Instant ebooks textbook Green energy to sustainability: strategies for global industries hideaki yuk

Page 1


Green Energy to Sustainability: Strategies for Global Industries Hideaki Yukawa

Visit to download the full and correct content document: https://ebookmass.com/product/green-energy-to-sustainability-strategies-for-global-in dustries-hideaki-yukawa/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Green Energy to Sustainability Blaschek

https://ebookmass.com/product/green-energy-to-sustainabilityblaschek/

Green Energy Harvesting Pooja Devi

https://ebookmass.com/product/green-energy-harvesting-pooja-devi/

Green Energy M. A. Parvez Mahmud

https://ebookmass.com/product/green-energy-m-a-parvez-mahmud/

(eTextbook PDF) for Sustainability: Global Issues, Global Perspectives by Astrid Cerny

https://ebookmass.com/product/etextbook-pdf-for-sustainabilityglobal-issues-global-perspectives-by-astrid-cerny/

The Business Guide to Sustainability: Practical Strategies and Tools for Organizations 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/the-business-guide-tosustainability-practical-strategies-and-tools-fororganizations-3rd-edition-ebook-pdf/

Biomass, Biofuels, Biochemicals: Green-Economy: Systems Analysis for Sustainability Ganti S. Murthy

https://ebookmass.com/product/biomass-biofuels-biochemicalsgreen-economy-systems-analysis-for-sustainability-ganti-s-murthy/

Energy and Motorization in the Automotive and Aeronautics Industries François Malburet

https://ebookmass.com/product/energy-and-motorization-in-theautomotive-and-aeronautics-industries-francois-malburet/

Green Energy: Solar Energy, Photovoltaics, and Smart Cities Suman Lata Tripathi

https://ebookmass.com/product/green-energy-solar-energyphotovoltaics-and-smart-cities-suman-lata-tripathi/

Encyclopedia of Global Industries 6° Edition Drew D. Johnson

https://ebookmass.com/product/encyclopedia-of-globalindustries-6-edition-drew-d-johnson/

GreenEnergytoSustainability

GreenEnergytoSustainability

StrategiesforGlobalIndustries

Editedby

AlainA.Vertès SloanFellow,LondonBusinessSchool UK and ManagingDirectorofNxRBiotechnologies,BaselSwitzerland

NasibQureshi

UnitedStatesDepartmentofAgriculture NationalCenterforAgriculturalUtilizationResearch Peoria,USA and UniversityofIllinoisatUrbana-Champaign,USA

HansP.Blaschek

DepartmentofFoodScienceandHumanNutrition UniversityofIllinoisatUrbana-Champaign USA

HideakiYukawa UtilizationofCarbonDioxideInstituteCO.Ltd. Tokyo,Japan

Thiseditionfirstpublished2020 ©2020JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted, inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptas permittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableathttp://www .wiley.com/go/permissions.

TherightofAlainA.Vertès,NasibQureshi,HansP.Blaschek,andHideakiYukawatobeidentifiedastheauthorsof theeditorialmaterialinthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappears instandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflow ofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreview andevaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment, reagent,ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusageandforadded warningsandprecautions.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,they makenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityor fitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensales materialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductisreferredtoin thisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthors endorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendationsitmay make.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices. Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwitha specialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedor disappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublisher,northeeditorsor authorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial, incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationDataappliedfor HBISBN:9781119152026

CoverDesign:Wiley

CoverImages:WMMDNA©3divan/Shutterstock, Powerplanusingrenewablesolarenergy©GenchoPetkov/Shutterstock, OilseedRape©TheDman/GettyImages

Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Chennai,India

PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY 10987654321

Wewillmeetthesechallengesbecausewecanandwewillmeetthesechallengesbecausewemust

Contents

AbouttheEditors xxi

ListofContributors xxv

Foreword xxxi

Preface xxxiii

1EconomicGrowthandtheGlobalEnergyDemand 3 JürgenScheffran,MiriamFelkersandRebeccaFroese

1.1HistoricalContextandRelationshipBetweenEnergyandDevelopment 3

1.2ConceptualFrameworkforPathwaysofEnergyUse 6

1.3WorldPopulationTrendsandProspects 7

1.4GrossDomesticProduct(GDP)andEconomicGrowth 8

1.5GlobalEnergyDevelopment 11

1.6GlobalEmissionsofGreenhouseGases 14

1.7LinkagesBetweenKayaFactors 16

1.7.1PerCapitaEnergyandGrowth 16

1.7.2EnergyDemandandEconomicProduction 17

1.7.2.1EnergyasaProductionFactor 18

1.7.2.2EmpiricalResults 19

1.7.3Emission-RelatedFactors 23

1.7.4Energy-RelatedImpacts 25

1.7.5RelativeComparisonoftheKayaFactors 26

1.8DevelopmentofEnergyInvestment 28

1.9ConditionsforEnergyTransitionandDecarbonization 31

1.9.1TargetsandPathwaysofClimatePolicy 31

1.9.2StrategiesofImplementation 33

1.9.3IntegratedAssessmentandDecision-MakinginTransitionProcesses 35

1.10Perspectives 37 Acknowledgments 38 References 38

2TheEnergyMixinJapanPost-Fukushima 45

SeijiNakagame

2.1GreenhouseGas(GHG)EmissionsbyJapan 45

2.2EnergyDependence 46

2.3TheEnergyPolicyofJapan 48

2.4ParisAgreement 49

2.5ProspectiveEnergyDemand 50

2.6ImprovementinEnergyEfficiency 50

2.7ReductionofCO2 EmissioninElectricGeneration 51

2.8DevelopmentofNewTechnologiesforDecreasingGHGEmissions 51

2.9ProductionandUseofBioethanolinJapan 51

2.10ProductionandUseofHydrocarbonsinJapan 52

2.11ProductionandUseofHydrogeninJapan 52

2.12ContributionsoftheJapaneseGovernmenttoFundamentalResearchand Development 52

2.13Perspectives 53 References 53

3GreenEnergyinAfrica,Asia,andSouthAmerica 57

DanieldeCastroAssumpção,MarceloHamaguchi,JoséDilcioRochaand AdrianoP.Mariano

3.1Introduction 57

3.2SouthAmerica 58

3.2.1CurrentStatus 58

3.2.2CommercialDeploymentandChallenges 60

3.2.3PerspectivesonSouthAmerica 61

3.3Africa 62

3.3.1CurrentStatus 62

3.3.2CommercialDeploymentandChallenges 64

3.3.3PerspectivesonAfrica 65

3.4SoutheastAsia 66

3.4.1CurrentStatus 66

3.4.2CommercialDeploymentandChallenges 67

3.4.3PerspectivesonSouthEastAsia 69

3.5China 69

3.5.1CurrentStatus 69

3.5.2CommercialDeploymentandChallenges 71

3.5.3PerspectivesonChina 71

3.6GlobalPerspectives 72 References 72

4TheDevelopmentofSolarEnergyGenerationTechnologiesandGlobal ProductionCapabilities 77

F.JohnHayandN.Ianno

4.1Introduction 77

4.2SunlightandPhotosynthesis 78

4.2.1PhotosyntheticEfficiency 79

4.2.2ActualEfficiencies 79

4.3PhotovoltaicDevices 79

4.4OverviewofSolarPhotovoltaicApplications 82

4.5Perspectives 83 References 84

5RecentTrends,OpportunitiesandChallengesofSustainableAviationFuel 85 LibingZhang,TerriL.ButlerandBinYang

5.1Introduction 85

5.2OverviewoftheJetFuelMarket 86

5.2.1DrivingForceofGrowingBiojetFuelOpportunities 86

5.2.2BiojetFuelTypesandSpecifications 88

5.3AssessmentofEnvironmentalPolicyandEconomicFactorsAffectingtheAviation Industry 93

5.3.1MomentumBuildingofInternationalCarbonEmissionRegulations 94

5.3.2IncreasingActivitiestoAddresstheCarbonEmissionControl 95

5.3.3NewTechnologiesandAviationOperationImprovement 97

5.4CurrentActivitiesAroundBiojetintheAviationIndustry 98

5.4.1AlternativeJetFuelDeploymentandUse 98

5.4.2TestFlightsofCommercialAirlines 100

5.5ChallengesofFutureBiojetFuelDevelopment 100

5.6Perspectives 104 Acknowledgments 105 References 105

6TheEnvironmentalImpactofPollutionPreventionandOtherSustainable DevelopmentStrategiesImplementedbytheAutomotiveManufacturing Industry 111

SandraD.Gaona,CherylKeenan,CyrilVallet,LawrenceReichleandStephenC.DeVito

6.1Introduction 111

6.2OverviewoftheAutomotiveManufacturingIndustry 112

6.2.1History 112

6.2.2ProductionandEconomicTrends 112

6.2.3KeyPlayers 113

6.3ChemicalsandChemicalWasteinAutomotiveManufacturing 114

6.3.1EmissionsfromFuelCombustion 114

6.3.1.1AutomobileManufacturingGHGEmissions 114

6.3.1.2AutomobileOperationGHGEmissions 114

6.3.2TRI-ReportedChemicalWasteManagement 115

6.3.2.1USEPAToxicsReleaseInventory 116

6.3.2.2TrendsinTRI-ReportedChemicalWasteManagement 117

6.3.2.3WasteManagementMethods 119

6.3.2.4TrendsinReleases 119

6.3.2.5AutomotiveManufacturingvs.AllOtherManufacturingSectors 120

6.4PollutionPreventioninAutomotiveManufacturing 121

6.4.1SustainabilityTrendsinAutomotiveManufacturing 121

6.4.1.1CorporateSustainabilityReports 122

x Contents

6.4.1.2Eco-Efficiency 122

6.4.1.3ProcessandTechnologyModifications 123

6.4.1.4Safer,EnvironmentallyFriendlyAlternativeMaterials 124

6.4.1.5RecyclingofMetalsandSolvents 125

6.4.1.6MetalScrapandWaste 125

6.4.1.7FluidsandSolvents 125

6.4.1.8End-of-LifeVehicles(ELVs) 126

6.4.1.9FuelEconomy 126

6.4.2PollutionPreventionActivitiesReportedtoTRI 126

6.4.2.1ExamplesofSourceReductionActivitiesReportedtoTRI 129

6.4.2.2TRIPollutionPreventionAnalysis–EffectivenessofSourceReductionActivities 129

6.4.2.3BarrierstoSourceReduction 129

6.5Perspectives 131

6.5.1Summary 131

6.5.2PotentialPollutionPreventionOpportunities 133 Disclaimer 134 References 134

7TheGlobalDemandforBiofuelsandBiotechnology-DerivedCommodity Chemicals:Technologies,Markets,andChallenges 137 StephenR.HughesandMarjorieA.Jones

7.1Introduction 137

7.2OverviewofGlobalEnergyDemand 137

7.3PetroleumDemandandPetroleumProductsforPotentialReplacementby Bioproducts 140

7.4RoleofBiofuelsandBiobasedChemicalsinRenewableEnergyDemand 143

7.5AchievingPetroleumReplacementwithBiobasedFuelsandChemicals 145

7.6ProjectionsofGlobalDemandforBiobasedFuelsandChemicals 149

7.7PotentialImpactsonPriceofTransportationFuelsandChemicalsAssumingVarious ScenariosofWorldEconomicGrowth 151

7.8ProjectionofEnergy-RelatedCO2 EmissionsWithorWithoutRemediation Technology 151

7.9GovernmentImpactonDemandforBiofuelsandBiobasedChemicals 152

7.10Perspectives 154 References 155

PartIIChemicalsandTransportationFuelsfromBiomass 157

8SustainablePlatformChemicalsfromBiomass 159 AnkitaJunejaandVijaySingh

8.1Introduction 159

8.22-Carbon 161

8.2.1GlycolicAcid 161

8.33-Carbon 163

8.3.1PropionicAcid 163

8.3.2PyruvicAcid 163

8.3.3LacticAcid 166

8.44-Carbon 166

8.4.1ButyricAcid 166

8.4.2SuccinicAcid 167

8.4.3MalicAcid 168

8.4.4Putrescine 168

8.55-Carbon 169

8.5.1ItaconicAcid 169

8.5.2Xylitol 170

8.5.3GlutaconicAcidandGlutaricAcid 171

8.66-Carbon 171

8.6.1AdipicAcid 171

8.6.2MuconicAcid 172

8.6.3CitricAcid 173

8.6.4GlucaricAcid 173

8.7Perspectives 174

References 175

9BiofuelsfromMicroalgaeandSeaweeds:PotentialsofIndustrialScale Production 185 LichengPeng,FreemanLanandChristopherQ.Lan

9.1Introduction 185

9.2Biofuels 186

9.2.1TypesofBiofuels 187

9.2.1.1Biodiesel 187

9.2.1.2Bioethanol 187

9.2.1.3Bio-oilsandBio-syngas 188

9.2.1.4Bio-hydrogen 188

9.2.2FeedstockofBiofuelProductionBasedonPlants 188

9.2.2.1TerrestrialPlants 190

9.2.2.2AquaticPlants–Algae 190

9.3BiofuelsfromMicroalgaeandSeaweeds 191

9.3.1BiofuelsfromMicroalgae 192

9.3.2BiofuelsfromMacroalgae(i.e.Seaweeds) 192

9.3.3AdvantagesofAlgaeastheFeedstockofBiofuels 193

9.4RecentDevelopmentsinAlgaeProcessingTechnologies 195

9.4.1HarvestingandDewatering 195

9.4.2ExtractionApproaches 196

9.4.3ConversiontoBiofuels 198

9.5PotentialforIndustrialScaleProduction 200

9.5.1RoleofBiofuelsinEnergySupplyandEnvironmentalProtection 200

9.5.2BiofuelDemandandSupportingPolicies 201

9.5.3RoutestoCost-EffectiveAlga-BasedBiofuels 202

9.5.3.1OptimizationofCultivationProcesses 202

9.5.3.2AchieveHighBiomassConcentrationofAlgae 204

9.5.3.3Co-producingValue-AddedProductstoOffsetOverallCosts 204

9.5.3.4CombiningAlga-BasedBiofuelProductionwithEnvironmentProtection 204

9.6ProgressesintheCommercialProductionofAlga-BasedBiofuels 205

9.7Perspectives 209

References 210

10AdvancedFermentationTechnologies:ConversionofBiomasstoEthanolby OrganismsOtherthanYeasts,aCasefor Escherichiacoli 219 K.T.Shanmugam,LorraineP.Yomano,SeanW.YorkandLonnieO.Ingram

10.1Introduction 219

10.2 Zymomonasmobilis222

10.3 Escherichiacoli223

10.4OsmoticStressofHighSugarConcentration 227

10.5Inhibitor-TolerantEthanologenic E.coli227

10.6EngineeringBacterialBiocatalystsOtherthan E.coli fortheProductionofEthanol UsingthePDC/ADHPathway 229

10.7EthanolProductionbyNon-PDCPathways 230

10.8PartitionofCarbonatthePyruvateNode 231

10.9OtherMetabolicPathwaysthatContributetoEthanolProduction 231

10.10Perspectives 232

Acknowledgements 232

References 233

11ClostridiaandProcessEngineeringforEnergyGeneration 239 AdrianoP.Mariano,DaniloS.Braz,HenriqueC.A.VenturelliandNasibQureshi

11.1Introduction 239

11.2RecentTechnologicalAdvances 241

11.2.1Micro-organisms 241

11.2.2NovelSubstrates 243

11.2.3BiomassPretreatment 244

11.2.4NovelProductRecoveryTechniques 245

11.2.5Bioreactors 245

11.2.6CombiningUnitOperationsandUseofBy-products 245

11.3EconomicModellingandCaseStudy 246

11.3.1Techno-economicStudies 246

11.3.2CaseStudy:ProductionofButanolfromEucalyptus 251

11.3.2.1PulpMillCaseStudy 251

11.3.2.2ABEPlant 251

11.3.2.3ApproachandAssumptionsfortheEconomicAnalysis 255

11.3.2.4InvestmentCostandEnergyEfficiencyoftheABEPlant 256

11.3.2.5MinimumButanolSellingPrice 259

11.3.2.6ValueCreationtoPulpMills 262

11.4Perspectives 263

Acknowledgements 263 References 264

12FuelEthanolProductionfromLignocellulosicMaterialsUsingRecombinant Yeasts 269 StephenR.HughesandMarjorieA.Jones

12.1ReviewofCurrentFuelEthanolProduction 269

12.1.1TechnologicalAspects 269

12.1.2CommercializationofCellulosicEthanol 271

12.2EvolutionofCostofCellulosicEthanolProduction 272

12.2.1AnalysisComparingCostsofProducingEthanolfromCornStarchandLignocellulosic Feedstocks 272

12.2.2CostAnalysisbyTaoetal.forCellulosicEthanol 274

12.3TechnologicalOpportunitiestoReduceCellulosicEthanolProductionCosts 277

12.4Perspectives:ApproachestoOptimizetheUseofLignocellulosicandWasteMaterialsas Feedstocks 279 References 281

13EnzymesforCellulosicBiomassHydrolysisandSaccharification 283 ElmarM.Villota,ZiyuDai,YanpinLuandBinYang

13.1Introduction 283

13.2GlycosylHydrolases:GeneralStructureandMechanism 286

13.2.1ClassificationofGH 287

13.3TheCellulaseEnzymeSystem 289

13.3.1Endoglucanases 290

13.3.2Cellobiohydrolases 290

13.3.3Beta-Glucosidases 291

13.3.4PolysaccharideMonooxygenasesandCellobioseDehydrogenases 292

13.3.5CellulasesSynergyandKinetics 293

13.4TheHemicellulaseEnzymeSystem 295

13.4.1Endo-XylanasesandBeta-Xylosidases 296

13.4.2Endo-MannanasesandBeta-Mannosidase 297

13.4.3OtherHemicellulasesandAccessoryEnzymes 297

13.4.4HemicellulasesandCompleteHydrolysis 298

13.5MicroorganismsforBiomassHydrolysis 299

13.5.1DiversityofCellulolyticMicroorganismsandLifestyles 299

13.5.2FungiandTheirArsenalforBiomassHydrolysis 300

13.5.3BacteriaandTheirCellulolyticMachinery 302

13.5.3.1The C.thermocellum Cellulosome 303

13.5.3.2Enzyme-MicrobeSynergy 305

13.5.3.3MechanismsofCellAdhesion 307

13.6Perspectives 308 Acknowledgement 309 References 309

14LifeCycleAssessmentofBiofuelsandGreenCommodityChemicals 327 MairiJ.Black,OnesmusMwabonje,AiduanLiBorrionandAureliaKarinaHillary

14.1Introduction 327

14.2LifeCycleAssessment(LCA) 328

14.3TheOriginandPrinciplesofLifeCycleAssessment 329

14.4DevelopingaLifeCycleAssessment 329

14.5ScopeoftheLifeCycleAssessment:AttributionalversesConsequential 331

14.6BiofuelsandGreenCommodityChemicals 332

14.7FeedstocksforBiofuels 332

14.7.1FirstGenerationBiofuels 333

14.7.2SecondGenerationBiofuelFeedstock 333

14.8ConversionofFeedstock 333

14.8.1BiochemicalProcesses 334

14.8.2ThermochemicalProcesses 334

14.9SupplyChainandLogistics 335

14.10UsingLCAasaTooltoAssessGHGEmissionsandOtherImpactsAssociatedwith BioethanolProductionandSupply 335

14.11DiscussionontheSuitabilityofLCA 336

14.12Perspectives:MovingForwardwiththeLCAConcept 348 References 349

PartIIIHydrogenandMethane 355

15BiotechnologicalProductionofFuelHydrogenandItsMarket Deployment 357

CarolinaZampolLazaro,EmrahSagirandPatrickC.Hallenbeck

15.1Introduction 357

15.2HydrogenProductionThroughDarkFermentation 358

15.2.1MicroorganismsInvolvedinDarkFermentativeHydrogenProduction 358

15.2.1.1HydrogenProductionbyPureCultures 358

15.2.1.2MixedCulturesandInoculumPre-treatments 358

15.2.1.3Co-culturesUsedforHydrogenProduction 359

15.2.2OperationalFactorsInfluencingHydrogenProduction 360

15.2.3BioreactorsUsedforDarkFermentativeHydrogenProduction 362

15.2.4SubstratesUsedforDarkFermentativeHydrogenProduction 366

15.3HydrogenProductionThroughPhotofermentation 370

15.3.1Photo-biologicalHydrogenProductionbyPurpleNon-sulfurBacteria 370

15.4HydrogenProductionbyCombinedSystems 370

15.4.1HydrogenProductionbyDarkandPhotofermentationinCo-culture 370

15.4.2Two-StageDarkandPhoto-fermentativeHydrogenProduction 373

15.4.3HydrogenProductionbyMultipleStages(Cellulolytic,DarkFermentative,and PhototrophicBacteria) 377

15.4.4HydrogenProductionbyCombinedDarkFermentationandMicrobialElectrolysis 379

15.5Perspectives 379

15.5.1HydrogenProductionPotentialandMarketBarriers 380

15.5.2HydrogenGenerationMarket 381

15.5.3MicrobialHydrogenProduction:TargetsandFutureProspects 382 Acknowledgements 383 References 383

16DeploymentofBiogasProductionTechnologiesinEmergingCountries 395 GuangyinZhen,XueqinLu,XiaohuiWang,ShaojuanZheng,JianhuiWang,ZhongxiangZhi, LianghuSu,KaiqinXu,TakuroKobayashi,GopalakrishnanKumarandYoucaiZhao

16.1Introduction 395

16.2TypesofFeedstock 397

16.2.1WasteActivatedSludge 397

16.2.2LignocellulosicBiomass 398

16.2.3Algae 401

16.2.4FoodWaste 402

16.2.5LeafyVegetables 403

16.2.6LivestockManure(Chicken,PigandSwineManure) 403

16.3PretreatmentTechnologiesofAnaerobicDigestionFeedstocks 404

16.3.1AcidicPretreatment 404

16.3.2AlkaliPretreatment 405

16.3.3Ultrasonication 409

16.3.4MicrowaveIrradiation 410

16.3.5Ozonation 411

16.3.6ThermalPre-treatmentTechnique 412

16.3.7EnzymaticPre-treatment 412

16.3.8High-pressureHomogenization 413

16.4Full-scaleImplementationStatusofAnaerobicDigestioninDevelopingCountries 413

16.4.1China 413

16.4.2India 414

16.4.3Malaysia 414

16.4.4Vietnam 415

16.4.5Thailand 415

16.5Perspectives 416 References 416

17HydrogenProductionbyAlgae 425 TuncCatalandHalilKavakli

17.1ImportanceofHydrogenProduction 425

17.2HydrogenProducingMicroorganisms 427

17.3HydrogenProducingAlgae(Macro–Micro)Species 428

17.4ProductionofBiohydrogenThroughFermentation 431

17.4.1BiohydrogenProduction 431

17.4.2FermentationSystemforHydrogenProduction 432

17.5Technologies(SolarAlgaeFuelCell/MicrobialFuelCell) 433

17.6PossibilityofCommercialProductionofHydrogen 434

17.7PerspectivesandFutureImplicationsofAlgaeinBiotechnology 437 References 438

18ProductionandUtilizationofMethaneBiogasasRenewableFuel 447

GaneshDattatrayaSaratale,JeyaprakshDamaraja,SuthaShobana,RijutaGaneshSaratale, SivagurunathanPeriyasamy,GunagyinZhenandGopalakrishnanKumar

18.1Introduction 447

18.2AnaerobicDigestion 448

18.3MechanismofAnaerobicDigestion 449

18.3.1TheoreticalMethaneBiogasProduction 452

18.4SignificantFactorsInfluencingAnaerobicDigestion 455

18.4.1EffectofTemperature 455

18.4.2EffectofpH 455

18.4.3HydraulicRetentionTime(HRT)andSubstrateLoadingRate 456

18.4.4MicroalgaeCellWallCompositionandDegradability 456

18.5StrategiesAppliedtoEnhanceMicroalgaeMethaneBiogasProduction 456

18.5.1DifferentPretreatmentTechniques 457

18.5.2Co-DigestionProcess 457

18.6UtilizationofMethaneBiogasasaRenewableFuel 458

18.7Perspectives 459 References 459

PartIVPerspectives 465

19IntegratedBiorefineriesfortheProductionofBioethanol,Biodiesel,andOther CommodityChemicals 467

PedroFSouzaFilhoandMohammadJTaherzadeh

19.1Introduction 467

19.2TypesofBiorefineries 468

19.2.1Flexibility 468

19.2.1.1LignocellulosicFeedstock(LCF)Biorefinery 469

19.2.1.2WholeCropBiorefinery 469

19.2.1.3GreenBiorefinery 470

19.2.2Feedstock 470

19.3BiorefineryPlatforms 471

19.4IntegratedBiorefineries 472

19.5Coproducts 475

19.5.1FourCarbon1,4-Diacids 475

19.5.22,5-FurandicarboxylicAcid(FDA)and5-Hydroximethilfurfural(HMF) 476

19.5.33-HydroxypropionicAcid(3-HP) 477

19.5.4AsparticAcid 477

19.5.5GlucaricAcid 477

19.5.6GlutamicAcid 478

19.5.7ItaconicAcid 478

19.5.8LevulinicAcid 478

19.5.93-Hydroxybutyrolactone(HBL) 478

19.5.10Glycerol 479

19.5.11Sorbitol 479

19.5.12Xylitol 479

19.5.13LacticAcid 479

19.5.14Biohydrocarbons 479

19.5.15Lignin 480

19.6IntegratingEthanolandBiodieselRefineries 480

19.7EconomicalAspects 482

19.8Perspectives 484 References 484

20LignocellulosicCropsasSustainableRawMaterialsforBioenergy 489 EmilianoMalettaandCarlosHernándezDíaz-Ambrona

20.1Introduction 489

20.2MajorLignocellulosicIndustrialCrops 492

20.2.1AnnualCrops 493

20.2.1.1CellulosicAnnualGrasses 493

20.2.1.2FibreandOilCrops 493

20.2.2Perennials 494

20.2.2.1HerbaceousBiomassCrops 494

20.2.2.2WoodyCrops 497

20.3Social,EconomicandEnvironmentalAspectsinSustainabilityCriteria 498

20.3.1AnnualversusPerennialOptions 499

20.3.2SoilIssues 500

20.3.3BiodiversityIssues 501

20.4ProcessingAlternativesforLignocellulosicBioenergyCrops 502

20.5FillingtheGap:FromFarmtoIndustry 503

20.6Perspectives 506

References 508

21IndustrialWasteValorization:ApplicationstotheCaseofLiquidBiofuels 515 HaiboHuangandQingJin

21.1Introduction 515

21.2TypesofIndustrialWasteforBiofuelProduction 516

21.3EthanolProduction 517

21.3.1EthanolandItsMarket 517

21.3.2EthanolfromFoodWaste 518

21.3.3Pretreatment 518

21.3.4EnzymaticHydrolysis 519

21.3.5Fermentation 520

21.3.6EthanolProductionfromOtherIndustrialWastes 522

21.4Butanol 523

21.4.1ButanolandItsMarket 523

21.4.2ButanolProductionfromFoodWaste 524

21.4.3ButanolProductionfromOtherIndustrialWastes 526

21.4.4EconomicAnalysisofButanolProduction 526

21.5Biodiesel 527

21.5.1BiodieselandItsMarket 527

21.5.2FeedstocksforBiodieselProduction 528

21.5.3BiodieselProductionfromWasteCookingOilwithAlkaliCatalysts 529

21.5.4BiodieselProductionfromWasteCookingOilwithAcidCatalysts 529

21.5.5BiodieselProductionfromWasteCookingOilwithAcidandAlkaliCatalysts 530

21.6Perspectives 531 References 531

22TheEnvironmentalImpactofPollutionPrevention,SustainableEnergy Generation,andOtherSustainableDevelopmentStrategiesImplementedby theFoodManufacturingSector 539

SandraD.Gaona,T.J.Pepping,CherylKeenanandStephenC.DeVito

22.1Introduction 539

22.2OverviewoftheFoodManufacturingIndustry 540

22.2.1ProductionandEconomicTrends 542

22.2.2KeyPlayers 545

22.3ChemicalsandChemicalWastesintheFoodManufacturingIndustry 545

22.3.1GreenhouseGasEmissions 546

22.3.2ConventionalWaterPollutants 546

22.3.3Refrigerants 547

22.3.4TRI-ReportedChemicalWasteManagement 548

22.3.5TrendsinTRI-ReportedChemicalWasteManagement 548

22.3.5.1TrendsinReleases 552

22.3.5.2SummaryofTRIReporting 554

22.4PollutionPreventioninFoodManufacturing 554

22.4.1SustainabilityTrendsinFoodManufacturing 554

22.4.1.1CorporateSustainabilityReports 555

22.4.1.2Eco-Efficiency 556

22.4.2ProcessandTechnologyModifications 556

22.4.2.1EnergyEfficiency 556

22.4.2.2ChemicalSubstitutes 557

22.4.3Recycling 558

22.4.3.1Packaging 558

22.4.3.2FoodWaste 558

22.4.3.3EnergyRecovery 559

22.4.4WastewaterTreatment 559

22.4.5PollutionPreventionActivitiesReportedtoTRI 560

22.4.5.1ExamplesofSourceReductionActivitiesReportedtoEPA’sTRIProgram 561

22.4.5.2TRIPollutionPreventionAnalysis–EffectivenessofSourceReductionActivities 561

22.4.5.3BarrierstoSourceReduction 562

22.4.5.4SummaryofPollutionPreventionActivitiesReportedtoTRI 562

22.5Perspectives 563

22.5.1NextSteps 564

Disclaimer 564 References 564

23FinancingStrategiesforSustainableBioenergyandtheCommodityChemicals Industry 569 PraveenV.Vadlani

23.1TheCurrentFinancingScenarioatGlobalLevel 569

23.1.1Recoveryfrom2008FinancialCrisisandGlobalEconomicTrends 569

23.1.2FinancialConditionsatGlobalLevel 570

23.2EthanolBiofuelIndustry–AnOverview 572

23.2.1EthanolIndustryMarketandGrowthPerspective 572

23.2.2RenewableEthanolIndustryfromGrainandCellulosicFeedstocks 572

23.2.3EthanolBiofuelsIndustry–Co-products 575

23.2.4EthanolBiofuelsIndustry–CostandEconomicFactors 576

23.3Bio-BasedIndustry–CurrentStatusandFuturePotential 577

23.3.1EmergenceofBio-BasedIndustry 577

23.3.2Bio-BasedIndustry–PolicyLandscapeandCompetitiveness 578

23.4FinancingandInvestmentStrategyforBio-BasedIndustries 579

23.4.1FinancingChallengesforFirmsintheNewBioeconomy 579

23.4.2TheFinancingofVariousStepsintheBio-BasedProcesses 581

23.5PerspectivesandSustainableFinancingApproach–ChangeinWallStreetMindsetin theValuationofBio-BasedIndustries 583

Acknowledgements 584

References 585

24CorporateSocialResponsibilityandCorporateSustainabilityasForcesof Change 587

AsutoshT.Yagnik

24.1Introduction 587

24.2CorporateSocialResponsibility(CSR) 587

24.2.1WhatIsCSR? 587

24.2.2ConceptualModelsofCSR 589

24.2.3TheHistoryandEvolvingNatureofCSR 589

24.2.3.1TheFourErasofEarlyCSR 589

24.2.3.2TheImpactofEnvironmentalDisastersandGlobalizationinthe1980sto2000s 592

24.2.3.3Fromthe2000stoToday:TheFurtherEvolutionofCSRanditsRelationshiptoBrand Management 593

24.3FromCSRtoCorporateSustainability 597

24.3.1WhatIsSustainabilityandhowDidthePhraseComeabout? 597

24.3.2ConceptualModelsandFrameworksforCorporateSustainability 598

24.3.3CSRandCorporateSustainabilityAreNottheSameThing 598

24.3.4CorporateSustainability–TheFutureofCSR 600

24.4Perspectives 603

24.4.1ParadigmShiftinCorporateSustainabilityThinking 604

24.4.2ThreeKeyCapabilitiesNeededtoSupportCorporateSustainability 605 References 607

25TheIndustrialWorldintheTwenty-FirstCentury 613 AlainA.Vertès

25.1Introduction:EnergyandSustainability 613

25.2TransportationintheTwenty-FirstCentury:ACarbonTaxStory 622

25.3CitiesofChange 627

25.4TheChemicalIndustryRevisited 629

25.5ParadigmChangesinModesofConsumption 633

xx Contents

25.6InternationalActionforCurbingthePollutionoftheAtmosphereCommons: TheCaseofCFCsandtheOzoneLayer 634

25.7SocialActivismasanEngineofChange:RequiemforaWonderfulWorld 635

25.8Perspectives:ABraveNewWorld 636

References 639

Index 649

AbouttheEditors

Dr.AlainA.Vertès isManagingDirectoratNxRBiotechnologies, aboutiqueglobalconsultingfirmbasedinBasel,Switzerland, whereheadvisesclientsonstrategy,businessdevelopment, in/out-licensing,entrepreneurshipandinvestment.Hebringsto hisroleextensiveexperienceinthepharmaceuticalandindustrial biotechnologysectors,inEurope,NorthAmericaandAsiaandin differentfunctionsincludingresearch,manufacturing,contract research,andstrategicalliances.Dr.VertèsreceivedhisM.Sc.degree fromtheUniversityofIllinoisatUrbana-Champaign,hisPh.D.from theUniversityofLilleFlandresArtoiswhileconductingresearch attheInstitutPasteurinParis,hehascompletedhispost-doctoral trainingatMitsubishiPetrochemicalCompanyinJapan,andisaSloanFellowfromLondon BusinessSchool(MBA/M.Sc.).DrVertèsisaleadeditorofseveralscienceandstrategybooksin thefieldsofregenerativemedicineandsustainablechemistry.

Dr.NasibQureshi isafellowinAmericanInstituteofChemicalEngineering(AIChE),theSocietyforIndustrialMicrobiology& Biotechnology(SIMB),andAmericanInstituteofChemists(AIC). HeisaChemical/BiochemicalEngineerbytrainingwithdualPhD degrees[oneinBiochemical/BiologicalEngineering(University ofNebraska,Lincoln,NE,UnitedStates)andtheotherinFermentationTechnology(InstituteofChemicalTechnology,Bombay, India)].HehasalongassociationwiththeUniversityofIllinois atUrbanaChampaign(Illinois,USA,since1987)andpresently holdsanAdjunctProfessor’sappointment.Currently,heisworkingfortheUnitedStatesDepartmentofAgriculture(Agricultural ResearchService)asaResearchChemicalEngineer.Hisresearchfocusesondevelopingnovel bioprocesstechnologiesforbiofuelsproduction.Hehasover300authoritativepapers,chapters, reviewarticles,patents,andconferencepresentations.HewasPresidentofAmericanInstitute ofChemicalEngineers(AIChE),CentralIllinoisSection,2008&2009,andAmericanChemical Society(ACS),IllinoisHeartlandSection,2008.HewasalsoanAdvisoryBoardMemberforthe SocietyforBiologicalEngineering(SBE,USA).Dr.Qureshiis“EditorinChief”fortheWorld J.Microbiology&Biotechnology.Hehaseditedseveralbooksonbiofuelsandbiorefineriesand

stemcellsinregenerativemedicine(JohnWiley&Elsevier).Dr.Qureshihasreceivedmany awardsincludingfromtheWorldJ.Microbiology&Biotechnology,AmericanChemicalSociety, UnitedStatesDepartmentofAgriculture,andUniversityofNebraska(Lincoln,NE,USA).His expertiseinbioprocess/biochemicalengineeringandbiofuelsarenaiswidelyandinternationally sought.

Dr.HansP.Blaschek isProfessorEmeritusattheUniversity ofIllinoisatUrbana-Champaign(UIUC).HeservedasAssistant DeanintheCollegeofAgriculturalConsumerandEnvironmental Sciences(ACES),DirectoroftheCenterforAdvancedBioenergy Research(CABER)andtheIntegratedBioprocessingResearchLaboratory(IBRL)attheUniversityofIllinois.TheIBRLisa$32M intermediatelevelpilotfacilitydesignedforthescaleupofbench levelprocessesandunitoperations,withaparticularfocusonscalingbiofuelsandbioproductstechnologiesforcommercialization. ThemissionofIBRListofacilitatebioenergy-relatedactivitiesasit relatestoresearch,teachingandoutreach.CABERandIBRLinstitutedasuccessfulprofessionalscienceMSdegreeprogramfocusedonnumerousdisciplinaryareas includingbiofuelsandbioprocessing.Dr.BlaschekservedasthemeleaderoftheMolecularBioengineeringofBiomassConversionThemeoftheInstituteforGenomicBiologyatUIUCand wasinterimDepartmentHeadoftheDepartmentofFoodScienceandHumanNutrition.Hewas theCo-FounderandCSOofTetraVitaeBiosciences(TVB)focusedoncommercializationofthe acetone-butanolfermentationbuildingontechnologiesdevelopedinhislaboratoryattheUniversityofIllinois.Dr.Blaschek'sresearchinterestsinvolvethegeneticmanipulationofmicroorganismsforbiotechnologicalapplications,examinationofbiomassassubstratesforfermentationto value-addedproducts,developmentofanintegratedfermentationsystemforbioproductsproductionandrecovery.

Dr.HideakiYukawa isFounderandCEOatUtilizationofCarbon DioxideInstitute(UCDI),anR&D-focusedventurecompanyoutofthe UniversityofTokyo.Specializinginmolecularbiology,microbialapplicationsandenzymechemistry,Dr.Yukawaearnedhisdoctoratefrom theUniversityofTokyoandclimbedtheranksatMitsubishiChemical CorporationtothelevelofResearchFellow.HeoversawtheestablishmentoftheMicrobiologyResearchGroupattheResearchInstituteof InnovativeTechnologyfortheEarth(RITE),outofwhichhefounded theGreenEarthInstitute(GEI)Companytostamptheroleofrenewablesinindustry.HiscurrentresponsibilitiesatUCDIareanchored uponthepursuitofalow-carbonfuturesocietyandadvancementof biotechnology-basedsolutionstoglobalfoodsecurityissues.Dr.Yukawa’scontributionshavebeen recognizedthroughawardssuchastheJapanBioindustryAwardforabioprocessforproductionofbiochemicalsusingnonlyticbacterialcells,theTsukubaFoundationforChemicaland BiotechnologyAwardforestablishmentofrecombinantDNAtechnologyforcoryneformbacteriaanddevelopmentofbioprocessesthereof,theJapanSocietyforBioscience,Biotechnology andAgrochemistry(JSBBA)Awardforachievementsintechnologicalresearch,andtheGrand

PrizeattheNikkeiGlobalEnvironmentalAwardsforbioethanolproductionfrommixedsugars bygeneticallyengineered Corynebacteriumglutamicum.ThefirstJapanesenationaltoreceivea FellowshipAward(forachievementsinthefieldofappliedmicroorganisms)fromTheSociety ofIndustrialMicrobiologyandBiotechnology(SIMB),Dr.Yukawahasauthoredmanyscientific works,includingpapers,booksandpatents,andhasmentoredmanyscientistsglobally.

ListofContributors

MairiJ.Black DepartmentofScience,Technology Engineering&PublicPolicy(STEaPP) UniversityCollegeLondon London UK

AiduanLiBorrion DepartmentofCivil,Environmentaland GeomaticEngineering UniversityCollegeLondon London UK

DaniloS.Braz UniversityofCampinas(UNICAMP) SchoolofChemicalEngineering Campinas

Brazil

TerriL.Butler UniversityofWashington BuerkCenterforEntrepreneurship Seattle USA

DanieldeCastroAssumpcao UniversityofCampinas(UNICAMP) SchoolofChemicalEngineering Campinas

Brazil

TuncCatal DepartmentofMolecularBiologyandGenetics UskudarUniversity

Istanbul Turkey

ZiyuDai Chemical&BiologicalProcessDevelopment Group,PacificNorthwestNationalLaboratory Richland USA

JeyaprakshDamaraja DivisionofChemistry FacultyofScienceandHumanities SreeSowdambikaCollegeofEngineering Aruppukottai,TamilNadu India

StephenDeVito ToxicsReleaseInventoryProgram UnitedStatesEnvironmentalProtection Agency Washington USA

CarlosHernándezDíaz-Ambrona PolytechnicUniversityofMadrid SchoolofAgriculture Spain

xxvi ListofContributors

MiriamFelkers

ResearchGroupClimateChangeandSecurity InstituteofGeography UniversityofHamburg Germany

RebeccaFroese ResearchGroupClimateChangeandSecurity InstituteofGeography UniversityofHamburg Germany

SandraD.Gaona ToxicsReleaseInventoryProgram UnitedStatesEnvironmentalProtection Agency Washington USA

PatrickC.Hallenbeck DépartementdeMicrobiologie InfectiologieetImmunologie UniversitédeMontréal Québec Canada

MarceloHamaguchi LifeSciencesResearchCenter DepartmentofBiology UnitedStatesAirForceAcademy Valmet Araucária Brazil

JohnHay DepartmentofBiologicalSystemsEngineering UniversityofNebraska–Lincoln USA

AureliaKarinaHillary CentreforEnvironmentalPolicy ImperialCollegeLondon,Prince’sGarden SouthKensingtonCampus London UK

HaiboHuang DepartmentofFoodScienceandTechnology VirginiaPolytechnicInstituteandState University Blacksburg USA

StephenHughes AppliedDNASciences StonyBrook USA

N.J.Ianno DepartmentofElectricalEngineering UniversityofNebraska-Lincoln USA

LonnieO.Ingram DepartmentofMicrobiologyandCellScience UniversityofFlorida Gainesville USA

QingJin DepartmentofFoodScienceandTechnology VirginiaPolytechnicInstituteandState University Blacksburg USA

MarjorieA.Jones DepartmentofChemistry IllinoisStateUniversity Normal USA

AnkitaJuneja AgriculturalandBiologicalEngineering UniversityofIllinoisUrbana-Champaign Urbana USA

HalilKavakli

DepartmentsofChemicalandBiological EngineeringandMolecularBiologyand Genetics

KocUniversity Istanbul Turkey

CherylKeenan EasternResearchGroupInc.

Lexington USA

TakuroKobayashi CenterforMaterialCyclesandWaste ManagementResearch NationalInstituteforEnvironmentalStudies

Tsukuba Japan

GopalakrishnanKumar DepartmentofEnvironmentalEngineering DaeguUniversity Gyeongsan RepublicofKorea

InstituteofChemistry

BioscienceandEnvironmentalEngineering FacultyofScienceandTechnology UniversityofStavangerStavanger

Norway

C.Q.Lan DepartmentofChemicalandBiological Engineering

UniversityofOttawa Ottawa Canada

FreemanLan DepartmentofChemicalandBiological Engineering

UniversityofOttawa

Ottawa Canada

CarolinaZampolLazaro

DépartementdeMicrobiologie InfectiologieetImmunologie UniversitédeMontréal

Montréal

Canada

XueqinLu DepartmentofCivilandEnvironmental Engineering

GraduateSchoolofEngineering

TohokuUniversity

Sendai

Japan

YanpinLu WashingtonStateUniversity,Bioproducts, Sciences,andEngineeringLaboratory DepartmentofBiologicalSystemsEngineering Richland USA

EmilianoMaletta BioenergyCrops UnitedKingdom

PolytechnicUniversityofMadrid SchoolofAgriculture

Spain

AdrianoP.Mariano UniversityofCampinas(UNICAMP) SchoolofChemicalEngineering Campinas

Brazil

OnesmusMwaboje CentreforEnvironmentalPolicy ImperialCollegeLondon

London UK

SeijiNakagame

TheFacultyofAppliedBioscience KanagawaInstituteofTechnology

Atsugi

Japan

xxviii ListofContributors

LichengPeng DepartmentofEnvironmentalScience HainanUniversity Haikou

China

SivagurunathanPeriyasamy CenterforMaterialsCyclesandWaste ManagementResearch

NationalInstituteforEnvironmentalStudies Tsukuba Japan

NasibQureshi UnitedStatesDepartmentofAgriculture AgriculturalResearchService NationalCenterforAgriculturalUtilization Research

BioenergyResearchUnit Peoria USA

LawrenceReichle AbtAssociatesInc. Cambridge USA

JoseDilcioRocha EmbrapaAgroenergy–TheBrazilian AgriculturalResearchCorporation(Embrapa) Brasília

Brazil

EmrahSagir DépartementdeMicrobiologie InfectiologieetImmunologie UniversitédeMontréal Montréal

Canada

GaneshDattatrayaSaratale DepartmentofFoodScienceand Biotechnology DonggukUniversity-Seoul Goyang-si RepublicofKorea

RijutaGaneshSaratale ResearchInstituteofBiotechnologyand MedicalConvergedScience DonggukUniversity-Seoul Goyang-si RepublicofKorea

JürgenScheffran ResearchGroupClimateChangeandSecurity InstituteofGeography UniversityofHamburg Germany

K.T.Shanmugan DepartmentofMicrobiologyandCellScience UniversityofFlorida Gainesville USA

SuthaShobana DepartmentofChemistryandResearchCentre AditanarCollegeofArtsandScience Tiruchendur India

VijaySingh AgriculturalandbiologicalEngineering UniversityofIllinoisUrbana-Champaign USA

PedroFSouzaFilho

SwedishCentreforResourceRecovery UniversityofBorås Borås Sweden

LianghuSu

NanjingInstituteofEnvironmentalSciencesof theMinistryofEnvironmentalProtection Nanjing PRChina

MohammedTaherzadeh

SwedishCentreforResourceRecovery UniversityofBorås Borås

Sweden

PraveenVadlani SaiveraBioLLC Puttaparthi India

CyrilVallet AbtAssociatesInc. Cambridge USA

AlainA.Vertès SloanFellow LondonBusinessSchool UK

HenriqueC.A.Venturelli UniversityofCampinas(UNICAMP) SchoolofChemicalEngineering Campinas Brazil

ElmarMateoVillota

WashingtonStateUniversity,Bioproducts Sciences,andEngineeringLaboratory DepartmentofBiologicalSystemsEngineering Richland USA

JianhuiWang

ShanghaiKeyLabforUrbanEcological ProcessesandEco-Restoration SchoolofEcologicalandEnvironmental Sciences

EastChinaNormalUniversity Shanghai PRChina

XiaohuiWang

ShanghaiKeyLabforUrbanEcological ProcessesandEco-Restoration SchoolofEcologicalandEnvironmental Sciences

EastChinaNormalUniversity Shanghai PRChina

KaiqinXu CenterforMaterialCyclesandWaste ManagementResearch NationalInstituteforEnvironmentalStudies Tsukuba Japan

AsutoshT.Yagnik AdSideraLtd. London,UK

InstituteforInstituteforStrategy Resilience&Security UniversityCollegeLondon UK

BinYang WashingtonStateUniversity,Bioproducts Sciences,andEngineeringLaboratory DepartmentofBiologicalSystemsEngineering Richland USA

LorraineP.Yomano DepartmentofMicrobiologyandCellScience UniversityofFlorida Gainesville USA

SeanW.York DepartmentofMicrobiologyandCellScience UniversityofFlorida Gainesville USA

LibingZhang

WashingtonStateUniversity,Bioproducts Sciences,andEngineeringLaboratory DepartmentofBiologicalSystemsEngineering Richland USA

xxx ListofContributors

YoucaiZhao

TheStateKeyLaboratoryofPollutionControl andResourceReuse

TongjiUniversity

Shanghai PRChina

GunagyinZhen SchoolofEcologicalandEnvironmental Sciences

EastChinaNormalUniversity

Shanghai PRChina

ShaojuanZheng

ShanghaiKeyLabforUrbanEcological ProcessesandEco-Restoration SchoolofEcologicalandEnvironmental Sciences

EastChinaNormalUniversity

Shanghai PRChina

ZhongxiangZhi

ShanghaiKeyLabforUrbanEcological ProcessesandEco-Restoration SchoolofEcologicalandEnvironmental Sciences

EastChinaNormalUniversity

Shanghai PRChina

Foreword

MahatmaGandhiisquotedassaying“Thedifferencebetweenwhatwedoandwhatwearecapable ofdoingismorethanenoughtosolvetheworld’sproblems.”Thisperhapshasneverbeenmore truethanwhenweconsiderSociety’sgreatestexistentialchallengeofchangingtoasustainable mannerofliving.

“GreenEnergytoSustainability”isavolumethatshouldbereadbyeverypersonthatcaresabout thefuturewhethertheyarebusinesspeople,policymakers,consumers,parents,activists,students, ormerescientistsandengineers.Thisbookisanessentialresourcefordesigningtomorrowtobe betterthantoday.Withallofthevaluablecontributionsbytheleadingfiguresonthetopicofgreen energy,onewouldthinkthatthisisthemostcompellingaspectofthebook,butIbelievethat it’snot.

The most powerfulbenefitofthisbook,ishowclearlyitarticulateswhatispossible today.What thisbookpresentsisnotsomeunrealistictheory,distantvision,orsciencefiction.Inthepages therearesolutionsthatarewell-demonstratedatvariousstagesofdevelopementandareavailable tobeimplementedatscale.Itisthescalethatwillmaketheimpact.Itisthescalethatisamatterof will.Itisthescalethatwilldeterminehowseriousweareabouttakingthenecessaryactionswith theurgencyrequiredinordertoaddresstheclimatecrisisandtherelatedbio/geochemicalcycle crisestheplanetisfacing.

Thereisnotalackofscientificimaginationthatisaroadblock.Itisnotalackoftechnicaland engineeringingenuitythatisanobstacle.Itisnotthatwearewaitingonnewdiscoveriesandnew inventions.Thisbookdemonstratesthatfactinpageafterpage.

Ifthedecision-makers,thought-leaders,capitalinvestors,activistsandinfluencersareseton mobilizingtowardasustainablefuture,thisexcellentvolumehasprovidedthemwiththeinformationtheyneed.Inthewaronunsustainability,thescientificandtechnicalammunitionisthere inabundance.Butashasbeensaidmanytimesandinmanyways,‘thebestbattleplansdonot withstandthefirstencounterwiththeenemy’andsothededicatedmetaphoricalsoldiersinthe formofscientificinnovatorswillbetheretoadaptandadjusttoeachunforeseencircumstancefor everystepforwarduntilweachievetheworldthatourprogenydeserve.

Wewillmeetthesechallengesbecausewecanandwewillmeetthesechallengesbecause wemust.

PaulT.Anastas NewHaven,USA

Preface

Globalwarming(climatechange)inthe2020’sismarkedbyaninflexionpointinbiodiversity declinethatisalreadytranslatingintothepremisesofamassextinctioninnumerousbranches ofthetreeoflifeandnotablyintheextinctionofacountlessnumberofspeciesofmammals,birds, insects,andfishaswellasindramaticglobalchangesinplantandtreepopulations.Alltheseconsequencesalreadyrequirethatancestralagriculturalpracticesandpermanentvegetalcoveradaptto changesinlocalclimategivenincreasedtemperaturesandmorefrequentsevereheatwaves,longer droughts,andverylargescalefires.Ultimatelytheconsequencesofclimatechangewillcoalesceto significantlyanddurablyimpacttheglobalfoodchainasillustratedbytheimpactthatwouldresult inadramaticlossinthepopulationsofcrop-pollinatinginsects,forexample,thusrequiringadaptationtothenewconditions.Thelastmassiveglobalextinctionoccurred66millionyearsagoduring theCretaceous–Paleogeneera.Allthesechanges,aswellasthethreatofasignificantriseofsealevelsandthethreatofanincreasingdesertificationofwholeregionsthatnowconstitutefertilelands, willgreatlyimpactnotonlyhumanqualityoflifebutalsothecurrentstatusquoofeconomicactivities.Thismayfurthertranslateintodisequilibriaandtheexacerbationoftheneedtoaccessvital resourcesasbasic,butasprecious,aswaterorhospitablelands.Theaccumulationofgreenhouse gasesintheatmospherethatdrivestheglobalwarmingexperiencedbythesystemEarthinthe currentgeologicaleraisabsolutelyunambiguouslyanthropogenicbynature.Thecurrentepisode ofclimatechangewasinitiatedasearlyasthenineteenthcenturywiththeIndustrialRevolution. Itwasfuelledbytheexponentialriseinfossilenergyusetopowerthefastincreasingdemandfor thecheapenergyrequiredtosustaineconomicgrowthataheretoforeunparalleledrapidrateand tobringmankind,inonlyafewgenerations,fromapredominantlyruralandartisanaleratoa predominantlycity-dwellingandindustrialeraaccompaniedbydiminutionofpovertyanddramaticimprovementsinhygieneandhealthcare;thiswasaperiodduringwhichthequalityoflife ofhumanpopulationsinwhatconstitutescurrentlydevelopedcountries,totakeonlythisprism ofanalysis,dramaticallyrapidlyimprovedasdemonstratedbyrisesinlifeexpectanciesbetween 1850and2020invariousEuropeancountries.Changesingreenhousegasconcentrationsthatled toglobalclimatechangewerelongleftunnoticed,thanksnotablytotheinertiaoftheEarthasa physicalsystem.However,thewide-reachingimpactsofclimatechangearenowbeyondquestion andglobalmassactionsaswellasadeepchangeintheglobaleconomicmodelareurgentlyneeded tomitigatetheworstconsequencesofclimatechange;thisishardtodobecausetheinertiaofthe systemEarthwillresultinanyactiontakingalongtimeatthehumanscaletotranslateintopracticalpositivechangesobservablebythenakedeye.Whatismore,thethawingofthepermafrost andtheconsequentreleaseofitsimmensequantitiesofmethanethathavebeensequesteredfor immemorialtimesrepresentthethreatofa‘climaticeventhorizon’whenanthropogenicclimate

changeinthepresentgeologicalerawillenterapositivereinforcementloopandbecometotally outofhumancontrol,assumingitisnotsoalready.

Climatechangefirstandforemostconstitutesacomplexbutburningpoliticalissue.Itisapoliticalissuebecauseitsmitigationrequiresfundamentalchangesatmanylevels,andnotablyatsocietalandindustriallevels,andparticularlyatthelevelofthenationalenergymix.Profoundchanges areinvariablypainful.Profoundchangesimpactvestedintereststhatslowdownneededchanges. Asaresult,appropriatepoliticalagendasneedtobesettominimizethesocialimpactsofthenecessarychangesinlifestylesandfossilfuelconsumption.Thisextremechallengeinefficientlydealing withclimatechangecannotbebetterexemplifiedthanbytheexampleofcoal-firedpowerstations, whichalthoughtheyconstituteatotallyobsoletemethodofenergyproductionremaininusein severaljurisdictionsgiventheneedtorecoupontheircapitalexpendituresortomaintainminingindustrygains,ortoavoidthegrowingpainthatinevitablyaccompaniesachangingeconomy. Here,thepoliticalagendaishowtoredirecttheworkforceandthevariouseconomicactorsdeeply dedicatedtothecoal-to-energyvaluechainandaccompanythemthroughtheturmoilofchange.

Climatechangeisa‘tragedyoftheatmosphericcommons’.Thecurrentmacroeconomicmodel hasevolvedtomaximallyleveragecomparativeadvantages,withtheunderlyingassumptionthat thecostofatmosphericcarbondioxidedisposalisnil.Whileitisconvenient,becauseitavoidspoliticalcomplicationsandfacilitatesglobaltradebysubsidizingthetransportationindustryintheform offreeatmosphericcommons,thusenablingtomaximizethesynergiesofcomparativeadvantages inthepathtoeconomicglobalization,thismodelhasfortwocenturiesneglectedthesocialcostof carbon.Itisthisassumptionthattheacknowledgementoftherealityofclimatechangechallenges. Itisthisassumptionthatmadepossibletoeconomicallytransportattheantipodescommodity goodsandparticularlyagriculturalonesinspiteitbeingpossibletoefficientlyproducethevery samegoodslocally;integratingavariabletocapturethesocialcostofcarboncouldverywelltip thebalanceintheoppositedirectionofthecomparativeadvantagesoftoday.Itisthisassumption thatnowneedstobeurgentlyfixed.Thecurrentimbalanceinglobalcarbonbudgetsaccumulatedoverthecourseoftwocenturiesandembodiedbytheadverseconsequencesofglobalclimate changecallsforaglobalcorrectiononaparwiththegeologicalimperativeposedbythechallenge ofmountingatmosphericCO2 concentrations.Permanentgrowthwithoutrecyclingisnotpossible.Thegoodnewsisthatwasterecyclinghasinavirtuouscircleincreasinglyattractedattention inG20countries,andthetrendisboundtoexpandwidelyasthetruecostsofdenovoproduction areincreasinglyintegratedintothepricesofgoods.Here,CO2 recyclingconstitutesanothervariabletointegrate,withtechnologicalsolutionsbeingdevelopedtoachievenotonlythemitigationof atmosphericCO2 ,butalsoitsvalorizationandrecyclingintovaluableproductseitherbychemical orbybiotechnologicalmeansandbydirectphotosynthesis-mediatedcapture.Biocharobtainedby thepyrolysisofbiomassnotablyrepresentsaveryattractivemethodforsequesteringorrecycling CO2, withanestimatedpotentialoffixingmorethan10%ofthecurrentanthropogenicemissions ofthisgreenhousegas.Recyclingalone,however,isunlikelytosuffice,andadditionalchanges willbenecessary.Thisiswherebiotechnologyhasamajorroletoplaytoleveragethefullpotentialofphotosynthesisandbiomassforsustainableenergyandcommoditychemicalsproduction toenabletheproductionofthegoodsnecessaryformodernlife,includingnotonlybioethanolor biodieselbutalsosustainablechemicalbuildingblockstocomplementconventionalpetrochemical processing.Thecomingofageofthetechnologyofphotovoltaicpowerbackedupbytheelectricitygenerationpotentialofnuclearenergy,whichisstillrequiredforafewmoredecadesbutwith theChernobylandFukushimacatastrophiesservingaswarnings,isenablingelectricitytobecome a‘universalenergycurrency’.Notably,thepotentialofphotovoltaicpowerwouldbedecupledby deregulatinganddecentralizingenergyproductiontherebyenablingoff-gridandon-gridelectricity

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.