Immediate download Profit maximization techniques for operating chemical plants 1. edition sandip k.

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/profit-maximization-techniques-for-operating-chemica l-plants-1-edition-sandip-k-lahiri/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Handbook for Process Safety in Laboratories and Pilot Plants: A Risk■based Approach Ccps (Center For Chemical Process Safety)

https://ebookmass.com/product/handbook-for-process-safety-inlaboratories-and-pilot-plants-a-risk%e2%80%90based-approach-ccpscenter-for-chemical-process-safety/

Understanding Operating Systems 8th Edition

https://ebookmass.com/product/understanding-operatingsystems-8th-edition/

Physical Chemistry for JEE (Advanced): Part 1, 3rd edition K. S. Verma

https://ebookmass.com/product/physical-chemistry-for-jeeadvanced-part-1-3rd-edition-k-s-verma/

Satellite Soil Moisture Retrieval. Techniques and Applications 1st Edition Prashant K Srivastava

https://ebookmass.com/product/satellite-soil-moisture-retrievaltechniques-and-applications-1st-edition-prashant-k-srivastava/

Hello Korean — Volume 1 : The Language Study Guide for K-Pop & K-Drama Fans Jiyoung Park

https://ebookmass.com/product/hello-korean-volume-1-the-languagestudy-guide-for-k-pop-k-drama-fans-jiyoung-park/

(eBook PDF) Essentials of Accounting for Governmental and Not-for-Profit Organizations 14th Edition

https://ebookmass.com/product/ebook-pdf-essentials-of-accountingfor-governmental-and-not-for-profit-organizations-14th-edition/

Operating System Forensics 1st Edition Messier

https://ebookmass.com/product/operating-system-forensics-1stedition-messier/

Inorganic Chemistry for JEE (Advanced): Part 1, 3rd edition DPP K. S. Verma

https://ebookmass.com/product/inorganic-chemistry-for-jeeadvanced-part-1-3rd-edition-dpp-k-s-verma/

Chemical Product Formulation Design and Optimization: Methods, Techniques, and Case Studies Ali Elkamel

https://ebookmass.com/product/chemical-product-formulationdesign-and-optimization-methods-techniques-and-case-studies-alielkamel/

ProfitMaximizationTechniquesforOperatingChemicalPlants

ProfitMaximizationTechniquesforOperating ChemicalPlants

NationalInstituteOfTechnology,Durgapur,India

Thiseditionfirstpublished2020

©2020JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyform orbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhow toobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofSandipKumarLahiritobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusatwww .wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsin standardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowof informationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewandevaluate theinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment,reagent,ordevicefor, amongotherthings,anychangesintheinstructionsorindicationofusageandforaddedwarningsandprecautions.While thepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarranties withrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties,including withoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreated orextendedbysalesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatan organization,website,orproductisreferredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoes notmeanthatthepublisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmay provideorrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedin renderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.You shouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmay havechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthors shallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Lahiri,SandipKumar,1970-author.

Title:Profitmaximizationtechniquesforoperatingchemicalplants/Dr SandipKumarLahiri.

Description:Firstedition.|Hoboken,NJ:JohnWiley&Sons,Inc.,2020. |Includesbibliographicalreferencesandindex.

Identifiers:LCCN2019058766(print)|LCCN2019058767(ebook)|ISBN 9781119532156(hardback)|ISBN9781119532217(adobepdf)|ISBN 9781119532170(epub)

Subjects:LCSH:Chemicalengineering–Costeffectiveness.|Engineering economy.|Profit.

Classification:LCCTP155.2.C67L342020(print)|LCCTP155.2.C67 (ebook)|DDC660.068/1–dc23

LCrecordavailableathttps://lccn.loc.gov/2019058766

LCebookrecordavailableathttps://lccn.loc.gov/2019058767

CoverDesign:Wiley

CoverImages:©DavidBurton/GettyImages,©Lightspring/Shutterstock

Setin10/12ptWarnockProbySPiGlobal,Chennai,India

PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY

10987654321

DedicatedtomyParents,wifeJiniaandtwolovelychildrenSuchetonaandSrijon

Contents

FigureList xix

TableList xxv

Preface xxvii

1ConceptofProfitMaximization 1

1.1Introduction 1

1.2WhoisThisBookWrittenfor? 3

1.3WhatisProfitMaximizationandSweatingofAssetsAllAbout? 4

1.4NeedforProfitMaximizationinToday’sCompetitiveMarket 7

1.5DataRichbutInformationPoorStatusofToday’sProcessIndustries 8

1.6EmergenceofKnowledge-BasedIndustries 9

1.7HowKnowledgeandDataCanBeUsedtoMaximizeProfit 9 References 10

2BigPictureoftheModernChemicalIndustry 11

2.1NewEraoftheChemicalIndustry 11

2.2TransitionfromaConventionaltoanIntelligentChemicalIndustry 11

2.3HowWillDigitalAffecttheChemicalIndustryandWhereCantheBiggest ImpactBeExpected? 12

2.3.1AttainingaNewLevelofFunctionalExcellence 12

2.3.1.1Manufacturing 13

2.3.1.2SupplyChain 14

2.3.1.3SalesandMarketing 14

2.3.1.4ResearchandDevelopment 15

2.4UsingAdvancedAnalyticstoBoostProductivityandProfitabilityin ChemicalManufacturing 15

2.4.1DecreasingDowntimeThroughAnalytics 16

2.4.2IncreaseProfitswithLessResources 17

2.4.3OptimizingtheWholeProductionProcess 18

2.5AchievingBusinessImpactwithData 19

2.5.1Data’sExponentialGrowingImportanceinValueCreation 19

2.5.2DifferentLinksintheValueChain 20

2.5.2.1TheInsightsValueChain–DefinitionsandConsiderations 21

2.6FromDullDatatoCriticalBusinessInsights:TheUpstreamProcesses 22

2.6.1GeneratingandCollectingRelevantData 22

2.6.2DataRefinementisaTwo-StepIteration 23

2.7FromValuableDataAnalyticsResultstoAchievingBusinessImpact:The DownstreamActivities 25

2.7.1TurningInsightsintoAction 25

2.7.2DevelopingDataCulture 25

2.7.3MasteringTasksConcerningTechnologyandInfrastructureasWellas OrganizationandGovernance 25 References 26

3ProfitMaximizationProject(PMP)ImplementationSteps 27

3.1ImplementingaProfitMaximizationProject(PMP) 27

3.1.1Step1:MappingtheWholePlantinMonetaryTerms 27

3.1.2Step2:AssessmentofCurrentPlantConditions 27

3.1.3Step3:AssessmentoftheBaseControlLayerofthePlant 28

3.1.4Step4:AssessmentofLossfromthePlant 29

3.1.5Step5:IdentificationofImprovementOpportunityinPlantandFunctional DesignofPMPApplications 29

3.1.6Step6:DevelopanAdvanceProcessMonitoringFrameworkbyApplying theLatestDataAnalyticsTools 30

3.1.7Step7:DevelopaReal-TimeFaultDiagnosisSystem 30

3.1.8Step8:PerformaMaximumCapacityTestRun 30

3.1.9Step9:DevelopandImplementReal-TimeAPC 31

3.1.10Step10:DevelopaData-DrivenOfflineProcessModelforCriticalProcess Equipment 31

3.1.11Step11:OptimizingProcessOperationwithaDevelopedModel 32

3.1.12Step12:ModelingandOptimizationofIndustrialReactors 32

3.1.13Step13:MaximizeThroughputofAllRunningDistillationColumns 33

3.1.14Step14:ApplyNewDesignMethodologyforProcessEquipment 33 References 34

4StrategyforProfitMaximization 35

4.1Introduction 35

4.2HowisOperatingProfitDefinedinCPI? 36

4.3DifferentWaystoMaximizeOperatingProfit 36

4.4ProcessCostIntensity 37

4.4.1DefinitionofProcessCostIntensity 37

4.4.2ConceptofCostEquivalent(CE) 39

4.4.3CostIntensityforaTotalSite 39

4.5MappingtheWholeProcessinMonetaryTermsandGainInsights 40

4.6CaseStudyofaGlycolPlant 40

4.7StepstoMaptheWholePlantinMonetaryTermsandGainInsights 43

4.7.1Step1:VisualizethePlantasaBlackBox 43

4.7.2Step2:DataCollectionfromaDataHistorianandPreparationofCost Data 46

4.7.3Step3:CalculationofProfitMargin 46

4.7.4Step4:GainInsightsfromPlantCostandProfitData 48

4.7.5Step5:GenerationofProductionCostandaProfitMarginTableforOne FullYear 51

4.7.6Step6:PlotProductionCostandProfitMarginforOneFullYearandGain Insights 51

4.7.7Step7:CalculationofRelativeStandardDeviationsofeachParameterin ordertoUnderstandtheCauseofVariability 52

4.7.8Step8:CostBenchmarking 53 Reference 54

5KeyPerformanceIndicatorsandTargets 55

5.1Introduction 55

5.2KeyIndicatorsRepresentOperationOpportunities 56

5.2.1ReactionOptimization 56

5.2.2HeatExchangerOperationOptimization 58

5.2.3FurnaceOperation 58

5.2.4RotatingEquipmentOperation 59

5.2.5MinimizingSteamLetdownFlows 59

5.2.6TurndownOperation 59

5.2.7HousekeepingAspects 59

5.3DefineKeyIndicators 60

5.3.1ProcessAnalysisandEconomicsAnalysis 61

5.3.2UnderstandtheConstraints 61

5.3.3IdentifyQualitativelyPotentialAreaofOpportunities 65

5.4CaseStudyofEthyleneGlycolPlanttoIdentifytheKeyPerformance Indicator 66

5.4.1Methodology 66

5.4.2EthyleneOxideReactionSection 67

5.4.2.1UnderstandtheProcess 67

5.4.2.2UnderstandingtheEconomicsoftheProcess 68

5.4.2.3FactorsthatcanChangetheProductionCostandOverallProfitGenerated fromthisSection 69

5.4.2.4HowisProductionCostRelatedtoProcessParametersfromtheStandpoint oftheCauseandEffectRelationship? 69

5.4.2.5Constraints 69

5.4.2.6KeyParameterIdentifications 70

5.4.3CycleWaterSystem 71

5.4.3.1MainPurpose 71

5.4.3.2EconomicsoftheProcess 71

5.4.3.3FactorsthatcanChangetheProductionCostofthisSection 72

5.4.3.4Constraints 72

5.4.3.5KeyPerformanceParameters 72

5.4.4CarbonDioxideRemovalSection 73

5.4.4.1MainPurpose 73

5.4.4.2Economics 73

5.4.4.3FactorsthatcanChangetheProductionCostofthisSection 73

x Contents

5.4.4.4Constraints 74

5.4.4.5KeyPerformanceParameters 74

5.4.5EGReactionandEvaporationSection 74

5.4.5.1MainPurpose 74

5.4.5.2Economics 75

5.4.5.3FactorsthatcanChangetheProductionCostofthisSection 76

5.4.5.4KeyPerformanceParameters 76

5.4.6EGPurificationSection 76

5.4.6.1MainPurpose 76

5.4.6.2Economics 77

5.4.6.3KeyPerformanceParameters 77

5.5PurposetoDevelopKeyIndicators 77

5.6SetupTargetsforKeyIndicators 78

5.7CostandProfitDashboard 78

5.7.1DevelopmentofCostandProfitDashboardtoMonitortheProcess PerformanceinMoneyTerms 78

5.7.2ConnectingKeyPerformanceIndicatorsinAPC 79

5.8ItisCrucialtoChangetheViewpointsinTermsofCostorProfit 80 References 80

6AssessmentofCurrentPlantStatus 83

6.1Introduction 83

6.1.1DataExtractionfromaDataHistorian 83

6.1.2CalculatetheEconomicPerformanceoftheSection 84

6.2MonitoringVariationsofEconomicProcessParameters 90

6.3DeterminationoftheEffectofAtmosphereonthePlantProfitability 90

6.4CapacityVariations 91

6.5AssessmentofPlantReliability 91

6.6AssessmentofProfitSuckersandIdentificationofEquipmentforModeling andOptimization 91

6.7AssessmentofProcessParametersHavingaHighImpactonProfit 93

6.8ComparisonofCurrentPlantPerformanceAgainstItsDesign 93

6.9AssessmentofRegulatoryControlSystemPerformance 94

6.9.1BasicAssessmentProcedure 96

6.10AssessmentofAdvanceProcessControlSystemPerformance 97

6.11AssessmentofVariousProfitImprovementOpportunities 97 References 98

7ProcessModelingbytheArtificialNeuralNetwork 99

7.1Introduction 99

7.2ProblemstoDevelopaPhenomenologicalModelforIndustrial Processes 100

7.3TypesofProcessModel 101

7.3.1FirstPrinciple-BasedModel 101

7.3.2Data-DrivenModels 101

7.3.3GreyModel 101

7.3.4HybridModel 101

7.4EmergenceofArtificialNeuralNetworksasOneofthePromising Data-DrivenModelingTechniques 106

7.5ANN-BasedModeling 106

7.5.1HowDoesANNWork? 106

7.5.2NetworkArchitecture 107

7.5.3Back-PropagationAlgorithm(BPA) 107

7.5.4Training 108

7.5.5Generalizability 110

7.6ModelDevelopmentMethodology 110

7.6.1DataCollectionandDataInspection 110

7.6.2DataPre-processingandDataConditioning 110

7.6.2.1OutlierDetectionandReplacement 112

7.6.2.2UnivariateApproachtoDetectOutliers 112

7.6.2.3MultivariateApproachtoDetectOutliers 112

7.6.3SelectionofRelevantInput–OutputVariables 113

7.6.4AlignData 113

7.6.5ModelParameterSelection,Training,andValidation 113

7.6.6ModelAcceptanceandModelTuning 115

7.7ApplicationofANNModelingTechniquesintheChemicalProcess Industry 115

7.8CaseStudy:ApplicationoftheANNModelingTechniquetoDevelopan IndustrialEthyleneOxideReactorModel 116

7.8.1OriginofthePresentCaseStudy 116

7.8.2ProblemDefinitionofthePresentCaseStudy 117

7.8.3DevelopingtheANN-BasedReactorModel 119

7.8.4IdentifyingInputandOutputParameters 119

7.8.5DataCollection 120

7.8.6NeuralRegression 121

7.8.7ResultsandDiscussions 122

7.9MatlabCodetoGeneratetheBestANNModel 124 References 125

8OptimizationofIndustrialProcessesandProcessEquipment 131

8.1MeaningofOptimizationinanIndustrialContext 131

8.2HowCanOptimizationIncreaseProfit? 132

8.3TypesofOptimization 133

8.3.1Steady-StateOptimization 133

8.3.2DynamicOptimization 133

8.4DifferentMethodsofOptimization 134

8.4.1ClassicalMethod 134

8.4.2Gradient-BasedMethodsofOptimization 134

8.4.3Non-traditionalOptimizationTechniques 135

8.5BriefHistoricalPerspectiveofHeuristic-basedNon-traditional OptimizationTechniques 136

8.6GeneticAlgorithm 138

8.6.1WhatisGeneticAlgorithm? 138

8.6.2FoundationofGeneticAlgorithms 138

8.6.3FivePhasesofGeneticAlgorithms 140

8.6.3.1InitialPopulation 140

8.6.3.2FitnessFunction 140

8.6.3.3Selection 140

8.6.3.4Crossover 140

8.6.3.5Termination 141

8.6.4TheProblemDefinition 141

8.6.5CalculationStepsofGA 141

8.6.5.1Step1:GeneratingInitialPopulationbyCreatingBinaryCoding 141

8.6.5.2Step2:EvaluationofFitness 142

8.6.5.3Step3:SelectingtheNextGeneration’sPopulation 142

8.6.6AdvantagesofGAAgainstClassicalOptimizationTechniques 144

8.7DifferentialEvolution 145

8.7.1WhatisDifferentialEvolution(DE)? 145

8.7.2WorkingPrincipleofDE 145

8.7.3CalculationStepsPerformedinDE 145

8.7.4ChoiceofDEKeyParameters(NP, F ,andCR) 145

8.7.5StepwiseCalculationProcedureforDEimplementation 146

8.8SimulatedAnnealing 149

8.8.1WhatisSimulatedAnnealing? 149

8.8.2Procedure 149

8.8.3Algorithm 150

8.9CaseStudy:ApplicationoftheGeneticAlgorithmTechniquetoOptimize theIndustrialEthyleneOxideReactor 151

8.9.1ConclusionoftheCaseStudy 152

8.10StrategytoUtilizeData-DrivenModelingandOptimizationTechniquesto SolveVariousIndustrialProblemsandIncreaseProfit 153 References 155

9ProcessMonitoring 159

9.1NeedforAdvanceProcessMonitoring 159

9.2CurrentApproachestoProcessMonitoringandDiagnosis 160

9.3DevelopmentofanOnlineIntelligentMonitoringSystem 161

9.4DevelopmentofKPI-BasedProcessMonitoring 161

9.5DevelopmentofaCauseandEffect-BasedMonitoringSystem 163

9.6DevelopmentofPotentialOpportunity-BasedDashBoard 163

9.6.1DevelopmentofLossandWasteMonitoringSystems 164

9.6.2DevelopmentofaCost-BasedMonitoringSystem 165

9.6.3DevelopmentofaConstraints-BasedMonitoringSystem 166

9.7DevelopmentofBusinessIntelligentDashboards 166

9.8DevelopmentofProcessMonitoringSystemBasedonPrincipalComponent Analysis 167

9.8.1WhatisaPrincipalComponentAnalysis? 168

9.8.2WhyDoWeNeedtoRotatetheData? 169

9.8.3HowDoWeGeneratePrincipalComponents? 170

9.8.4StepstoCalculatingthePrincipalComponents 170

9.9CaseStudyforOperationalStateIdentificationandMonitoringUsing PCA 171

9.9.1CaseStudy1:MonitoringaReciprocatingReclaimCompressor 171 References 174

10FaultDiagnosis 177

10.1ChallengestotheChemicalIndustry 177

10.2WhatisFaultDiagnosis? 178

10.3BenefitofaFaultDiagnosisSystem 179

10.3.1CharacteristicofanAutomatedFaultDiagnosisSystem 180

10.4DecreasingDowntimeThroughaFaultDiagnosisTypeDataAnalytics 180

10.5UserPerspectivetoMakeanEffectiveFaultDiagnosisSystem 181

10.6HowAreFaultDiagnosisSystemsMade? 183

10.6.1PrincipalComponent-BasedApproach 184

10.6.2ArtificialNeuralNetwork-BasedApproach 184

10.7ACaseStudytoBuildaRobustFaultDiagnosisSystem 185

10.7.1ChallengestoaBuildFaultDiagnosisofanEthyleneOxideReactor System 187

10.7.2PCA-BasedFaultDiagnosisofanEOReactorSystem 187

10.7.3AcquiringHistoricProcessDataSetstoBuildaPCAModel 188

10.7.4CriteriaofSelectionofInputParametersforPCA 189

10.7.5HowPCAInputDataisCapturedinRealTime 191

10.7.6BuildingtheModel 192

10.7.6.1CalculationsofthePrincipalComponents 192

10.7.6.2CalculationsofHotelling’s T 2 192

10.7.6.3CalculationsoftheResidual 193

10.7.7CreationofaPCAPlotforTrainingData 193

10.7.8CreationofHotelling’s T 2 PlotfortheTrainingData 194

10.7.9CreationofaResidualPlotfortheTrainingData 194

10.7.10CreationofanAbnormalZoneinthePCAPlot 194

10.7.11ImplementingthePCAModelinRealTime 194

10.7.12DetectingWhetherthePlantisRunningNormallyorAbnormallyona Real-TimeBasis 195

10.7.13UseofaPCAPlotDuringCorrectiveActioninRealTime 197

10.7.14ValidityofaPCAModel 198

10.7.14.1Time-VaryingCharacteristicofanEOCatalyst 198

10.7.14.2CapturingtheEfficiencyofthePCAModelUsingtheResidualPlot 199

10.7.15QuantitiveDecisionCriteriaImplementedforRetrainingofanEthylene Oxide(EO)ReactorPCAModel 200

10.7.16HowRetrainingisPracticallyExecuted 200

10.8BuildinganANNModelforFaultDiagnosisofanEOReactor 200

10.8.1AcquiringHistoricProcessDataSetstoBuildanANNModel 200

10.8.2IdentificationofInputandOutputParameters 201

10.8.3BuildingofanANN-BasedEOReactorModel 201

10.8.3.1ComplexityofEOReactorModeling 201

10.8.3.2ModelBuilding 202

10.8.4PredictionPerformanceofanANNModel 203

10.8.5UtilizationofanANNModelforFaultDetection 203

10.8.6HowDoPCAInputDataRelatetoANNInput/OutputData? 204

10.8.7RetrainingofanANNModel 206

10.9IntegratedRobustFaultDiagnosisSystem 206

10.10AdvantagesofaFaultDiagnosisSystem 208

References 208

11OptimizationofanExistingDistillationColumn 209

11.1StrategytoOptimizetheRunningDistillationColumn 209

11.1.1Strategy 209

11.2IncreasetheCapacityofaRunningDistillationColumn 210

11.3CapacityDiagram 211

11.4CapacityLimitationsofDistillationColumns 212

11.5VapourHandlingLimitations 214

11.5.1FlowRegimes–SprayandFroth 214

11.5.2Entrainment 215

11.5.3TrayFlooding 215

11.5.4UltimateCapacity 217

11.6LiquidHandlingLimitations 217

11.6.1DowncomerFlood 217

11.6.2DowncomerResidenceTime 217

11.6.3DowncomerFrothBack-Up% 219

11.6.4DowncomerInletVelocity 220

11.6.5Weirliquidloading 221

11.6.6DowncomerSizingCriteria 221

11.7OtherLimitationsandConsiderations 221

11.7.1Weeping 221

11.7.2Dumping 222

11.7.3TrayTurndown 222

11.7.4Foaming 223

11.8UnderstandingtheStableOperationZone 223

11.9CaseStudytoDevelopaCapacityDiagram 224

11.9.1CalculationofCapacityLimits 224

11.9.1.1SprayLimit 224

11.9.1.2VaporFloodingLimit 226

11.9.1.3DowncomerBackupLimit 226

11.9.1.4MaximumLiquidLoadingLimit 227

11.9.1.5MinimumLiquidLoadingLimit 227

11.9.1.6MinimumVaporLoadingLimit 228

11.9.2PlottingaCapacityDiagram 228

11.9.3InsightsfromtheCapacityDiagram 229

11.9.4HowCantheCapacityDiagramBeUsedforProfitMaximization? 229

References 230

12NewDesignMethodology 231

12.1NeedforNewDesignMethodology 231

12.2CaseStudyoftheNewDesignMethodologyforaDistillationColumn 231

12.2.1TraditionalWaytoDesignaDistillationColumn 231

12.2.2BackgroundoftheDistillationColumnDesign 232

12.3NewIntelligentMethodologyforDesigningaDistillationColumn 234

12.4ProblemDescriptionoftheCaseStudy 237

12.5SolutionProcedureUsingtheNewDesignMethodology 237

12.6CalculationsoftheTotalCost 238

12.7SearchOptimizationVariables 239

12.8OperationalandHydraulicConstraints 239

12.9ParticleSwarmOptimization 241

12.9.1PSOAlgorithm 241

12.10SimulationandPSOImplementation 242

12.11ResultsandAnalysis 243

12.12AdvantagesofPSO 245

12.13AdvantagesofNewMethodologyovertheTraditionalApproach 246

12.14Conclusion 248 Nomenclature 248 References 250 Appendix12.1 251

13GeneticProgramingforModelingofIndustrialReactors 259

13.1PotentialImpactofReactorOptimizationonOverallProfit 259

13.2PoorKnowledgeofReactionKineticsofIndustrialReactors 259

13.3ANNasaToolforReactorKineticModeling 260

13.4ConventionalMethodsforEvaluatingKinetics 260

13.5WhatisGeneticProgramming? 261

13.6BackgroundofGeneticProgramming 262

13.7GeneticProgrammingataGlance 263

13.7.1PreparatoryStepsofGeneticProgramming 264

13.7.2ExecutionalStepsofGeneticProgramming 264

13.7.3CreatinganIndividual 267

13.7.4FitnessTest 268

13.7.5TheGeneticOperations 269

13.7.6UserDecisions 271

13.7.7ComputingResources 272

13.8ExampleGeneticProgrammingRun 272

13.8.1PreparatorySteps 273

13.8.2Step-by-StepSampleRun 274

13.8.3Selection,Crossover,andMutation 275

13.9CaseStudies 277

13.9.1CaseStudy1 277

13.9.2CaseStudy2 278

13.9.3CaseStudy3 279

13.9.4CaseStudy4 280 References 281

14MaximumCapacityTestRunandDebottleneckingStudy 283

14.1Introduction 283

14.2UnderstandingDifferentSafetyMarginsinProcessEquipment 283

14.3StrategiestoExploittheSafetyMargin 284

14.4CapacityExpansionversusEfficiencyReduction 285

14.5MaximumCapacityTestRun:WhatisitAllAbout? 286

14.6ObjectiveofaMaximumCapacityTestRun 287

14.7BottlenecksofDifferentProcessEquipment 288

14.7.1FunctionalBottleneck 288

14.7.2ReliabilityBottleneck 288

14.7.3SafetyInterlockBottleneck 290

14.8KeyStepstoCarryOutaMaximumCapacityTestRuninaCommercial RunningPlant 291

14.8.1Planning 291

14.8.2DiscussionwithTechnicalPeople 296

14.8.3RiskandOpportunity 296

14.8.4DosandDon’ts 297

14.8.5Simulations 298

14.8.6Preparations 299

14.8.7ManagementofChange 299

14.8.8Execution 300

14.8.9DataCollections 300

14.8.10CriticalObservations 302

14.8.11ReportPreparations 303

14.8.12DetailedSimulationsandAssemblyofAllObservations 303

14.8.13FinalReportPreparation 304

14.9ScopeandPhasesofaDetailedImprovementStudy 304

14.9.1ImprovementScopingStudy 305

14.9.2DetailFeasibilityStudy 305

14.9.3RetrofitDesignPhase 305

14.10ScopeandLimitationsofMCTR 306

14.10.1Scope 306

14.10.2TwoBigBenefitsofDoingMCTR 306

14.10.3LimitationsofMCTR 306

15LossAssessment 309

15.1DifferentLossesfromtheSystem 309

15.2StrategytoReducetheLossesandWastages 309

15.3MoneyLossAudit 310

15.4ProductorUtilityLosses 312

15.4.1LossintheDrain 312

15.4.2LossDuetoVentandFlaring 313

15.4.3UtilityLoss 314

15.4.4HeatLossAssessmentfortheFiredHeater 314

15.4.5HeatLossAssessmentfortheDistillationColumn 315

15.4.6HeatLossAssessmentforSteamLeakage 316

15.4.7HeatLossAssessmentforCondensateLoss 317

16AdvanceProcessControl 319

16.1WhatisAdvanceProcessControl? 319

16.2WhyisAPCNecessarytoImproveProfit? 320

16.3WhyAPCisPreferredoverNormalPIDRegulatoryControl 322

16.4PositionofAPCintheControlHierarchy 324

16.5WhicharethePlantswhereImplementationsofAPCwereProvenVery Profitable? 327

16.6HowdoImplementationsofAPCIncreaseProfit? 328

16.7HowdoesAPCExtractBenefits? 330

16.8ApplicationofAPCinOilRefinery,Petrochemical,FertilizerandChemical PlantsandRelatedBenefits 334

16.9StepstoExecuteanAPCProject 336

16.9.1Step1:PreliminaryCost–BenefitAnalysis 336

16.9.2Step2:AssessmentofBaseControlLoops 337

16.9.3Step3:FunctionalDesignoftheController 337

16.9.4Step4:ConductthePlantStepTest 338

16.9.5Step5:GenerateaProcessModel 338

16.9.6Step6:CommissiontheOnlineController 338

16.9.7Step7:OnlineAPCControllerTuning 339

16.10HowCananEffectiveFunctionalDesignBeDone? 339

16.10.1Step1:DefineProcessControlObjectives 340

16.10.2Step2:IdentificationofProcessConstraints 342

16.10.3Step3:DefineControllerScope 343

16.10.4Step4:VariableSelection 344

16.10.5Step5:RectifyRegulatoryControlIssues 346

16.10.6Step6:ExploretheScopeofInclusionsofInferentialCalculations 347

16.10.7Step7:EvaluatePotentialOptimizationOpportunity 347

16.10.8Step8:DefineLPorQPObjectiveFunction 348 References 349

17150WaysandBestPracticestoImproveProfitinRunningChemical Plant 351

17.1BestPracticesFollowedinLeadingProcessIndustriesAroundthe World 351

17.2BestPracticesFollowedinaSteamandCondensateSystem 351

17.3BestPracticesFollowedinFurnacesandBoilers 355

17.4BestPracticesFollowedinPumps,Fans,andCompressor 357

17.5BestPracticesFollowedinIlluminationOptimization 359

17.6BestPracticesinOperationalImprovement 359

17.7BestPracticesFollowedinAirandNitrogenHeader 360

17.8BestPracticesFollowedinCoolingTowerandCoolingWater 361

17.9BestPracticesFollowedinWaterConservation 362

17.10BestPracticesFollowedinDistillationColumnandHeat Exchanger 363

17.11BestPracticesinProcessImprovement 364

17.12BestPracticesinFlareGasReduction 365

17.13BestPracticesinProductorEnergyLossReduction 365

17.14BestPracticestoMonitorProcessControlSystemPerformance 366

17.15BestPracticestoEnhancePlantReliability 367

17.16BestPracticestoEnhanceHumanResource 368

17.17BestPracticestoEnhanceSafety,Health,andtheEnvironment 368

17.18BestPracticestoUseNewGenerationDigitalTechnology 369

17.19BestPracticestoFocusaDetailedStudyandR&DEffort 370

Index 373

FigureList

Figure1.1 Variousconstraintsorlimitsofchemicalprocesses 5

Figure1.2 Optimumoperatingpointversusoperatorcomfortzone 6

Figure2.1 Developingstagesofthechemicalindustry 12

Figure2.2 Threemajorwaysdigitaltransformationwillimpactthechemical industry 13

Figure2.3 Threemajorimpactareaswhereadvanceanalytictoolswillhelpto increaseprofit 16

Figure2.4 Differentcomponentsoftheinsightsvaluechain 21

Figure2.5 Overviewoftheinsightsvaluechainupstreamprocesses(A–B)and downstreamactivities(D–E) 21

Figure2.6 Datascienceisaniterativeprocessthatleveragesbothhumandomain expertiseandadvancedAI-basedmachinelearningtechniques 24

Figure3.1 Differentstepsinprofitmaximizationproject(PMP) implementation 28

Figure4.1 Differentwaystomaximizetheoperatingprofitofchemicalplants 36

Figure4.2 Schematicdiagramofaglycolplant 41

Figure4.3 Stepstomapthewholeplantinmonetarytermsandtogain insights 43

Figure4.4 Representingthewholeplantasablackbox 44

Figure4.5 Mappingthewholeplantinmonetaryterms 47

Figure4.6 Break-upofthetotalcostofproduction 49

Figure4.7 Costofrawmaterial 50

Figure4.8 Costofdifferentutilities(USD/h) 50

Figure4.9 Costofdifferentchemicals(USD/h) 51

Figure4.10 Variationsofprofitmargin(USD/h)throughouttheyear 51

Figure4.11 Variationsofprofitmargin(USD/MTofproduct)throughoutthe year 52

Figure4.12 Variationsofproductioncost(USD/MT)throughouttheyear 52

Figure4.13 VariationsofMEGproduction(MT/h)throughouttheyear 52

Figure5.1 Five-stepprocessofakeyparameteridentification 60

Figure5.2 Queriesnormallyaskedtoperformaprocessanalysisandeconomic analysisofawholeplant 61

Figure5.3 Majorsixcategoriesoflimitationsinaplanttoincreaseprofit 62

Figure5.4 Someexamplesofprocesslimitations 63

Figure5.5 Someexamplesofequipmentlimitations 64

Figure5.6 Examplesofinstrumentlimitations 64

Figure5.7 Guidelinequestionnairestoinitiatethediscussionwithplant people 65

Figure5.8 Variouscausesofcatalystselectivityincrease 70

Figure6.1 Comparisonofdailyactualprofit(sorted)versusbestachievedprofitin US$/htermsforoneyearofoperation 86

Figure6.2 DailyopportunitylossinmillionUS$foroneyearofoperation 86

Figure6.3 CumulativeopportunitylossinmillionUS$foroneyearof operation 86

Figure7.1 Advantageanddisadvantageofthefirstprinciple-basedmodel 102

Figure7.2 Advantagesanddisadvantagesofdata-drivenmodels 103

Figure7.3 Advantagesanddisadvantagesofthegreymodelingtechnique 104

Figure7.4 Advantagesanddisadvantagesofthehybridmodelingtechnique 105

Figure7.5 Typicalpseudocodeofaback-propagationalgorithm 109

Figure7.6 Architectureofafeed-forwardnetworkwithonehiddenlayer 109

Figure7.7 Stepsfollowedindatacollectionanddatainspection 111

Figure7.8 Taskperformedinthedatapre-processinganddataconditioning step 112

Figure7.9 Twomainunivariateapproachestodetectoutliers 112

Figure7.10 Guidelinesforselectionoftherelevantinputoutputvariables 114

Figure7.11 Relationbetweencatalystselectivityandpromoterconcentrationina commercialethyleneoxidereactorforthelatestgenerationhigh selectivitycatalyst 118

Figure7.12 ActualselectivityversusANNmodelpredictedselectivity 122

Figure7.13 Predictionerrorpercentbetweenactualselectivityandpredicted selectivity 122

Figure7.14 Plotofactualselectivityversuspredictedselectivityfortestingand trainingdata 123

Figure7.15 ANNmodelperformancefortestingandtrainingdata 123

Figure7.16 DifferentANNalgorithmsdevelopedbydifferentscientistsinthelast 30years 124

Figure7.17 DifferentactivationfunctionsusedinanANN 124

Figure8.1 Differentminimumvaluesofafunctiondependingondifferentstarting points 135

Figure8.2 Principlefeaturespossessedbyageneticalgorithm 139

Figure8.3 Foundationofthegeneticalgorithm 139

Figure8.4 Fivemainphasesofageneticalgorithm 140

Figure8.5 Mechanismofcrossover 143

Figure8.6 CalculationsstepsperformedinDE 146

Figure8.7 SchematicdiagramofDE 147

Figure8.8 Calculationsequenceofasimulatedannealingalgorithm 151

Figure9.1 Causeandeffectrelationshipofasteamincreaseinthedistillation column 164

Figure9.2 KPI-basedprocessmonitoring 166

Figure9.3 Projectionofathree-dimensionalobjectonatwo-dimensional plane 168

Figure9.4 Projectionofathree-dimensionalobjectonatwo-dimensional principalcomponentplane 169

Figure9.5 Projectionofdatatowardsamaximumvarianceplane 169

Figure9.6 Stepstocalculatingtheprincipalcomponents 171

Figure9.7 Normalandabnormaloperatingzonesareclearlydifferentwhen plottedonthefirstthreeprincipalcomponentplanes 172

Figure9.8 Trendsofthefirstprincipalcomponent 173

Figure9.9 Varianceexplainedbythefirstfewprincipalcomponents 173

Figure9.10 Frontendtodetectabnormalityinthereciprocatingcompressor 174

Figure9.11 Normalandabnormaldataprojectedontothefirsttwoandfirstthree principalcomponentplanes 174

Figure10.1 Newbusinesschallengesversusimproveperformance 178

Figure10.2 Pyramidofaprocessmonitoringsystem 178

Figure10.3 Faultdiagnosissystem 179

Figure10.4 Characteristicsofanautomatedreal–timeprocessmonitoring system 180

Figure10.5 Concernswhenbuildinganeffectivefaultdiagnosissystem 182

Figure10.6 Differentrequirementsofdifferentstakeholdersfromfaultdiagnosis software 182

Figure10.7 Summaryofuserperspectiveandchallengestobuildaneffectivefault diagnosissoftware 183

Figure10.8 Principalcomponentplot 184

Figure10.9 Schematicofanethyleneoxidereactoranditsassociatedunit 186

Figure10.10 EOreactorprocessparametersalongwithaschematic 187

Figure10.11 VariouschallengestodevelopanEOreactorfaultdiagnosis 188

Figure10.12 Chlorideversuscatalystselectivityplot 189

Figure10.13 PCAscoresplot, T 2 plot,andresidualplot 193

Figure10.14 InterfacebetweenadatahistorianandadedicatedPCloadedwithPCA andANNsoftware 195

Figure10.15 Contributionplotsof15variables 197

Figure10.16 Dynamicmovementofthereactorstatusfromthenormalzonetothe overchloridezone 198

Figure10.17 StepstobuildaPCA-basedfaultdiagnosissystem 199

Figure10.18 ActualversusANNmodelpredictedselectivityandequivalentethylene oxide(EOE) 205

Figure10.19 Integratedrobustfaultdiagnosissystem 207

Figure11.1 Effectoftowerloadingonthetrayefficiencyvalveversussieve tray 210

Figure11.2 Capacitydiagramorfeasibleoperatingwindowdiagram 211

Figure11.3 Vaporliquidflowpatternonthetray 213

Figure11.4 Frothregimeversussprayregimeoperation 214

Figure11.5 Jetfloodinganditsimpactonentrainmentandtrayefficiency 216

Figure11.6 Downcomerchoking 218

Figure11.7 Vaporrecycleincreasesthevaporload 218

Figure11.8 Downcomerfilling 219

Figure11.9 Effectofweepingonefficiency 222

Figure11.10 Operationalguideforderivingtheoperatingwindow 225

Figure11.11 Capacitydiagramofthecasestudy 228

Figure12.1 Operatinglimitsofadistillationcolumntray 239

Figure12.2 Variousconstraintsneedtobesatisfiedduringadistillationcolumn design 240

Figure12.3 Variousdowncomer-relatedconstraintsneedtobesatisfiedduring distillationcolumndesign 240

Figure12.4 Variousprocessconstraintsneedtobesatisfiedduringdistillation columndesign 241

Figure13.1 Somechemicalengineeringapplicationsofgeneticprogramming 262

Figure13.2 Fivemajorpreparatorystepsforthebasicversionofgenetic programmingthatthehumanuserisrequiredtospecify 264

Figure13.3 Flowchartofgeneticprogramming 266

Figure13.4 Atypicalindividualthatreturns5(x + 7) 267

Figure13.5 Two-offspringcrossovergeneticoperation 270

Figure13.6 Exampleofsub-treemutation 271

Figure13.7 Initialpopulationoffourrandomlycreatedindividualsof generation0 275

Figure13.8 Fitnessoftheevolvedfunctionsfromgeneration0 275

Figure13.9 Populationofgeneration1(afteronereproduction,onemutation,and onetwo-offspringcrossoveroperations) 276

Figure14.1 Differentwaystoincreaseplantthroughput 284

Figure14.2 Schematicdiagramofstrategy2ofthemaximumcapacitytest run 293

Figure14.3 Schematicdiagramofstrategy3ofthemaximumcapacitytest run 294

Figure14.4 Schematicdiagramofstrategy4ofthemaximumcapacitytest run 295

Figure15.1 Differentlowgradeheatrecoveryoptions 311

Figure16.1 Flowschemeofasimplecrackingfurnaceusinganadvanceprocess controller 321

Figure16.2 Hierarchyoftheplant-widecontrolframework 325

Figure16.3 FeaturesofpotentialplantsforAPCimplementation 328

Figure16.4 Capitalinvestmentversusbenefitsfordifferentlevelsofcontrols 328

Figure16.5 TypicalbenefitsofAPC 329

Figure16.6 APCstabilizationeffectcanincreaseplantcapacityclosertoits maximumlimit 331

Figure16.7 Reducedvariabilityallowsoperationclosertoconstraintsbyshifting thesetpoint 331

Figure16.8 Operatingzonelimitedbymultipleconstraints 332

Figure16.9 TypicalintangiblebenefitsofAPC 334

Figure16.10 TypicalpaybackperiodofAPC 335

Figure16.11 TypicalbenefitsofAPCimplementationinCPI 335

Figure16.12 AdvancecontrolimplementationsbyoneofthemajorAPC vendors 336

Figure16.13 SpreadofAPCapplicationacrossthewholespectrumofthechemical processindustries 336

Figure16.14 DifferentstepsintheAPCimplementationproject 337

Figure16.15 Stepsinthefunctionaldesignstage 339

TableList

Table2.1 Comparisonsbetweensmartandconventionalchemicalindustries 13

Table4.1 Representingthewholeplantasablackboxwithconsumptionandcost data 45

Table4.2 Summaryofprofitmarginandcostintensity 49

Table6.1 Tabletocalculateproductioncost,costintensity,profit,andprofit/MT ofproduct 85

Table6.2 Tabletorelateproductioncost,costintensity,withkeyparameters 88

Table6.3 Plantreliabilityassessment 92

Table6.4 Typicalperformanceofcontrolloopsinindustry 95

Table7.1 InputandoutputvariablesfortheANNmodel 120

Table8.1 InitialPopulationof x1 and x2 andTheirFitness 148

Table8.2 MutationandCrossover 148

Table8.3 NewGenerationPopulations 149

Table8.4 OptimumValueofInputVariablesCorrespondingtotheMaximum ValueofSelectivity 152

Table9.1 PerformanceParameterforMajorProcessEquipment 162

Table10.1 InputParametersofaPCA-basedEOReactorModel 191

Table10.2 InputandoutputparametersofanANN-basedEOreactormodel 202

Table10.3 PredictionperformanceofanANNmodel 204

Table10.4 ComparisonofPCAandANNinputdata 206

Table11.1 ConditionsoftheMostConstrainedTray 224

Table11.2 TowerandPlateDimensions 225

Table12.1 Simulationresults 235

Table12.2 Simulationresultsfordifferentfeedtraylocations 235

Table12.3 Optimizationvariableswiththeirupperandlowerlimits 236

Table12.4 Differentconstraintsandtheirlimits 236

Table12.5 OptimalcolumngeometryusingimprovedPSACOmethods 244

Table12.6 Valueofconstraintscorrespondingtotheoptimumsolution 245

Table13.1 ExamplesofprimitivesusedinGPfunctionsandterminalsets 273

Table13.2 BestmodelgeneratedbytheGPalgorithmandcorrespondingRMS error 278

Table13.3 BestmodelgeneratedbytheGPalgorithmandthecorrespondingRMS error 279

Table15.1 ListofProcessCoolers(WaterCoolerandFinFanAirCooler)along withTheirDutyandMoneyLost 311

Table15.2 CalculationofMoneyLoss 312

Table15.3 TabletoEstimatetheMoneyLostfromanEntirePlantDuetothe Drain 312

Table15.4 TabletoEstimatetheMoneyLostfromanEntirePlantDuetoVentand Flaring 313

Table16.1 TypicalbenefitsofAPCimplementationinrefinery 335

Preface

Inchemicalprocessindustriesthereisanongoingneedtoreducethecostofproductionandincreasetheprofitmargin.Duetocut-throatcompetitionatthegloballevel,the majorchemicalprocessindustriesarenowcompetingtooptimizerawmaterialandutilityconsumption,toincreaseequipmentandprocessperformance,toreduceemissions, andtominimizepollution.

Profitmaximizationisthebuzzwordoftoday’schemicalprocessindustries.Profit maximizationinrunningchemicalplantsitselfisahugechallenge,whichneedstobe addressedbyholisticvisionandprocedures.However,therearenodedicatedbooks availabletodiscussbasicconcepts,providepracticalmethods,andexplainindustrial applicationprocedures.

Thisbookiswrittentofillthisgapwiththefollowingpeopleinmind:practicing processorchemicalengineers,productionengineers,supervisors,seniortechnicians workinginchemical,petrochemical,pharmaceuticals,paperandpulp,oilandgascompanies,andpetroleumrefineryacrosstheglobe.Thisbookwillalsobecomeveryusefulforlargenumbersofmanagers,generalmanagers,top-levelseniorexecutives,and seniortechnicalserviceconsultants,whosemainjobsincludestrategicplanningand implementationofvariousoptimizationprojectstoincreaseprofitinchemicalprocess industries.Undergraduateandpostgraduatechemicalengineeringstudentsandbusinessstudentswhowanttopursuecareersinthechemicalfieldwillalsogreatlybenefit fromthisbook.Thebookisaimedatprovidingpracticaltoolstopeoplewhofacechallengesandwishtofindopportunitiesforimprovingprofitinrunningchemicalplants. Itaimstoconveyconcepts,theories,andmethodsinastraightforwardandpractical manner.

Thisbookprovidesengineersinallpracticalaspectsofaprofitmaximizationproject inrunningplants,aswellasexpertguidanceonhowtoderivemaximumbenefits.The bookwillpresentthecoreofasystematicapproachcoveringprofitoptimizationstrategy,solutionmethodology,supportingstructure,andassessmentmethods.Inshort,it willdescribewhatittakestomakesizablereductionsinoperatingcostsforprocess plantsandhowtosustainprofitimprovementbenefits.

Shortontheoryandlongonstep-by-stepinformation,itcoverseverythingplantprocessengineersandtechnicalmanagersneedtoknowaboutidentifying,building,deploying,andmanagingprofitimprovementapplicationsintheircompanies.Readersareable totakeawaymethodsandtechniquesforidentifying,analysis,optimization,engineeringdesign,andmonitoringthatarerequiredtoidentify,assess,implement,andsustain profitimprovementopportunities.

Themainfeatureofthisbook,whichdifferentiatesitfromotheravailablebookson themarket,isitspracticalcontent,whichhelpsthereadertounderstandallthestepsof profitmaximizationprojectimplementationinanactualcommercialplant.Thekeyfeaturesofthisbookthatdifferentiateitfromotheravailablechemicalengineeringbooks aresummarizedbelow:

• Thereadercandevelopathoroughunderstandingofstepsforbuildingaprofitmaximizationapplicationinrunningachemicalplant.Allpracticalconsiderationsto identify,build,anddeployaprofitimprovementprojectinthecommercialrunning oftheplantformtheessenceofthisbook.

• Thebenefitsofthiseffectiveapproachincludeidentificationoflargeprofitimprovementprojectsbyapplyingassessmentmethods,capturinghiddenopportunitiesin processoperationbytheuseofadvancemonitoringandfaultdiagnosis,increasing plantcapacitybyasystematicwayofperformingatestrunanddebottleneckingstudy, optimizingprocessperformancethroughvariousonlineconventionalandstochastic optimizationprocedures,pushingtheplantoperationtowardsmultipleconstraints byadvanceprocesscontrol,andmaintainingcontinuousimprovementbyusingregularreviewandperformancematrices.

OverviewofContents

Thechaptercontentsaredescribedbelow.

ConceptofProfitMaximization

Thefirstchaptercontainsthefoundationoftheprofitmaximizationprojectinrunning processindustries.Sweatingofassetsandderivingmaximumbenefitfromassetsforms theessenceofprofitmaximization.Afterimplementationofdatahistoriansoftwarein thelastdecade,todayschemicalprocessindustries(CPI)areverydatarichbutunfortunatelyremaininformationpoor.Noeffectiveplatformisstillavailabletoutilizethislarge amountofdata.Thischapterexplainstheemergenceofknowledge-basedindustriesand onlyCPIsemployingknowledgetodrivethebusinessarelikelytosurviveinthefuture. Thisessentiallymeansgeneratinganeffectiveplatformthatcangenerateknowledge fromavailablebusinessdataandusethisknowledgetodevelopaunifiedframework tosupportfasterbusinessdecisionstorespondtoexternalmarketuncertainties.This chaptergivesanoverviewofhowtobuildaframeworkwhereadvancedcomputational knowledgeandexperience-basedheuristicsareappliedtoutilizethiswealthofdatato maximizeprofit.Insimpleterms,profitmaximizationmeansmaximizationofdollar ($)/hgenerationfromtheplantwhilesubjecttoconstraintsthatallprocessandsafety constraintsneedtobehonoredandallequipmentlimitationsshouldnotbeviolated.The needforprofitmaximizationintoday’scompetitivemarketisexplainedinthischapter.

BigPictureoftheModernChemicalIndustry

Currentlythechemicalindustryisslowlyenteringintoaneweracalledthedataanalytics andartificialintelligencestage,commonlyknownasindustry4.0.Disruptivetechnologieslikeartificialintelligence,machinelearning,bigdataanalytics,andtheinternetof

things(IoT)havealreadyenteredthechemicalprocessindustriesandhavestartedto changetherulesgoverningthechemicalbusiness.Chapter2explainshowthetransitionfromaconventionaltoanintelligentchemicalindustryisslowlytakingplace.Their influenceisstartingtoseebenefitsinasignificantimprovementinproductionefficiency, energyutilization,optimizationoftheentiremanufacturingprocess,integrationofthe supplychain,newproductdevelopment,productdeliveryspeed,etc.Asofnow,itis quiteclearthatdigitalwillhaveasignificantimpactonmanyareasofthechemical industry,withthegainsinmanufacturingperformancepotentiallyamongthelargest. Thischaptergivesanoverviewofhowdigitalwillaffectthechemicalindustryandwhere thebiggestimpactcanbeexpected.Therearethreemajorareaswhereapplicationsofan advancedanalytictoolcangiveanenormousprofitincrease,namelypredictivemaintenance;yield,energy,andthroughputanalytics;andvalue-maximizationmodeling.This chaptergivesinsightsabouthowtoachieveabusinessimpactusingdataandintroduces theconceptofhowvaluabledataanalyticsandupstreamanddownstreamactivitiescan resultinachievingabusinessimpact.

ProfitMaximizationProject(PMP)ImplementationSteps

Chapter3describesdifferentstepsforimplementingaprofitmaximizationproject.It introduces14majorbroadideasorstepsforprofitmaximizationinrunningcommercialplants.Theseideasaredescribedindetailinsubsequentchaptersthroughoutthe book.Thesegenericstepsareholisticandcanbeappliedinanyprocessindustry,startingfromrefinery,petrochemical,chemicalplants,metals,pharmaceuticals,paperand pulpindustries,etc.Itstartswithmappingthewholeplantinmonetaryterms(US$/h) insteadofflowterms.Thisgivesanideaofwheretofocusmaximizationoftheprofitand whatlowhangingfruitsareneededthatcanbeeasilytranslatedtoincreaseprofitwithoutmuchinvestment.Practicalguidelinestobuildaprofitmaximizationframework, easilyimplementablesolutions,numerousexamples,andcasestudiesfromindustries giveacompletelynewcomputationalapproachtosolveprocessindustryproblemsand arethehallmarkofthisbook.

StrategyofProfitMaximization

AstrategyofprofitmaximizationistheessenceofChapter4.Thischapterdescribes differentwaystomaximizetheoperatingprofit.Theconceptofprocesscostintensity andhowtocalculateitareintroducedinthischapter.Theprocedureformappingthe wholeprocessinmonetarytermsandgaininsightsisdescribedbywayofanethylene glycolplantcasestudy.

Thischapterdescribesindetaileightkeystepsinmappingcurrentprocessconditions againstdifferentprocessconstraintsandlimits.Thefirstthreemajorstepsare(i)define plantbusinessandeconomicobjectives,(ii)identifyvariousprocessandsafetylimitations,and(iii)criticallyidentifytheprofitscope.Keyparameteridentificationstepsfor economics,operations,andconstraintsoftheplantarediscussedindetail.Howtoevaluateandexploitpotentialoptimizationopportunityisdiscussedwithindustrialcase studies.

KeyPerformanceIndicatorsandTargets

Knowingwhatkeyoperatingparameterstomonitoranddefiningthetargetsandlimitsfortheseparametersisanimportantstepforprofitoptimization.Wealsoneedto

knowtheeconomicvaluesofclosinggapsbetweenactualandtargetedperformances tocreateincentivesforimprovement.Thischapterdealswithhowtoidentifythekey performanceparametersinrunningtheplantandthewholeprocessisexplainedwith areal-lifecommercialplantcasestudy.Itprovidesamethodologytoidentifyqualitativelypotentialareasofopportunities.Thesystemofkeyindicatorsisthecornerstone ofasustainableprofitmanagementsystem.

AssessmentofCurrentPlantStatus

Anassessmentofcurrentplantstatusandknowwhereyouareisthefirstmajorstepin buildingaprofitmaximizationproject.Thischapterdealswiththeholisticapproachto assessthecurrentplantstatus.Howtoassesstheperformanceofthebaseregulatory controllayerandtheadvanceprocesscontrollayerofrunningaplantisdiscussedin detailinthischapter.Aperformanceassessmentofthemajorprocessequipmentand anevaluationoftheeconomicperformanceoftheplantagainstabenchmarkaretwokey focusareasdiscussedinthischapter.Anassessmentofprofitsuckersandidentification ofequipmentformodelingandoptimizationandanassessmentofprocessparameters havingahighimpactonprofitaretwotakeawaysinthischapter.Readersareenlightened withanassessmentofvariousprofitimprovementopportunities.

ProcessModelingbyanArtificialNeuralNetwork

Chapter7emphasestheneedfordata-drivenblackboxandgreyboxmodelingtechniqueswherebuildingofafirstprinciple-basedmodelisinfeasibleortimeconsuming duetothecomplexityoftheindustrialequipment.Howanartificialneuralnetwork (ANN)canbeutilizedasaneffectivetoolofblackboxmodelinginanindustrialcontext isdiscussedinthischapterwithvariousreal-lifeapplications.Astep-by-stepprocedure tobuildanANN-basedmodelingplatformtoutilizealargeamountofprocessdatais explainedindetailwithexamplecalculations.Thenewhorizonofmodelingprocessperformanceparameterslikeselectivity,yield,andefficiencyandhowthesemodelscanbe utilizedtoincreaseprofitisexplainedhere.DifferentexamplesandcasestudiesofANN modelsalreadyappliedindiversefieldsofprocessindustriesareillustratedtogivethe readerafeelforlargescopeandpotentialofapplicationsoftheANNinindustry.

OptimizationofIndustrialProcessesandProcessEquipment

Duetocut-throatcompetitioninbusiness,companiesnowwanttoreducetheiroperatingcostsbyoptimizingalloftheiravailableresources,beitman,machine,money, ormethodology.Optimizationisanimportanttool,whichcanbeutilizedtostrikea properbalancesothatprofitcanbemaximizedinthelongrun.Sincecapitalcostis alreadyincurredforarunningplant,optimizationessentiallyboilsdowntominimizationoftheoperatingcostfortheoperatingplants.Inrunningachemicalplant,thereis ahugescopetooptimizetheoperatingparameters,liketemperature,pressure,concentration,refluxratio,etc.,whichgiveseitherahigherprofitthroughhigherproduction orloweroperatingcosts.Therearemanywaystooptimizetheoperatingconditions ofreactors,distillationcolumns,absorbers,etc.,toenhancetheirprofitability.Chapter 8laysthefoundationabouthowparameteroptimizationcanbeutilizedtoincrease

profitinrunningthechemicalplant.Conventionaloptimizationtechniquesareinitially discussedtoenlightenthereaderaboutthescopeandhugepotentialofoptimizationin theprocessindustry.ThischapterintroducesnewadvancedMetaheuristicoptimizationtechniquesthatcanbeappliedwhereapplicationofaconventionaltechniqueis limitedduetothecomplexityoftheindustrialcontext.DifferentMetaheuristicoptimizationtechniques,likethegeneticalgorithm(GA),differentialevolution(DE),simulatedannealing(SA),etc.,aredescribedindetailinthischapter.Abasicalgorithm, step-by-stepproceduretodevelopanoptimizationtechniqueanddifferentusesofGA, DE,andSAinvariousfieldsofprocessoptimizationareexplainedhereinorderto developanunderstandingofthisnewarea.AcasestudyinreactoroptimizationisillustratedtoexplaintheadvantageandeaseofimplementationofMetaheuristicmethods overconventionalmethods.

ProcessMonitoring

Today’scomplexchemicalplantsneedadvancedmonitoringandcontrolsystemsto quicklyidentifythesuboptimaloperationofprocessequipmentandimplementaquick optimizationstrategy.Runningtheplantatthehighestpossiblecapacityforprofitmaximizationnecessitatesthedevelopmentofanintelligentreal-timemonitoringsystem. However,duetothelargeamountofprocessdata,itisaherculeantasktomonitor eachandeverypieceofprocessdata.Chapter9enlightensthereadersaboutanonline intelligentmonitoringsystem,KPI-basedprocessmonitoring,acauseandeffect-based monitoringsystem,etc.Italsogivesanidearegardingthedevelopmentofapotential opportunity-baseddashboard,lossandwastemonitoringsystems,acost-basedmonitoringsystem,aconstraints-basedmonitoringsystem,andhowallthesecanbeintegratedintobusinessintelligentdashboards.

Inthischapter,anewadvancedcomputationaltechnique,namelyprincipalcomponentanalysis(PCA),isdiscussedtovisualizedata.Theadvantageofsuchanonline monitoringsystemistovisualizetheplantconditionfromahigherlevelbutwithalower dimensionspace.AstepbystepproceduretobuildaPCA-basedadvancemonitoring systemisexplainedindetail,withexamplesandindustrialcasestudies.

FaultDiagnosis

Chemicalindustriesrecentlydiscoveredthatalargeamountofprofitbecomeseroded duetounplannedshutdownsoftheplant.Duetospurioustripsofequipmentmuch potentialprofitislost.Onemajoringredientsofprofitmaximizationistoincreaseplant reliabilityandrunninghours.Plantshutdowncanbeavoidedbybuildingarobustfault diagnosissystemthatwilldetectandalerttheoperatoraboutanypotentialeventthat canleadtoplantdisturbanceandeventuallyplantshutdownbeforeitstartshappening.HowarobustfaultdiagnosissystemcanbemadebyPCAandANNthatcanbe implementedinindustryisdiscussedindetailinthischapterwithindustrialcasestudies.Differentaspectsofenhancementofplantreliabilitybyanadvancemonitoringand faultdiagnosissystemisthemainfocusofthechapter.

OptimizationoftheExistingDistillationColumn

Oftendistillationcolumnscauseabottlenecktoincreaseplantcapacity.Itisvery importanttounderstandtheoperationandcapacitylimitsofdistillationcolumnsin

Preface

commercialplants.Chapter11enlightensthereaderabouthowtoevaluateafeasible operatingwindowbyusingacapacitydiagram.Calculationsbasedonthecapacity diagramandtheeffectofdifferentdesignandoperatingvariablesonthecapacity diagramareexplainedindetailwithexamplecalculations.Thischapterenlightensthe readeraboutoperatingprofileassessment,towerratingassessment,towerefficiency assessment,andhydraulicperformanceevaluationsofrunningdistillationcolumns. Italsoprovidespracticalguidelinesregardingwhattolookforindistillationcolumn optimizationinanindustrialcontextandexplainsthewholeconceptwithreal-lifecase studies.

NewDesignMethodology

Duetointensecompetitionamongchemicalindustriesacrosstheglobe,itisnowabsolutelynecessarytominimizethecostofequipmentduringthedesignphase.Equipment costsconsistoftheinitialcapitalcostoftheequipmentandtheoperatingcostsofthe equipment.Duetotheavailabilityofafastercomputer,itisnowfeasibletodesignone milliondifferentdesignconfigurationsforanyequipment.Itisimportanttochoosethe lowestcostequipmentamongthoseonemillionoptions,butonethatalsoobeysall oftheconstraintsofoperation,safety,maintainability,etc.Hence,tosurviveintoday’s cut-throatcompetition,itisnecessarytoputtheminimizationofequipmentcostasthe maindesigntargetandanoptimizationalgorithmisrequiredtosearchallfeasibledesign configurationstoarriveataminimumcostdesignquickly.Thisgivesrisetoanewdesign methodologyofprocessequipment.Earliertraditionaldesignmethodology,wherecost isnotconsideredasadesigntargetduringthedesignphase,nolongerproducesacompetitivedesign.Inthischapter,anewdesignmethodologyofaplate-typedistillation columnisconsideredasacasestudytoshowtheessenceofthenewdesignmethodology. Thischapterevolvesastrategytooptimizevarioustraygeometricparameters,liketray diameter,holediameter,fractionalwholearea,downcomerwidth,etc.,andalsodecides ontheoptimumfeedtraylocationbasedontheoverallcostminimizationconceptby particleswarmoptimizationtechniques.

GeneticProgramingforModelingofIndustrialReactors

Industrialreactorsarethemostpotentialcandidatesusedtoincreaseprofit,yetthey arethemostneglectedintheoptimizationprojectinindustry.Thisisduetofearofprocessengineerstochangereactionparametersbeyondtheirusualboundariesbecause ofpoorknowledgeofreactionkinetics.Conventionalmethodsforevaluatingcomplex industrialreactionkineticshavetheirownlimitations.Chapter13introducesacompletelynewadvancedcomputationaltechnique,namelygeometricprograming(GP), tomodelindustrialreactionkinetics.Beinganewcomputationaltechnique,themain advantageofGPisthatprocessengineersdonothavetoassumeanyformofkinetic equationbeforehand;itwillbegeneratedonitsownfromavailableindustrialreactor data.ThetheoreticalbasisofGPwithitsvariousfeatures,analgorithmofGP,anddifferentcasestudiesarediscussedindetailtoenlightenthereaderaboutthisnewtechnique. Howageneratedkineticmodelcanbeusedonlineandofflinetoincreaseprofitfroman industrialreactorisdescribedindetailthroughcasestudies.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.