[Ebooks PDF] download Applications of modern heuristic optimization methods in power and energy syst

Page 1


Applications of

heuristic optimization methods in power and energy systems Lee Kwang Y.

Visit to download the full and correct content document: https://ebookmass.com/product/applications-of-modern-heuristic-optimization-method s-in-power-and-energy-systems-lee-kwang-y/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Genetic Optimization Techniques for Sizing and Management of Modern Power Systems Juan Miguel Lujano Rojas

https://ebookmass.com/product/genetic-optimization-techniquesfor-sizing-and-management-of-modern-power-systems-juan-miguellujano-rojas/

Tidal Energy Systems: Design, Optimization and Control 1st Edition

https://ebookmass.com/product/tidal-energy-systems-designoptimization-and-control-1st-edition/

Intelligent Data Mining and Analysis in Power and Energy Systems : Models and Applications for Smarter Efficient Power Systems 1st Edition Zita A. Vale

https://ebookmass.com/product/intelligent-data-mining-andanalysis-in-power-and-energy-systems-models-and-applications-forsmarter-efficient-power-systems-1st-edition-zita-a-vale/

Power System Protection: Fundamentals and Applications (IEEE Press Series on Power and Energy Systems) 1st Edition Ciufo

https://ebookmass.com/product/power-system-protectionfundamentals-and-applications-ieee-press-series-on-power-andenergy-systems-1st-edition-ciufo/

Tidal Energy Systems: Design, Optimization and Control

https://ebookmass.com/product/tidal-energy-systems-designoptimization-and-control-vikas-khare/

Rheology: Concepts, Methods, and Applications Alexander Y. Malkin

https://ebookmass.com/product/rheology-concepts-methods-andapplications-alexander-y-malkin/

Energy Storage for Modern Power System Operations

https://ebookmass.com/product/energy-storage-for-modern-powersystem-operations-sandeep-dhundhara/

Simulation and optimization in process engineering : the benefit of mathematical methods in applications of the chemical industry 1st Edition Michael Bortz

https://ebookmass.com/product/simulation-and-optimization-inprocess-engineering-the-benefit-of-mathematical-methods-inapplications-of-the-chemical-industry-1st-edition-michael-bortz/

Predictive Modelling for Energy Management and Power Systems Engineering Ravinesh Deo

https://ebookmass.com/product/predictive-modelling-for-energymanagement-and-power-systems-engineering-ravinesh-deo/

IEEEPress

445HoesLane

Piscataway,NJ08854

IEEEPressEditorialBoard EkramHossain, EditorinChief

JónAtliBenediktssonXiaoouLiJeffreyReed BimalBosePeterLianDiomidisSpinellis DavidAlanGrierAndreasMolischSarahSpurgeon ElyaB.JoffeSaeidNahavandiAhmetMuratTekalp

APPLICATIONSOF MODERNHEURISTIC OPTIMIZATION METHODSINPOWER ANDENERGY SYSTEMS

ZITAA.VALE

Copyright©2020byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.

PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformor byanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas permittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteithertheprior writtenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfee totheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400, fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermission shouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet, Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/ permissions.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitable foryoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublisher norauthorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnot limitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactour CustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat (317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitour websiteatwww.wiley.com.

LibraryofCongressCataloging-in-Publicationdataisappliedfor hardback:9781119602293

CoverDesign:Wiley

CoverImages:Electricitypylons©SamRobinson/GettyImages, Offshorefarm©T.W.vanUrk/Shutterstock

Setin10/12ptTimesbySPiGlobal,Pondicherry,India

PrintedintheUnitedStatesofAmerica 10987654321

DISCLAIMER

TheEditorsarenotendorsingevolutionasascientificfact,inthatspeciesevolve fromonekindtoanother.Theterm “evolutionary” intheevolutionarycomputation (EC)simplymeansthatthecharacteristicsofanindividualchangeswithinthe populationofthesamespecies,asobservedinthenature.

PREFACE

CONTRIBUTORS

LISTOFFIGURES

LISTOFTABLES xxxiii

CHAPTER1 INTRODUCTION 1

1.1Background 1

1.2EvolutionaryComputation:ASuccessfulBranchofCI 3

1.2.1GeneticAlgorithm 6

1.2.2Non-dominatedSortingGeneticAlgorithmII 8

1.2.3EvolutionStrategiesandEvolutionaryProgramming 8

1.2.4SimulatedAnnealing 9

1.2.5ParticleSwarmOptimization 10

1.2.6QuantumParticleSwarmOptimization 10

1.2.7Multi-objectiveParticleSwarmOptimization 11

1.2.8ParticleSwarmOptimizationVariants 12

1.2.9ArtificialBeeColony 13

1.2.10TabuSearch 14 References 15

CHAPTER2 OVERVIEWOFAPPLICATIONSINPOWERANDENERGYSYSTEMS 21

2.1ApplicationstoPowerSystems 21

2.1.1UnitCommitment 23

2.1.2EconomicDispatch 24

2.1.3ForecastinginPowerSystems 25

2.1.4OtherApplicationsinPowerSystems 27

2.2SmartGridApplicationCompetitionSeries 28

2.2.1ProblemDescription 29

2.2.2BestAlgorithmsandRanks 30

2.2.3FurtherInformationandHowtoDownload 32 References 32

CHAPTER3 POWERSYSTEMPLANNINGANDOPERATION 39

3.1Introduction 39

3.2UnitCommitment 40

3.2.1Introduction 40

3.2.2ProblemFormulation 40

3.2.3AdvancementinUCPFormulationsandModels 42

3.2.4SolutionMethodologies,State-of-the-Art,History,andEvolution 46

3.2.5Conclusions 56

3.3EconomicDispatchBasedonGeneticAlgorithmsandParticleSwarm Optimization 56

3.3.1Introduction 56

3.3.2FundamentalsofGeneticAlgorithmsandParticleSwarmOptimization 58

3.3.3EconomicDispatchProblem 60

3.3.4GAImplementationtoED 63

3.3.5PSOImplementationtoED 71

3.3.6NumericalExample 79

3.3.7Conclusions 87

3.4DifferentialEvolutioninActivePowerMulti-ObjectiveOptimalDispatch 87

3.4.1Introduction 87

3.4.2DifferentialEvolutionforMulti-ObjectiveOptimization 88

3.4.3Multi-ObjectiveModelofActivePowerOptimizationforWindPower IntegratedSystems 97

3.4.4CaseStudies 100

3.4.5AnalysesofDispatchPlan 105

3.4.6Conclusions 106

3.5HydrothermalCoordination 106

3.5.1Introduction 106

3.5.2HydrothermalCoordinationFormulation 107

3.5.3ProblemDecomposition 110

3.5.4CaseStudies 111

3.5.5Conclusions 114

3.6Meta-HeuristicMethodforGmsBasedonGeneticAlgorithm 115

3.6.1History 115

3.6.2Meta-heuristicSearchMethod 116

3.6.3FlexibleGMS 119

3.6.4User-FriendlyGMSSystem 131

3.6.5Conclusion 141

3.7LoadFlow 143

3.7.1Introduction 143

3.7.2LoadFlowAnalysisinElectricalPowerSystems 144

3.7.3ParticleSwarmOptimizationandMutationOperation 148

3.7.4LoadFlowComputationviaParticleSwarmOptimizationwithMutation Operation 150

3.7.5NumericalResults 153

3.7.6Conclusions 160

3.8ArtificialBeeColonyAlgorithmforSolvingOptimalPowerFlow 161

3.8.1OptimizationinPowerSystemOperation 162

3.8.2TheOptimalPowerFlowProblem 162

3.8.3ArtificialBeeColony 166

3.8.4ABCfortheOPFProblem 168

3.8.5CaseStudies 170

3.8.6Conclusions 176

3.9OPFTestBedandPerformanceEvaluationofModernHeuristicOptimization 176

3.9.1Introduction 176

3.9.2ProblemDefinition 177

3.9.3OPFTestSystems 178

3.9.4DifferentialEvolutionaryParticleSwarmOptimization:DEEPSO 183

3.9.5EnhancedVersionofMean–VarianceMappingOptimizationAlgorithm: MVMO-PHM 187

3.9.6EvaluationResults 193

3.9.7Conclusions 196

3.10TransmissionSystemExpansionPlanning 197

3.10.1Introduction 197

3.10.2TransmissionSystemExpansionPlanningModels 198

3.10.3MathematicalModeling 199

3.10.4Challenges 201

3.10.5ApplicationofMeta-heuristicstoTEP 202

3.10.6Conclusions 210

3.11Conclusion 210 References 210

CHAPTER4 POWERSYSTEMANDPOWERPLANTCONTROL 227

4.1Introduction 227

4.2LoadFrequencyControl – OptimizationandStability 228

4.2.1Introduction 228

4.2.2LoadFrequencyControl 229

4.2.3ComponentsofActivePowerControlSystem 230

4.2.4DesigningLFCStructureforanInterconnectedPowerSystem 232

4.2.5ParameterOptimizationandSystemPerformance 237

4.2.6SystemStabilityinthePresenceofCommunicationDelay 242

4.2.7Conclusions 244

4.3ControlofFactsDevices 244

4.3.1Introduction 244

4.3.2RoleofFACTS 246

4.3.3StaticModelingofFACTSdevices 247

4.3.4PowerFlowControlusingFACTS 255

4.3.5OptimalPowerFlowUsingSuitabilityFACTSdevices 259

4.3.6UseofParticleSwarmOptimization 281

4.3.7Conclusions 283

4.4HybridofAnalyticalandHeuristicTechniquesforfactsDevices 284

4.4.1Introduction 284

4.4.2HeuristicAlgorithms 285

4.4.3SVCandVoltageInstabilityImprovement 288

4.4.4FACTSDevicesandAngleStabilityImprovement 293

4.4.5SelectionofSupplementaryInputSignalsforDampingInter-area Oscillations 295

4.4.6TCSCandImprovementofTotalTransferCapability 302

4.4.7Conclusions 305

4.5PowerSystemAutomation 305

4.5.1Introduction 305

4.5.2ApplicationofPSOonPowerSystem’sCorrectiveControl 307

4.5.3GeneticAlgorithm-aidedDTsforLoadShedding 322

4.5.4PowerSystem-ControlledIslanding 324

4.5.5ApplicationofthemethodontheIEEE – 30busestestsystem 326

4.5.6ApplicationofthemethodontheIEEE – 118busestestsystem 327

4.5.7Conclusions 327

4.5.8Appendix 328

4.6PowerPlantControl 334

4.6.1Introduction 334

4.6.2CoalMillModeling 335

4.6.3NonlinearModelPredictiveControlofReheaterSteamTemperature 340

4.6.4Multi-objectiveOptimizationofBoilerCombustionSystem 345

4.6.5Conclusions 355

4.7PredictiveControlinLarge-ScalePowerPlant 355

4.7.1Introduction 355

4.7.2ParticleSwarmOptimizationAlgorithm 356

4.7.3PerformancePredictionModelDevelopmentBasedonNARMAModel 357

4.7.4DesignofIntelligentMPOCScheme 361

4.7.5ControlSimulationTests 364

4.7.6Conclusions 367

4.8Conclusion 368 References 369

CHAPTER5 DISTRIBUTIONSYSTEM

5.1Introduction 381

5.2ActiveDistributionNetworkPlanning 382

5.2.1Introduction 382

5.2.2ProblemFormulation 382

5.2.3OverviewoftheSolutionTechniquesforDistributionNetwork Planning 385

5.2.4GeneticAlgorithmSolutiontoActiveDistributionNetworkPlanning Problem 385

5.2.5NumericalResults 388

5.2.6Conclusions 392

5.3OptimalSelectionofDistributionSystemArchitecture 392

5.3.1Introduction 392

5.3.2DeterministicOptimizationTechniques 393

5.3.3StochasticOptimizationTechniques 394

5.3.4Multi-ObjectiveOptimization 400

5.3.5MathematicalModelingforPowerSystemComponents 401

5.3.6AC/DCPowerFlowinHybridNetworks 405

5.3.7Pareto-BasedMulti-ObjectiveOptimizationProblem 409

5.4ConservationVoltageReductionPlanning 418

5.4.1Introduction 418

5.4.2ConservationVoltageReduction 418

5.4.3CVRBasedonPSO 420

5.4.4CVRBasedonAHP 423

5.4.5CaseStudiesforCVRinKoreanPowerSystem 424

5.4.6Conclusion 427

5.5DynamicDistributionNetworkExpansionPlanningwithDemandSide Management 427

5.5.1Introduction 427

5.5.2ExpansionOptions 431

5.5.3ProblemFormulation 436

5.5.4OptimizationAlgorithm 442

5.5.5CaseStudies 450

5.5.6Conclusions 460

5.6GA-GuidedTrust-TechMethodologyforCapacitorPlacementinDistribution Systems 467

5.6.1Introduction 467

5.6.2OverviewoftheTrust-TechMethod 469

5.6.3ComputingTier-OneLocalOptimalSolutions 472

5.6.4TheGA-GuidedTrust-TechMethod 474

5.6.5ApplicationstoCapacitorPlacementProblems 478

5.6.6NumericalStudy 481

5.6.7Conclusions 488

5.7NetworkReconfiguration 489

5.7.1Introduction 489

5.7.2ModernDistributionSystems:AConcept 490

5.7.3DistributionSystemReconfiguration 493

5.7.4DistributionSystemServiceRestoration 496

5.7.5Multi-AgentSystemforDistributionSystemReconfiguration 501

5.7.6Conclusions 510

5.8DistributionSystemRestoration 510

5.8.1Introduction 510

5.8.2PowerSystemRestorationProcess 511

5.9Group-basedPSOforSystemRestoration 531

5.9.1Introduction 531

5.9.2Group-BasedPSOMethod 533

5.9.3OverviewoftheServiceRestorationProblem 539

5.9.4ApplicationtotheServiceRestorationProblem 542

5.9.5NumericalResults 545

5.9.6Conclusions 552

5.10MVMOforParameterIdentificationofDynamicEquivalentsforActive DistributionNetworks 553

5.10.1Introduction 553

5.10.2ActiveDistributionSystem 553

5.10.3NeedforAggregationandtheConceptofDynamicEquivalents 554

5.10.4ProposedApproachwithMVMO 556

5.10.5AdaptationofMVMOforIdentificationProblem 558

5.10.6CaseStudy 562

5.10.7ApplicationtoTestCase 568

5.10.8Analysis 569

5.10.9Reflections 572

5.10.10Conclusions 572

5.11ParameterEstimationofCircuitModelforDistributionTransformers 573

5.11.1Introduction 573

5.11.2TransformerWindingEquivalentCircuit 574

5.11.3SignalComparisonIndicators 576

5.11.4CoefficientsEstimationUsingHeuristicOptimization 578

5.11.5CoefficientsEstimationResultsandConclusion 582

5.11.6Conclusions 586

References 590

CHAPTER6 INTEGRATIONOFRENEWABLEENERGYINSMARTGRID

6.1Introduction 613

6.2RenewableEnergySources 613

6.2.1RenewableEnergySourcesManagementOverview 613

6.2.2EnergyResourceScheduling – ProblemFormulation 615

6.2.3EnergyResourcesScheduling – ParticleSwarmOptimization 617

6.2.4EnergyResourcesScheduling – SimulatedAnnealing 618

6.2.5PracticalCaseStudy 621

6.2.6Appendix 632

6.2.7Conclusions 634

6.3OperationandControlofSmartGrid 635

6.3.1Introduction 635

6.3.2ProblemsforSystemsConfigurationorSystemsDesign 636

6.3.3SystemsOperationandSystemsControl 638

6.3.4System’sManagement 640

6.3.5Conclusion 645

6.4ComplianceofReactivePowerRequirementsinWindPowerPlants 645

6.4.1Introduction 645

6.4.2ProblemDefinition 646

6.4.3NN-BasedWindSpeedForecastingMethod 648

6.4.4MeanVarianceMappingOptimizationAlgorithm 650

6.4.5CaseStudies 654

6.4.6Conclusions 665

6.5PhotovoltaicControllerDesign 667

6.5.1Introduction 667

6.5.2MaximumPowerPointTrackinginPVSystem 668

6.5.3ParticleSwarmOptimization 674

6.5.4ApplicationofParticleSwarmOptimizationinMPPT 674

6.5.5IllustrationofPSOTechniqueforMPPTDuringDifferentIrradiance Conditions 676

6.5.6Conclusion 678

6.6DemandSideManagementandDemandResponse 680

6.6.1Introduction 680

613

6.6.2MethodologyforConsumptionShiftingandGenerationScheduling 683

6.6.3QuantumPSO 685

6.6.4NumericExample 687

6.6.5Conclusions 691

6.7EPSO-BasedSolarPowerForecasting 691

6.7.1Introduction 691

6.7.2GeneralRadialBasisFunctionNetwork 693

6.7.3 k-Means 695

6.7.4DeterministicAnnealingClustering 695

6.7.5EvolutionaryParticleSwarmOptimization 697

6.7.6HybridIntelligentMethod 698

6.7.7CaseStudies 699

6.7.8Conclusion 704

6.8LoadDemandandSolarGenerationForecastforPVIntegratedSmart Buildings 704

6.8.1Introduction 704

6.8.2LiteratureReviewofForecastingTechniques 714

6.8.3EnsembleForecastMethodologyforLoadDemandandPVOutput Power 717

6.8.4NumericalResultsandDiscussion 722

6.8.5Conclusions 728

6.9Multi-ObjectivePlanningofPublicElectricVehicleChargingStations 729

6.9.1Introduction 729

6.9.2Multi-ObjectiveElectricVehicleChargingStationLayoutPlanning Model 730

6.9.3AnImprovedSPEA2forSolvingEVCSLPProblem 733

6.9.4CaseStudy 737

6.9.5Conclusion 740

6.10DispatchModelingIncorporatingManeuverComponents,WindPower,andElectric Vehicles 741

6.10.1Introduction 741

6.10.2ProposedEconomicDispatchFormulation 743

6.10.3Population-BasedOptimizationAlgorithms 751

6.10.4TestSystemandResultsAnalysis 753

6.10.5Conclusion 756

6.11Conclusions 757 References 757

CHAPTER7 ELECTRICITYMARKETS

7.1Introduction 775

7.2BiddingStrategies 777

7.2.1Introduction 777

7.2.2ContextAnalysis 779

7.2.3StrategicBidding 780

7.3MarketAnalysisandClearing 781

7.3.1Introduction 781

7.3.2ElectricityMarketSimulators 782

7.3.3DidacticExample 785

7.4ElectricityMarketForecasting 793

7.4.1Introduction 793

775

7.4.2ArtificialNeuralNetworksforElectricityMarketPriceForecasting 794

7.4.3SupportVectorMachinesforElectricityMarketPriceForecasting 795

7.4.4IllustrativeResults 796

7.5SimultaneousBiddingofV2GInAncillaryServiceMarketsUsingFuzzy Optimization 798

7.5.1Introduction 798

7.5.2FuzzyOptimization 799

7.5.3FO-basedSimultaneousBiddingofAncillaryServicesUsingV2G 801

7.5.4CaseStudy 806

7.5.5ResultsandDiscussions 807

7.5.6Conclusion 811

7.6Conclusions 812

References 812 INDEX

PREFACE

Heuristicsearchandoptimizationisanewandmodernapproachforsolving complexproblemsthatovercomemanyshortcomingsoftraditionaloptimization techniques.Heuristicoptimizationtechniquesaregeneral-purposemethodsthat areveryflexibleandcanbeappliedtomanytypesofobjectivefunctionsandconstraints.Recently,thesenewheuristictoolshavebeencombinedamongthemselves,andnewmethodshaveemergedthatcombineelementsofnature-based methods,orwhichhavetheirfoundationinstochasticsandsimulationmethods. Developingsolutionswiththesetoolsofferstwomajoradvantages:development timeismuchshorterthanwhenusingmoretraditionalapproaches,andthe systemsareveryrobust,beingrelativelyinsensitivetonoisyand/ormissing data/informationknownasuncertainty.

Incompetitiveelectricitymarketalongwithautomation,heuristicoptimizationmethodsareveryuseful.Aselectricutilitiesaretryingtoprovidesmartsolutionswitheconomical,technical(secure,stable,andgoodpowerquality),and environmentalgoals,thereareseveralchallengingissuesinthesmartgridsolutions suchas,butnotlimitedto,forecastingofload,price,ancillaryservices;penetration ofnewandrenewableenergysources;biddingstrategiesofparticipants;power systemplanningandcontrol;operatingdecisionsundermissinginformation; increaseddistributedgenerationsanddemandresponseintheelectricmarket;tuningofcontrollerparametersinvaryingoperatingconditions,etc.Riskmanagement andfinancialmanagementintheelectricsectorareconcernedwithfindingan idealtrade-offbetweenmaximizingtheexpectedreturnsandminimizingtherisks associatedwiththeseinvestments.

Theobjectiveofthisbookistoreviewthestate-of-the-arttechnologiesin themodernheuristicoptimizationtechniquesandpresentcasestudieshowthese techniqueshavebeenappliedinthesecomplexpowerandenergysystemsproblems.Empathieswillbegiventoapplicationsratherthantheoryandtheorganizationofbookwillbeonapplicationbasisratherthantools.

Thebookiscomposedofsixchapters:Chapter 2 givesanoverviewof applicationsofevolutionarycomputationtechniquesinpowerandenergysystems, includingfundamentalsofgeneticalgorithms,evolutionaryprogrammingand strategies,simulatedannealing,particleswarmoptimization,artificialbeecolony searchalgorithm,andtabusearch.

Chapter 3 givesanoverviewoftheapplicationsinpowersystemplanning andoperationproblems,suchasunitcommitment,economicdispatch,active powermulti-objectiveoptimaldispatch,hydrothermalcoordination,maintenance

scheduling,loadflow,optimalpowerflow,transmissionsystemexpansionplanning,andOPFtestbedandperformanceevaluationofmodernheuristic optimizationtechniques.

Chapter 4 givesanoverviewoftheapplicationsinpowersystemandpower plantcontrolproblems,suchasvoltagecontrol,loadfrequencycontrolwithoptimizationandstability,controlofFACTSdevices,hybridofanalyticalandheuristic techniquesforFACTSdevices,powersystemautomation,powerplantcontrol, predictivecontrolinlarge-scalepowerplant,andindustrialpowerplantcontrol.

Chapter 5 givesanoverviewoftheapplicationsindistributionsystems,such asactivedistributionnetworkplanning,optimalselectionofdistributionsystem architecture,conservationvoltagereductionplanning,dynamicdistributionnetworkexpansionplanningwithdemandsidemanagement,capacitorplacement indistributionsystems,networkreconfiguration,distributionsystemrestoration, group-basedPSOforsystemrestoration,parameteridentificationofdynamic equivalentsfordistributionnetworks,andparameterestimationfordistribution transformers.

Chapter 6 givesanoverviewoftheapplicationsinintegrationofrenewable energyinsmartgrid,suchasrenewableenergysources,operationandcontrolof smartgrid,complianceofreactivepowerrequirementsinwindpowerplants,photovoltaiccontrollerdesign,demandsidemanagementanddemandresponse,solar powerforecasting,loaddemandandsolargenerationforecastforPVintegrated smartbuildings,multi-objectiveplanningofpublicelectricvehiclechargingstations,anddispatchmodelingincorporatingmaneuvercomponents,windpower, andelectricvehicles.

Chapter 7 givesanoverviewoftheapplicationsofmodernheuristicoptimizationtechniquesinelectricitymarkets,suchasbiddingstrategies,marketanalysis andclearingwithmarketsimulator,electricitymarketforecastingwithartificial neuralnetworksandsupportvectormachines,fuzzyoptimization(FO),and FO-basedsimultaneousbiddingofV2Ginancillaryservicemarkets.

CONTRIBUTORS

AliT.Al-Awami, KingFahdUniversityofPetroleum&Minerals,Dhahran, SaudiArabia

DavidL.Alvarez,UniversidadNacionaldeColombia,Bogotá,Colombia

AlexandreP.AlvesdaSilva,ValeS.A.,RiodeJaneiro,Brazil

KyungsungAn,SKTelecom,Seoul,Korea

EduardoN.Asada,UniversityofSãoPaulo,SãoCarlos,Brazil

WenleiBai,ABBEnterprisesSoftwareInc.Houston,TX,USA

JensC.Boemer,ElectricPowerResearchInstitute,Seattle,USA

LuizEduardoBorgesdaSilva,ItajubaFederalUniversity,Itajuba,MG,Brazil

PeterA.N.Bosman,CentrumWiskundeandInformatica,Amsterdam, TheNetherlands

LeonelCarvalho,INESCTEC,Porto,Portugal

Hsiao-DongChiang,CornellUniversity,Ithaca,NY,USA

JaeseokChoi,GyeongsangNationalUniversity,Jinju,Korea

JindaCui,LehighUniversity,Bethlehem,PA,USA

AnnaCarolinaR.H.daSilva,Eletrobras,RiodeJaneiro,Brazil IbrahimEke,KirikkaleUniversity,Kirikkale,Turkey

AhmedElsayed,FloridaInternationalUniversity,Miami,FL,USA

IstvánErlich,UniversityofDuisburg-Essen,Duisburg,Germany

PedroFaria,PolytechnicofPorto,Porto,Portugal

MaliheMaghfooriFarsangi,ShahidBahonarUniversityofKerman, Kerman,Iran

PavlosS.Georgilakis,NationalTechnicalUniversityofAthens(NTUA), Athens,Greece

MarinusO.W.Grond,CentrumWiskundeandInformatica,Amsterdam, TheNetherlands

DigvijayGusain,TUDelft,Delft,TheNetherlands

NikosD.Hatziargyriou,NationalTechnicalUniversityofAthens(NTUA), Athens,Greece

KyeonHur,YeonseiUniversity,Seoul,Korea

NikolaosC.Koutsoukis,NationalTechnicalUniversityofAthens(NTUA), Athens,Greece

GermanoLambert-Torres,GnarusInstitute,Itajuba,MG,Brazil

HanLaPoutré,CentrumWiskundeandInformatica,Amsterdam, TheNetherlands

KwangY.Lee,BaylorUniversity,Waco,TX,USA

YeonchanLee,GyeongsangNationalUniversity,Jinju,Korea

JoãoBoscoA.LondonJr,UniversityofSãoPaulo,SãoCarlos,Brazil

NgocHoangLuong,CentrumWiskundeandInformatica,Amsterdam, TheNetherlands

LiangyuMa,NorthChinaElectricPowerUniversity,Baoding,China

VladimiroMiranda,INESCTEC/UniversityofPorto,Porto,Portugal

SukumarMishra,IndianInstituteofTechnologyDelhi,NewDelhi,India

OsamaMohammed,FloridaInternationalUniversity,Miami,FL,USA

H.Morais,INESC-ID/UniversityofLisbon,Lisbon,Portugal

HiroyukiMori,MeijiUniversity,Nakano-city,Tokyo,Japan

MithulananthanNadarajah,TheUniversityofQueensland,Brisbane,Queensland,Australia

KoichiNara,IbarakiUniversity,Ibaraki,Japan

MarioNdreko,TenneTTSOGmbH,Bayreuth,Germany

HosseinNezamabadi-pour,ShahidBahonarUniversityofKerman,Kerman,Iran

NarayanaPrasadPadhy,IndianInstituteofTechnologyRoorkee,Roorkee, Uttarakhand,India

PeterPalensky,TUDelft,Delft,TheNetherlands

Jong-BaePark,KonkukUniversity,Seoul,Korea

TiagoPinto, PolytechnicofPorto,Porto,Portugal

DeepakPullaguram,NationalInstituteofTechnology,Warangal,Telangana,India

MuhammadQamarRaza,TheUniversityofQueensland,Brisbane,Queensland, Australia

SergioRivera,UniversidadNacionaldeColombia,Bogotá,Colombia

AndrésRomero,UniversidadNacionaldeSanJuan,SanJuan,Argentina

RubénRomero,SãoPauloStateUniversity,IlhaSolteira,SãoPaulo,Brazil

JoseRueda,TUDelft,Delft,TheNetherlands

CamilaPaesSalomon,ItajubaFederalUniversity,Itajuba,MG,Brazil

FilipeO.Saraiva,FederalUniversityofPará,Belém,Brazil

DushyantSharma,IndianInstituteofTechnologyJodhpur,Rajasthan,India

RuifengShi,NorthChinaElectricPowerUniversity,Beijing,China

SishajPulikottilSimon,NationalInstituteofTechnologyTiruchirappalli, Tamilnadu,India

S.N.Singh,MadanMohanMalaviyaUniversityofTechnology,Gorakhpur,India

JoãoSoares,PolytechnicofPorto,Porto,Portugal

AldirS.Souza,StateUniversityofPiauí,Teresina,Piauí,Brazil

T.Sousa,TechnicalUniversityofDenmark,Lyngby,Denmark WeiSun,UniversityofCentralFlorida,Orlando,FL,USA

MasatoTakahashi,FujiElectricCo.,Hino-city,Tokyo,Japan

Aimilia-MyrsiniTheologi,JedlixSmartCharging,Rotterdam,TheNetherlands

ZitaA.Vale,PolytechnicofPorto,Porto,Portugal

KumarVenayagamoorthy,ClemsonUniversity,Clemson,SC,USA

E.M.Voumvoulakis,NationalTechnicalUniversityofAthens(NTUA), Athens,Greece

ShuoWang,ChinaElectricPowerPlanning&EngineeringInstitute, Beijing,China

XiaoWu,SoutheastUniversity,Nanjing,China

ShuXia,NorthChinaElectricPowerUniversity,Beijing,China

TianshiXu,TianjinUniversity,Tianjin,PRC

Yong-FengZhang,UniversityofJinan,Jinan,China

MingZhou,NorthChinaElectricPowerUniversity,Beijing,China

QunZhou,UniversityofCentralFlorida,Orlando,FL,USA

LISTOFFIGURES

Figure1.1.1 PublicationsofCIinpowersystemsandsmartgrid (2002–2018). 2

Figure1.2.1 NumberofpublicationsbyECmethodsinpowersystems andsmartgrid. 4

Figure1.2.2 Geneticalgorithmprocessflowchart. 7

Figure1.2.3 Laggedparticlesandwaitingphenomenain(a)PSOand (b)QPSO. 11

Figure1.2.4 Multi-objectiveparticleswarmoptimizationflowchart. 12

Figure2.2.1 Overviewoftheaggregatorenergymanagementproblem. 31

Figure3.2.1 UCPsolutionpaths.

48

Figure3.2.2 UCPsolutionusingheuristicmethods. 49

Figure3.2.3 Initialgenerationofpopulation. 52

Figure3.2.4 ISOactivities. 55

Figure3.2.5 Co-ordinationbetweenISOandGENCO. 55

Figure3.3.1 Structureofsimplegeneticalgorithm.

Figure3.3.2 SearchmechanismofPSO.

Figure3.3.3 Piecewisequadraticcostfunctionofagenerator.

Figure3.3.4 Costfunctionwithfivevalves.

59

60

61

62

Figure3.3.5 Aunitwithprohibitedoperatingzone. 62

Figure3.3.6 Encodingschemes.(a)Seriesencodingand(b)embedded encoding. 63

Figure3.3.7 Pseudocodeforthenewcrossovertechnique.

Figure3.3.8 PseudocodeforthedeterministiccrowdingGA.

66

67

Figure3.3.9 Artificialimmunegeneticalgorithmflowchart. 68

Figure3.3.10 FlowchartofthegeneticalgorithmbasedontheLagrange method. 69

Figure3.3.11 Adjustmentstrategyforanindividual’spositionwithin boundary. 72

Figure3.3.12 ComparisonofinertiaweightsforIWAandCIWA.

Figure3.3.13 ConvergencecharacteristicsoftheCSPSO.

74

74

Figure3.3.14 PSOwithpenaltyforGworstsearchmechanism. 75

Figure3.3.15 Schematicofdynamicspacereductionstrategy.

78

Figure3.4.1 Solutiondistributionbydifferentselectionstrategies.(a) Crowdingdistancestrategy.(b)Dynamiccrowdingdistance strategy. 94

Figure3.4.2 ThecalculationflowchartofIDEMOalgorithm.

Figure3.4.3 Paretofrontsofdifferentalgorithms.

96

100

Figure3.4.4 Convergencecurvesofoutersolutionsforcost.

Figure3.5.1 Simulation-basedoptimizationforsolvinghydrothermal coordination.

Figure3.5.2 Hydrogeneration(MW) – SolutionBaseline(gray)versus GroupingI(black).

Figure3.5.3 Monthlytotalhydrogenerationfortheplanning horizon(MW). 114

Figure3.6.1 Methodsforanalyzingthegeneratormaintenance schedulingproblem. 116

Figure3.6.2 Configurationofthesolutionssearchedinvertexby conventionalDP.

Figure3.6.3 Configurationofthesolutionssearchedbytimeaxisshift method.

Figure3.6.4 Possibletimerangeofgeneratormaintenanceofthe exampleproblem.

Figure3.6.5 Initialtimerangeofgeneratormaintenanceofthe exampleproblem.

Figure3.6.6 Conceptofflexibility.

Figure3.6.7 Yearloadcurve(weeklyloadpeaks).

Figure3.6.8 Convergenceoftheobjectivefunction(μ).

Figure3.6.9 StandarddeviationofsupplyreserverateandLOLP.

Figure3.6.10 StandarddeviationofEDNSaccordingtoiteration.

Figure3.6.11 Maintenancepowersateachweek.

Figure3.6.12 Asearchmethodusinggeneticalgorithm.

Figure3.6.13 Flowchartofgeneticalgorithm.

Figure3.6.14 Generatormaintenanceschedulingsystemflowchart.

Figure3.6.15 StartingscreenofvisualizationoftheGMS.

Figure3.6.16 PreferencesoftheGMS.

Figure3.6.17 RunningprocessoftheGMSbyGA.

Figure3.6.18 User-friendlyvisualizationresultsoftheGMS.

Figure3.6.19 User-friendlyvisualization(calendarstyle)resultsof theGMS.

Figure3.6.20 Totalsystemresult.

Figure3.6.21 Theshareofpowerproductionaverageofallcases.

139

140

142

Figure3.7.1 Threebuspowersystem. 145

Figure3.7.2 FlowchartoftheproposedhybridPSOalgorithm. 154

Figure3.7.3 Six-buspowersystem[28].

Figure3.7.4 Decreaseofglobalscoreforthe6-buspowersystem.

Figure3.7.5 Voltageprofileofthesystembusesof6-buspowersystem.

Figure3.7.6 Fourteen-buspowersystem.

Figure3.7.7 Decreaseofglobalscoreforthe14-buspowersystem.

Figure3.7.8 Voltageprofileofthesystembusesof14-buspower system.

Figure3.8.1 IEEE30-bussystem.

155

155

155

157

158

158

170

Figure3.8.2 ConvergencecharacteristicsofABCmethodincase1. 172

Figure3.8.3 Effectofvalve-pointloadingonaquadraticcostfunction. 173

Figure3.8.4 ConvergencecharacteristicsofABCmethodincase2. 173

Figure3.8.5 ConvergencecharacteristicsofABCmethodincase3. 174

Figure3.8.6 ConvergencecharacteristicsofABCmethodincase4. 175

Figure3.8.7 Voltageprofilesforcase1andcase4. 175

Figure3.9.1 OffshoreWPPwithoptimization-basedmanagementof reactivepowersources.

182

Figure3.9.2 Simple2DillustrationoftheMovementRuleinDEEPSO. 185

Figure3.9.3 AlgorithmicprocedureofMVMO-PHM.Thefitness evaluationandcandidatesolutioncountersaredenotedby i and k,whereas Np, ΔFE,andrandstandfornumberof candidatesolutions,numberoffitnessevaluations,and uniformrandomnumbersbetween[0,1],respectively. 189

Figure3.9.4 Layoutofthesetofsolutionarchive.

190

Figure3.9.5 ProcedureforparentselectioninMVMO-PHM. 191

Figure3.10.1 Simpledivide-to-conquerstrategy(branching). 205

Figure4.2.1 Turbinemechanicalpowervariationfollowingastep changeingateposition. 231

Figure4.2.2 Speedpowerresponseofgovernor.

Figure4.2.3 Two-areasystem.

Figure4.2.4 Two-areathermalpowersystem.

Figure4.2.5 Systemperformancewithdifferentcostfunctions. 239

Figure4.2.6 Systemperformancewithdifferentparameteroptimization.

Figure4.2.7 Single-areahydrosystem.

Figure4.2.8 Impactofcommunicationdelayonfrequency. 243

Figure4.2.9 Impactofsecondarycontrollergaininthepresenceof communicationdelay.

Figure4.3.1 Representationofdifferentcontrollers.

Figure4.3.2 Modeloftransmissionline.

Figure4.3.3 ModelofTCSC.

243

247

248

248

Figure4.3.4 InjectionmodelofTCSC. 249

Figure4.3.5 EquivalentcircuitofTCPAR. 250

Figure4.3.6 InjectionmodelofTCPAR.

Figure4.3.7 EquivalentcircuitofUPFC.

Figure4.3.8 VectordiagramofUPFC.

Figure4.3.9 EquivalentcircuitinjectionmodelofUPFC.

Figure4.3.10 EquivalentcircuitofGUPFC.

Figure4.3.11 InjectionmodelofGUPFC.

Figure4.3.12 5-Bussystem.

Figure4.4.1 One-linediagramofa5-areastudysystem.

Figure4.4.2 Thecriticaleigenvectorandthecorrespondingbusnumber.

Figure4.4.3 Busvoltagemagnitudeprofilewhensystemisheavily stressed.

Figure4.4.4 Voltageprofileofthesystemafterplacing145Mvarat bus40.

250

251

251

252

253

254

268

288

289

289

291

Figure4.4.5 ConvergenceofGAandPSOonthelevelofcompensation. 292

Figure4.4.6 ConvergenceofGAandPSOontheaveragebest-so-far. 292

Figure4.4.7 Thecriticaleigenvectorandthecorrespondingbusnumber insystem. 292

Figure4.4.8 Busvoltagemagnitudeprofilewhensystemisheavily stressedinsystem.

Figure4.4.9 TheRGA-numberofcandidatesets3,6,and9(pre-fault).

Figure4.4.10 TheRGA-numberofcandidatesets34and37(pre-fault).

Figure4.4.11 TheRGA-numberofcandidatesets31and37(pre-fault).

Figure4.4.12 TheRGA-numberofcandidatesets3,6,and9(post-fault).

Figure4.4.13 TheRGA-numberofcandidatesets34,37,and 40(post-fault).

Figure4.4.14 TheRGA-numberofcandidatesets22and37(post-fault).

Figure4.4.15 Theconvergencecharacteristicoffitnessfunctionwith PSOtofindsolution.

Figure4.4.16 Theconvergencecharacteristicoffitnessfunctionwith GCPSOtofindsolution.

293

299

299

300

300

301

301

303

303

Figure4.4.17 TheconvergencecharacteristicoffitnessfunctionwithGA tofindsolution. 304

Figure4.5.1 Frameworkoftheproposedmethod. 308

Figure4.5.2 Simulationofloadsheddingstrategies. 319

Figure4.5.3 Flowchartoftheproposedmethodology. 320

Figure4.5.4 Decisiontreeforloadshedding.

Figure4.5.5 Geneticalgorithm-aidedDT.

Figure4.5.6 MappingofsystembusesbeforeandaftertheVLT-SOM training. 327

Figure4.5.7 Radialbasisfunctionneuralnetwork.

Figure4.5.8 Asampledecisiontree.

Figure4.6.1 Theschematicstructuralviewofverticalspindleroller pressurecoalmill.

Figure4.6.2 Modelverificationresults.

Figure4.6.3 Sketchoftheboileroftheinvestigatedpowerplant.

Figure4.6.4 StructureoftheNMPCforreheatedsteamtemperature control.

Figure4.6.5 Reheaterdampercontrolsearchwindowforloading-down process.

336

339

341

342

344

Figure4.6.6 Damper,bypass,andRSTresponsesduetoloadchange from100to75%.(a)TheoriginalPIDcontrol.(b)The NMPCcontrol. 346

Figure4.6.7 Processofimmunologicaltolerancetest.

Figure4.6.8 Schematicfigureforreceptorediting.

Figure4.6.9 WorkingprincipleofICSMOA.

Figure4.6.10 Detailedprocedureofmemorycellsprocessing.

349

350

352

352

Figure4.6.11 TheoptimizationresultsforOP3,8,12,and17using theICSMOA.(a) OP 3.(b) OP 8.(c) OP 12.(d) OP 17. 354

Figure4.7.1 SimplifiedNARMAneuralnetworkmodel.

358

Figure4.7.2 Schematicdiagramforsupercriticalpowerunit. 358

Figure4.7.3 Modelinputsandoutputsforsupercriticalboilerunit. 359

Figure4.7.4 NARMAmodelforloadandmainsteampressure characteristics. 359

Figure4.7.5 Modeltestunderwideload-changingcondition. 360

Figure4.7.6 Schematicsoftwotypicalcoordinatedcontrolmodes. (a)Boiler-following-basedcoordinatedcontrolmode. (b)Turbine-following-basedcoordinatedcontrolmode. 362

Figure4.7.7 Intelligentcoordinatedpredictiveoptimalcontrolscheme. 363

Figure4.7.8 Testresultswhenloaddropsfrom600to540MW.

365

Figure4.7.9 Testresultswhenloaddropsfrom540to480MW. 366

Figure5.2.1 (a)Six-busdistributionnetwork,(b)candidateplanning solution,and(c)binaryandintegerchromosomecoding.

Figure5.2.2 21-Busdistributionnetwork.

Figure5.2.3 (a)Yearlyloadprofileand(b)yearlywindgeneration profile.

Figure5.2.4 FitnessfunctionvalueevolutioninCases1–3.

387

388

389

390

Figure5.2.5 (a)SolutioninCase1,(b)solutioninCase2,and(c) solutioninCase3. 391

Figure5.3.1 (a)Globalminimaandlocalminima.(b)Paretofront.

Figure5.3.2 EquivalentcircuitofVSCforpowerflowstudies.

Figure5.3.3 Genericdistributionsystemwith n asynchronizedzones.

Figure5.3.4 IEEEtypeAC4Aexcitationsystem.

Figure5.3.5 SimplifiedschematicforAC/DCpowersystem.

Figure5.3.6 Flowchartforthesequentialpowerflowapproach.

Figure5.3.7 VoltagelimitsspecifiedbyMIL-Std1399,section300.

Figure5.3.8 SafeoperationregionforVSC.

Figure5.3.9 Frequencyenvelopesforthe400Hzsystemsinmarine applications.

Figure5.3.10 Pulsedloadprofile.

Figure5.3.11 ParetofrontandselectionofefficientParetosolutions.

Figure5.3.12 Multi-objectiveoptimizationflowchart.

Figure5.4.1 ConceptofPSO.

402

403

404

405

406

407

412

412

414

415

416

417

420

Figure5.4.2 Modificationofparticle’svelocityandposition. 421

Figure5.4.3 PSOflowchart.

Figure5.4.4 AhierarchymodelforCVR.

Figure5.4.5 Globalbestvalueateachiteration.

Figure5.4.6 Particle’smovementforCVR.

Figure5.5.1 MVdistributionnetworkwiththreefeeders.

Figure5.5.2 Anexamplelinkagetree.

422

425

425

426

432

445

Figure5.5.3 Differentclustersapproachdifferentpartsoftheoptimal Paretofront. 446

Figure5.5.4 BenchmarkMVdistributionnetworkswithexistingassets [130]. 451

Figure5.5.5 Network3:CAPEXvs.DSM. 454

Figure5.5.6 ParetofrontsofMOoptimizationsforthreenetworks. 455

Figure5.5.7 Network2:totalcost(CAPEX+DSM)vs.energyloss. 457

Figure5.5.8 FrontsofMOoptimization(CAPEX+DSM)vs.energy lossforthreenetworks. 458

Figure5.5.9 Network1:totalcost(CAPEX+DSM)vs.CML. 460

Figure5.5.10 FrontsofMOoptimization(CAPEX+DSM)vs.CML forthreenetworks. 461

Figure5.6.1 Convergenceforequilibriumpoints. 470

Figure5.6.2 xexit shouldbeveryclosetotheexactexitpoint. 473

Figure5.6.3 FlowchartoftheGA-guidedTrust-Tech. 480

Figure5.6.4 GAcostfunctionvalue(Seg.4,upto82generations). 483

Figure5.6.5 GAcostfunctionvalue(3500generations). 485

Figure5.6.6 Solutioncomparison. 488

Figure5.7.1 Smart-gridinlayers. 491

Figure5.7.2 EDSanditsrepresentationbygraph.(a)Exampleofa typicalEDSwiththreefeeders.(b)Graphrepresentation. 497

Figure5.7.3 Exampleofservicerestoration.(a)Sectioninfault. (b)Newconfiguration. 497

Figure5.7.4 Exampleofdistributionsystemwiththreecoalitions: coalition1hasagentslocatedat2,3,and4;coalition2has agentslocatedat5,6,and7;coalition3hasagentslocated at8,9,and10. 504

Figure5.7.5 Exampleofelectricalpathbetweensubstation0and coalition2. 504

Figure5.7.6 Substationagent(SAg)actionsinaflowchart.

505

Figure5.7.7 Depth-firstsearchalgorithmforthecreationofcoalitions. 506

Figure5.7.8 ModifiedDijkstraalgorithmforfindingtheminimalpath betweenthesubstationagent(SAg)andtheloadagents. 507

Figure5.7.9 Loadagent(LAg)actionsinaflowchart. 508

Figure5.7.10 Flowchartofswitchingagent(SWAg). 509

Figure5.7.11 Sequencechartofthemulti-agentsystem. 509

Figure5.8.1 Actionsandstagestopreparepowersystemrestoration plans. 512

Figure5.8.2 Exampleofsix-switchsystem. 516

Figure5.9.1 Anillustrationofthreestepsinvolvedinthetraditional PSOprocedure. 534

Figure5.9.2 TheprocedureofStageI. 536

Figure5.9.3 Procedureofthethree-stagegroup-basedPSO. 537

Figure5.9.4 Thetopthreesolutionpointsineachgroup. 538

Figure5.9.5 TheflowchartofStage1ofthegroup-basedPSOmethod. 540

Figure5.9.6 Group-basedPSOalgorithmflowchartfortheservice restoration. 543

Figure5.9.7 IEEE123-nodefeedertestcase. 545

Figure5.9.8 One-linediagramofthe394-bus,1101-nodetestsystem. 550

Figure5.10.1 Distributionnetworkconfigurations.(a)Passivenetwork. (b)Activenetwork. 554

Figure5.10.2 Conceptofaggregation. 555

Figure5.10.3 FlowchartforidentificationofMVMOparameters. 557

Figure5.10.4 MVMOarchivewheresolutionsarestored. 559

Figure5.10.5 Procedureofmutationofselectedgenes. 560

Figure5.10.6 Testcase:IEEE34-busfeedersystem. 562

Figure5.10.7 PowerFactoryrepresentationofPVstation. 563

Figure5.10.8 DEfortestcaseshown. 564

Figure5.10.9 BasicblockdiagramofPVD1model. 564

Figure5.10.10 ProtectionlogicbehindPVD1model. 566

Figure5.10.11 Convergenceofoptimization. 569

Figure5.10.12 0.30p.u.voltagelevel.Solidline:detailedmodel;dotted line:aggregatedmodel. 570

Figure5.10.13 0.65p.u.voltagelevel.Solidline:detailedmodel;dotted line:aggregatedmodel. 570

Figure5.10.14 0.50p.u.voltagelevel.Solidline:detailedmodel;dotted line:aggregatedmodel. 570

Figure5.10.15 0.75p.u.voltagelevel.Solidline:detailedmodel;dotted line:aggregatedmodel. 571

Figure5.11.1 Simplifiedequivalentcircuitofatransformerwinding. 574

Figure5.11.2 Equivalentcircuitformultiplecouplingwindings. 575

Figure5.11.3 Coefficientsestimationapproach. 579

Figure5.11.4 DEEPSOflowchart. 581

Figure5.11.5 MeasuredandFEMsimulatedsignalinarealtransformer. 582

Figure5.11.6 Correlationcoefficientindicator(1 ρ)foreachtarget function. 583

Figure5.11.7 Relativeerrorindicator(η)foreachtargetfunction. 583

Figure5.11.8 Relativefactorindicator(r)foreachtargetfunction. 584

Figure5.11.9 MIN-MAXindicator(1 MM)foreachtargetfunction. 584

Figure5.11.10 DABSindicatorforeachtargetfunction. 585

Figure5.11.11 ASLEindicatorforeachtargetfunction. 585

Figure5.11.12 Spectrumdeviationindicator(σ )foreachtargetfunction. 586

Figure5.11.13 Measuredandsimulatedsignalswithcorrelationcoefficient. 586

Figure5.11.14 Measuredandsimulatedsignalswithrelativeerror. 587

Figure5.11.15 Measuredandsimulatedsignalswithrelativefactor indicator. 587

Figure5.11.16 MeasuredandsimulatedsignalswithMIN-MAXindicator. 588

Figure5.11.17 MeasuredandsimulatedsignalswithDABSindicator. 588

Figure5.11.18 MeasuredandsimulatedsignalswithASLEindicator. 589

Figure5.11.19 Measuredandsimulatedsignalswithspectrumdeviation indicator. 589

Figure6.2.1 37-Busdistributionnetwork. 621

Figure6.2.2 Energymixin2050[29]. 622

Figure6.2.3 Consumers’ profiles. 625

Figure6.2.4 Externalsuppliers’ pricebasedonNordPoolday-ahead market. 626

Figure6.2.5 EnergyresourcesschedulingusingMINLP. 627

Figure6.2.6 Scheduledenergybyresourceinthe24periods. 628

Figure6.2.7 Operationcostsinthe24periods. 629

Figure6.2.8 Electricvehiclesanddemandresponseschedulingusing MINLP. 630

Figure6.2.9 Electricvehiclesanddemandresponseschedulingusing SA. 630

Figure6.2.10 Electricvehiclesanddemandresponseschedulingusing SADT. 630

Figure6.2.11 Electricvehiclesanddemandresponseschedulingusing ERS2A. 631

Figure6.2.12 Electricvehiclesanddemandresponsescheduling usingPSO. 631

Figure6.2.13 Electricvehiclesanddemandresponseschedulingusing EPSO. 631

Figure6.2.14 Electricvehiclesanddemandresponseschedulingusing MoPSO. 632

Figure6.2.15 Electricvehiclesanddemandresponseschedulingusing 2sPSO. 632

Figure6.3.1 ConceptofFRIENDS. 636

Figure6.3.2 Solutionalgorithmofplanningproblem. 638

Figure6.3.3 Voltagecontrolarea. 639

Figure6.3.4 Theinteractiondiagramofagentoperationsduringnormal states. 641

Figure6.3.5 Theinteractiondiagramofagentoperationsduring emergencystates. 642

Figure6.3.6 Structureofreal-scalesmartgridexperimentalsystem. 643

Figure6.3.7 Protectionschemeofthesystem. 644

Figure6.4.1 PredictivecontroloptimizationbyMVMO. 647

Figure6.4.2 Multilayerperceptron. 649

Figure6.4.3 MVMO-basedprocedureforoptimalreactivepower management. 651

Figure6.4.4 Solutionarchive. 653

Figure6.4.5 Variablemapping. 654

Figure6.4.6 BorsselewindfarmlayoutwithACcable. 655

Figure6.4.7 Windspeedvariation. 656

Figure6.4.8 Case1:(a)Hourly Q set-pointsofeverywindturbine, (b)hourlyreductionofwindfarmactivepowerlosses, (c)OLTCtappositions – onshoretransformers,(d)reactive powerattheoffshorePCC,(e)reactivepoweratthe onshorePCC. 658

Figure6.4.9

Case2:(a)Hourly Q set-pointsofeverywindturbine, (b)reductionofcumulativecostinthewindfarm,(c)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.