Instant download Kinematics of general spatial mechanical systems özgören pdf all chapter

Page 1


Kinematics of general spatial mechanical systems Özgören

Visit to download the full and correct content document: https://ebookmass.com/product/kinematics-of-general-spatial-mechanical-systems-oz goren/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

GATE Mechanical Engineering Topic-wise Practice Tests

Trishna Knowledge Systems

https://ebookmass.com/product/gate-mechanical-engineering-topicwise-practice-tests-trishna-knowledge-systems/

Thermal, mechanical, and hybrid chemical energy storage systems Klaus Brun (Editor)

https://ebookmass.com/product/thermal-mechanical-and-hybridchemical-energy-storage-systems-klaus-brun-editor/

(eTextbook PDF) for Kinematics and Dynamics of Machines

2nd Edition

https://ebookmass.com/product/etextbook-pdf-for-kinematics-anddynamics-of-machines-2nd-edition/

Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering 7th Edition William Bolton

https://ebookmass.com/product/mechatronics-electronic-controlsystems-in-mechanical-and-electrical-engineering-7th-editionwilliam-bolton/

Multi-body kinematics and dynamics with Lie groups

Chevallier

https://ebookmass.com/product/multi-body-kinematics-and-dynamicswith-lie-groups-chevallier/

Mechanical and Electrical Systems in Architecture, Engineering and Construction 5th Edition – Ebook PDF Version

https://ebookmass.com/product/mechanical-and-electrical-systemsin-architecture-engineering-and-construction-5th-edition-ebookpdf-version/

Electrical and Mechanical Fault Diagnosis in Wind Energy Conversion Systems Monia Ben Khader Bouzid

https://ebookmass.com/product/electrical-and-mechanical-faultdiagnosis-in-wind-energy-conversion-systems-monia-ben-khaderbouzid/

Spatial Analysis John T Kent

https://ebookmass.com/product/spatial-analysis-john-t-kent/

Spatial Analysis John T. Kent

https://ebookmass.com/product/spatial-analysis-john-t-kent-2/

KinematicsofGeneralSpatialMechanicalSystems

KinematicsofGeneralSpatialMechanical Systems

M.KemalOzgoren

MiddleEastTechnicalUniversity

Turkey

Thiseditionfirstpublished2020

©2020JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions.

TherightofM.KemalOzgorentobeidentifiedastheauthorofthisworkhasbeenassertedinaccordance withlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andthe constantflowofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereader isurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsforeach chemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsor indicationofusageandforaddedwarningsandprecautions.Whilethepublisherandauthorshaveused theirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties,including withoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarranty maybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotionalstatementsfor thiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitationand/or potentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendationsitmaymake. Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices. Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwitha specialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhave changedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernor authorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationDataAppliedfor

HardbackISBN:9781119195733

CoverDesign:Wiley

CoverImage:©PhonlamaiPhoto/Shutterstock

Setin10/12ptWarnockProbySPiGlobal,Chennai,India

PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY 10987654321

Toallthereaderswhomayenjoyandmakeuseofthisbook

Contents

Preface xv

Acknowledgments xix

ListofCommonlyUsedSymbols,Abbreviations,andAcronyms xxi AbouttheCompanionWebsite xxvii

1VectorsandTheirMatrixRepresentationsinSelectedReference Frames 1

1.1GeneralFeaturesofNotation 1

1.2Vectors 2

1.2.1DefinitionandDescriptionofaVector 2

1.2.2EqualityofVectors 2

1.2.3OppositeVectors 3

1.3VectorProducts 3

1.3.1DotProduct 3

1.3.2CrossProduct 3

1.4ReferenceFrames 4

1.5RepresentationofaVectorinaSelectedReferenceFrame 6

1.6MatrixOperationsCorrespondingtoVectorOperations 7

1.6.1DotProduct 7

1.6.2CrossProductandSkewSymmetricCrossProductMatrices 8

1.7MathematicalPropertiesoftheSkewSymmetricMatrices 9

1.8ExamplesInvolvingSkewSymmetricMatrices 10

1.8.1Example1.1 10

1.8.2Example1.2 11

1.8.3Example1.3 11

2RotationofVectorsandRotationMatrices 13

2.1VectorEquationofRotationandtheRodriguesFormula 13

2.2MatrixEquationofRotationandtheRotationMatrix 15

2.3ExponentiallyExpressedRotationMatrix 16

2.4BasicRotationMatrices 16

2.5SuccessiveRotations 17

2.6OrthonormalityoftheRotationMatrices 18

2.7MathematicalPropertiesoftheRotationMatrices 20

2.7.1MathematicalPropertiesofGeneralRotationMatrices 20

2.7.2MathematicalPropertiesoftheBasicRotationMatrices 22

2.8ExamplesInvolvingRotationMatrices 22

2.8.1Example2.1 22

2.8.2Example2.2 23

2.8.3Example2.3 24

2.8.4Example2.4 24

2.9DeterminationoftheAngleandAxisofaSpecifiedRotationMatrix 25

2.9.1ScalarEquationsofRotation 25

2.9.2DeterminationoftheAngleofRotation 26

2.9.3DeterminationoftheAxisofRotation 26

2.9.4DiscussionAbouttheOptionalSignVariables 29

2.10DefinitionandPropertiesoftheDoubleArgumentArctangentFunction 29

3MatrixRepresentationsofVectorsinDifferentReferenceFramesand theComponentTransformationMatrices 31

3.1MatrixRepresentationsofaVectorinDifferentReferenceFrames 31

3.2TransformationMatricesBetweenReferenceFrames 32

3.2.1DefinitionandUsageofaTransformationMatrix 32

3.2.2BasicPropertiesofaTransformationMatrix 33

3.3ExpressionofaTransformationMatrixinTermsofBasisVectors 34

3.3.1Column-by-ColumnExpression 34

3.3.2Row-by-RowExpression 34

3.3.3Remark3.1 35

3.3.4Remark3.2 35

3.3.5Remark3.3 36

3.3.6Example3.1 36

3.4ExpressionofaTransformationMatrixasaDirectionCosineMatrix 37

3.4.1DefinitionsofDirectionAnglesandDirectionCosines 37

3.4.2TransformationMatrixFormedasaDirectionCosineMatrix 38

3.5ExpressionofaTransformationMatrixasaRotationMatrix 38

3.5.1CorrelationBetweentheRotationandTransformationMatrices 38

3.5.2DistinctionBetweentheRotationandTransformationMatrices 39

3.6RelationshipBetweentheMatrixRepresentationsofaRotationOperatorin DifferentReferenceFrames 40

3.7ExpressionofaTransformationMatrixinaCaseofSeveralSuccessive Rotations 40

3.7.1RotatedFrameBased(RFB)Formulation 41

3.7.2InitialFrameBased(IFB)Formulation 41

3.8ExpressionofaTransformationMatrixinTermsofEulerAngles 42

3.8.1GeneralDefinitionofEulerAngles 42

3.8.2IFB(InitialFrameBased)EulerAngleSequences 42

3.8.3RFB(RotatedFrameBased)EulerAngleSequences 43

3.8.4Remark3.4 44

3.8.5Remark3.5 44

3.8.6Remark3.6:PreferenceBetweenIFBandRFBSequences 45

3.8.7CommonlyUsedEulerAngleSequences 45

3.8.8ExtractionofEulerAnglesfromaGivenTransformationMatrix 46

3.9PositionofaPointExpressedinDifferentReferenceFramesand HomogeneousTransformationMatrices 51

3.9.1PositionofaPointExpressedinDifferentReferenceFrames 51

3.9.2Homogeneous,Nonhomogeneous,Linear,Nonlinear,andAffine Relationships 52

3.9.3AffineCoordinateTransformationBetweenTwoReferenceFrames 53

3.9.4HomogeneousCoordinateTransformationBetweenTwoReference Frames 54

3.9.5MathematicalPropertiesoftheHomogeneousTransformationMatrices 55

3.9.6Example3.2 58

4VectorDifferentiationAccompaniedbyVelocityandAcceleration Expressions 63

4.1DerivativesofaVectorwithRespecttoDifferentReferenceFrames 63

4.1.1DifferentiationandResolutionFrames 63

4.1.2ComponentsinDifferentDifferentiationandResolutionFrames 64

4.1.3Example 65

4.2VectorDerivativeswithRespecttoDifferentReferenceFramesandthe CoriolisTransportTheorem 66

4.2.1FirstDerivativesandtheRelativeAngularVelocity 66

4.2.2SecondDerivativesandtheRelativeAngularAcceleration 68

4.3CombinationofRelativeAngularVelocitiesandAccelerations 70

4.3.1CombinationofRelativeAngularVelocities 70

4.3.2CombinationofRelativeAngularAccelerations 71

4.4AngularVelocitiesandAccelerationsAssociatedwithRotation Sequences 71

4.4.1RelativeAngularVelocitiesandAccelerationsaboutRelativelyFixed Axes 71

4.4.2Example 72

4.4.3AngularVelocitiesAssociatedwiththeEulerAngleSequences 74

4.5VelocityandAccelerationofaPointwithRespecttoDifferentReference Frames 77

4.5.1VelocityofaPointwithRespecttoDifferentReferenceFrames 77

4.5.2AccelerationofaPointwithRespecttoDifferentReferenceFrames 78

4.5.3VelocityandAccelerationExpressionswithSimplifiedNotations 79

5KinematicsofRigidBodySystems 81

5.1KinematicDescriptionofaRigidBodySystem 82

5.1.1BodyFramesandJointFrames 82

5.1.2KinematicChains,KinematicBranches,andKinematicLoops 83

5.1.3JointsorKinematicPairs 83

5.2PositionEquationsforaKinematicChainofRigidBodies 84

5.2.1RelativeOrientationEquationBetweenSuccessiveBodies 85

5.2.2RelativeLocationEquationBetweenSuccessiveBodies 85

5.2.3OrientationofaBodywithRespecttotheBaseoftheKinematicChain 85

5.2.4LocationofaBodywithRespecttotheBaseoftheKinematicChain 86

5.2.5LoopClosureEquationsforaKinematicLoop 86

5.3VelocityEquationsforaKinematicChainofRigidBodies 87

5.3.1RelativeAngularVelocitybetweenSuccessiveBodies 87

5.3.2RelativeTranslationalVelocityBetweenSuccessiveBodies 88

5.3.3AngularVelocityofaBodywithRespecttotheBase 89

5.3.4TranslationalVelocityofaBodywithRespecttotheBase 89

5.3.5VelocityEquationsforaKinematicLoop 90

5.4AccelerationEquationsforaKinematicChainofRigidBodies 90

5.4.1RelativeAngularAccelerationBetweenSuccessiveBodies 91

5.4.2RelativeTranslationalAccelerationBetweenSuccessiveBodies 92

5.4.3AngularAccelerationofaBodywithRespecttotheBase 92

5.4.4TranslationalAccelerationofaBodywithRespecttotheBase 93

5.4.5AccelerationEquationsforaKinematicLoop 93

5.5Example5.1:ASerialManipulatorwithanRRPArm 94

5.5.1KinematicDescriptionoftheSystem 94

5.5.2PositionAnalysis 95

5.5.3VelocityAnalysis 100

5.5.4AccelerationAnalysis 103

5.6Example5.2:ASpatialSlider-Crank(RSSP)Mechanism 106

5.6.1KinematicDescriptionoftheMechanism 106

5.6.2LoopClosureEquations 108

5.6.3DegreeofFreedomorMobility 109

5.6.4PositionAnalysis 110

5.6.5VelocityAnalysis 119

5.6.6AccelerationAnalysis 122

6JointsandTheirKinematicCharacteristics 125

6.1KinematicDetailsoftheJoints 125

6.1.1DescriptionofaJointasaKinematicPair 125

6.1.2DegreeofFreedomorMobilityofaJoint 126

6.1.3NumberofDistinctJointsBetweenTwoRigidBodies 126

6.1.4ClassificationoftheJoints 127

6.2TypicalLowerOrderJoints 128

6.2.1Single-AxisJoints 128

6.2.2UniversalJoint 130

6.2.3SphericalJoint 131

6.2.4Plane-on-PlaneJoint 132

6.3HigherOrderJointswithSimpleContacts 132

6.3.1Line-on-PlaneJoint 132

6.3.2Point-on-PlaneJoint 133

6.3.3Point-on-SurfaceJoint 133

6.4TypicalMulti-JointConnections 134

6.4.1Fork-on-SurfaceJoint 134

6.4.2Triangle-on-SurfaceJoint 136

6.5RollingContactJointswithPointContacts 138

6.5.1Surface-on-SurfaceJoint 138

6.5.2Curve-on-SurfaceJoint 144

6.5.3Curve-on-CurveJoint 147

6.6RollingContactJointswithLineContacts 148

6.6.1Cone-on-ConeJoint 148

6.6.2Cone-on-CylinderJoint 155

6.6.3Cone-on-PlaneJoint 157

6.6.4Cylinder-on-CylinderJoint 161

6.6.5Cylinder-on-PlaneJoint 164

6.7Examples 167

6.7.1Example6.1:AnRRRSPMechanism 167

6.7.2Example6.2:ATwo-LinkMechanismwithThreePoint-on-PlaneJoints 171

6.7.3Example6.3:ASpatialCamMechanism 174

6.7.4Example6.4:ASpatialCamMechanismThatAllowsRollingWithout Slipping 177

7KinematicFeaturesofSerialManipulators 185

7.1KinematicDescriptionofaGeneralSerialManipulator 185

7.2Denavit–HartenbergConvention 186

7.3D–HConventionforSuccessiveIntermediateLinksandJoints 187

7.3.1AssignmentandDescriptionoftheLinkFrames 187

7.3.2D–HParameters 188

7.3.3RelativePositionFormulasBetweenSuccessiveLinks 189

7.3.4AlternativeMulti-IndexNotationfortheD–HConvention 189

7.4D–HConventionfortheFirstJoint 190

7.5D–HConventionfortheLastJoint 193

7.6D–HConventionforSuccessiveJointswithPerpendicularlyIntersecting Axes 195

7.7D–HConventionforSuccessiveJointswithParallelAxes 195

7.8D–HConventionforSuccessiveJointswithCoincidentAxes 197

8PositionandMotionAnalysesofGenericSerialManipulators 199

8.1ForwardKinematics 201

8.2CompactFormulationofForwardKinematics 202

8.3DetailedFormulationofForwardKinematics 203

8.4ManipulatorswithorwithoutSphericalWrists 205

8.5InverseKinematics 207

8.6InverseKinematicSolutionforaRegularManipulator 208

8.6.1RegularManipulatorwithaSphericalWrist 208

8.6.2RegularManipulatorwithaNonsphericalWrist 211

8.7InverseKinematicSolutionforaRedundantManipulator 212

8.7.1SolutionbySpecifyingtheVariablesofCertainJoints 212

8.7.2SolutionbyOptimization 213

8.8InverseKinematicSolutionforaDeficientManipulator 214

8.8.1CompromiseinOrientationinFavorofaCompletelySpecified Location 214

8.8.2CompromiseinLocationinFavorofaCompletelySpecified Orientation 215

8.9ForwardKinematicsofMotion 215

8.9.1ForwardKinematicsofVelocityRelationships 215

8.9.2ForwardKinematicsofAccelerationRelationships 216

8.10JacobianMatricesAssociatedwiththeWristandTipPoints 218

8.11RecursivePosition,Velocity,andAccelerationFormulations 220

8.11.1OrientationsoftheLinks 220

8.11.2LocationsoftheLinkFrameOrigins 221

8.11.3LocationsoftheMassCentersoftheLinks 221

8.11.4AngularVelocitiesoftheLinks 221

8.11.5VelocitiesoftheLinkFrameOrigins 222

8.11.6VelocitiesoftheMassCentersoftheLinks 222

8.11.7AngularAccelerationsoftheLinks 222

8.11.8AccelerationsoftheLinkFrameOrigins 222

8.11.9AccelerationsoftheMassCentersoftheLinks 223

8.12InverseMotionAnalysisofaManipulatorBasedontheJacobianMatrix 223

8.12.1InverseVelocityAnalysisofaRegularManipulator 224

8.12.2InverseAccelerationAnalysisofaRegularManipulator 225

8.13InverseMotionAnalysisofaRedundantManipulator 225

8.13.1InverseVelocityAnalysis 225

8.13.2InverseAccelerationAnalysis 228

8.14InverseMotionAnalysisofaDeficientManipulator 229

8.15InverseMotionAnalysisofaRegularManipulatorUsingtheDetailed Formulation 230

8.15.1InverseVelocitySolution 230

8.15.2InverseAccelerationSolution 231

9KinematicAnalysesofTypicalSerialManipulators 233

9.1PumaManipulator 233

9.1.1KinematicDescriptionAccordingtotheD–HConvention 234

9.1.2ForwardKinematicsinthePositionDomain 235

9.1.3InverseKinematicsinthePositionDomain 237

9.1.4MultiplicityAnalysis 240

9.1.5SingularityAnalysisinthePositionDomain 242

9.1.6ForwardKinematicsintheVelocityDomain 244

9.1.7InverseKinematicsintheVelocityDomain 245

9.1.8SingularityAnalysisintheVelocityDomain 247

9.2StanfordManipulator 250

9.2.1KinematicDescriptionAccordingtotheD–HConvention 250

9.2.2ForwardKinematicsinthePositionDomain 251

9.2.3InverseKinematicsinthePositionDomain 253

9.2.4MultiplicityAnalysis 254

9.2.5SingularityAnalysisinthePositionDomain 255

9.2.6ForwardKinematicsintheVelocityDomain 255

9.2.7InverseKinematicsintheVelocityDomain 256

9.2.8SingularityAnalysisintheVelocityDomain 257

9.3ElbowManipulator 258

9.3.1KinematicDescriptionAccordingtotheD–HConvention 259

9.3.2ForwardKinematicsinthePositionDomain 260

9.3.3InverseKinematicsinthePositionDomain 262

9.3.4MultiplicityAnalysis 264

9.3.5SingularityAnalysisinthePositionDomain 266

9.3.6ForwardKinematicsintheVelocityDomain 269

9.3.7InverseKinematicsintheVelocityDomain 269

9.3.8SingularityAnalysisintheVelocityDomain 271

9.4ScaraManipulator 273

9.4.1KinematicDescriptionAccordingtotheD–HConvention 273

9.4.2ForwardKinematicsinthePositionDomain 274

9.4.3InverseKinematicsinthePositionDomain 275

9.4.4MultiplicityAnalysis 277

9.4.5SingularityAnalysisinthePositionDomain 278

9.4.6ForwardKinematicsintheVelocityDomain 279

9.4.7InverseKinematicsintheVelocityDomain 279

9.4.8SingularityAnalysisintheVelocityDomain 280

9.5AnRP2 R3 ManipulatorwithoutanAnalyticalSolution 281

9.5.1KinematicDescriptionAccordingtotheD–HConvention 282

9.5.2ForwardKinematicsinthePositionDomain 282

9.5.3InverseKinematicsinthePositionDomain 283

9.5.4MultiplicityAnalysis 285

9.5.5SingularityAnalysisinthePositionDomain 287

9.5.6ForwardKinematicsintheVelocityDomain 287

9.5.7InverseKinematicsintheVelocityDomain 287

9.5.8SingularityAnalysisintheVelocityDomain 289

9.6AnRPRPR2 ManipulatorwithanUncustomaryAnalyticalSolution 290

9.6.1KinematicDescriptionAccordingtotheD–HConvention 290

9.6.2ForwardKinematicsinthePositionDomain 291

9.6.3InverseKinematicsinthePositionDomain 293

9.6.4MultiplicityAnalysis 297

9.6.5SingularityAnalysisinthePositionDomain 298

9.6.6ForwardKinematicsintheVelocityDomain 298

9.6.7InverseKinematicsintheVelocityDomain 299

9.6.8SingularityAnalysisintheVelocityDomain 301

9.7ADeficientPumaManipulatorwithFiveActiveJoints 303

9.7.1KinematicDescriptionAccordingtotheD–HConvention 303

9.7.2ForwardKinematicsinthePositionDomain 304

9.7.3InverseKinematicsinthePositionDomain 305

9.7.3.1SolutionintheCaseofFullySpecifiedTipPointLocation 305

9.7.3.2SolutionintheCaseofFullySpecifiedEnd-EffectorOrientation 307

9.7.4MultiplicityAnalysisinthePositionDomain 307

9.7.4.1AnalysisintheCaseofFullySpecifiedTipPointLocation 307

9.7.4.2AnalysisintheCaseofFullySpecifiedEnd-EffectorOrientation 308

9.7.5SingularityAnalysisinthePositionDomain 308

9.7.5.1AnalysisintheCaseofFullySpecifiedTipPointLocation 308

9.7.5.2AnalysisintheCaseofFullySpecifiedEnd-EffectorOrientation 309

9.7.6ForwardKinematicsintheVelocityDomain 310

9.7.7InverseKinematicsintheVelocityDomain 310

9.7.7.1SolutionintheCaseofFullySpecifiedTipPointVelocity 310

9.7.7.2SolutionintheCaseofFullySpecifiedEnd-EffectorAngularVelocity 311

9.7.8SingularityAnalysisintheVelocityDomain 312

9.7.8.1AnalysisintheCaseofFullySpecifiedTipPointVelocity 312

9.7.8.2AnalysisintheCaseofFullySpecifiedEnd-EffectorAngularVelocity 313

9.8ARedundantHumanoidManipulatorwithEightJoints 313

9.8.1KinematicDescriptionAccordingtotheD–HConvention 313

9.8.2ForwardKinematicsinthePositionDomain 315

9.8.3InverseKinematicsinthePositionDomain 316

9.8.4MultiplicityAnalysis 323

9.8.5SingularityAnalysisinthePositionDomain 326

9.8.6ForwardKinematicsintheVelocityDomain 328

9.8.7InverseKinematicsintheVelocityDomain 328

9.8.8SingularityAnalysisintheVelocityDomain 333

9.8.9ConsistencyoftheInverseKinematicsinthePositionandVelocity Domains 335

10PositionandVelocityAnalysesofParallelManipulators 341

10.1GeneralKinematicFeaturesofParallelManipulators 343

10.2PositionEquationsofaParallelManipulator 347

10.3ForwardKinematicsinthePositionDomain 351

10.4InverseKinematicsinthePositionDomain 359

10.5VelocityEquationsofaParallelManipulator 368

10.6ForwardKinematicsintheVelocityDomain 371

10.7InverseKinematicsintheVelocityDomain 377

10.8Stewart–GoughPlatformasa6UPSSpatialParallelManipulator 384

10.8.1KinematicDescription 384

10.8.2PositionEquations 386

10.8.3InverseKinematicsinthePositionDomain 387

10.8.4ForwardKinematicsinthePositionDomain 389

10.8.5VelocityEquations 396

10.8.6InverseKinematicsintheVelocityDomain 397

10.8.7ForwardKinematicsintheVelocityDomain 398

10.9DeltaRobot:A3RS2 S2 SpatialParallelManipulator 402

10.9.1KinematicDescription 402

10.9.2PositionEquations 404

10.9.3IndependentKinematicLoopsandtheAssociatedEquations 407

10.9.4InverseKinematicsinthePositionDomain 410

10.9.5ForwardKinematicsinthePositionDomain 412

10.9.6VelocityEquations 417

10.9.7InverseKinematicsintheVelocityDomain 418

10.9.8ForwardKinematicsintheVelocityDomain 420

Bibliography 423

Index 425

Preface

Asimpliedbythetitle, KinematicsofGeneralSpatialMechanicalSystems,thisbook isconcernedmainlywiththekinematicdescriptionandanalysisofspatialmechanical systemssuchas serialmanipulators, parallelmanipulators,and spatialmechanisms. However,aplanarmechanicalsystemisalsoconsideredoccasionally,wheneveritis helpfulindemonstratinganddiscussingakinematicfeaturemoreneatlyandclearly.

Thisbookmaybeusefulandattractiveforawidespectrumofpeopleinterestedinthe areaofroboticsandmechanismsrangingfromstudentstospecializedscholars.They maykeepthisbookasahandydesktopreferencebook.Besides,thisbookmayevenbe adoptedasanauxiliaryorsupplementarytextbookinsomespecialcourses.

Thisbookplacesthemainemphasisonthe analytical and semi-analytical solution methodsforthekinematicproblemsconcerningthesystemstobestudied.Ananalytical solutionissuchthatalltheunknownvariablesareobtainedwithclosed-formexpressionsintermsoftheknownvariables.Ontheotherhand,asemi-analyticalsolutionis suchthatalargenumberoftheunknownvariablesareagainobtainedwithclosed-form expressionsintermsoftheknownandasmallnumberofjudiciouslyselectedspecial unknownvariables.Afterwards,thesesmallnumberofspecialunknownsarefound bysolvinganequalnumberofconsistencyequationsbymeansofasuitablenumerical method.Duetothepreferenceoftheanalyticalandsemi-analyticalsolutionmethods, thepurelynumericalsolutionmethodsarekeptbeyondthescopeofthisbook.

Oneofthemajoradvantagesoftheanalyticalandsemi-analyticalsolutionmethods isthatthemultiplicitiesandsingularitiesarereadilyidentifiedastheby-productsofthe solutionprocedure.Owingtotheclosed-form(ormostlyclosed-form)expressions,the consequencesofthemultiplicitiesandsingularitiescanalsobestudiedeasily.Thisway, themotionplanningstudiesarealsofacilitated.

Ontheotherhand,theanalyticalandsemi-analyticalsolutionmethodsnecessitate thattheorientationsandlocationsofthelinks(i.e.therigidbodymembers)ofthestudiedsystembeexpressedseparatelywithallthecharacteristicdetailsshownexplicitlyasa preparationforthesubsequentsymbolicmanipulations.Therefore,thecompactmathematicalformulationsthatcombinetheorientationsandlocationsintosinglealgebraic entities(suchashomogeneousdisplacementmatrices,screws,dualquaternions,etc.) arenotfavoredinthisbook.Yet,thesecompactalgebraicentitiesareactuallyadvantageousinmanyways.Forexample,theyareindeedverysuitableforwritingtheequations ofthekinematicchainsandloopscompactlyandbriefly.Theyarealsosuitableforthe efficientexecutionofthecomputationsrelatedtothoseequations.However,theyarenot

verysuitableforthedetailedsymbolicmanipulationsthatarerequiredfortheanalytical treatments,whichconstitutethebasisofthisbook.

Themaintopicsthatarecoveredinthisbookareindicatedandbrieflyexplainedbelow. TheNecessaryMathematicsofSpatialKinematics(Chapters1,2,3,and4): Therelevantconcepts,theorems,andformulasareexplainedanddiscussed.Additionally,asimpleandneatnotationisintroducedthatclearlydistinguishesvectors andtheircolumnmatrixrepresentationsindifferentreferenceframes.Thisnotation, togetherwiththeaccompanyingalgebraicrules,turnsouttobeveryconvenientfor thesymbolicmanipulationofthekinematicrelationships.Thus,itfacilitatesobtaining theanalyticalandsemi-analyticalsolutions.

KinematicConstituentsofaMechanicalSystem(Chapters5and6):

Thelinks,thekinematicelementsonthelinks,andthejoints(i.e.thekinematicpairs formedbythematingkinematicelementsoftheconnectedlinks)aredescribedmathematicallybymeansoftheappropriatelydefinedreferenceframes,theconstantgeometricparametersofthelinksandthejoints,andthejointvariablesthatdescribethe relativepositionsofthematingkinematicelementswithrespecttoeachother. Inthisbook,thelinksandthekinematicelementsofthejointsareassumedtobe rigid.Inotherwords,themechanicalsystemswithflexiblelinksand/orflexuraljoints arenottakenintothescopeofthisbook.

KinematicFormationandFormulationofaMechanicalSystem(Chapters5and6):

Thenecessaryequationsarewrittenintheposition,velocity,andacceleration domainsinordertodescribethekinematicrelationshipsconcerningtheopen, closed,andhybridkinematicchains,bywhichthekinematicconstituentsare interconnectedtoformamechanicalsystem.

KinematicTreatmentofSerialManipulators(Chapters7,8,and9):

Thetreatmentincludestheforwardkinematicformulationsandtheinversekinematic solutionsinthepositionandvelocitydomains.Theresultsareextendedtotheaccelerationdomain,too.Thetreatmentalsoincludesdiscussionsonthemultiplicitiesinthe positiondomainandtheanalysisofthepositionandmotionsingularities.Thesingularitiesarediscussedconsideringtheirconsequencesinthetaskandjointspaces.The singularityanalysissuggestscertaincompatibilityconditionsontheplannedmotion oftheend-effector.Thesecompatibilityconditions,ifobeyed,eliminatethenecessity ofavoidingthesingularities.Onthecontrary,withoutavoidingthesingularities,it becomespossibletoexecutecertaintasks,whichcouldnotbeexecutedotherwise.

KinematicTreatmentofParallelManipulators(Chapter10):

Thetreatmentincludestheforwardandinversekinematicsolutionsintheposition andvelocitydomains.Theresultsmaybeextended,ifdesired,totheacceleration domain,too.Concerningthemultiplicitiesinthepositiondomain,thetreatment includesdiscussionsonthetwodifferentsetsofposturemultiplicitiesassociated withtheforwardandinversekinematicsolutions.Concerningthesingularities, thetreatmentincludestheanalysisoffourdifferenttypesofsingularities,eachof whichisdesignatedbyoneofthefollowingphrases: positionsingularityofforward kinematics, motionsingularityofforwardkinematics, positionsingularityofinverse kinematics,and motionsingularityofinversekinematics.Thesingularityanalysis showsthatthemanipulatorbecomesuncontrollablethroughitsactuatedjointsinthe positionandmotionsingularitiesofforwardkinematics.Therefore,thesingularities offorwardkinematicsmustbeavoided.Thesingularityanalysisalsoshowsthatthe

manipulatorremainscontrollablethroughitsactuatedjointsinthepositionand motionsingularitiesofinversekinematics,providedthatthedesiredmotionofthe end-effectorbespecifiedaccordingtocertainrestrictivecompatibilityconditions. Therefore,thesingularitiesofinversekinematicsneednotbeavoided,iftherestricted motionoftheend-effectorisacceptableordesirableforthetasktobeexecuted.

KinematicTreatmentoftheMechanismswithSimpleContactJoints(Chapters5and6): Inthepositiondomain,thetreatmentincludestheidentificationoftheindependent loops,writingthecorrespondingloopclosureequations,andthensolvingthemto obtaintheunspecifiedjointvariablesasfunctionsofthespecifiedones.Theposition domaintreatmentalsoincludesdiscussionsonthemultiplesolutionsandtheposition singularitiesassociatedwiththespecifiedjointvariables.Inthevelocityandaccelerationdomains,thetreatmentincludesderivingthevelocityandaccelerationconstraint equationsandsolvingthemtoobtaintheunspecifiedjointvariableratesintermsof thespecifiedones.Thevelocityandaccelerationanalysesalsoincludediscussionson themotionsingularitiesassociatedwiththespecifiedjointvariables.Thereareseveral examplesofsuchmechanismsinChapters5and6.

KinematicTreatmentoftheMechanismswithRollingContactJoints(Chapter6):

Therollingcontactjoints,i.e.thegearandcamjoints,needsomewhatdifferenttreatmentascomparedwiththeothersimplecontactjoints.Inparticular,themechanisms thatcontaincamjointswithstickingfriction,i.e.withtherolling-without-slipping property,happentobenon-holonomicsystemsthathavedifferentdegreesof freedominthepositionandvelocitydomains.Therefore,themechanismsthat involverollingcontactjointswiththerolling-without-slippingpropertyaretreated differentlyintheorderofobtainingthekinematicsolutionsinthepositionand velocitydomains.Forsuchmechanisms,thekinematicsolutionisfirstobtainedin thevelocitydomainandthenthecorrespondingkinematicsolutionintheposition domainisobtainedbymeansofasubsequentnumericalintegration.Themost typicalsamplesofsuchmechanismsarethemechanismsthatinvolvegearjoints, becausethegearjointsarekinematicallyequivalenttothecylindricalorconical camjointswiththerolling-without-slippingproperty.Atypicalexampleofsuch acammechanismispresentedinChapter6.Thekinematicsolutionsofthatcam mechanisminthepositionandvelocitydomainsareobtainedbothinthecasesof rollingwithslippingandrollingwithoutslipping.

Readersareencouragedandsincerelywelcometocontactmeatozgoren@metu.edu.tr withregardtofeedback,suggestions,andquestions.

Ankara,March2019 M.KemalOzgoren

Acknowledgments

Thisbookisbasedonthegraduatecourses“AdvancedDynamics”and“Principlesof Robotics”thatIhavebeenteachingforalongtime.Therefore,manystudentsofthese coursesandseveralcolleaguesinvolvedwithrelatedsubjectshavesofarindicatedtheir valuableopinionsandencouragedmetowritesuchabook.Iwouldliketoexpressmy thankstoallofthemandalsototheMechanicalEngineeringDepartmentofMiddle EastTechnicalUniversitythathasprovidedtheexcellentacademicmediumandallthe conveniencesformeindevelopingandteachingthementionedcourses.

Iwouldalsoliketoexpressmythankstothereviewersfortheirconstructivecomments andtoalltherelatedpersonnelofWileyfortheirhighlyappreciatedeffortsduringall thetimefromtheinitiationtothefinalizationofthisbook.

ListofCommonlyUsedSymbols,Abbreviations,andAcronyms

SymbolsBasedontheLatinAlphabet

⃗ a Accelerationofanimpliedpoint(inageneraluse)

⃗ aP Accelerationofapoint P withrespecttoanimpliedreferenceframe

⃗ aP∕a (Q) Accelerationofapoint P withrespecttoareferenceframe a (Q);

bk Effectivelengthof k between k and k +1 along k

a Arigidbodydenotedbytheindex a andrepresentedbytheframe a (Oa )

̂ C Orientationmatrixofanimpliedbodyorframe(inageneraluse)

̂ C Orientationmatrixoftheend-effector(m )withrespecttothebase frame; ̂ C = ̂ Cm = ̂ C (0,m) =[un us ua ]

̂

C (a,b) CTMthattransformscomponentsfrom b to a ; r (a) = ̂ C (a,b) r (b)

̂

C (a,b)

̂

C (k 1,k )

̂ Ck

Orientationmatrixof b withrespectto a ; ̂ C (a,b) = ̂ R(a) ab = ̂ R(b) ab = ̂ R(a) b∕a = ̂ R(b)

Orientationmatrixof k (Ok ) withrespectto k 1 (Ok 1 )

Orientationmatrixof k (Ok ) withrespectto 0 (O0 ); ̂ Ck = ̂ C (0,k )

c Ageneralcolumnmatrix; c = c1 u1 + c2 u2 + c3 u3

c t Ageneralrowmatrix,i.e.thetransposeof c

̃ c Skewsymmetricmatrixgeneratedfrom c; ̃ c = ssm(c)

Da Vectordifferentiatorwithrespectto a ; Da ⃗ r =(d ⃗ r ∕dt )|a

d k Constantoffsetof k withrespectto k 1 if k isrevolute

d m

Tippointoffset; d m = RP = Om 1 Om

E Elbowpointofamanipulator

e ̃ n(a) ��

e ̃ uk ��

ab

Exponentialformof ̂ R(n (a) ,�� )

Exponentialformof ̂ Rk (�� )= ̂ R(uk ,�� )

Kinematicelementof a thatmateswith ba of b f ab (x, y, z)Surfacefunctionthatdescribesthesurface ab inthelinkframe ab

a

a (Q)

k (Ok )

0 (O0 )

Areferenceframewithanorientationindex a,whoseoriginis implied

Areferenceframe a withaspecificorigin Q

Referenceframeattachedto k

Baseframe,i.e.thereferenceframeattachedtothebaselink 0

xxii ListofCommonlyUsedSymbols,Abbreviations,andAcronyms

⃗ gab

g (ab) ab

̂ H

̂

H (k 1,k )

̂ H (a,b)

AB

̂ H (ab) ab

̂ Hk

Gradientvectorofthesurface ab

Columnmatrixrepresentationof ⃗ gab inthelinkframe ab

Abbreviationfor ̂ Hm = ̂ H (0,m) ofthelastlink m

HTMthatrepresentsthedisplacementfrom k 1 (Ok 1 ) to k (Ok )

HTMthattransformscoordinatesfrom b (B) to a (A); R (a) AP = ̂ H (a,b) AB R (b) BP

Hessianmatrixofthesurface ab expressedinthelinkframe ab

Abbreviationfor ̂ H (0,k ) ofthelink k ̂ I

jk

Identitymatrix; ̂ I = [u1 u2 u3 ] = u1 u t 1 + u2 u t 2 + u3 u t 3

Numberofjointswith k degreesofrelativefreedom ̂  AgeneralJacobianmatrix

ab

Thejoint(i.e.kinematicpair)between a and b ; ba = ab k Jointbetween k 1 and k

P TippointJacobianmatrix

R WristpointJacobianmatrix Lk k thleg(orlimb)ofaparallelmanipulator

a

Alinkdenotedbytheindex a

k k thlinkofamanipulator

m

Thelastlink(i.e.end-effector)ofaserialmanipulatorwith m links

̂ M Ageneralsquarematrix

m Numberoflinksandjointsofaserialmanipulator

⃗ n Ageneralunitvector

nk

nL

nikl

nkpm

Unitcolumnmatrixthatrepresentsthetwistedaxisof k ; nk = e ̃ u1 ��k u3

Numberoflegs(orlimbs)ofaparallelmanipulator

Numberofindependentkinematicloops

Numberofdistinctposturemodesoftheleg Lk nm

npv

Numberofmovingormovablebodies

Numberofprimaryvariables; npv = �� npm

nsv

Numberofdistinctposturemodesofamanipulator

Numberofsecondaryvariables; nsv = ��nikl nv

Numberofvariablesneededtodescribetheposeofamechanical system

k Commonnormalbetweentheaxesof k and k +1

O Originofthebaseframe 0 (O); O = O0

Ok Originofthereferenceframe k (Ok )

P Anarbitrarypoint(inageneraluse)

P Tippointofamanipulator; P = Om foraserialmanipulator

⃗ p Tippointpositionvectorwithrespecttothebaseframe; ⃗ p = ⃗ rP = ⃗ rP∕O

p Columnmatrixrepresentationof ⃗ p inthebaseframe; p = p (0)

Qab Contactpointonthesurface ab

q Columnmatrixofthejointvariables

qk

Generalizedjointvariableof k ; qk = �� k or qk = sk

R Wristpointofamanipulator; R = Om 1 foraserialmanipulator

̂ R(n (a) ,�� )

̂

R(c) ab

̂

ListofCommonlyUsedSymbols,Abbreviations,andAcronyms

Matrixrepresentationoftherotationoperatorrot( ⃗ n,�� )inaframe a

Matrixrepresentationoftherotationoperatorrot(a, b)inaframe c

Rk (�� ) k thbasicrotationmatrix; ̂ Rk (�� )= ̂ R(uk ,�� )= euk ��

R (a)

AP

Augmentedpositionmatrixofapoint P withrespecttoaframe a (A)

⃗ r Positionvectorofanimpliedpoint(inageneraluse)

⃗ r Wristpointpositionvectorwithrespecttothebaseframe; ⃗ r = ⃗ rR = ⃗ rR∕O

r Columnmatrixrepresentationof ⃗ r inthebaseframe; r = r (0)

r (a)

[⃗ r ](a)

Columnmatrixrepresentationofavector ⃗ r inaframe a ; r (a) =[⃗ r ](a)

Columnmatrixrepresentationofavector ⃗ r inaframe a ; [⃗ r ](a) = r

r (a) k k thcomponentofavector ⃗ r inaframe a ; r (a) k = ⃗ r ⋅ ⃗ u(a) k

⃗ rk 1,k

r (k 1) k 1,k

Displacementvectorfromtheorigin Ok 1 totheorigin Ok

Columnmatrixrepresentationof ⃗ rk 1,k inthelinkframe k 1 (Ok 1 )

⃗ rP Positionvectorofapoint P withrespecttoanimpliedpoint

⃗ rP∕Q

⃗ rQP

Positionvectorofapoint P withrespecttoapoint Q; ⃗ rP∕Q = ⃗ rQP

Displacementvectorfromapoint Q toapoint P ; ⃗ rQP = ⃗ rP∕Q

sk Jointvariable(slidingdisplacement)oftheprismaticjoint k

sk Variableoffsetof k withrespectto k 1 if k isprismatic

S Shoulderpointofamanipulator

ab Surfaceofthekinematicelement ab

J Jointspaceofamanipulator

T Taskspaceofamanipulator

⃗ ua Approachvectoroftheend-effector; ua = u (0) a = ̂ C u3 uk k thbasiccolumnmatrix; uk = u (a∕a) k = u (b∕b) k =…= u (z

z) k

⃗ u(b) k k thunitbasisvectorofaframe b u (b∕a) k Columnmatrixrepresentationof ⃗ u(b) k inaframe a

⃗ un Normalvectoroftheend-effector; un = u (0) n = ̂ C u1

⃗ us Sidevectoroftheend-effector; us = u (0) s = ̂ C u2

⃗ u(k ) 1 Unitvectoralongthecommonnormal k

⃗ u(k ) 3 Unitvectoralongtheaxisof k

a

Basisvectortriadofareferenceframe a ; a ={ ⃗ u(a) 1 , ⃗ u(

k Basisvectortriadofthelinkframe k (Ok ); k ={ ⃗

V k Tippointvelocityinfluencecoefficientdueto qk ; V k = �� v∕�� qk

⃗ v Velocityofanimpliedpoint(inageneraluse)

⃗ v Tippointvelocitywithrespecttothebaseframe;

v Columnmatrixrepresentationof ⃗ v inthebaseframe; v = v (0)

⃗ vP Velocityofapoint P withrespecttoanimpliedreferenceframe

⃗ vP∕a (Q) Velocityofapoint P withrespecttoareferenceframe a (Q); ⃗ vP

W k Wristpointvelocityinfluencecoefficientdueto ̇ qk ; W k = �� w∕�� ̇ qk

⃗ w Wristpointvelocitywithrespecttothebaseframe; ⃗ w = ⃗ vR = ⃗ vR∕o (O)

w Columnmatrixrepresentationof ⃗ w inthebaseframe; w = w (0)

xxiv ListofCommonlyUsedSymbols,Abbreviations,andAcronyms

⃗ wabl

Generatrixlinevectorofaconicalsurface ab

w (ab) abl Columnmatrixrepresentationof ⃗ wabl inthelinkframe ab

x Columnmatrixoftheprimaryvariables

y Columnmatrixofthesecondaryvariables

z Columnmatrixoftheprimaryandsecondaryvariables

SymbolsBasedontheGreekAlphabet

⃗ �� Angularaccelerationofanimpliedbodyorframe(inageneraluse)

⃗ ��b

⃗ ��b∕a

Angularaccelerationof b or b withrespecttoanimpliedframe

Angularaccelerationof b or b withrespectto a

�� k Twistangleof k withrespectto k 1

�� k Cumulativetwistangleof k withrespectto 1 ; �� k = �� 1 + �� 2 +…+ �� k

�� (ab) ab Modifiedgradientofaconicalsurfaceexpressedinthelinkframe ab

�� ij KroneckerDeltafunctionoftheindices i and j

�� k Constantrotationangleof k withrespectto k 1 if k isprismatic

��ijk Levi-CivitaEpsilonfunctionoftheindices i, j,and k

�� Columnmatrixoftheend-effectorvelocitystateinthetaskspace T

�� k Jointvariable(angulardisplacement)oftherevolutejoint k

�� k Variablerotationangleof k withrespectto k 1 if k isrevolute

�� DoFoftheworkingoroperationalspaceofamechanicalsystem

��ab Gradientratiobetween ⃗ gab and ⃗ gba ; ⃗ gba =−��ab ⃗ gab

�� Mobility(DoF)ofasysteminitsworkingoroperationalspace

�� ab Relativemobility(DoF)of ba withrespectto ab ; �� ba = �� ab

�� Columnmatrixoftheend-effectorpositioninthetaskspace T

�� Ageneralsignvariable; �� =± 1

�� k , �� ′ k

Signvariablesthatindicatemultiplesolutions

�� ijk Crossproductsignvariabledefinedfortheindices i, j,and k

̂

��k Effectiveorientationmatrixof k ; ̂ C (0,k ) = ̂ Ck = ̂ ��k eu1 ��k

�� k End-effectorangularvelocityinfluencecoefficientdueto ̇ qk ; �� k = �� ��∕�� ̇ qk

⃗ �� Angularvelocityofanimpliedbodyorframe(inageneraluse)

⃗ �� Angularvelocityoftheend-effectorwithrespecttothebaseframe; ⃗ �� = ⃗ ��m

��

Columnmatrixrepresentationof ⃗ �� inthebaseframe; �� = �� (0)

⃗ ��b Angularvelocityof b or b withrespecttoanimpliedframe

⃗ ��b∕a Angularvelocityof b or b withrespectto a

⃗ ��k Angularvelocityof k withrespecttothebaseframe: ⃗ ��k = ⃗ ��k ∕0

Abbreviations

ang( ⃗ p, ⃗ q)Anglebetweenthevectors ⃗ p and ⃗ q atan2 (y, x)Doubleargumentarctangentfunction; �� ≡ atan2 (r sin �� , r cos �� ), r > 0 colm(̃ c)Columnmatrixgeneratorfromaskewsymmetricmatrix; c = colm(̃ c)

ListofCommonlyUsedSymbols,Abbreviations,andAcronyms xxv

cpm(c)Crossproductmatrixgeneratorfromacolumnmatrix; ̃ c = cpm(c)= ssm(c)

dir(⃗ v)Directionofavector ⃗ v

mag(⃗ v)Magnitudeofavector ⃗ v;mag(⃗ v)= |⃗ v|

rot(a, b)Rotationoperatorthatrotatesaframe a intoanotherframe b

rot( ⃗ n,�� )Rotationoperatorofanangle �� aboutanaxisparalleltoaunitvector ⃗ n

ssm(c)Skewsymmetricmatrixgeneratorfromacolumnmatrix; ̃ c = ssm(c)

Acronyms

CCylindricalJoint

CTMComponentTransformationMatrix

CPMCrossProductMatrix

DCMDirectionCosineMatrix

DoFDegreeofFreedom

D-HDenavit-Hartenberg

HTMHomogeneousTransformationMatrix

IFBInitialFrameBased

IKLIndependentKinematicLoop

MSFKMotionSingularityofForwardKinematics

MSIKMotionSingularityofInverseKinematics

PPrismaticJoint

PMPostureMode

PMLPostureModeofaLeg

PMCPPostureModeChangingPose

PMCPLPostureModeChangingPoseofaLeg

PMFKPostureMultiplicityofForwardKinematics

PMIKPostureMultiplicityofInverseKinematics

PSFKPositionSingularityofForwardKinematics

PSIKPositionSingularityofInverseKinematics

RRevoluteJoint

RFBRotatedFrameBased

SSphericalJoint

SSMSkewSymmetricMatrix

TMTransformationMatrix

UUniversalJoint

AbouttheCompanionWebsite

Thisbookisaccompaniedbyacompanionwebsite:

www.wiley.com/go/ozgoren/spatialmechanicalsystems

Thewebsiteincludes: -Acommunicationmediumwiththereaders -Solvedproblemsasadditionalexamples -Unsolvedproblemsastypicalexercises

ScanthisQRcodetovisitthecompanionwebsite.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.