Where can buy Gaussian measures in hilbert space: construction and properties kukush ebook with chea

Page 1


Gaussian Measures in Hilbert Space: Construction

and Properties Kukush

Visit to download the full and correct content document: https://ebookmass.com/product/gaussian-measures-in-hilbert-space-construction-and -properties-kukush/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Operator Analysis: Hilbert Space Methods in Complex Analysis Jim Agler

https://ebookmass.com/product/operator-analysis-hilbert-spacemethods-in-complex-analysis-jim-agler/

Space as Language: The Properties of Typographic Space Will Hill

https://ebookmass.com/product/space-as-language-the-propertiesof-typographic-space-will-hill/

Nonconventional and Vernacular Construction Materials■ Characterisation, Properties and Applications Kent A. Harries & Bhavna Sharma

https://ebookmass.com/product/nonconventional-and-vernacularconstruction-materials%ef%bc%9a-characterisation-properties-andapplications-kent-a-harries-bhavna-sharma/

Electron correlation in molecules -- ab initio beyond Gaussian quantum chemistry 1st Edition Hoggan

https://ebookmass.com/product/electron-correlation-in-moleculesab-initio-beyond-gaussian-quantum-chemistry-1st-edition-hoggan/

Humidity and Electronics : Corrosion Reliability Issues and Preventive Measures Rajan Ambat

https://ebookmass.com/product/humidity-and-electronics-corrosionreliability-issues-and-preventive-measures-rajan-ambat/

Biobased Polymers: Properties and Applications in Packaging Pratima Bajpai

https://ebookmass.com/product/biobased-polymers-properties-andapplications-in-packaging-pratima-bajpai/

Project Control: Integrating Cost and Schedule in

Construction

https://ebookmass.com/product/project-control-integrating-costand-schedule-in-construction/

Communication Research Measures III: A Sourcebook

Elizabeth E. Graham

https://ebookmass.com/product/communication-research-measuresiii-a-sourcebook-elizabeth-e-graham/

The Bioethics of Space Exploration: Human Enhancement and Gene Editing in Future Space Missions Konrad Szocik

https://ebookmass.com/product/the-bioethics-of-space-explorationhuman-enhancement-and-gene-editing-in-future-space-missionskonrad-szocik/

Gaussian Measures in Hilbert Space

To the memory of my daughter Ann

Series

Gaussian Measures in Hilbert Space

Construction and Properties

First published 2019 in Great Britain and the United States by ISTE Ltd and John Wiley & Sons, Inc.

Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers, or in the case of reprographic reproduction in accordance with the terms and licenses issued by the CLA. Enquiries concerning reproduction outside these terms should be sent to the publishers at the undermentioned address:

ISTE Ltd

John Wiley & Sons, Inc.

27-37 St George’s Road 111 River Street London SW19 4EU Hoboken, NJ 07030

UK USA

www.iste.co.uk

www.wiley.com

© ISTE Ltd 2019

The rights of Alexander Kukush to be identified as the author of this work have been asserted by him in accordance with the Copyright, Designs and Patents Act 1988.

Library of Congress Control Number: 2019946454

British Library Cataloguing-in-Publication Data

A CIP record for this book is available from the British Library ISBN 978-1-78630-267-0

AbbreviationsandNotation

Chapter1.GaussianMeasuresinEuclideanSpace ...........1

1.1.Thechangeofvariablesformula......................1

1.2.InvarianceofLebesguemeasure......................4

1.3.Absenceofinvariantmeasureininfinite-dimensionalHilbertspace..9

1.4.Randomvectorsandtheirdistributions..................10

1.4.1.Randomvariables............................11

1.4.2.Randomvectors.............................12

1.4.3.Distributionsofrandomvectors....................14

1.5.GaussianvectorsandGaussianmeasures.................17

1.5.1.CharacteristicfunctionsofGaussianvectors.............17

1.5.2.ExpansionofGaussianvector.....................20

1.5.3.SupportofGaussianvector.......................22

1.5.4.GaussianmeasuresinEuclideanspace................23

Chapter2.GaussianMeasurein

2.1.Space R

2.1.1.Metricon

2.1.2.Borelandcylindricalsigma-algebrascoincide............30

2.1.3.Weighted l2 space............................31

2.2.Productmeasurein R∞

2.2.1.Kolmogorovextensiontheorem....................34

2.2.2.Constructionofproductmeasureon B (R∞ ) .............36

2.2.3.Propertiesofproductmeasure.....................38

2.3.StandardGaussianmeasurein R∞ .....................42

2.3.1.Alternativeproofofthesecondpartoftheorem2.4.........45

2.4.ConstructionofGaussianmeasurein l2 ..................46

Chapter3.BorelMeasuresinHilbertSpace ................51

3.1.Classesofoperatorsin H ..........................51

3.1.1.Hilbert–Schmidtoperators.......................52

3.1.2.Polardecomposition...........................55

3.1.3.Nuclearoperators............................57

3.1.4. S-operators................................62

3.2.PettisandBochnerintegrals........................68

3.2.1.Weakintegral..............................68

3.2.2.Strongintegral..............................69

3.3.BorelmeasuresinHilbertspace......................75

3.3.1.Weakandstrongmoments.......................75

3.3.2.ExamplesofBorelmeasures......................78

3.3.3.Boundednessofmomentform.....................83

Chapter4.ConstructionofMeasurebyitsCharacteristic Functional ......................................89

4.1.Cylindricalsigma-algebrainnormedspace................89 4.2.Convolutionofmeasures..........................93

4.3.Propertiesofcharacteristicfunctionalsin H ...............96

4.4. S -topologyin H ..............................99

4.5.Minlos–Sazonovtheorem..........................102

Chapter5.GaussianMeasureofGeneralForm

5.1.CharacteristicfunctionalofGaussianmeasure..............111

5.2.DecompositionofGaussianmeasureandGaussianrandomelement..114

5.3.SupportofGaussianmeasureanditsinvariance.............117

5.4.WeakconvergenceofGaussianmeasures.................125

5.5.ExponentialmomentsofGaussianmeasureinnormedspace......129

5.5.1.Gaussianmeasuresinnormedspace..................129

5.5.2.Fernique’stheorem...........................133

Chapter6.EquivalenceandSingularityofGaussianMeasures ...143

6.1.Uniformlyintegrablesequences......................143

6.2.Kakutani’sdichotomyforproductmeasureson R∞ ...........145

6.2.1.Generalpropertiesofabsolutelycontinuousmeasures........145

6.2.2.Kakutani’stheoremforproductmeasures...............148

6.2.3.DichotomyforGaussianproductmeasures..............152

6.3.Feldman–HájekdichotomyforGaussianmeasureson H ........155

6.3.1.ThecasewhereGaussianmeasureshaveequalcorrelation operators.....................................155

6.3.2.NecessaryconditionsforequivalenceofGaussianmeasures....158

6.3.3.CriterionforequivalenceofGaussianmeasures...........165

6.4.Applicationsinstatistics..........................169

6.4.1.EstimationandhypothesistestingformeanofGaussianrandom element.....................................169

6.4.2.Estimationandhypothesistestingforcorrelationoperatorof centeredGaussianrandomelement......................173

Chapter7.Solutions

...............................179

7.1.SolutionsforChapter1...........................179

7.2.SolutionsforChapter2...........................193

7.2.1.GeneralizedKolmogorovextensiontheorem.............196

7.3.SolutionsforChapter3...........................202

7.4.SolutionsforChapter4...........................211

7.5.SolutionsforChapter5...........................217

7.6.SolutionsforChapter6...........................227

SummarizingRemarks ..............................235

Foreword

Thestudyofmoderntheoryofstochasticprocesses,infinite-dimensionalanalysis andMalliavincalculusisimpossiblewithoutasolidknowledgeofGaussian measuresoninfinite-dimensionalspaces.Inspiteoftheimportanceofthistopicand theabundanceofliteratureavailableforexperiencedresearchers,thereisnotextbook suitableforstudentsforafirstreading.

Thepresentmanualisanexcellentget-to-knowcourseinGaussianmeasureson infinite-dimensionalspaces,whichhasbeengivenbytheauthorformanyyearsat theFacultyofMechanics&MathematicsofTarasShevchenkoNationalUniversityof Kyiv,Ukraine.Thepresentationofthematerialiswellthoughtout,andthecourseis self-contained.Afterreadingthebookitmayseemthatthetopicisverysimple.But thatisnottrue!Apparentsimplicityisachievedbycarefulorganizationofthebook. ForexpertsandPhDstudentshavingexperienceininfinite-dimensionalanalysis,I prefertorecommendthemonographV.I.Bogachev, GaussianMeasures (1998).But forfirstacquaintancewiththetopic,Irecommendthisnewmanual.

Prerequisitesforthebookareonlyabasicknowledgeofprobabilitytheory,linear algebra,measuretheoryandfunctionalanalysis.Theexpositionissupplementedwith abulkofexamplesandexerciseswithsolutions,whichareveryusefulforunassisted workandcontrolofstudiedmaterial.

Inthisbook,manydelicateandimportanttopicsofinfinite-dimensionalanalysis areanalyzedindetail,e.g.Borelandcylindricalsigma-algebrasin infinite-dimensionalspaces,BochnerandPettisintegrals,nuclearoperatorsandthe topologyofnuclearconvergence,etc.Wepresentthecontentsofthebook, emphasizingplaceswherefinite-dimensionalresultsneedreconsideration (everywhereexceptChapter1).

–Chapter1. Gaussiandistributionsonafinite-dimensionalspace. Thechapteris preparatorybutnecessary.Lateron,manyanalogieswithfinite-dimensionalspacewill begiven,andtheplaceswillbevisiblewhereanewtechniqueisneeded.

–Chapter2. Space R∞ ,Kolmogorovtheoremabouttheexistenceofprobability measure,productmeasures,Gaussianproductmeasures,Gaussianproductmeasures in l2 space. Afterreadingthechapter,thestudentwillstarttounderstandthaton infinite-dimensionalspacethereareseveralwaystodefineasigma-algebra(luckily, inourcaseBorelandcylindricalsigma-algebrascoincide).Moreover,itwillbecome clearthatinfinite-dimensionalLebesguemeasuredoesnotexist,henceconstruction ofmeasurebymeansofdensityneedsreconsideration.

–Chapter3. BochnerandPettisintegrals,Hilbert–Schmidtoperatorsandnuclear operators,strongandweakmoments. Thechapterisapreparationforthedefinition oftheexpectationandcorrelationoperatorofGaussian(orevenarbitrary)random element.Weseethatitisnotsoeasytointroduceexpectationofarandomelement distributedinHilbertorBanachspace.Asopposedtofinite-dimensionalspace,itis notenoughjusttointegrateoverbasisvectorsandthenaugmenttheresultsinasingle vector.

–Chapter4. Characteristicfunctionals,Minlos–Sazonovtheorem. Oneofthemost importantmethodstoinvestigateprobabilitymeasuresonfinite-dimensionalspaceis themethodofcharacteristicfunctions.Aswell-knownfromthecourseofprobability theory,thesewillbeallcontinuouspositivedefinitefunctionsequaltooneatzero,and onlythem.Oninfinite-dimensionalspacethisisnottrue.Forthestatement“theyand onlythem”,continuityinthetopologyofnuclearconvergenceisrequired,andthis topologyisexplainedindetail.

–Chapter5. GeneralGaussianmeasures. Basedonresultsofpreviouschapters, weseethenecessaryandsufficientconditionsthathavetobesatisfiedbythe characteristicfunctionalofaGaussianmeasureinHilbertspace.Werealizethatwe haveusedalltheknowledgefromChapters2–4(concerningintegrationofrandom elements,aboutHilbert–Schmidtandnuclearoperators,Minlos–Sazonovtheorem, etc.).Wenoticethatfortheeigenbasisofthecorrelationoperator,aGaussian measureisjustaproductmeasurewhichweconstructedinChapter2.Thisseems natural;butonourwayitwasimpossibletodiscardanysinglestepwithoutlossof mathematicalrigor.Inthischapter,Fernique’stheoremaboutfinitenessofan exponentialmomentofthenormofaGaussianrandomelementisprovedandthe criterionfortheweakconvergenceofGaussianmeasuresisstated.

–Chapter6. Equivalenceandmutualsingularityofmeasures. Here,Kakutani’s theoremisprovenabouttheequivalenceoftheinfiniteproductofmeasures.Aswe sawinthepreviouschapter,GaussianmeasuresonHilbertspacesareproduct measures,inaway.Therefore,asaconsequenceofgeneraltheory,wegetacriterion fortheequivalenceofGaussianmeasures(Feldman–Hájektheorem).Theobtained resultsareappliedtoproblemsofinfinite-dimensionalstatistics.Oneshouldbe

carefulhere,asduetotheabsenceoftheinfinite-dimensionalLebesguemeasure,the Radon–Nikodymdensityshouldbewrittenw.r.t.oneoftheGaussianmeasures.

Theauthorofthisbook,ProfessorA.G.Kukush,hasbeenworkingattheFaculty ofMechanics&MathematicsofTarasShevchenkoNationalUniversityfor40years. Heisanexcellentteacherandafamousexpertinstatisticsandprobabilitytheory.In particular,heusedtogivelecturestostudentsofmathematicsandstatisticson MeasureTheory,FunctionalAnalysis,StatisticsandEconometrics.Asastudent,I wasluckytoattendhisfascinatingcourseoninfinite-dimensionalanalysis.

ILIPENKO LeadingResearcherattheInstituteofMathematics ofUkrainianNationalAcademyofSciences, ProfessorofMathematicsattheNationalTechnicalUniversity ofUkraine,“IgorSikorskyKyivPolytechnicInstitute” August2019

Preface

Thisbookiswrittenforgraduatestudentsofmathematicsandmathematical statisticswhoknowalgebra,measuretheoryandfunctionalanalysis(generalized functionsarenotusedhere);theknowledgeofmathematicalstatisticsisdesirable onlytounderstandsection6.4.Thetopicofthisbookcanbeconsideredas supplementarychaptersofmeasuretheoryandliesbetweenmeasuretheoryandthe theoryofstochasticprocesses;possibleapplicationsareinfunctionalanalysisand statisticsofstochasticprocesses.For20years,theauthorhasbeengivingaspecial course“GaussianMeasures”atTarasShevchenkoNationalUniversityofKyiv, Ukraine,andin2018–2019,preliminaryversionsofthisbookhavebeenusedasa textbookforthiscourse.

Thereareexcellenttextbooksandmonographsonrelatedtopics,suchas Gaussian MeasuresinBanachSpaces [KUO75], GaussianMeasures [BOG98]and Probability DistributionsonBanachSpaces [VAK87].WhydidIwritemyowntextbook?

Inthe1970s,IstudiedattheFacultyofMechanicsandMathematicsofTaras ShevchenkoNationalUniversityofKyiv,atthattimecalledKievStateUniversity. ThereIattendedunforgettablelecturesgivenbyProfessorsAnatoliyYa. Dorogovtsev(calculusandmeasuretheory),LevA.Kaluzhnin(algebra),MykhailoI. Yadrenko(probabilitytheory),MyroslavL.Gorbachuk(functionalanalysis)and YuriyM.Berezansky(spectraltheoryoflinearoperators).MyPhDthesiswas supervisedbyfamousstatisticianA.Ya.Dorogovtsevanddealtwiththeweak convergenceofmeasuresoninfinite-dimensionalspaces.Forlongtime,Iwasa memberoftheresearchseminar“Stochasticprocessesanddistributionsinfunctional spaces”headedbyclassicsofprobabilitytheoryAnatoliyV.SkorokhodandYuriyL. Daletskii.Myseconddoctoralthesiswasaboutasymptoticpropertiesofestimators forparametersofstochasticprocesses.Thus,Iamsomewhattiedupwithmeasures oninfinite-dimensionalspaces.

In1979,Kuo’sfascinatingtextbookwastranslatedintoRussian.Inspiredbythis book,IstartedtogivemylecturesonGaussianmeasuresforgraduatestudents.The subjectseemedhighlytechnicalandextremelydifficult.Idecidedtocreate somethinglikeacomicbookonthistopic,inparticulartodividelengthyproofsinto smallunderstandablestepsandexplaintheideasbehindcomputations.

Itisimpossibletostudymathematicalcourseswithoutsolvingproblems.Each sectionendswithseveralproblems,someofwhichareoriginalandsomearetaken fromdifferentsources.Aseparatechaptercontainsdetailedsolutionstoallthe problems.

Acknowledgments

IwouldliketothankmycolleaguesatTarasShevchenkoNationalUniversityof Kyivwhosupportedmyproject,especiallyYuliyaMishura,OleksiyNesterenkoand IvanFeshchenko.AlsoIwishtothankmystudentsofdifferentgenerationswho followedupontheideasofthematerialandhelpedmetoimprovethepresentation.I amgratefultoFedorNazarov(KentStateUniversity,USA)whocommunicatedthe proofoftheorem3.9.Inparticular,IamgratefultoOksanaChernovaandAndrey Frolkinforpreparingthemanuscriptforpublication.IthankSergiyShklyarforhis valuablecomments.

MywifeMariyadeservesthemostthanksforherencouragementandpatience.

AlexanderK UKUSH Kyiv,Ukraine September2019

ThetheoryofGaussianmeasuresliesonthejunctionoftheoryofstochastic processes,functionalanalysisandmathematicalphysics.Possibleapplicationsarein quantummechanics,statisticalphysics,financialmathematicsandotherbranchesof science.Inthisfield,theideasandmethodsofprobabilitytheory,nonlinearanalysis, geometryandtheoryoflinearoperatorsinteractinanelegantandintriguingway.

TheaimofthisbookistoexplaintheconstructionofGaussianmeasureinHilbert space,presentitsmainpropertiesandalsooutlinepossibleapplicationsinstatistics.

Chapter1dealswithEuclideanspace,wheretheinvarianceofLebesguemeasure isexplainedandGaussianvectorsandGaussianmeasuresareintroduced.Their propertiesarestatedinsuchaformthat(lateron)theycanbeextendedtothe infinite-dimensionalcase.Furthermore,itisshownthatonaninfinite-dimensional Hilbertspacethereisnonon-trivialmeasure,whichisinvariantunderalltranslations (thesameconcerninginvarianceunderallunitaryoperators);henceonsuchaspace thereisnomeasureanalogoustotheLebesgueone.

InChapter2,aproductmeasureisconstructedonthesequencespace R∞ based onKolmogorovextensiontheorem.ForstandardGaussianmeasure μ on R∞ , Kolmogorov–Khinchincriterionisestablished.Inparticular,itisshownthat μ is concentratedoncertainweightedsequencespaces l2,a ,andbasedonisometry between l2,a and l2 ,aGaussianproductmeasureisconstructedonthelattersequence space.

Chapter3introducesimportantclassesofoperatorsinaseparable infinite-dimensionalHilbertspace H ,inparticular S -operators,i.e.self-adjoint, positiveandnuclearones.Theorem3.9showsthattheconvergenceof S -operatorsis equivalenttocertainconvergenceofcorrespondingquadraticforms.Alsotheweak (Pettis)andstrong(Bochner)integralsaredefinedforafunctionvaluedinaBanach space.

Borelprobabilitymeasureson H andanormedspace X arestudiedwithexamples. Theboundednessofmomentformsofsuchmeasuresisshown,withsimpleproof basedontheclassicalBanach–Steinhaustheorem.Corollary3.3andremark3.8give mildconditionsfortheexistenceofmeanvalueofaprobabilitymeasure μ asPettis integral,andiftheunderlyingspaceisaseparableBanachspace B and μ hasastrong firstmoment,thenitsmeanvalueexistsasBochnerintegral.

InChapter4,propertiesofcharacteristicfunctionalsofBorelprobabilitymeasures on H arestudied.Aspeciallineartopology, S -topology,isintroducedin H witha neighborhoodsystemconsistingofellipsoids.ClassicalMinlos–Sazonovtheoremis provenandproperlyextendsBochner’stheoremfrom Rn to H .AccordingtoMinlos–Sazonovtheorem,thecharacteristicfunctionalofaBorelprobabilitymeasureson H shouldbecontinuousin S -topology.Apartofproofofthistheorem(seelemma4.9) suggeststhewaytoconstructaprobabilitymeasurebyitscharacteristicfunctional.

InChapter5,theorem5.1usestheMinlos–Sazonovtheoremtodescribea Gaussianmeasureon H ofgeneralform.Itturnsoutthatthecorrelationoperatorof suchameasureisalwaysan S -operator.ItisshownthateachGaussianmeasureon H isjustaproductofone-dimensionalGaussianmeasuresw.r.t.theeigenbasisofthe correlationoperator.Thus,everyGaussianmeasureon H canbeconstructedalong theway,asdemonstratedinChapter2.

ThesupportofGaussianmeasureisstudied.ItisshownthatacenteredGaussian measureisinvariantunderquitearichgroupoflineartransforms(seetheorem5.5). Hence,aGaussianmeasureinHilbertspacecanbeconsideredasanaturalinfinitedimensionalanalogueof(invariant)Lebesguemeasure.

AcriterionfortheweakconvergenceofGaussianmeasuresisstated,where(dueto theorem3.9)werecognizetheconvergenceofcorrelationoperatorsinnuclearnorm.

Insection5.5,westudyGaussianmeasuresonaseparablenormedspace X Importantexample5.3showsthataGaussianstochasticprocessgeneratesameasure onthepathspace Lp [0,T ],henceincase p =2,weobtainaGaussianmeasureon Hilbertspace.Lemma5.9presentsacharacterizationofGaussianrandomelementin X

ThefamoustheoremofFerniqueisproven,whichstatesthatcertainexponential momentsofaGaussianmeasureon X arefinite.Inparticular,everyGaussianmeasure onaseparableBanachspace B hasmeanvalueasBochnerintegralanditscorrelation operatoriswell-defined.Theorem5.10derivestheconvergenceofmomentsofweakly convergentGaussianmeasures.

InChapter6,Kakutani’sremarkabledichotomyforproductmeasureson R∞ is proven.Inparticular,twosuchproductmeasureswithabsolutelycontinuous

componentsareeitherabsolutelycontinuousormutuallysingular.Thisimpliesthe dichotomyforGaussianmeasureson R∞ :twosuchmeasuresareeitherequivalentor mutuallysingular.Section6.3provesthefamousFeldman–Hájekdichotomyfor Gaussianmeasureson H ,andincaseofequivalentmeasures,expressionsfor Radon–Nikodymderivativesareprovided.

Insection6.4,theresultsofChapter6areappliedinstatistics.Basedonasingle observationofGaussianrandomelementin H ,weconstructunbiasedestimatorsfor itsmeanandforparametersofitscorrelationoperator;alsowecheckahypothesis aboutthemeanandthecorrelationoperator(thelatterhypothesisisinthecasewhere theGaussianelementiscentered).Inviewofexample5.3with p =2,thesestatistical procedurescanbeusedforasingleobservationofaGaussianprocessonfinitetime interval.

Thebookisaimedforadvancedundergraduatestudentsandgraduatestudentsin mathematicsandstatistics,andalsofortheoreticallyinterestedstudentsfromother disciplines,sayphysics.

Prerequisites forthebookarecalculus,algebra,measuretheory,basicprobability theoryandfunctionalanalysis(wedonotusegeneralizedfunctions).Insection6.4, theknowledgeofbasicmathematicalstatisticsisrequired.

Somewordsabout thestructureofthebook :wepresenttheresultsinlemmas, theorems,corollariesandremarks.Allstatementsareproven.Importantand illustrativeexamplesaregiven.Furthermore,eachsectionendswithalistof problems.DetailedsolutionstotheproblemsareprovidedinChapter7.

Theabbreviationsandnotationusedinthebookaredefinedinthecorresponding chapters;anoverviewofthemisgiveninthefollowinglist.

AbbreviationsandNotation

a.e.almosteverywherew.r.t.Lebesguemeasure a.s.almostsurely cdfcumulativedistributionfunction pdfprobabilitydensityfunction i.i.d.independentandidenticallydistributed(randomvariablesor vectors)

r.v.randomvariable

LHSleft-handside

RHSright-handside

MLEmaximumlikelihoodestimator

|A| numberofpointsinset A

Ac complementofset A

A closureofset A

TB imageofset B undertransformation T

T 1 A preimageofset A undertransformation T

x , A transposedvectorandtransposedmatrix,respectively R extendedrealline,i.e. R = R ∪{−∞, +∞}

Rn×m spaceofreal n × m matrices

B (x,r ), B (x,r ) openandclosedball,respectively,centeredat x withradius r> 0 inametricspace

f+ positivepartoffunction f , f+ =max(f, 0) f negativepartoffunction f , f = min(f, 0)

δij Kroneckerdelta, δij =1 if i = j ,and δij =0, otherwise

an ∼ bn {an } isequivalentto {bn } as n →∞,i.e. an /bn → 1 as n →∞

C (X ) spaceofallrealcontinuousfunctionson X

R∞ spaceofallrealsequences

B (X ) Borelsigma-algebraonmetric(ortopological)space X

λm Lebesguemeasureon Rm

Sm sigma-algebraofLebesguemeasurablesetson Rm

IA indicatorfunction,i.e. IA (x)=1 if x ∈ A,else IA (x)=0 μT 1 measureinducedbymeasurabletransformation T basedon measure μ,i.e. (μT 1 )(A)= μ(T 1 A),foreachmeasurable set A

L(X,μ) spaceofLebesgueintegrablefunctionson X w.r.t.measure μ f = g (mod μ)functions f and g areequalalmosteverywherew.r.t.measure μ

δx Diracmeasureatpoint x, δx (B )= IB (x)

ν μ signedmeasure ν isabsolutelycontinuousw.r.t.measure μ dν dμ theRadon–Nikodymderivativeof ν w.r.t. μ

ν ∼ μ measures ν and μ areequivalent

ν ⊥ μ signedmeasure ν andmeasure μ aremutuallysingular (x,y ) innerproductofvectors x and y inEuclideanorHilbertspace x Euclideannormofvector x A Euclideannormofmatrix A, A =sup x=0 Ax x Im theidentitymatrixofsize m rk (S ) rankofmatrix S Pn projectiveoperator, Pn x =(x1 ,...,xn ) , x ∈ R∞ √A squarerootofpositivesemidefinitematrix A,itispositive semidefiniteaswellwith (√A)2 = A

x,x∗ or x∗ ,x valueoffunctional x∗ atvector x I theidentityoperator

L(X ) spaceoflinearboundedoperatorsonnormedspace X R(A) rangeofoperator A, R(A)= {y : ∃x,y = Ax}

L⊥ orthogonalcomplementtoset L

L2 [a,b] Hilbertspaceofsquareintegrablerealfunctionswithinner product (x,y )= b a x(t)y (t)dt,thelatterisLebesgueintegral lp spaceofrealsequences x =(xn )∞ 1 withnorm x p = ( ∞ n=1 |xn |p )1/p if 1 ≤ p< ∞,and x ∞ =supn≥1 |xn | if p = ∞.For p =2, l2 isHilbertspacewithinner product (x,y )= ∞ 1 xn yn

l2,a weighted l2 space span(M ) spanofset M, i.e.,setofallfinitelinearcombinationsofvectors from M

ˆ An cylinderin R∞ withbase An ∈B (Rn )

A = A L(X ) operatornormoflinearboundedoperator A, A =sup x=0 Ax x

A∗ adjointoperator

√B = B 1/2 squarerootofself-adjointpositiveoperator B

|A| modulusofcompactoperator A, |A| =(A∗ A)1/2

AbbreviationsandNotationxxi

A 1 nuclearnormofoperator A

A 2 Hilbert–Schmidtnormofoperator A

An ⇒ A operators An uniformlyconvergetooperator A

S0 (H ) classoffinite-dimensionaloperatorson H

S1 (H ) classofnuclearoperatorson H

S2 (H ) classofHilbert–Schmidtoperatorson H

S∞ (H ) classofcompactoperatorson H

LS (H ) classof S -operatorson H

A ≥ 0 operator A ispositive,i.e. (Ax,x) ≥ 0 forall x

A ≥ B comparisoninLoewnerorderofself-adjointoperators: A B is positiveoperator

n k =1 Ak Cartesianproductofsets A1 ,...,An

n

k =1 μk productofmeasures μ1 ,...,μn

k =1 μk productmeasureon R∞ oronHilbertspace

mμ meanvalueofmeasure μ

Cov (μ) variance-covariancematrixofmeasure μ on Rn

ϕμ or ˆ μ characteristicfunction(orfunctional)ofmeasure μ

Aμ operatorofsecondmomentofmeasure μ

Sμ correlationoperatorofmeasure μ

σn (z1 ,...,zn ) weakmomentsoforder n ofBorelprobabilitymeasureon H

μX distributionofrandomvector X orrandomelement X , μX (B )= P(X ∈ B ) forallBorelsets B

ϕX characteristicfunction(functional)ofrandomvector (element) X

E X expectationofrandomvector(element) X

D X varianceofrandomvariable X

Cov (X ) variance-covariancematrixofrandomvector X

X d = Y randomvectors(elements) X and Y areidenticallydistributed

N (m,σ 2 ) Gaussiandistributionwithmean m andvariance σ 2 , σ ≥ 0

N (m,S ) Gaussiandistributionon Rn (oron H )withmeanvalue m and variance-covariancematrix(orcorrelationoperator) S d −→ convergenceindistributionofrandomelements

1

GaussianMeasuresinEuclideanSpace

1.1.Thechangeofvariablesformula

Let (X,S,μ) beameasurespace,i.e. X isanon-emptyset, S isasigma-algebraon X and μ isameasureon S .Consideralsoameasurablespace (Y,F ),i.e. Y isanother non-emptysetand F isasigma-algebraon Y. Let T : X → Y beameasurable transformation,whichmeansthat

Hereafter

ispreimageof A under T .(Tosimplifythenotation,wewrite T 1 A and Tx rather than T 1 (A) and T (x),respectively,ifitdoesnotcauseconfusion.)

Introduceasetfunction

T HEOREM 1.1.–(Aboutinducedmeasure)Thesetoffunction ν givenin[1.3]isa measureon F .

P ROOF.–Thefunction ν iswelldefineddueto[1.1].Wehavetoshowthatitisnot identicaltoinfinity,butitisnon-negativeandsigma-additive.

Indeed, ν (∅)= μ(T 1 ∅)= μ(∅)=0,andtherefore, ν isnotidenticaltoinfinity. Foreach A ∈ F , ν (A) ≥ 0,because μ isanon-negativesetfunction.

Gaussian Measures in Hilbert Space: Construction and Properties, First Edition Alexander Kukush © ISTE Ltd 2019. Published by ISTE Ltd and John Wiley & Sons, Inc.

Finally, {An ,n ≥ 1} aredisjointsetsfrom F .Thenthepreimages {T 1 An , n ≥ 1} aredisjointaswell,and

Here,weusedthesigma-additivityof μ.Thus, ν isanon-negativeandsigmaadditivesetfunctiononthesigma-algebra F ,i.e. ν isameasureon F .

D EFINITION 1.1.– Thesetfunction ν givenin [1.3] iscalledameasureinducedby transformation T andisdenotedas μT 1 .

Thenotationpromptshowtoevaluate ν (A): (μT 1 )(A)= μ(T 1 A),A ∈ F.

Foranymeasurablespace (Y,F,ν ),denote L(F,ν ) thespaceofLebesgue integrablefunctionson Y w.r.t.measure ν .

Let f : Y → R bean F -measurablefunction,i.e.foreachBorelsubset B of extendedrealline R,itholds f 1 B ∈ F .

T HEOREM 1.2.–(Thechangeofvariablesformula)Assumethateither f ≥ 0 or f ∈ L(Y,μT 1 ).Thenitholds X

P ROOF.–Equality[1.4]isshowninastandardway:firstforindicators,thenforsimple non-negativefunctions,thenfor f ≥ 0,andfinally,for f ∈ L(Y,μT 1 )

a)Let A ∈ F , f (y )= IA (y )= 1, if y ∈ A 0, otherwise.

Then

IA (Tx)= 1, if Tx ∈ A 0, otherwise,

IA (Tx)= 1, if x ∈ T 1 A 0, otherwise,

IA (Tx)= IT 1 A (x)

Hence

IA (Tx)dμ(x)= X IT 1 A (x)dμ(x)= μ(T 1 A)=(μT 1 )(A), Y IA (y )d(μT 1 )(y )=(μT 1 )(A), and[1.4]followsfortheindicatorfunction.

b)Let f ≥ 0 beasimple F -measurablefunction.Thenitadmitsarepresentation

(y )= m k =1 a

,y ∈ Y,

withdisjointmeasurablesets {Ak ,k =1,...,m} andnon-negative ak .Forthe function[1.5],relation[1.4]followsduetopart(a)oftheproofandthelinearityof theLebesgueintegral.

c)Let f beanarbitrarynon-negativeand F -measurablefunction.Thenthere existsasequence {pn (y ),n ≥ 1,y ∈ Y } ofnon-negative,simpleand F -measurable functionssuchthat pn convergesto f pointwiseand pn (y ) ≤ pn+1 (y ), n ≥ 1, y ∈ Y

Bypart(b)oftheproof,

Here,tend n toinfinity.Bythemonotoneconvergencetheorem,[1.6]implies[1.4].

d)Finally,let f ∈ L(Y,μT 1 ), f+ (y ):=max{f (y ), 0},f (y ):= min{f (y ), 0},y ∈ Y.

Bypart(c)oftheproof,

Subtract[1.8]from[1.7]andobtain[1.4]usingthedefinitionofLebesgueintegral.

Problems1.1

1)Let λT 2 beaLebesguemeasureon [0,T ]2 ; π1 (x1 ,x2 )= x1 , (x1 ,x2 ) ∈ [0,T ]2 , π1 :[0,T ]2 → R.Showthat (

where λ1 isLebesguemeasureon R and S1 issigma-algebraofLebesguemeasurable setson R.

2)Let μ1 and μ2 befinitemeasuresonBorelsigma-algebra B (R),and π (x1 ,x2 )= x1 , (x1 ,x2 ) ∈ R2 .Findtheinducedmeasure (μ1 × μ2 )π 1 1 .

3)Fortheobjectsoftheorem1.1,provethefollowing:if μT 1 issigma-finite, then μ issigma-finiteaswell.Doestheoppositeholdtrue?

4)Let f : Y → R beany F -measurablefunction.ShowthattheLebesgueintegral ontheleft-handsideof[1.4]iswelldefinedif,andonlyif,theintegralontherighthandsideof[1.4]iswelldefined.Moreover,incasewheretheyarewelldefined,they coincide.

1.2.InvarianceofLebesguemeasure

Considerameasurespace (X,S,μ) andameasurabletransformation T : X → X

D EFINITION 1.2.– Themeasure μ iscalledinvariantunder T ,or T -invariant,if μT 1 = μ.

R EMARK 1.1.–Assumeadditionallythat T isabijectionon X ,andmoreover T 1 is ameasurabletransformationaswell.Then μ is T -invariantifandonlyif

(Hereafter TB denotesimageof B under T .)

P ROOF.–

a)Let μ be T -invariantand B ∈ S .Because T 1 ismeasurable, A := TB ∈ S Itholds B = T 1 A,and μ(T 1 A)= μ(A).Equality[1.9]follows.

b)Conversely,assume[1.9]andtakeany A ∈ S .Denote B0 = T 1 A, B0 ∈ S . Then (μT 1 )(A)= μ(B0 )= μ(TB0 )= μ(A),and μ is T -invariant.

E XAMPLE 1.1.–(Countingmeasure)Let X = {1, 2,...,n}, S =2X bethesigmaalgebraofallsubsetsof X ,and μ bethecountingmeasureon X ,i.e. μ(A)= |A|, A ∈ S .(Hereafter |A| isnumberofpointsinaset A;if A isinfinite, |A| =+∞.)Then

μ isinvariantunderanybijection π on X .Indeed, μ(π 1 A)= |π 1 A| = |A| = μ(A), A ∈ S

Inthissection,weshowthatLebesguemeasure λn on Rn isrotationand translationinvariant.Hereafter,wesupposethatEuclideanspace Rn consistsof columnvectors x =(x1 ,...,xn ) .

D EFINITION 1.3.– Affinetransformationof Rn isamappingofaform Tx = Lx + c, with L ∈ Rn×n and c ∈ Rn .Suchtransformationiscallednon-singularif L is non-singular.Otherwise,if det L =0,then T ofthisformiscalledasingularaffine transformation.

R EMARK 1.2.–Affinetransformation Tx = Lx + c isinvertibleif,andonlyif,itis non-singular.Inthiscase,theinversetransformationisanon-singularaffine transformationaswell,anditactsasfollows:

T 1 y = L 1 y L 1 c,y ∈ Rn

Rememberthatnon-singularaffinetransformationsonaplaneincluderotations, translationsandaxialsymmetries.

T HEOREM 1.3.–(TransformationofLebesguemeasureatBorelsets)Consider Lebesguemeasure λn onBorelsigma-algebra B (Rn ).Let Tx = Lx + c bea non-singularaffinetransformationon Rn .Then

λn T 1 = 1 | det L| λn . [1.10]

P ROOF.–Transformation T iscontinuous,and,therefore,Borelmeasurable.Hence theinducedmeasure λn T 1 on B (Rn ) iswelldefined.

a)For a =(ak )n 1 and b =(bk )n 1 with ak <bk , k =1,...,n denote [a,b]= n k =1 [ak ,bk ], (a,b]= n k =1 (ak ,bk ].

Hereafter, n k =1 Ak standsforCartesianproductof A1 ,...,An .Evaluate

λn T 1 ([a,b])= λn T 1 [a,b] = T 1 [a,b] dλn = T 1 [a,b] dx.

ThelatterintegralisRiemannintegraloverthecompactandJordanmeasurableset T 1 [a,b].ThechangeofvariablesintheRiemannintegralleadstothefollowing:

λn T 1 [a,b] = [a,b] ∂y ∂x 1 dy = mn ([a,b]) | det L| = λn ([a,b]) | det L| .

Here mn isJordanmeasureon Rn

b)Consideraset (a,b] introducedin[1.11],andlet {ak (m),m ≥ 1} bea decreasingsequencethatconvergesto ak suchthat ak (m) <bk , m ≥ 1; k =1,...,n Denote a(m)=(ak (m))n k =1 ∈ Rn .Then Am :=[a(m),b] isamonotonesequenceof setsthatconvergesto (a,b].ThecontinuityofLebesguemeasurefrombelowimplies λn T 1 ((a,b])=lim m→∞ λn (T 1 Am )=lim m→∞ λn (Am ) | det L| = λn ((a,b]) | det L| .

Here,weusedpart(a)oftheproof.

c)Thus,thetwomeasures λn T 1 and λn | det L| in[1.10]coincideonthesemiring Pn thatconsistsofallbricks (a,b] from[1.11].Bothmeasuresaresigma-finite,and therefore,theycoincideon σr (Pn )= B (Rn ),where σr (Pn ) issigma-ringgenerated by Pn .

Now,weextendtheorem1.3toLebesguemeasure λn onsigma-algebra Sn of Lebesguemeasurablesetsin Rn .

L EMMA 1.1.–Non-singularaffinetransformation Tx = Lx + c is (Sn ,Sn )-measurable,i.e.forany A ∈ Sn , T 1 A ∈ Sn aswell.

P ROOF.–Itisknown(see[HAL13])that Sn = {B ∪ N |B ∈B (Rn ),N ⊂ N0 with N0 ∈B (Rn ),λn (N0 )=0}.

Let A ∈ Sn ,then A = B ∪ N ,with B and N describedin[1.12].Itholds

Here,weusedtheorem1.3andthefactthat T isaBorelfunction.Decompositions [1.13]and[1.14]showthat T 1 A ∈ Sn .

T HEOREM 1.4.–(TransformationofLebesguemeasure)Let Tx = Lx + c bea non-singularaffinetransformationon Rn .ForLebesguemeasure λn on Sn ,itholds

λn T 1 = λn | det L| .

P ROOF.–Consider A ∈ Sn anddecompose T 1 A asin[1.13]and[1.14].Because λn (N )= λn (T 1 N )=0, wehavebytheorem1.3:

λn T 1 A = λn T 1 B = λn (B ) | det L| = λn (A) | det L| .

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Where can buy Gaussian measures in hilbert space: construction and properties kukush ebook with chea by Education Libraries - Issuu