[Ebooks PDF] download Nuclear reactor physics and engineering lee full chapters

Page 1


Nuclear reactor physics and engineering Lee

Visit to download the full and correct content document: https://ebookmass.com/product/nuclear-reactor-physics-and-engineering-lee/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Nuclear Reactor Physics and Engineering John C. Lee

https://ebookmass.com/product/nuclear-reactor-physics-andengineering-john-c-lee/

Nuclear Physics 1: Nuclear Deexcitations, Spontaneous Nuclear Reactions Ibrahima Sakho

https://ebookmass.com/product/nuclear-physics-1-nucleardeexcitations-spontaneous-nuclear-reactions-ibrahima-sakho/

Physics of nuclear reactors K. Umasankari

https://ebookmass.com/product/physics-of-nuclear-reactors-kumasankari/

Nuclear engineering : a conceptual introduction to nuclear power Joyce

https://ebookmass.com/product/nuclear-engineering-a-conceptualintroduction-to-nuclear-power-joyce/

Bioprocess Engineering. Kinetics, Sustainability, and Reactor Design 2nd

Edition Shijie Liu

https://ebookmass.com/product/bioprocess-engineering-kineticssustainability-and-reactor-design-2nd-edition-shijie-liu/

Bioprocess Engineering: Kinetics, Sustainability, and Reactor Design 3rd Edition Shijie Liu

https://ebookmass.com/product/bioprocess-engineering-kineticssustainability-and-reactor-design-3rd-edition-shijie-liu/

Fundamentals of Nuclear Science and Engineering 3rd Edition

https://ebookmass.com/product/fundamentals-of-nuclear-scienceand-engineering-3rd-edition/

Physics and Radiobiology of Nuclear Medicine 4th Edition, (Ebook PDF)

https://ebookmass.com/product/physics-and-radiobiology-ofnuclear-medicine-4th-edition-ebook-pdf/

A Modern Primer in Particle and Nuclear Physics

Francesco Terranova

https://ebookmass.com/product/a-modern-primer-in-particle-andnuclear-physics-francesco-terranova/

NUCLEARREACTOR PHYSICSAND ENGINEERING

NUCLEARREACTOR PHYSICSAND ENGINEERING

UniversityofMichigan

AnnArbor,Michigan

This edition first published 2020 © 2020JohnWiley&Sons,Inc.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Advice onhowtoobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofJohnC.Leetobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice

111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsin standardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsor warrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimall warranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.No warrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthis work.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitationand/orpotentialsourceof furtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservicestheorganization, website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthe publisherisnotengagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbe suitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethat websiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread. Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbut notlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData()

ISBN: 9781119582328

CoverdesignbyWiley

Coverimage: © LanaPo/Shutterstock

Setin9/11pt,NimbusRomNo9LbySPiGlobal,Chennai,India.

PrintedintheUnitedStatesofAmerica

10987654321 applied for

Prefacexiv

1.1HistoryandCurrentStatusofNuclearPowerPlants........2

1.2BasicFeaturesofNuclearPowerPlants..............3

1.3PressurizedWaterReactorSystems................5

1.4BoilingWaterReactorSystems..................11

1.5AdvancedReactorDesigns.....................17

2Neutron-nucleusReactionandNeutronCrossSection

2.1Neutron-nucleusReactionProbabilityandNeutronCrossSection28

2.2MechanismsofNeutron-nucleusInteraction............29

2.3NuclearFissionProcess......................32

2.4Two-bodyCollisionMechanicsandCenter-of-massSystem...37

2.5Single-LevelBreit-WignerFormulaforResonanceReaction...42

2.6DifferentialScatteringCrossSectionandScatteringKernel....45

2.6.1DifferentialMicroscopicScatteringCrossSection....46

2.6.2ScatteringKernelforIsotropicScatteringinCMFrame.47

2.7FurtherRemarksonNeutronCrossSection............49 References.................................54 Problems.................................55

3NeutronFlux,ReactionRate,andEffectiveCrossSection 59

3.1NeutronFluxandCurrent.....................60

3.2RateofNeutron-NucleusInteraction................66

3.3NeutronEnergyDistributionandEffectiveThermalCrossSection69 3.4Applicationtoa 1/v-Absorber...................73 References.................................74 Problems.................................74

4DerivationoftheNeutronDiffusionEquation 77

4.1BasicAssumptionsforNeutronBalanceStatement........78

4.2NeutronBalanceEquation.....................79

4.3NeutronSourceTerm........................83

4.4Fick’sLawofNeutronCurrent...................84

4.5NeutronTransportEquationand P1 Approximation........88

4.6RemarksonDiffusionCoefficient.................92

4.7LimitationsofNeutronDiffusionTheory.............94

4.8One-GroupNeutronDiffusionEquation..............94

4.9SummaryDiscussionofDiffusionEquation............96 References.................................96 Problems.................................97

5ApplicationsoftheOne-GroupNeutronDiffusionEquation99

5.1BoundaryConditionsforDiffusionEquation...........100

5.2SolutionofSteady-StateDiffusionEquation............104

5.2.1FluxinNon-multiplyingMediawithLocalizedSources.104

5.2.2FluxinNon-multiplyingMediawithDistributedSources112

5.3NeutronFluxinMultiplyingMediumandCriticalityCondition.115

5.3.1CriticalityandBuckling..................116

5.3.2EffectiveMultiplicationFactor..............117

5.3.3EigenfunctionsofDiffusionEquationandBuckling...119

5.4Four-andSix-FactorFormulasforMultiplicationFactor.....124

5.5ConcludingRemarks........................126 References.................................126

6NumericalSolutionoftheNeutronDiffusionEquation 131

6.1FiniteDifferenceFormofDiffusionEquation...........132

6.2FluxSolutionAlgorithm:InnerIteration.............136

6.3BoundaryConditionsforDifferenceEquation...........138

6.4SourceorOuterIteration......................140

6.5RelativePowerDistributionandOverallFlowChart.......143

6.6Single-ChannelFluxSynthesis...................145

6.7MultidimensionalFiniteDifferenceFormulation.........149

6.7.1Two-DimensionalMatrixFormulation..........149

6.7.2Three-DimensionalFormulation..............151

6.7.3ConvergencePropertiesofMatrixIterationSchemes...154

6.8Coarse-MeshDiffusionEquationSolver..............155

6.8.1NodalExpansionMethod.................155

6.8.2Pin-PowerReconstructionAlgorithm...........157

6.9KrylovSubspaceMethodasaDiffusionEquationSolver.....158 References.................................162 Problems.................................163

7ApplicationsoftheTwo-GroupNeutronDiffusionEquation165

7.1DerivationofMulti-GroupNeutronDiffusionEquation......166

7.2Steady-StateMulti-GroupDiffusionEquation...........170

7.3Two-GroupFormofEffectiveMultiplicationFactor.......172

7.4GeneralTwo-GroupDiffusionAnalysis..............176 References.................................178 Problems.................................178

8NuclearReactorKinetics181

8.1DerivationofPointKineticsEquation...............182

8.1.1RepresentationofDelayedNeutronProduction......182

8.1.2PointKineticsApproximation...............184

8.1.3One-GroupDelayedNeutronModel...........186

8.2SolutionofPointKineticsEquationwithoutFeedback......187

8.2.1StepInsertionofReactivity................187

8.2.2PromptJumporZero-LifetimeApproximation......190

8.2.3InhourEquation......................192

8.2.4LinearizedKineticsEquationandTransferFunction...195

8.2.5InfiniteDelayedApproximation..............197

8.3StateSpaceRepresentationofPointKineticsEquation......198

8.4PointKineticsEquationwithFeedback..............201

8.4.1TheErgen-WeinbergModel................202

8.4.2TheNordheim-FuchsModel................205

8.5ReactivityMeasurements......................207

8.6SystemStabilityAnalysis.....................210

8.7PointReactorandSpace-DependentReactorKinetics.......213 References.................................215 Problems.................................216

9FastNeutronSpectrumCalculation 219

9.1NeutronBalanceEquationandSlowingDownDensity......221

9.2ElasticScatteringandLethargyVariable..............224

9.3NeutronSlowingDowninInfiniteMedium............227

9.3.1SlowingDownintheFirstCollisionInterval.......227

9.3.2SlowingDownbelowtheFirstCollisionInterval.....231

9.4ResonanceEscapeProbability...................236

9.4.1EffectiveResonanceIntegral...............236

9.4.2EnergySelf-ShieldingFactor...............238

9.4.3WideResonanceApproximation.............239

9.4.4ProbabilityTableorSubgroupMethod..........240

9.5DopplerBroadeningofResonances................243

9.5.1QualitativeDescriptionofDopplerBroadening......243

9.5.2AnalyticalTreatmentofDopplerBroadening.......244

9.6FermiAgeTheory.........................248

9.7CommentsonLatticePhysicsAnalysis..............252

10PerturbationTheoryandAdjointFlux255

10.1OperatorNotationforNeutronDiffusionEquation........256

10.2AdjointOperatorandAdjointFlux.................257

10.3First-OrderPerturbationTheory..................259

10.4AdjointFluxforControlRodWorthCalculation.........261

10.5AdjointFluxforVariationalFormulation.............263

10.6AdjointFluxforDetectorResponseCalculation..........264

10.7AdjointFormulationforFluxPerturbationCalculation......266

10.8ConcludingRemarksonAdjointFlux...............269 References.................................270

11LatticePhysicsAnalysisofHeterogeneousCores

273

11.1MaterialHeterogeneityandFluxDistributioninUnitCell....275

11.2NeutronicAdvantagesofFuelLumping..............277

11.3DiffusionTheoryModelforThermalUtilization.........281

11.4ImprovedMethodforThermalDisadvantageFactor.......286

11.4.1BlacknessorSimplifiedCollisionProbabilityMethod..287

11.4.2Amouyal-Benoist-HorowitzMethod...........287

11.5ResonanceEscapeProbabilityforHeterogeneousCell......291

11.5.1SpatialSelf-ShieldingforHeterogeneousUnitCell....291

11.5.2EngineeringApproachesforResonanceIntegral.....295

11.5.3ImplementationintheCPM-3Code............299

11.6ThermalSpectrumCalculation...................300

11.6.1Wigner-WilkinsModel..................300

11.6.2QualitativeBehaviorofThermalNeutronSpectrum...301

11.7IntegralTransportMethods.....................303

11.8 B1 FormulationforSpectrumCalculation.............306

11.8.1BasicStructureof B1 Formulation............307

11.8.2NumericalSolutionof B1 Equations...........309

11.9LatticePhysicsMethodologyforFastReactor...........312

11.9.1BondarenkoFormulationforSelf-ShieldingFactor....312 11.9.2MC2-3Code........................314

11.9.3ERANOSSystem.....................314

11.10MonteCarloLatticePhysicsAnalysis...............315 11.11OverallReactorPhysicsAnalysis.................315 References.................................317 Problems.................................319

12NuclearFuelCycleAnalysisandManagement323

12.1NuclearFuelManagement.....................324

12.2KeyNuclideChainsforNuclearFuelCycle............327

12.3FuelDepletionModel.......................330

12.3.1FuelDepletionEquation..................330

12.3.2SolutionofPointwiseDepletionEquation.........331

12.3.3FuelDepletionEquationinGlobalMGDCalculation..333

12.3.4SimpleModelforFuelBurnupEstimation........336

12.4EquilibriumCycleandMassBalance...............337

12.4.1NuclideBalanceStatement................338

12.4.2MaterialFlowSheet....................339

12.4.3REBUSEquilibriumInventoryCalculation........341

12.5SimplifiedCyclingModel.....................343

12.5.1Reactivity-BasedInstantCyclingMethod.........343

12.5.2ApplicationofInstantCyclingMethod..........344

12.6FissionProductXenonBuildup..................349

12.6.1Mechanismfor 135XeProductionandBalanceEquation.350

12.6.2Time-DomainSolutionofXe-IBalanceEquation....351

12.6.3EffectofSamariumBuildup................354

12.7GeneralIncoreManagementConsiderations............355

12.7.1ReactivityVariationoverFuelCycle...........355

12.7.2Thermal-HydraulicFeedbackandPowerDistribution..356

12.7.3ControlRequirementsforLightWaterReactor......357

12.7.4PowerDistributionControl................359

12.8RadioactiveWasteandUsedNuclearFuelManagement.....360

12.8.1ClassificationofRadioactiveWaste............360

12.8.2CharacteristicsofRadioactiveWaste...........362

12.8.3StatusofUsedNuclearFuelInventory..........364

12.8.4PartitionandTransmutationofWaste...........365 References.................................368 Problems.................................371

13Thermal-HydraulicAnalysisofReactorSystems373

13.1EmpiricalLawsforEnergyandMomentumTransport......375

13.1.1Fourier’sLawofHeatConduction.............375

13.1.2Newton’sLawofViscosity................376

13.1.3Newton’sLawofCooling.................377

13.2DerivationofFluidConservationEquations............378

13.2.1EquationofContinuity...................378

13.2.2EquationofMotionandNavier-StokesEquation.....379

13.2.3EquationsofEnergyConservation............381

13.2.4CommentsonFluidConservationEquations.......385

13.3SimpleSolutionsofFluidConservationEquations........385

13.3.1HeatConductioninCylindricalFuelRod.........393

13.3.2HeatConductionthroughCompositeWall........395

13.3.3ForcedConvectioninLaminarFlow...........398

13.3.4VelocityDistributioninTurbulentFlow..........401

13.3.5FrictionFactorandHydraulicDiameter..........403

13.4ConservationEquationsforChannelFlow.............404

13.4.1EquationofContinuity...................404

13.4.2EquationofMotionandPressureDrop..........404

13.4.3EquationofEnergyConservation.............406

13.5AxialTemperatureDistributioninReactorCore..........406

13.5.1PowerDistributionandHeatFluxinReactorCore....407

13.5.2AxialTemperatureProfileinPWRCore.........409

13.5.3AxialTemperatureProfileinBWRCore.........411

13.5.4HotChannelFactors....................413

13.6BoilingHeatTransferandTwo-PhaseFlow............416

13.6.1PoolBoilingRegimes...................417

13.6.2FlowBoilingRegimesandTwo-PhaseFlowPatterns...418

13.6.3HomogeneousEquilibriumFlowModel.........420

13.6.4SlipFlowModel......................421

13.6.5DriftFluxModel......................428

13.7ThermalHydraulicLimitationsandPowerCapability.......430

13.7.1DNBRatioandNumberofFuelRodsReachingDNB..431

13.7.2Non-UniformHeatFluxCorrection............432

13.7.3IterativeDeterminationofDNBRatio...........435

13.7.4PowerCapabilityDetermination..............436

13.8Thermal-HydraulicModelsforNuclearPlantAnalysis......438

13.8.1LightWaterReactorSystemModelingCodes.......438

13.8.2SubchannelAnalysisCodes................443

13.8.3Sodium-CooledFastReactorCodes............445

13.8.4ContainmentAnalysisCodes...............445

13.8.5ComputationalFluidDynamicsCodes..........446

13.9CommentsonThermal-HydraulicModels.............447 References.................................448 Problems.................................451

14PowerCoefficientsofReactivity

14.1PhysicalPhenomenaAffectingCoreReactivity..........456

14.2RelationshipbetweenReactivityCoefficients...........458

14.3Two-GroupRepresentationofReactivityFeedback........459

14.4ParametricDependenceofLWRReactivityCoefficients.....461

14.5ReactivityCoefficientsinSodium-CooledFastReactor......463

14.6ReactivityFeedbackModelforSodium-CooledFastReactor...466

15NuclearEnergyEconomics

15.2OverviewofEngineeringEconomics...............474

15.3CalculationofNuclearElectricityGenerationCost........476

15.3.1CapitalCost........................476

15.3.2FuelCost..........................477

15.3.3OperationandMaintenanceCost.............482

15.3.4DecommissioningCost..................482

15.4ImpactofIncreasedCapitalandO&MCosts...........483

16.1Space-TimeReactorKinetics...................490

16.1.1NumericalSolutionofSpace-TimeKineticsEquation..491

16.1.2DirectSolutionofSpace-TimeKineticsEquation.....491

16.1.3Quasi-staticFormulationofKineticsEquation......492

16.1.4ReactivityDeterminationfromMultipleDetectors....495

16.2Space-TimePowerOscillationsduetoXenonPoisoning.....499

16.2.1ModalAnalysisofSpace-TimeXenon-PowerOscillations500

16.2.2StabilityofSpace-TimeXenon-PowerOscillations....504

16.2.3Space-TimeXenon-PowerOscillationsinX-Yplane...510

16.3Time-OptimalReactorControl...................512

16.3.1OptimalControlofXenon-InducedTransients......512

16.3.2ControlofSpatialXenonOscillations...........516

16.4Model-BasedReactorControl...................521

16.4.1LinearQuadraticRegulator................521

16.4.2 H2 Controller.......................523

16.4.3 H∞ Controller.......................525

16.4.4AugmentedPlantRepresentation.............527

16.5AlternateReactorControlTechniques...............529

16.6KalmanFilteringforOptimalSystemEstimation.........534 References.................................536

17ElementsofNeutronTransportTheory543

17.1CollisionProbabilityMethod...................543

17.1.1IntegralTransportEquation................544

17.1.2ReciprocityRelationship..................546

17.1.3TransportKernelandCollisionProbability........547

17.2First-FlightEscapeProbabilityandDiracChordMethod.....549

17.3FluxDepressionCalculationandBlackness............554

17.3.1EscapeProbabilityandFluxDepressionFactor......554

17.3.2NetEscapeProbabilityandCollisionProbability.....556

17.3.3DancoffFactorforFuelLattice..............557

17.4NumericalSolutionofNeutronTransportEquation........559

17.4.1CollisionProbabilityCalculationforAnnularGeometry.560

17.4.2DiscreteOrdinatesMethod................564

17.4.3MethodofCharacteristics.................566

17.4.4MonteCarloAlgorithm..................567 References.................................570 Problems.................................572

AppendixC:SpecialMathematicalFunctions

581

C.1GammaFunction..........................581

C.2LegendrePolynomialandSphericalHarmonics..........583

C.3BesselFunction...........................585

C.4DiracDeltaFunction........................587 References.................................588

AppendixD:IntegralTransforms 591

D.1LaplaceTransform.........................591

D.2FourierTransform.........................592

D.3Jordan’sLemma..........................593 References.................................594

AppendixE:CalculusofVariationforOptimalControlFormulation595

E.1Euler-LagrangeandHamiltonEquations.............595

E.2Pontryagin’sMaximumPrinciple.................597 References.................................602

AppendixF:KalmanFilterAlgorithm

603

F.1LinearKalmanFilter........................603

F.2UnscentedKalmanFilter......................606

PREFACE

Thebookhasbeendevelopedtointroduceundergraduateandgraduatestudentsin nuclearengineering,aswellaspracticingengineers,tobasicconceptsofnuclear reactorphysicsandapplicationsoftheconceptstotheanalysis,design,control, andoperationofnuclearreactors.Thebasicconceptsarediscussedandthe associatedmathematicalformulationspresentedwiththeunderstandingthatthe readerhassolidbackgroundindifferentialequationsandlinearalgebra.Afocus isplacedontheuseofneutrondiffusiontheory,withaminimumuseofthe neutrontransportequation,forthedevelopmentoftechniquesforlatticephysics andglobalreactorsystemstudies.Whentheneutrontransportequationisused, effortismadetostaywithone-dimensionalformsoftheBoltzmannequation andLegendrepolynomials,withoutinvokingthefull-blownthree-dimensional Boltzmannequationandsphericalharmonics.Recentdevelopmentsinnumerical algorithms,includingtheKrylovsubspacemethod,andtheMATLABsoftware, includingtheSimulinktoolbox,arediscussedforefficientstudiesofsteady-state andtransientrectorconfigurations.Inaddition,nuclearfuelcycleandassociated economicsanalysisarepresented,togetherwiththeapplicationofmoderncontrol theorytoreactoroperation.Aself-containedderivationoffluidconservation equationsispresented,togetherwithrelevantexamples,sothatthematerialcould

beusedinasequenceofcoursesinnuclearreactorphysicsandengineeringto coverthermal-hydraulicanalysisofnuclearsystems.

Theoverallstructureofthebookallowsthecoverageoffundamentalconcepts andtoolsnecessaryfornuclearreactorphysicsstudieswiththefirsthalfofthebook uptoChapter10,asitisusuallydoneinaone-semesterseniornuclearengineering courseattheUniversityofMichigan.Someoftheremainingchaptersofthebook couldbecoveredinafollow-upsemesterintheundergraduatecurriculumorin graduatecourses;Chapters16and17couldlikelybecoveredinseparatecourses dealingwithnuclearreactorkineticsandreactordesignanalysis,respectively,The authorsincerelyhopesthatthebookwillaugmentandupdateseveralexcellent textbooksthathavebeenusedinthenuclearscienceandengineeringcurriculum intheUnitedStatesandelsewhereforthefirsthalfcenturyofnuclearenergy development.

Thematerialforthebookhasoriginatedfromseveralreactorphysicsandengineeringcoursesthattheauthorhastaughtoverthepast45yearsattheUniversity ofMichiganandalsoonapart-timebasisattheKoreaAdvancedInstituteofScienceandTechnologyandPohangUniversityofScienceandTechnology.Some ofthematerialalsoreflectsindustrialexperiencehegainedthroughhisearlyemploymentsatWestinghouseElectricCorporationandGeneralElectricCompany. Selectionofthetopicsandpresentationofthematerialhavegreatlybenefitedfrom discussionswiththestudentsinandoutsidetheclassroomandtheauthorwishes toexpressappreciationtoagenerationofbright,youngstudentsatallofthethree institutions.

Inaddition,theauthoracknowledgeshelpandsupportfromanumberofcurrent andformerstudentsincludingMatthewKrupcaleandJunjieGuo.Heoffersthanks forhelpandencouragementfromhismentors,thelateProfessorsThomasPigford, JohnKing,andWilliamKerr,aswellashiscolleaguesincludingWilliamMartin, ZiyaAkcasu,JamesDuderstadt,thelateProfessorGlennKnoll,ThomasDownar, WonSikYang,VolkanSeker,FrederickBuckman,andDavidWehe.Special appreciationisexpressedtothelateProfessorByungHoLeeforintroducingthe authortothebeautyandchallengesofnuclearreactorphysicsandtoProfessor HansM.MarkforprovidingopportunitiesforgraduatestudyatBerkeleyduring theexcitingdaysofthefreespeechmovement.Finally,heoffersthankstohis wifeTheresaanddaughterNinafortheirlovingcareandsupport.

September2019

PERMISSIONSANDCOPYRIGHTS

Manyfiguresandtablesinthisbookhavebeenreproducedfromcopyrighted sources.Permissionfromthepublishersandauthorsfortheuseofthematerialis gratefullyacknowledged.Someofthesourcesaredirectlyidentifiedincaptions andfootnotes,whilemanyothersarecitedbyalphanumericreferences.Citations forthesesourcesarelistedbelow:

ConvectiveBoilingandCondensation,J.G.Collier

Copyright © 1972byMcGraw-Hill.Figure13.17. NuclearReactorKinetics, 2ndedition,M.Ash

Copyright © 1979byMcGraw-Hill.Figure8.15. MathematicalMethodsforPhysicist:AComprehensiveGuide, 7thed.,G.B. Arfken,J.J.Weber,andF.E.Harris

Copyright © 2013byAcademicPress.FiguresC.1,C.2,C.3,C.4. NuclearScienceandEngineering

Copyright ©1956,1957,1980,1982,1989,1993,2015,byTaylor&Francis Group,LLC,530WalnutStreet,Suite850,Philadelphia,PA19106.Figures9.8, 10.5,16.5,16.6,16.14,16.15,16.16,16.19,16.20,16.23.

NuclearTechnology

Copyright ©1978byTaylor&FrancisGroup,LLC,530WalnutStreet,Suite850, Philadelphia,PA19106.Figures10.3,10.4. xvi

PERMISSIONSANDCOPYRIGHTS

Anumberoffiguresandatablewerealsoobtainedfrompublicationsofvarious USgovernmentagenciesandlaboratoriesandotheropen-sourcepublications: Figures1.1,1.2,1.3,1.4,1.6,1.7,1.8,1.9,1.10,1.11,1.12,1.13,1.14,1.15,1.16, 1.17,1.18,1.19,11.8,13.10,13.26,14.4,16.11,Table12.5.

ListofTables

1.1KeyfeaturesofthreeGenerationIVplants.............22

2.1Fissionenergybreakdownfor 233U, 235U, 238U, 239Pu,and 241Pu33

2.2DelayedneutrondataforU233,U235,Pu239,Pu241,andU238 ...35

2.3ContentsofEvaluatedNuclearDataFile..............38

5.1Thermaldiffusionpropertiesofmoderators............112

5.2Fluxandgeometricbucklingforbarereactors...........122

5.3NumberdensitiesandmicroscopiccrosssectionsforPWRcore..122 5.4Macroscopiccrosssectionsandabsorptionrates..........122 11.1Extrapolationdistanceforablackcylinder.............290 11.2Comparisonofthermal-grouplatticeparameters..........290 12.1Comparisonofbreedingparameter.................329 12.2Evolutionofuniformthree-batchcore...............347 12.3Evolutionofnon-uniformthree-batchcore.............348 12.4ComponentsofexcessreactivityforLWR.............358 12.5Doseriskfactorsforusednuclearfuel...............367 13.1Fluidconservationequation.....................386 13.2Generalizedformoffluidtransportequations...........387 13.3Thermal-hydraulicparametersofAP600andSBWR.......427 14.1Representativefeedbackcoefficientsandtemperaturerises....467 15.1Capitalcostestimatefor1.0GWeLWRplant...........476 15.2Costestimatesfornuclearfuelcycle................480 16.1Stabilityindexmeasurements....................508 17.1Escapeprobabilityasafunctionofmeanchordlength.......554

A.1Keyphysicalconstants.......................575

B.1Keyfeaturesofmajorreactortypes.................579

C.1Legendrepolynomials.......................584

C.2ZerosoftheBesselfunctions....................586

D.1ShorttableofLaplacetransforms..................593

D.2ShorttableofFouriertransforms..................594

E.1PhaseplanesolutionforExampleE.1...............600

E.2PhaseplanesolutionforExampleE.2...............602

ListofFigures

1.1Evolutionofnuclearpowerplantgenerations..........3

1.2OveralllayoutofaPWRplant..................4

1.3Schematicdiagramofaplant..................6

1.4PWRpressurevessel.......................8

1.5CoreandfuelassemblystructureofatypicalPWRplant....9

1.6Cross-sectionviewofPWRfuelassemblies...........10

1.7SchematicdiagramofaBWRplant...............12

1.8CutawayviewofMarkIBWRcontainmentstructure......13

1.9CutawayviewofaBWRpressurevessel............14

1.10BWRfuelbundleclusterillustratingtheW-WandN-Ngaps..16

1.11SchematicdiagramoftheESBWRsafetysystem........17

1.12Sodium-cooledfastreactorplant.................19

1.13TopviewofreactorcoreofSFRplant..............19

1.14Very-high-temperaturereactorplant...............20

1.15TopviewinsideVHTRreactorvessel..............21

1.16TRISOparticleandVHTRfuelassembly............21

1.17Molten-saltreactorplant.....................22

1.18TopviewinsideMSRreactorvessel...............23

1.19SchematicillustrationoftheNuScalemodule..........23

2.1Acollimatedbeamofneutronincidentonaslab.........29

2.2Energylevelsforcompoundnucleus..............31

2.3Fissionproductreleasedvs.massnumberfor 235U.......34

2.4Numberoffissionneutronsreleasedfor 235Uand 239Pu....36

2.5Numberofdelayedneutronsreleasedfor 235Uand 239Pu....37

2.6Energyspectrumoffissionneutronsemittedfor 235U......38

2.7VelocitiesbeforeandafterthecollisioninLabandCMsystems.39

2.8Relationshipbetweenvelocitiesandscatteringangles.....40

2.9Resonancecrosssectionasafunctionofneutronenergy.....44

2.10Scatteringofcollimatedbeam..................46

2.11Solidanglewithazimuthalsymmetry...............48

2.12Elasticscatteringkernel.....................49

2.13Totalcrosssectionof 10B....................50

2.14Totalcrosssectionof 12C....................51

2.15Radiativecapturecrosssectionfor 238U.............53

2.16Radiativecapturecrosssectionfor 239Pu............54

3.1Differentialvolumeelementsinphysicalandvelocityspaces..61

3.2Differentialcylinderforangularfluxvisualization.......62

3.3Neutronfluxforacollimatedneutronbeam...........64

3.4Projectionofaunitcross-sectionalarea..............65

3.5Relationshipbetweenvectorcurrentandnetcurrent......66

3.6Maxwell-Boltzmanndistributionasafunctionofspeed.....72

4.1Unitcross-sectionalareaforthenegativepartialcurrent.....85

4.2Polarandazimuthalanglesinone-dimensionalgeometry....89

4.3Physicalinterpretationoftransportmeanfreepath.......94

5.1Linearextrapolationoffluxatafreesurface...........101

5.2Twomaterialregionsseparatedbyvacuum............102

5.3Planarsourceinslabgeometry..................103

5.4ClosedcontourintheFourierdomain..............107

5.5Extrapolatedboundaryforslabgeometry.............109

5.6Two-regionslabwithplanesource................110

5.7Constructionofaplanesourcefromannularringsources....115

5.8Threelowest-orderfluxmodesforslabreactor.........120

5.9Lifecycleofneutrons......................125

6.1Discretizationschemeforthefluxandfluxderivative......133

6.2Discretizedfluxdistributionatthevacuumboundary.......139

6.3Fluxdistributionnearreflectingboundary............139

6.4Innerandouteriterationsforsolutionofthediffusionequation.145

6.5Finite-differencemeshstructure.................148

6.62-Ddiscretizationscheme.....................149

6.72-Dfinite-differencestructure..................152

6.82-Dlinerelaxationscheme....................153

6.9Successiverelaxationscheme...................154

6.10Nodalexpansionmethodgeometry...............156

6.11Illustrationofthehomogenousandheterogeneousfluxes....158

6.12Arnoldiprocedureformatrixmanipulation...........160

7.1Lethargyandenergygroupstructure...............167

7.2One-andtwo-groupfluxdistributionsforareflectedreactor..177

8.1Schematicsofdecaychainsforfissionproduct 87 35Br.......183

8.2Solutionsofpointkineticsequation...............190

8.3Reactivityversusrootsoftheinhourequation..........195

8.4Transferfunctionrepresentingtheoutput-to-inputratio.....197

8.5Open-looptransferfunction...................200

8.6SimulinksetupforthepulsesourcesolutionofExample8.2...201

8.7PhaseplanesolutionoftheErgen-Weinbergmodel........204

8.8Time-domainbehavioroftheErgen-Weinbergmodel......204

8.9Time-domainbehavioroftheNordheim-Fuchsmodel.....207

8.10Inversemultiplicationasafunctionoffuelmass.........208

8.11Reactortransferfunction G withfeedbackfunction H .....210

8.12GenerationofNyquistdiagram.................211

8.13Nyquistdiagramfor GH =1/s(s +1)(s +2),Example8.4..212

8.14Bodediagramfor GH =1/s(s +1)(s +2),Example8.2...214

8.15Bodediagramforopen-loopreactortransferfunction G(s) ...215

9.1Phasevolumerepresentingneutronbalance...........223

9.2Lethargyvariableandaveragelethargyincreasepercollision..225

9.3Collisiondensityapproachingasymptoticbehavior.......233

9.4Collisionintervalsbeforeandafterthecollision.........234

9.5Comparisonofparameters γ and ξ asafunctionof α......235

9.6Illustrationofprobabilitytablemethod.............242

9.7Dopplerbroadeningofabsorptionresonance..........244

9.8Resonanceintegralfunction J(ξ,β) ...............247

10.1Weightingfactorsforperturbations...............261

10.2Controlrodworthcurves.....................263

10.3DetectorgeometryforIndianPointUnit2plant.........266

10.4Powermapandexcoredetectorresponsedistribution......267

10.5Pointwisefluxerrorsinmodalexpansioncalculations.....269

11.1Unit-cellrepresentations.....................274

11.2Energydependenceofafuelabsorptioncrosssection......278

11.3Spatialfluxdistributionasafunctionofneutronenergy....278 11.4Parameters f , p,and k∞ vs.degreeofheterogeneity......281

11.5Two-regionunitcellinslabgeometry..............282

11.6Thermaldisadvantagefactorvs.fuelthickness.........284

11.7Fluxself-shieldingfactor....................295

11.8Thermalneutronfluxspectrum.................302

11.9Absorptioncrosssectionandspectralhardening.........303

11.10ComparisonoffluxspectrafortypicalSFRandPWRcores..313

11.11Overallreactorphysicscalculationalprocedure.........316

12.1Flowchartforonce-throughuraniumcycle...........325

12.2Frenchplutoniumrecyclingscheme...............326

12.3SymbioticLWR-SFRtransmutersystem............327

12.4Uranium-plutoniumfuelcycle..................328

12.5Thorium-uraniumfuelcycle...................329

12.6CASMO-3heavy-nuclidetransmutationchain.........333

12.7Iterativesearchforanequilibriumcycle.............339

12.8Nuclidevectorsforincoreandexcorefuelcycles........339

12.9Heavy-metalmaterialflowsheetforaclosedfuelcycle.....340

12.10Macroandmicrofuelcycles...................342

12.11Three-regionequilibriumcyclemodeling............344

12.12Evolutionof 135Iand 135Xeconcentrations...........354

12.13Reactivityasafunctionoffuelburnup.............356

12.14Corereactivityvs.H-to-235Uatomratio............358 12.15Halingpowerandburnupdistributions.............361 12.16ToxicityofTRUsandfissionproducts..............366

13.1Temperaturegradientinaslab..................375

13.2Velocitygradientinfluidbetweenflatplates..........376

13.3Temperaturedistributionatasolid-fluidinterface........378

13.4Differentialfluidvolume.....................378

13.5Hagen-Poiseuilleflow......................388

13.6ShearstressandfluidvelocityforHagen-Poiseuilleflow....389

13.7Time-dependentone-dimensionalvelocityprofile........391 13.8Dimensionlessvelocityprofile..................392

13.9Boundarylayerthicknessasafunctionoftime.........393

13.10ThermalconductivityofUO2 ..................395

13.11Heatconductionthroughthreeslabs...............396

13.12Radialtemperaturedistributioninafuelrod..........397

13.13Turbulentvelocityprofile....................402

13.14AxialtemperatureprofilesinPWRcore.............412 13.15AxialtemperatureprofilesinBWRcore.............413 13.16Poolboilingregimes.......................417 13.17Flowregimesinforcedconvectiveflow.............419 13.18Temperaturedistributionandboilingonset...........420

13.19Twoseparatephasesinaflowchannel..............422 13.20Voidfractionvs.flowquality..................423

13.21VoidfractionandcoolantdensityinBWRchannel.......426 13.22NumberoffuelrodsreachingDNBprobability.........432

13.23Coolantchannelillustratingsuperheatedliquidlayer......433 13.24IterativedeterminationofMDNBR...............435

13.25IterativedeterminationofMCPR................437

13.26Powerpeakingfactorasafunctionofaxialoffset........439 13.27Powercapabilitydetermination.................440

13.28Staggeredmeshstructureforcontrolvolume..........442

13.29NSSSnodalizationdiagramforPWRplant...........444

14.1Moderatortemperaturefeedbackeffectsonreactivity......461 14.2BurnupdependenceofreactivitycoefficientsinLWRs.....464 14.3Capture-to-fissioncrosssectionratiofor 239Pu.........464

14.4ReactivityfeedbackformetallicfuelSFR............465

15.1PowercapitalcostindexforNorthAmerica...........473 15.2Massbalancefortheenrichmentprocess............479

16.1Reactivityinsertionduetocontrolrodejection.........495

16.2PowertransientwithPKEandquasi-staticsolutions......496

16.3KAHTERpebble-bedcriticalassembly.............498

16.4KAHTERinstrumentationchannellayout............499

16.5Integralrodworthwithoutspace-timecorrection........499

16.6Integralrodworthwithmodal-localspace-timecorrection...500

16.7Evolutionoffluxandxenonandiodineconcentrations.....501

16.8Determinationofsystemparameter f3 ..............506

16.9Fluxperturbationandreactivityfeedback............509

16.10Combinationofdiametralandfirstazimuthalmodes......511

16.11Xenon-inducedradialpoweroscillations............512

16.12Phase-planetrajectoryfortime-optimalshutdownstrategy...514

16.13Fluxprogramfortime-optimalshutdownstrategy........516

16.14Phase-planetrajectoryforfreerunningoscillation.......517

16.15Time-optimaltrajectoriesforconstrainedAOcontrol......519

16.16Time-domainsimulationofconstrainedAOcontrol.......521

16.17Modelbasedcontroller......................526

16.18Augmentedplantlayout.....................528

16.19 H∞ controlofNCDWOs....................530

16.20LQGcontrolofNCDWOs....................530 16.21Simulatedannealingprocess...................532

16.22Kalmanfilteringforfallingbody................536

16.23KalmanfilteringforTMI-2accidentsimulation.........537

17.1Geometryfordiffusinglump...................544

17.2Two-regionunitcell.......................548

17.3Geometryforescapeprobabilitycalculation..........549

17.4Chordlengthinalump.....................550

17.5Chordlengthforslab.......................552

17.6Chordlengthforsphere.....................553

17.7Escapeprobabilityandaverageflux...............556

17.8LatticearrangementforDancofffactorevaluation........558

17.9Longcylinderfortransmissionprobabilitycalculation.....560

17.10Geometryforcollisionprobability................561

17.11Unit-cellgeometryforcollisionprobabilitycalculation.....563

17.12RelationshipbetweenPDFandCDF..............569

C.1Gammafunction.........................582

C.2Besselfunctions J0(x),J1(x),and J2(x) ............586

C.3Besselfunctionsofthesecondkind Yn(x) ...........587

C.4ModifiedBesselfunctions In(x) and Kn(x) ..........588

D.1ApplicationoftheLaplacetransformtotheODEsolution....592

E.1Virtualdisplacementforparticletrajectory...........596

E.2Totalvariationwithvariableterminaltime...........598

E.3Feasibletrajectories.......................601

E.4OptimalsystemtrajectoryandcontrolforExampleE.1.....601

E.5OptimaltrajectoryandcostatevariablesforExampleE.2....602

F.1FlowofinformationforKalmanfilter..............607

CHAPTER1

NUCLEARPOWERPLANTS

AsofMarch2019,98nuclearpowerplantsprovideaninstalledelectricalgeneratingcapacityof102GWeandaccountforabout20%ofelectricitygeneratedin theUnitedStates,while448nuclearpowerplantsprovideaninstalledcapacityof 398GWeworldwide.AllofthenuclearpowerplantsintheU.S.and80∼85% worldwideutilizelight-watercooledreactors(LWRs),whichmaybegroupedinto pressurizedwaterreactors(PWRs)andboilingwaterreactors(BWRs).About 70%ofLWRsoperatingintheU.S.andaroundtheworldarePWRs.Webegin thisintroductorychapterwithSection1.1coveringabriefhistoryandthecurrent statusofnuclearpowerplants(NPPs)intheUnitedStatesandelsewhere.This isfollowedbySections1.2through1.4providinganintroductiontothebasic operatingfeaturesofthereactorcoreandnuclearsteamsupplysystem(NSSS) thatproduceheatandsteamthroughtheself-sustainingfissionprocess.Thefocus isprimarilyonLWRs,whichareexpectedtoserveasthekeyreactortypefor theforeseeablefuture.Advancedreactorconceptsincludingsmallandmodular reactor(SMR)designsunderdevelopmentarediscussedinSection1.5.

1.1HISTORYANDCURRENTSTATUSOFNUCLEARPOWER PLANTS

Thedevelopmentanddeploymentoffull-scaleNPPsbeganessentiallywiththe announcementin1964thatthe625-MWeOysterCreekpowerplantwouldbebuilt inForkedRiver,NewJersey,withanexpectedcapitalcostof ∼$100/kWe.The capitalcostwouldmaketheplantcompetitivewithcoal-firedpowerplants.The plantwentintocommercialoperationin1969.Althoughtherewereafewsmaller NPPsthatbeganoperationearlier,theprospectofeconomicallycompetitiveLWR plantsmademanyutilitycompaniesrushtoorderNPPsduringthenextdecadeuntil the1978accidentattheThreeMileIsland(TMI)Unit2plant.Approximately300 NPPorderswerecancelledduringtheseveralyearsfollowingtheTMIaccident duetopublicconcernsoverthesafetyofNPPsandthedifficultyencounteredin completingconstructionoftheplantsonscheduleandwithintheinitialbudget estimates.

Approximately100NPPswereconstructedbythe1980sandafterthat,nonew NPPswentintooperationfortwodecadesuntil2016,whentheWattsBarUnit 2(WB2)plantbegancommercialoperation.TheWB2projectinfactstartedin 1972andwassuspendedin1988whenthegrowthinpowerdemandbeganto declinefortheTennesseeValleyAuthority.ItssisterunitWattsBarUnit1began operationin1996andwasthelastnuclearplanttodosointheUnitedStates untiltheWB2plant.DuringthedecadesfollowingtheTMIUnit2accident, throughimprovedoperatortrainingandbyinstallingback-fitsafetyfeatures,the fleetof100NPPsprovidedapproximately20%ofelectricityintheUnitedStates atacompetitivegenerationcost.Beginninginthelate1970s,Franceadopted thePWRtechnologyandconstructedafleetofeconomicallycompetitiveNPPs overaperiodoftwodecades,with58plantsproviding ∼75%ofelectricityfor thecountryin2018.Severalothercountries,includingJapan,Korea,China,and Russia,alsocurrentlyoperatefleetsofnuclearplantswithpowerratingsinthe rangeof500∼1200MWe.ThecurrentfleetsofNPPsoperatingintheUnited StatesandelsewherearegenerallyknownasGenerationIIplants,whilemuch smallerunits,includingthe60-MWeShippingportPWRplant,200-MWeDresden Unit1BWRplant,and61-MWeFermiUnit1sodium-cooledfastreactor(SFR) plant,areknownasGenerationIplants.Figure1.1displaystheevolutionofthe NPPgenerations.

IllustratedinFigure1.1areadvancedLWRsincludingtheAdvancedBWR (ABWR),System80+,andAP600designsclassifiedasGenerationIIIplants, togetherwiththeevolutionaryGenerationIII+plantsthatofferimprovedsafety featuresandeconomics.PrimaryexamplesofGenerationIII+plantsarethe1.1-

Figure1.1 Nuclearpowerplantevolution. Source: [DOE02].

GWeAP1000PWR,1 1.5-GWeESBWR,and1.6-GWeEPRplants,someofwhich beganoperationin2018.Beginningintheearly2000s,effortwasinitiatedunder theaegisoftheUSDepartmentofEnergy(DOE)todevelopadvancedreactor designs,labeledasGenerationIVplants,thatcouldprovideenhancedsafetyand economicsofpowergeneration.

1.2BASICFEATURESOFNUCLEARPOWERPLANTS

InthebulkofNPPs,energyreleasedinthefissionprocessisdepositedasheat energyinitiallyinfuelpinsenclosedinmetallictubes.Thisenergyiseventually transmittedthroughheatconductionandconvectiontofluidcirculatingthrough thereactorcorewhichislocatedwithinasteelpressurevessel,withwallthickness of0.17∼0.2m.InthecaseofLWRs,waterisusedasthecirculatingfluid,known asthe reactorcoolant.Ingas-cooledreactors,pressurizedgases,e.g.heliumor carbondioxide,mayservetheroleofreactorcoolant,whilecirculatingliquid metal,e.g.sodiumorlead,picksuptheheatinliquid-metalcooledreactors.The CANDU(CanadianDeuteriumUranium)reactormaybecooledeitherwithheavy orlightwater.

OncethefissionenergyispickedupbythereactorcoolantinthePWR,the coolantcirculatesthroughaheatexchanger,wheretheheatistransferredfromthe

1AP1000isatrademarkorregisteredtrademarkofWestinghouseElectricCompanyLLC,itsaffiliates and/oritssubsidiariesintheUnitedStatesofAmericaandmayberegisteredinothercountries throughouttheworld.Allrightsreserved.Unauthorizeduseisstrictlyprohibited.

Figure1.2 OveralllayoutofaPWRplant. Source: [NRC08].

primarylooptothesecondaryloop,asillustratedschematicallyinFigure1.2.The heatexchangerinthePWRisknownasa steamgenerator,sincethecirculating fluidinthesecondaryheat-transferloopisallowedtoboilandtheresultingsteam isseparatedfromtheliquid.Thesteamisusedtoturnthesteamturbinesand electricalgenerators,therebyproducingelectricity.Includedintheschematicsin Figure1.2areapressurizer,whichisessentiallyanextensionoftheprimaryloop toregulatethepressureoftheprimarysystem,andareactorcoolantpump,which circulatesthereactorcoolant.Thecirculatingfluidinthesecondaryheat-transfer loopisknownas feedwater andthesteamthatexitsfromtheturbinesiscondensed intofeedwaterinthecondenserandassociatedmachinery.Thefeedwatersystem reheatsthecondensedsteamandregulatesthetemperatureofthefeedwaterbefore itrecirculatesintothesecondarysideofthesteamgenerator.Theheattransferred fromthesteamintothecondenseriseventuallyrejectedtotheatmospherethrough acoolingpondorcoolingtowerinatertiaryloop,whichisthefinalheat-transfer loopshowninFigure1.2.

InaPWRplant,thereactorpressurevessel(RPV),coolantpump,steamgenerator,andpressurizerareenclosedinaconcretecontainmentstructure,builtwithan innersteelliner.Theplantcomponentslocatedwithinthecontainmentbuilding arecollectivelyknownasthenuclearsteamsupplysystem(NSSS),whilethose locatedoutsidethecontainmentaregenerallyknownasthebalanceofplant(BOP). ParticularattentionisgiventothereliabilityandintegrityofNSSScomponents, whicharesubjecttospecificregulationsandoversightbytheUSNuclearRegulatoryCommission.InmodernBWRsemployingadirectcycle,coolantwater

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.