

RotaryActuators,455

Flow-ControlValves,455

12.4 Controls,457

DynamicResponse,460

LaplaceTransforms,460

BlockDiagrams,463

ModelforOvenControl,464

Proportional–Integral(PI)Control,468

Proportional–Integral–DerivativeControlofaSecond-Order System,469 Summary,474 References,474 Nomenclature,474

PROBLEMS (AVAILABLEINE-TEXTFORSTUDENTS)P-1

A PROPERTY DATAAND CONVERSION FACTORS A-1

B LAPLACE TRANSFORM BASICS A-8

B.1 FinalValueTheorem,A-9

B.2 LaplaceTransformPairs,A-9 Reference,A-9

Chapter1Problems

Studentsolutionavailableininteractivee-text.

1.1 Selectthreedifferenttypesofmeasurementsystemswith whichyouhaveexperience,andidentifywhichattributes ofthesystemcomprisethemeasurementsystemstagesof Figure1.4.Usesketchesasneeded.

1.2 Foreachofthefollowingsystems,identifythecomponentsthatcompriseeachmeasurementsystemstageper Figure1.4:

a. microphone/amplifier/speakersystem

b. roomheatingthermostat

c. handheldmicrometer

d. tirepressure(pencil-style)gauge

1.3 Consideranelectronicautomotivespeedometer.ThesendingunitthatsensesthespeedoperatesontheprincipleillustratesinFigure12.19.Describetheoperationofthecompletespeedmeasuringsystemby:

a. Researchingtheoperationofanelectronicautomotive speedometerincludingallofthestagesillustratedin Figure1.4

b. Identifyanddescribethestagesofthismeasurement system.

1.4 Consideranelectronicautomotivespeedcontrolsystem (cruisecontrol).Describetheoperationofthecomplete speedmeasuringsystemby:

a. ResearchingtheoperationofanelectroniccruisecontrolincludingallofthestagesillustratedinFigure1.4

b. Identifyanddescribethestagesofthismeasurement system.

1.5 Laserrangefindersprovideaccuratedistancemeasurementsinapplicationsrangingfromthemilitarytogolf. Describetheoperationofthissystemby:

a. Researchingtheoperationofthissystemincludingall ofthestagesillustratedinFigure1.4.

b. Identifyanddescribethestagesofthismeasurement system.

1.6 Automotiveparkingassistsystemsallowforeaseinparallel parking.Describetheoperationofthissystemby:

a. Researchingtheoperationofthissystemincludingallof thestagesillustratedinFigure1.4.Includeinthecontrol stagetheactuatorsthatperformthesteering.

b. Identifyanddescribethestagesofthiscontrolsystem.

1.7 Dialtemperaturegaugesprovidecost-effectivemeansof measuringtemperature.Describetheoperationofthis systemby:

a. Researchingtheoperationofthissystemincludingall ofthestagesillustratedinFigure1.4.

b. Identifyanddescribethestagesofthismeasurement system.

1.8 Tippingbucketraingaugesprovideaccuratemeasurementofrainfallamounts.Describetheoperationofthis systemby:

a. Researchingtheoperationofthissystemincludingall ofthestagesillustratedinFigure1.4.

b. Identifyanddescribethestagesofthismeasurement system.

1.9 ConsiderExample1.1.Discusstheeffectoftheextraneous variablebarometricpressureintermsofnoiseandinterferencerelativetoanyonetestandrelativetoseveraltests. Explainhowinterferenceeffectscanbebrokenupinto noiseusingrandomization.

1.10 Statewhetherthefollowingareacontinuousvariableora discretevariable:(new)

a. Time

b. Temperature

c. Bankaccountbalance

d. Pixelsinadisplay

1.11 Citethreeexampleseachofacontinuousvariableandadiscretevariable.

1.12 Supposeyoufoundadialthermometerinastockroom. Couldyoustatehowaccurateitis?Discussmethodsby whichyoumightestimaterandomandsystematicerrorin thethermometer?

1.13 Discusshowtheresolutionofthedisplayscaleofan instrumentcouldaffectitsuncertainty.Supposethescale wassomehowoffsetbyoneleastcountofresolution: Howwouldthisaffectitsuncertainty?Explainintermsof randomandsystematicerror.

1.14 Abulbthermometerhangsoutsideahousewindow. Commentonextraneousvariablesthatmightaffectthe differencebetweentheactualoutsidetemperatureandthe indicatedtemperatureonthethermometer.

1.15 Asynchronouselectricmotorteststandpermitseitherthe variationofinputvoltageortheoutputshaftloadwiththe subsequentmeasurementofmotorefficiency,windingtemperature,andinputcurrent.Commentontheindependent, dependent,andextraneousvariablesforamotortest.

1.16 ThetransducerspecifiedinTable1.1ischosentomeasure anominalpressureof500cmH2 O.Theambienttemperatureisexpectedtovarybetween18 ∘ Cand25 ∘ Cduring tests.Estimatethepossiblerange(magnitude)ofeachlisted elementalerroraffectingthemeasuredpressure.

1.17 Aforcemeasurementsystem(weightscale)hasthefollowingspecifications:

Linearityerror0.10%FSO

Hysteresiserror0.10%FSO

Sensitivityerror0.15%FSO

Zerodrift0.20%FSO

Estimatetheoverallinstrumentuncertaintyforthissystem basedonavailableinformation.Usethemaximumpossible outputvalueovertheFSOinyourcomputations.

1.18 Statethepurposeofusingrandomizationmethodsduringa test.Developanexampletoillustrateyourpoint.

1.19 Provideanexampleofrepetitionandreplicationinatest planfromyourownexperience.

1.20 Developatestplanthatmightbeusedtoestimatetheaveragetemperaturethatcouldbemaintainedinaheatedroom asafunctionoftheheaterthermostatsetting.

1.21 Developatestplanthatmightbeusedtoevaluatethefuel efficiencyofaproductionmodelautomobile.Explainyour reasoning.

1.22 Araceengineshophasjustcompletedtwoenginesofthe samedesign.Howmightyou,theteamengineer,determine whichenginewouldperformbetterforanupcomingrace (a)basedonateststanddata(enginedynamometer)and(b) basedonracetrackdata?Describesomemeasurementsthat youfeelmightbeuseful,andexplainhowyoumightuse thatinformation.Discusspossibledifferencesbetweenthe twotestsandhowthesemightinfluencetheinterpretation oftheresults.

1.23 Developatestplantocomparetoollifeforthreedifferent typesofdrillbitsforadrillingprocessinstainlesssteel. Howwouldcostenterthistestplan?

1.24 Developatestplantodeterminetheoptimumdriverloft foranindividualgolfer.Howwouldthetestplandifferif

theplayerwishedtooptimizecarryortotaldistance?Note: Alittleresearchoraconversationwithagolfermighthelp.

1.25 Athermodynamicsmodelassumesthataparticulargas behavesasanidealgas:Pressureisdirectlyrelatedto temperatureanddensity.Howmightyoudeterminethat theassumedmodeliscorrect(validation)?

1.26 RegardingtheMarsClimateOrbiterspacecraftexample presented,discusshowverificationtestsbeforelaunch couldhaveidentifiedthesoftwareunitsproblemthatledto thecatastrophicspacecraftfailure.Explainthepurposeof verificationtesting?

1.27 Alargebatchofcarefullymademachineshaftscanbemanufacturedon1of4lathesby1of12qualitymachinists.Set upatestmatrixtoestimatethetolerancesthatcanbeheld withinaproductionbatch.Explainyourreasoning.

1.28 Suggestanapproachorapproachestoestimatethelinearity errorandthehysteresiserrorofameasurementsystem.

1.29 Suggestatestmatrixtoevaluatethewearperformanceof fourdifferentbrandsofaftermarketpassengercartiresof thesamesize,load,andspeedratingsonafleetofeightcars ofthesamemake.Ifthecarswerenotofthesamemake, whatwouldchange?

1.30 Therelationbetweentheflowrate, Q,throughapipeline ofarea A andthepressuredrop Δp acrossanorifice-type flowmeterinsertedinthatline(Figure1.15)isgivenby Q = CA√2Δp/�� where �� isdensityand C isacoefficient. Forapipediameterof1mandaflowrangeof20 ∘ C waterbetween2and10m3 /minand C = 0.75,plotthe expectedformofthecalibrationcurveforflowrateversus pressuredropovertheflowrange.Isthestaticsensitivity aconstant?Incidentally,thedeviceandtestmethodis describedbybothANSI/ASMETestStandardPTC19.5 andISO5167.

1.31 Thesaleofmotorfuelisanessentialbusinessintheglobal economy.Federal(U.S.)lawrequiresthequantityoffuel deliveredataretailestablishmenttobeaccuratetowithin 0.5%.(a)Determinethemaximumallowableerrorinthe deliveryof25gallons(oruse95L).(b)Provideanestimateofthepotentialcoststoaconsumeratthemaximum allowableerrorover150,000miles(240,000km)basedon anaveragefuelmileageof30.2mpg(7.8L/100km).(c)As aknowledgeableconsumer,citeoneortwowaysforyouto identifyaninaccuratepump.

1.32 UsingeithertheASME19.5orISO5167teststandard, explainhowtouseaventuriflowmeter.Whataretheindependentvariable(s)anddependentvariable(s)inengineeringpractice?Explain.

1.33 Apistonenginemanufacturerusesfourdifferentsubcontractorstoplatethepistonsforamakeofengine.Plating thicknessisimportantinqualitycontrol(performanceand partlife).Deviseatestmatrixtoassesshowwellthemanufacturercancontrolplatingunderitscurrentsystem.

OrificeflowmetersetupusedforProblem1.21.

1.34 Asimplethermocouplecircuitisformedusingtwowires ofdifferentalloy:Oneendofthewiresistwistedtogether toformthemeasuringjunction,andtheotherendsareconnectedtoadigitalvoltmeter,formingthereferencejunction.Avoltageissetupbythedifferenceintemperature betweenthetwojunctions.Foragivenpairofalloymaterial andreferencejunctiontemperature,thetemperatureofthe measuringjunctionisinferredfromthemeasuredvoltage difference.Whatarethedependentandindependentvariablesduringpracticaluse?Whataboutduringacalibration?

1.35 Alinearvariabledisplacementtransducer(LVDT)senses displacementandindicatesavoltageoutputthatislinear totheinput.Figure1.16showsanLVDTsetupusedfor staticcalibration.Itusesamicrometertoapplytheknown

displacementandavoltmeterfortheoutput.Awell-defined voltagepowersthetransducer.Whataretheindependent anddependentvariablesinthiscalibration?Wouldthese changeinpracticaluse?

1.36 FortheLVDTcalibrationofproblem1.35,whatwouldbe involvedindeterminingtherepeatabilityoftheinstrument? Thereproducibility?Whateffectsaredifferentinthetwo tests?Explain.

1.37 Amanufacturerwantstoquantifytheexpectedaveragefuel mileageofaproductlineofautomobiles.Itdecidesthat eitheritcanputoneormorecarsonachassisdynamometer andrunthewheelsatdesiredspeedsandloadstoassessthis, oritcanusedriversanddrivethecarsoversomeselected courseinstead.(a)Discussthemeritsofeitherapproach,

FIGURE1.15

consideringthecontrolofvariablesandidentifyingextraneousvariables.(b)Canyourecognizethatsomewhatdifferenttestsmightprovideanswerstodifferentquestions? Forexample,discussthedifferenceinmeaningspossible fromtheresultsofoperatingonecaronthedynamometerandcomparingittoonedriveronacourse.Citeother examples.(c)Dothesetwotestmethodsserveasexamples ofconcomitantmethods?

1.38 Thecoefficientofrestitutionofavolleyballisfoundby droppingtheballfromaknownheight H andmeasuring theheightofthebounce, h.Thecoefficientofrestitution, CR ,isthencalculatedas CR = √h/H .Developatestplan formeasuring CR thatincludestherangeofconditions expectedincollege-levelvolleyballplay.

1.39 Asdescribedinaprecedingproblem,thecoefficientof restitutionofavolleyball, CR = √h/H ,isdetermined forarangeofimpactvelocities.Theimpactvelocityis vi = √2gH andiscontrolledbythedroppingtheball fromaknownheight H .Letthevelocityimmediately afterimpactbe vf = √2gh where h isthemeasuredreturn height.Listtheindependentanddependentvariables, parameters,andmeasuredvariables.

1.40 Lightgatesmaybeusedtomeasurethespeedofprojectiles, suchasarrowsshotfromabow.Englishlongbowsmadeof yewinthe1400sachievedlaunchspeedsof60m/s.Determinetherelationshipbetweenthedistancebetweenlight gatesandtheaccuracyrequiredforsensingthetimeswhen thelightgatesensesthepresenceofthearrow.

1.41 Developaplantocalibratethefollowing:

a. ThestandardNationalWeatherServiceraingauge

b. Tippingbucketraingauge

c. Distancemeasuringwheel

1.42

Estimateyourcar’sfuelusebyrecordingregularlythefuel volumeusedoveraknowndistance.Yourbrother,who drivesthesamemodelcar,disagreeswithyourclaimed resultsbasedonhisownexperience.Suggestreasonsto justifythedifferences?Howmightyoutesttoprovide justificationforeachofthesereasons?

1.43 Whendiscussingconcomitantmethods,weusedthe exampleofestimatingthevolumeofarod.Identify anotherconcomitantmethodthatyoumightusetoverify whetheryourfirsttestapproachtoestimatingrodvolume isworking.

1.44 Whenastraingaugeisstretchedunderuniaxialtension, itsresistancevarieswiththeimposedstrain.Aresistancebridgecircuitisusedtoconverttheresistance changeintoavoltage.Supposeaknowntensileloadwere appliedtoatestspecimenusingthesystemshownin Figure1.17.Whataretheindependentanddependentvariablesinthiscalibration?Howdothesechangeduringactual testing?

1.45 Forthestraingaugecalibrationofthepreviousproblem, whatwouldbeinvolvedindeterminingtherepeatabilityof theinstrument?Thereproducibility?Whateffectsaredifferentinthetests?Explain.

FIGURE1.17 StraingaugesetupusedforProblem1.44.

1.46 Theaccelerationofacartdownaplaneinclinedatanangle α tohorizontalcanbedeterminedbymeasuringthechange inspeedofthecartattwopoints,separatedbyadistance s, alongtheinclinedplane.Supposetwophotocellsarefixed atthetwopointsalongtheplane.Eachphotocellmeasures thetimeforthecart,whichhasalength L,topassit.Identifytheimportantvariablesinthistest.Listanyassumptions thatyoufeelareintrinsictosuchatest.Suggestaconcomitantapproach.Howwouldyouinterpretthedatatoanswer thequestion?

1.47 Ingeneral,whatismeantbytheterm“standard”?Discuss yourunderstandingofthehierarchyofstandardsusedin calibrationbeginningwiththeprimarystandard.Howdo thesedifferfromteststandardsandcodes?

1.48 Acommonscenario:Anengineerhastwopencil-stylepressuregaugesinhergarageforsettingtirepressures.She noticesthatthetwogaugesdisagreebyabout14kPa(2psi) onthesametire.Howdoesshechoosethemostaccurate gaugetosetcartirepressures?Discusspossiblestrategies shemightusetoarriveatherbestoption.

1.49 Explainthepotentialdifferencesinthefollowingevaluationsofaninstrument’saccuracy.Figure1.11willbeuseful,andyoumayrefertoASTME177ifneeded.

a. Theclosenessofagreementbetweenthetruevalueand theaverageofalargesetofmeasurements.

b. Theclosenessofagreementbetweenthetruevalueand anindividualmeasurement.

1.50 ResearchASTMF558:AirPerformanceofVacuum Cleaners.Writeashortsummarytodescribetheintent, andgiveanoverviewofthisteststandard.

1.51 Researchthefollowingteststandardsandcodes.Writea shortsummarytodescribetheintent,andgiveanoverview ofeachcode:

a. ANSIZ21.86(GasFiredSpaceHeatingAppliances)

b. ISO10770-1(TestMethodsforHydraulicControl Valves)

c. ANSI/ASMEPTC19.1(TestUncertainty)

d. ISO7401(RoadVehicles:LateralResponseTest Methods)

e. ISO5167Parts1–4

1.52 AhotelchainbasedintheUnitedStatescontractswitha Europeanvacuumcleanermanufacturertosupplyalarge numberofuprightcleanerunits.Afterdelivery,thehotel raisesquestionsaboutmanufacturervacuumcleanerperformanceclaimspointingoutthattheunitsshouldhave beentestedtomeetASTM558,anAmericanstandard.The manufacturernotestheadvertisedperformanceisbasedon IEC60312,aEuropeanstandard,andthetwotestcodes willyieldsimilar,ifnotexact,results.Investigatebothtest codesandaddresssimilaritiesanddifferences.Isthereisa legitimateclaimhere?

1.53 TestcodeASTM558-13allowsforthecomparisonofthe maximumpotentialairpoweravailablebetweenvacuum cleanerswhentestedundertheprescribedconditions.The testrequiresusingatleastthreeunitsforeachmake/model testedwiththeunitsobtainedatrandom.Explainwhat mightbeareasonablewaytomeetthisrequirement. Explainapossiblereasonforthisrequirement.

1.54 Suggestareasonablenumberofsignificantdigitsforreportingthefollowingcommonvalues,andgivesomeindication ofyourreasoning:

a. Yourbodyweightforapassport

b. Acar’sfuelusage(uselitersper100km)

c. Theweightofastandard(“GoodDelivery”)barofpure (atleast99.99%)gold

1.55 Usingspreadsheetsoftware(suchasMicrosoftExcel), createalistof1,000numberseachrandomlyselected between100and999.Divideeachnumberby10toobtain atrailingdigit;thiswillbeColumn1.Eachnumberin Column1willhavethreesignificantdigits.InColumn2, havethespreadsheetroundeachnumberusingthe default ROUND functiontotwosignificantdigits.In Column3,havethespreadsheetroundeachnumber inColumn1perASTME29(e.g., (=IF(MOD(A1,1)= 0.5,MROUND(A1,2),ROUND(A1,0)).Computethesum ofeachcolumnandcompare.Discussthemeaningofthe operationsandtheresults,andexplainanydifferencesdue toroundingerrors.

1.56 Howmanysignificantdigitsarepresentinthefollowing numbers?Converteachtoscientificnotation.

1. 10.02

2. 0.00034

3. 2500 4. 042.02

5. 0.1x10-3

6. 999kg/m3

7. Population152,000

8. 0.000001grams

1.57 Roundthefollowingnumbersto3significantdigits.

(i)15.963

(ii)1232kPa

(iii)0.00315 (iv)21.750

(v)21.650 (vi)0.03451

(vii)1.82512314 (viii)1.2350x10–4

1.58 Expresstheresultbyroundingtoanappropriatenumberof significantdigits.

(i)sin(nx) = ; n = 0.010m–1 , ×= 5.73m (ii) e0.31 = (iii)ln(0.31) = (iv) xy/z = ; x = 423.J, y = 33.42J, z = 11.32

(v)(0.212 + 0.3212 + 0.1212 )/3 = (vi)1072 + 6542 = (vii)22.11/2 = (viii)(22.3 + 16.634) × 59 =

1.59 Howmucherrorcouldyoutoleratein(1)bookshelflength whentwoshelvesaremountedoneabovetheother,(2)differencesbetweenacar’tirepressures,(3)cartirepressure (anytire),(4)carspeedometer,(5)homeoventhermostat? Explain.

1.60 Applytheguidelinestodeterminethenumberofsignificant digitsforthesenumbersthatcontainzerodigits..Writethe numberinscientificnotationusingtwosignificantdigits.

(i)0.042

(ii)42.0250 (iii)420. (iv)427,000

1.61 Usingatapemeasurehaving1-mmgraduations,theengineermeasuresanobjectanddeterminesitslengthtobe justlongerthan52mmbutshorterthan53mm.Usingan appropriatenumberofsignificantdigits,whatmightbean appropriatestatementregardingthismeasuredlength?

1.62 ForthecalibrationdataofTable1.5,plottheresultsusing rectangularandlog-logscales.Discusstheapparentadvantagesofeitherpresentation.

Table1.5 CalibrationData

1.63 ForthecalibrationdataofTable1.5,determinethestatic sensitivityofthesystemat(a) X = 5,(b) X = 10,and (c) X = 20.Forwhichinputvaluesisthesystemmore sensitive?Explainwhatthismightmeanintermsofa measurementandintermsofmeasurementerrors.

1.64 ConsiderthevoltmetercalibrationdatainTable1.6.Plotthe datausingasuitablescale.Specifythepercentmaximum hysteresisbasedonfull-scalerange.Input X isbasedona standardknowntobeaccuratetobetterthan0.05mV.

Table1.6 VoltmeterCalibrationData

1.65 Eachofthefollowingequationscanberepresentedasa straightlineonan x-y plotbychoosingtheappropriateaxis scales.Ploteach,andexplainhowtheplotoperationyields thestraightline.Variable y hasunitsofvolts.Variable x has unitsofmeters(usearangeof0.01 < x < 10.0).

a. y = 5x–0.25

b. y = (0.4)(10–2x )

c. y = 5e–0.5x

d. y = 2/x

1.66 Plot y = 10e 5x voltsinsemilogformat(usethreecycles). Determinetheslopeoftheequationat x = 0, x = 2, and x = 20.

1.67 Thefollowingdatahavetheform y = axb .Plotthedatain anappropriateformattoestimatethecoefficients a and b Estimatethestaticsensitivity K ateachvalueof X .Howis K affectedby X ?

1.68 Forthecalibrationdatagiven,plotthecalibrationcurve usingsuitableaxes.Estimatethestaticsensitivityofthe systemateach X .Thenplot K against X .Commentonthe behaviorofthestaticsensitivitywithstaticinputmagnitude forthissystem. Y [cm] X [kPa] 4.760.05 4.520.1 3.030.5 1.841.0

BasicConceptsofMeasurement Methods

1.1 Introduction

Wetakemeasurementseveryday.Weroutinelyreadthetemperatureofanoutdoorthermometer tochooseappropriateclothingfortheday.Weaddexactly5.3gallons(about20liters)offuelto ourcarfueltank.Weuseatiregaugetosetthecorrectcartirepressures.Wemonitorourbody weight.Andweputlittlethoughtintotheselectionofinstrumentsforthesemeasurements.After all,theinstrumentsandtechniquesareroutineorprovided,thedirectuseoftheinformationis cleartous,andthemeasuredvaluesareassumedtobegoodenough.Butastheimportanceand complexityincreases,theselectionofequipmentandtechniquesandthequalityoftheresults candemandconsiderableattention.Justcontemplatethevarioustypesofmeasurementsandtests neededtocertifythatanenginemeetsitsstateddesignspecifications.

Theobjectiveinanymeasurementistoassignnumberstovariablessoastoansweraquestion. Theinformationacquiredisbasedontheoutputofsomemeasurementdeviceorsystem.Wemight usethatinformationtoensurethatamanufacturingprocessisexecutingcorrectly,todiagnosea defectivepart,toprovidevaluesneededforacalculationoradecision,ortoadjustaprocess variable.Thereareimportantissuestobeaddressedtoensurethattheoutputofthemeasurement deviceisareliableindicationofthetruevalueofthemeasuredvariable.Inaddition,wemust addresssomeimportantquestions:

1. Howcanameasurementortestplanbedevisedsothatthemeasurementprovidesthe unambiguousinformationweseek?

2. Howcanameasurementsystembeusedsothattheengineercaneasilyinterpretthe measureddataandbeconfidentintheirmeaning?

Thereareproceduresthataddressthesemeasurementquestions.

Attheonset,wewanttostressthatthesubjectofthistextisreal-life–oriented.Specifying ameasurementsystemandmeasurementproceduresrepresentsanopen-endeddesignproblem. Thatmeanstheremaybeseveralapproachestomeetingameasurementschallenge,andsome willbebetterthanothers.Thistextemphasizesacceptedproceduresforanalyzingameasurement challengetoaidselectionofequipment,methodology,anddataanalysis.

Uponcompletionofthischapter,thereaderwillbeableto:

• Identifythemajorcomponentsofageneralmeasurementsystemandstatethefunctionofeach

• Developanexperimentaltestplan

• Distinguishbetweenrandomandsystematicerrors

• Becomefamiliarwiththehierarchyofunitsstandards,andwiththeexistenceanduseoftest standardsandcodes

1

• Understandtheinternationalsystemofunitsandotherunitsystemsoftenfoundinpractice

• Understandandworkwithsignificantdigits

1.2 GeneralMeasurementSystem

Measurement 1 istheactofassigningaspecificvaluetoaphysicalvariable.Thatphysicalvariable isthe measuredvalue.Ameasurementsystemisatoolusedtoquantifythemeasuredvariable. Thus,ameasurementsystemisusedtoextendtheabilitiesofthehumansenses,which,although theycandetectandrecognizedifferentdegreesofroughness,length,sound,color,andsmell,are limitedandrelative:Theyarenotveryadeptatassigningspecificvaluestosensedvariables.

Asystemiscomposedofcomponentsthatworktogethertoaccomplishaspecificobjective.We beginbydescribingthecomponentsthatmakeupameasurementsystem,usingspecificexamples. Thenwewillgeneralizetoamodelofthegenericmeasurementsystem.

SensorandTransducer

A sensor isaphysicalelementthatemployssomenaturalphenomenontosensethevariable beingmeasured.Toillustratethisconcept,supposewewanttomeasuretheprofileofasurface atthenanometerscale.Wediscoverthataverysmallcantileverbeamplacednearthesurfaceis deflectedbyatomicforces.Let’sassumefornowthattheyarerepulsiveforces.Asthiscantilever istranslatedoverthesurface,thecantileverwilldeflect,respondingtothevaryingheightofthe surface.ThisconceptisillustratedinFigure1.1;thedeviceiscalledanatomic-forcemicroscope. Thecantileverbeamisasensor.Inthiscase,thecantileverdeflectsundertheactionofaforcein respondingtochangesintheheightofthesurface.

A transducer convertsthesensedinformationintoadetectablesignal.Thissignalmightbe mechanical,electrical,optical,oritmaytakeanyotherformthatcanbemeaningfullyquantified. Continuingwithourexample,wewillneedameanstochangethesensormotionintosomething thatwecanquantify.Supposethattheuppersurfaceofthecantileverisreflective,andweshinea laserontotheuppersurface,asshowninFigure1.2.Themovementofthecantileverwilldeflect thelaser.Employinganumberoflightsensors,alsoshowninFigure1.2,thechangingdeflection ofthelightcanbemeasuredasatime-varyingcurrentsignalwiththemagnitudecorrespondingto theheightofthesurface.Togetherthelaserandthelightsensors(photodiodes)formthetransducer componentofthemeasurementsystem.

Afamiliarexampleofacompletemeasurementsystemisthebulbthermometer.Theliquid containedwithinthebulbofthecommonbulbthermometershowninFigure1.3exchanges energywithitssurroundingsuntilthetwoareinthermalequilibrium.Atthatpointtheyareat thesametemperature.Thisenergyexchangeistheinputsignaltothismeasurementsystem.The phenomenonofthermalexpansionoftheliquidresultsinitsmovementupanddownthestem, forminganoutputsignalfromwhichwedeterminetemperature.Theliquidinthebulbactsas

and tip

Sample surface

1 Aglossaryoftheitalicizedtermsislocatedinthebackofthetextforyourreference.

FIGURE1.1 Sensorstageofan atomic-forcemicroscope.
Cantilever

FIGURE1.2 Atomic-forcemicroscope withsensorandtransducerstages.

FIGURE1.3 Componentsofbulb thermometerequivalenttosensor, transducer,andoutputstages.

thesensor.Byforcingtheexpandingliquidintoanarrowcapillary,thismeasurementsystem transformsthermalinformationintoamechanicaldisplacement.Hencethebulb’sinternal capillaryactsasatransducer.

Sensorselection,placement,andinstallationareparticularlyimportanttoensurethatthesensor outputsignalaccuratelyreflectsthemeasurementobjective.Afterall,theinterpretationofthe informationindicatedbythesystemreliesonwhatisactuallysensedbythesensor.

Signal-ConditioningStage

The signal-conditioningstage takesthetransducersignalandmodifiesittoadesiredmagnitudeor form.Itmightbeusedtoincreasethemagnitudeofthesignalbyamplification,removeportionsof thesignalthroughsomefilteringtechnique,orprovidemechanicaloropticallinkagebetweenthe

transducerandtheoutputstage.Thediameterofthethermometercapillaryrelativetothebulbvolume(Figure1.3)determineshowfarupthestemtheliquidmoveswithincreasingtemperature.

OutputStage

Thegoalofameasurementsystemistoconvertthesensedinformationintoaformthatcanbe easilyquantified.The outputstage indicatesorrecordsthevaluemeasured.Thismightbebya simplereadoutdisplay,amarkedscale,orevenarecordingdevicesuchascomputermemory fromwhichitcanlaterbeaccessedandanalyzed.InFigure1.3,thereadoutscaleofthebulb thermometerservesasitsoutputstage.

Asanendnote,theterm“transducer”isoftenusedinreferencetoapackagedmeasuring devicethatcontainsthesensorandtransducerelementsdescribedabove,andevensomesignalconditioningelements,inoneunit.Thisterminologydiffersfromtheterm“transducer”when describingthefunctionservedbyanindividualstageofameasurementsystem.Bothusesare correct,andweuseboth:onetorefertohowasensedsignalischangedintoanotherformand theothertorefertoapackageddevice.Thecontextinwhichthetermisusedshouldprevent anyambiguity.

GeneralTemplateforaMeasurementSystem

AgeneraltemplateforameasurementsystemisillustratedinFigure1.4.Essentiallysucha systemconsistsofpartorallofthepreviouslydescribedstages:(1)sensor–transducerstages, (2)signal-conditioningstage,and(3)outputstage.Thesestagesformthebridgebetweenthe inputtothemeasurementsystemandtheoutput,aquantitythatisusedtoinferthevalueofthe physicalvariablemeasured.Wediscusslaterhowtherelationshipbetweentheinputinformation acquiredbythesensorandtheindicatedoutputsignalisestablishedbyacalibration.

Somesystemsmayuseanadditionalstage,thefeedback-controlstageshowninFigure1.4. Typicaltomeasurementsystemsusedforprocesscontrol,the feedback-controlstage contains acontrollerthatcomparesthemeasuredsignalwithsomereferencevalueandmakesadecision regardingactionsrequiredinthecontroloftheprocess.Insimplecontrollers,thisdecisionisbased

onwhetherthemagnitudeofthesignalexceedssomesetpoint,whetherhighorlow—avalueset bythesystemoperator.Forexample,ahouseholdfurnacethermostatactivatesthefurnaceasthe localtemperatureatthethermostat,asdeterminedbyasensorwithinthedevice,risesaboveor fallsbelowthethermostatsetpoint.Thecruisespeedcontrollerinanautomobileworksinmuch thesameway.Aprogrammablelogiccontroller(PLC)isarobustindustrial-gradecomputerand data-acquiringdeviceusedtomeasuremanyvariablessimultaneouslyandtotakeappropriate correctiveactionperprogrammedinstructions.Wediscusssomefeaturesofcontrolsystemsin detailinChapter12.

1.3 ExperimentalTestPlan

Anexperimentaltestisdesignedtomakemeasurementssoastoansweraquestion.Thetest shouldbedesignedandexecutedtoanswerthatquestionandthatquestionalone.Consideran example.

Supposeyouwanttodesignatesttoanswerthequestion“Whatfuelusecanmyfamilyexpect frommynewcar?”Inatestplan,youidentifythevariablesthatyouwillmeasure,butyoualso needtolookcloselyatothervariablesthatwillinfluencetheresult.Twoimportantmeasured variablesherewillbedistanceandfuelvolumeconsumption.Theaccuraciesoftheodometer andstationfuelpumpaffectthesetwomeasurements.Achievingaconsistentfinalvolumelevel whenyoufillyourtankaffectstheestimateofthefuelvolumeused.Infact,thiseffect,which canbeclassifiedasazeroerror,couldbesignificant.Fromthisexample,wecansurmisethata consistentmeasurementtechniquemustbepartofthetestplan.

Whatothervariablesmightinfluenceyourresults?Thedrivingroute,whetherhighway,city, rural,oramix,affectstheresultsandisanindependentvariable.Differentdriversdrivedifferently, sothedriverbecomesanindependentvariable.Sohowweinterpretthemeasureddataisaffected byvariablesinadditiontotheprimaryonesmeasured.Imaginehowyourtestwouldchangeifthe objectiveweretoestablishthefleetaveragefueluseexpectedfromacarmodelusedbyarental company.

Inanytestplan,youneedtoconsiderjusthowaccurateanansweryouneed.Isanaccuracy within2litersper100kilometers(or,intheUnitedStates,1milepergallon)goodenough? Ifyoucannotachievesuchaccuracy,thenthetestmayrequireadifferentstrategy.Last,asa concomitantcheck,isthereawaytocheckwhetheryourtestresultsarereasonable,asanity checktoavoidsubtlemistakes?Interestingly,thisoneexamplecontainsallthesameelementsof anysophisticatedtest.Ifyoucanconceptualizethefactorsinfluencingthistestandhowyouwill planaroundthem,thenyouareontracktohandlealmostanytest.

Experimentaldesigninvolvesitselfwithdevelopingameasurementtestplan.Atestplandraws fromthefollowingthreesteps:2

1. Parameterdesignplan. Determinethetestobjectiveandidentifytheprocessvariables andparametersandameansfortheircontrol.Ask:“WhatquestionamItryingtoanswer? Whatneedstobemeasured?”“Whatvariableswillaffectmyresults?”

2. Systemandtolerancedesignplan. Selectameasurementtechnique,equipment,andtest procedurebasedonsomepreconceivedtolerancelimitsforerror.3 Ask:“InwhatwayscanI dothemeasurement?Howgooddotheresultsneedtobetoanswermyquestion?”

3. Datareductiondesignplan. Planhowtoanalyze,present,andusethedata.Ask:“How willIinterprettheresultingdata?HowwillIapplythedatatoanswermyquestion? Howgoodismyanswer?

2 Thesethreestrategiesaresimilartothebasesforcertaindesignmethodsusedinengineeringsystemdesign[1].

3 Thetolerancedesignplanstrategyusedinthistextdrawsonuncertaintyanalysis,anextensionofsensitivityanalysis.Sensitivity methodsarecommonindesignoptimization.

Goingthroughallthreestepsinthetestplanbeforeanymeasurementsaretakenisausefulhabit ofthesuccessfulengineer.Oftenstep3willforceyoutoreconsidersteps1and2.Wewilldevelop methodstohelpaddresseachstepasweproceed.

Variables

A variable isaphysicalquantitywhosevalueinfluencesthetestresult.Variablescanbecontinuousordiscretebynature.A continuousvariable canassumeanyvaluewithinitsrange.A discrete variable canassumeonlycertainvalues.

Functionally,variablescanbeclassedasbeingdependent,independent,orextraneous.Avariablewhosevalueisaffectedbychangesinthevalueofoneormoreothervariablesisknown asa dependentvariable.Variablesthatdonotinfluenceeachotherare independentvariables. Dependentvariablesarefunctionsofindependentvariables.Thetestresultisadependentvariablewhosevaluedependsonthevaluesoftheindependentvariables.Forexample,thevalueof strainmeasuredinaloadedcantileverbeam(dependentvariable)resultsfromthevalueofthe loadingapplied(independentvariable).

Thevaluesofindependentvariablesareeitherpurposelychangedorheldfixedthroughout atesttostudytheeffectonthedependentvariable.A controlledvariable isavariablewhose valueisheldfixed.Atest parameter isacontrolledvariableorgroupingofvariableswhosefixed valuesetsthebehavioroftheprocessbeingmeasured.Thedimensionsandmaterialproperties ofthebeamintheloadedcantileverbeamareparameters.Thevalueoftheparameterischanged whenyouwanttochangetheprocessbehavior.

Inengineering,groupingsofvariables,suchasmomentofinertiaorReynoldsnumber,arealso referredtoasparameterswhentheserelatetocertainsystembehaviors.Forexample,thedamping ratioofanautomotivesuspensionsystemaffectshowthedisplacementvelocitywillchangewith differinginputconditions;thisparameteraffectsthevariablesthatmeasurevehiclebehavior,such ashandlingandridequality.Inourtreatmentofstatistics,weusethetermparametertoreferto quantitiesthatdescribethebehaviorofthepopulationofameasuredvariable,suchasthetrue meanvalueorvariance.

Variablesthatarenotpurposelymanipulatedorcontrolledduringmeasurementbutthatdo affectthetestresultarecalled extraneousvariables.Dependentvariablesareaffectedbyextraneousvariables.Ifnottreatedproperlywithinatestplan,extraneousvariablescanimposeafalse trendorimposevariationontothebehaviorofthemeasuredvariable.Thisinfluencecanconfuse theclearrelationbetweencauseandeffect.

Thereareotherusesoftheterm“control.”Experimentalcontroldescribeshowwellwecan maintaintheprescribedvalueofanindependentvariablewithinsomelevelofconfidenceduring ameasurement.Forexample,ifwesettheloadingappliedinabendingbeamtestto103kN, doesitstayexactlyfixedduringtheentiretest,ordoesitvarybysomeamountonrepeatedtries? Differentfieldsusevariationsonthisterm.Instatistics,acontrolgroupisoneheldapartfromthe treatmentunderstudy.Butthenuanceofholdingsomethingfixedisretained.

EXAMPLE1.1

Consideranintroductorythermodynamicsclassexperimentusedtodemonstratephasechange phenomena.Abeakerofwaterisheatedanditstemperaturemeasuredovertimetoestablishthe temperatureatwhichboilingoccurs.Theresults,showninFigure1.5,areforthreeseparatetests conductedondifferentdaysbydifferentstudentgroupsusingthesameequipmentandmethod. Whymightthedatafromthreeseeminglyidenticaltestsshowdifferentresults?

FIGURE1.5 Resultsofaboilingpointtestforwater.

KNOWN Temperature-timemeasurementsforthreetestsconductedonthreedifferentdays

FIND Boilingpointtemperature

SOLUTION

Eachgroupofstudentsanticipatedavalueofexactly100.0∘ C.Individually,eachtestresultis close,butwhencompared,thereisaclearoffsetbetweenanytwoofthethreetestresults.Suppose wedeterminethatthemeasurementsystemaccuracyandnaturalchanceaccountforonly0.1∘ C ofthedisagreementbetweentests—thensomethingelseishappening.Aplausiblecontributing factorisaneffectduetoanextraneousvariable.

Fortunately,anassistantrecordedthelocalbarometricpressureduringeachtest.Theboiling point(saturation)temperatureisafunctionofpressure.Eachtestshowsadifferentoutcome,in part,becausethelocalbarometricpressurewasnotcontrolled(i.e.,itwasnotheldfixedbetween thetests).

COMMENT Onewaytocontroltheeffectsofpressureheremightbetoconductthetestsinside abarometricpressurechamber.Directcontrolofallvariablesisnotoftenpossibleinatest.So anotherwaytohandletheextraneousvariableappliesaspecialstrategy:Considereachtestasa singleblockofdatatakenattheexistingbarometricpressure.Thenconsolidatethethreeblocks oftestdata.Inthatway,themeasuredbarometricpressurebecomestreatedasifitwereanindependentvariable,withitsinfluenceintegratedintotheentiredataset.Thatis,wecanactuallytake advantageofthedifferencesinpressuresoastostudyitseffectonsaturationtemperature.This isavaluablecontroltreatmentcalledrandomization,aprocedurewediscusslaterinthischapter. Identifyandcontrolimportantvariables,orbepreparedtosolveapuzzle!

EXAMPLE1.2CaseStudy

ThegolfcartindustrywithintheUnitedStatesrecordsnearly$1billioninsalesannually.The manufacturerofaparticularmodelofgolfcartsoughtasolutiontoreduceundesirablevibrations inthecartsteeringcolumn(Figure1.6).Engineersidentifiedthesourceofthevibrationsasthe

Measuredtime-based z-accelerationsignalatthe steeringwheelduringanengine run-uptest:baselineandthe attenuatedprototype(proposed solution)signals.

gas-poweredengineandconsistentwithoperatingtheengineatcertainspeeds(revolutions/ minuteorrpm).Thecompanymanagementruledoutexpensivesuspensionimprovements,so theengineerslookedatcheaperoptionstoattenuatethevibrationsatthesteeringwheel.

UsingteststandardANSIS2.70-2006[19]asaguideforplacingsensorsandinterpreting results,accelerometers(discussedinChapter12)wereplacedonthesteeringcolumn,engine, suspension,andframe.ThemeasurementchainfollowedFigure1.4.Thesignalfromeach accelerometersensor–transducerwaspassedthroughasignal-conditioningchargeamplifier (Chapter6)andontoalaptop-baseddataacquisitionsystem(DAS;Chapter7).Theamplifier convertedthetransducersignaltoa0–5VsignalthatmatchedtheinputrangeoftheDAS.The DASservedasavoltmeter,outputdisplay,andtime-basedrecorder.

Measurementsshowedthattheoffensivevibrationatthesteeringwheelwasatthenaturalfrequencyofthesteeringcolumn(∼20Hz).Thisvibrationwasexcitedatforcingfunctionfrequenciesbetween17and37Hz,correspondingtonormaloperatingspeedsoftheengine(1,000–2,200 rpm).Fromalumpedparametermodel(Chapter3)ofthesteeringassembly,theydeterminedthat aslightlyheaviersteeringcolumnwouldreduceitsnaturalfrequencytobelowtheengineidle speedandtherebyattenuatetheamplitudeofthevibrations(Chapter3)excitedathigherengine speeds.Theanalysiswasverifiedandthefixwasrefinedbasedonthetests.Themeasuredvibrationsignalsduringenginerunup,bothbefore(baseline)andwiththeproposedfix(prototype), arecomparedinFigure1.6.Peakvibrationamplitudeswereshowntoreducetocomfortable levelswiththeproposedandvalidatedsolution.Theinexpensivefixwasimplementedbythe manufacturer.

COMMENT Thisexampleillustrateshowmeasurementsappliedtoamechanicaltestprovided informationtodiagnoseaproblemandthenformulateandvalidateaproposedsolution.

NoiseandInterference

Justhowextraneousvariablesaffectmeasureddatacanbedescribedintermsofnoiseandinterference. Noise isarandomvariationinthevalueofthemeasuredsignal.Noiseincreasesdata scatter.Buildingvibrations,variationsinambientconditions,andrandomthermalnoiseofelectronspassingthroughaconductorareexamplesofcommonextraneoussourcesfortherandom variationsfoundinameasuredsignal.

FIGURE1.6

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.