Get Optical fiber sensors: fundamentals for development of optimized devices ignacio del villar free

Page 1


Optical

Ignacio Del Villar

Visit to download the full and correct content document: https://ebookmass.com/product/optical-fiber-sensors-fundamentals-for-development-o f-optimized-devices-ignacio-del-villar/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Optical Fiber Sensors for the Next Generation of Rehabilitation Robotics Arnaldo Leal-Junior

https://ebookmass.com/product/optical-fiber-sensors-for-the-nextgeneration-of-rehabilitation-robotics-arnaldo-leal-junior/

Fundamentals of Optical Waveguides 3rd Edition

https://ebookmass.com/product/fundamentals-of-opticalwaveguides-3rd-edition-katsunari-okamoto/

Fundamentals of Semiconductor Devices (2nd Edition)

Betty Anderson

https://ebookmass.com/product/fundamentals-of-semiconductordevices-2nd-edition-betty-anderson/

Electrochemical Sensors: From Working Electrodes to Functionalization and Miniaturized Devices Maruccio G.

https://ebookmass.com/product/electrochemical-sensors-fromworking-electrodes-to-functionalization-and-miniaturized-devicesmaruccio-g/

Fundamentals of Web Development 3rd Edition Randy Connolly

https://ebookmass.com/product/fundamentals-of-webdevelopment-3rd-edition-randy-connolly/

Graphene-Based Electrochemical Sensors for Biomolecules Alagarsamy Pandikumar

https://ebookmass.com/product/graphene-based-electrochemicalsensors-for-biomolecules-alagarsamy-pandikumar/

Sensors for Mechatronics, 2nd Edition Paul P. L. Regtien

https://ebookmass.com/product/sensors-for-mechatronics-2ndedition-paul-p-l-regtien/

Wearable Physical, Chemical and Biological Sensors: Fundamentals, Materials and Applications 1st Edition Eden Morales-Narvaez (Editor)

https://ebookmass.com/product/wearable-physical-chemical-andbiological-sensors-fundamentals-materials-and-applications-1stedition-eden-morales-narvaez-editor/

Optical Materials and Applications: Volume 1 Novel Optical Materials Francesco Simoni

https://ebookmass.com/product/optical-materials-and-applicationsvolume-1-novel-optical-materials-francesco-simoni/

OpticalFibreSensors

IEEEPress

445HoesLane Piscataway,NJ08854

IEEEPressEditorialBoard

EkramHossain, EditorinChief

JónAtliBenediktssonDavidAlanGrierElyaB.Joffe XiaoouLi PeterLian AndreasMolisch

SaeidNahavandiJeffreyReed DiomidisSpinellis

SarahSpurgeonAhmetMuratTekalp

OpticalFibreSensors

FundamentalsforDevelopment ofOptimizedDevices

Editedby

IgnacioDelVillar IgnacioR.Matias

IEEEPressSeriesonSensors

VladimirLumelsky,SeriesEditor

Copyright©2021byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.

PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requeststo thePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat http://www.wiley.com/go/permission.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbestefforts inpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbe suitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthe publishernorauthorshallbeliableforanylossofprofitoranyothercommercialdamages,including butnotlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontact ourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnited Statesat(317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint maynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitour websiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationData:

Names:DelVillar,Ignacio,1978-editor.|Matias,IgnacioR.,1966–editor.|InstituteofElectricalandElectronicsEngineers.

Title:Opticalfibresensors:fundamentalsfordevelopmentofoptimized devices/editedbyIgnacioDelVillar,IgnacioR. Matias.

Othertitles:Opticalfibresensors(JohnWiley&Sons)

Description:Hoboken,NewJersey:Wiley-IEEEPress,[2021]|Series:IEEE Pressseriesonsensors|Includesbibliographicalreferencesandindex.

Identifiers:LCCN2020020787(print)|LCCN2020020788(ebook)|ISBN 9781119534761(cloth)|ISBN9781119534778(adobepdf)|ISBN 9781119534792(epub)

Subjects:LCSH:Opticalfibredetectors.

Classification:LCCTA1815.O6962021(print)|LCCTA1815(ebook)|DDC 621.36/92–dc23

LCrecordavailableathttps://lccn.loc.gov/2020020787

LCebookrecordavailableathttps://lccn.loc.gov/2020020788

CoverDesign:Wiley

CoverImage:©MirageC/GettyImages

Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Pondicherry,India

PrintedintheUnitedStatesofAmerica.

Contents

ListofContributors xv

Acknowledgment xix

AbouttheEditors xxi

1Introduction 1 IgnacioR.MatiasandIgnacioDelVillar References 14

2PropagationofLightThroughOpticalFibre 17 IgnacioDelVillar

2.1GeometricOptics 17

2.2WaveTheory 22

2.2.1ScalarAnalysis 23

2.2.2VectorialAnalysis 26

2.3FibreLossesandDispersion 32

2.4PropagationinMicrostructuredOpticalFibre 35

2.5PropagationinSpecialtyOpticalFibresFocusedonSensing 37

2.6Conclusion 45 References 46

3OpticalFibreSensorSet-UpElements 49 MinghongYangandDajuanLyu

3.1Introduction 49

3.2LightSources 50

3.2.1Light-EmittingDiodes 52

3.2.1.1SurfaceLight-EmittingDiode 52

3.2.1.2SideLight-EmittingDiode 52

3.2.2LaserDiode 53

3.2.2.1Single-ModeLaserDiodeStructure 54

3.2.2.2QuantumWellLaserDiode 56

3.2.3SuperluminescentDiodes(SLD) 56

3.2.4AmplifiedSpontaneousEmissionSources 59

3.2.5NarrowLineBroadbandSweepSource 62

3.2.6BroadbandSources 62

3.3OpticalDetectors 63

3.3.1BasicPrinciplesofOpticalDetectors 64

3.3.1.1PNPhotodetector 64

3.3.1.2PINPhotodetector 65

3.3.1.3AvalanchePhotodiode(APD) 66

3.3.2MainCharacteristicsofOpticalDetectors 66

3.3.2.1OperatingWavelengthRangeandCut-OffWavelength 66

3.3.2.2QuantumEfficiencyandResponsiveness 67

3.3.2.3ResponseTime 68

3.3.2.4MaterialsandStructuresofSemiconductorPhotodiodes 69

3.3.3OpticalSpectrometers 70

3.4LightCouplingTechnology 71

3.4.1CouplingofFibreandLightSource 71

3.4.1.1CouplingofSemiconductorLasersandOpticalFibres 71

3.4.1.2CouplingLossofSemiconductorLight-EmittingDiodesandOptical Fibres 72

3.4.2MultimodeFibreCoupledThroughLens 72

3.4.3DirectCouplingofFibreandFibre 73

3.5Fibre-OpticDevice 74

3.5.1FibreCoupler 74

3.5.2OpticalIsolator 74

3.5.3OpticalCirculator 76

3.5.4FibreAttenuator 76

3.5.5FibrePolarizer 76

3.5.6OpticalSwitch 77

3.6OpticalModulationandInterrogationofOpticalFibre-Optic Sensors 77

3.6.1Intensity-ModulatedOpticalFibreSensingTechnology 78

3.6.1.1ReflectiveIntensityModulationSensor 78

3.6.1.2TransmissiveIntensityModulationSensor 80

3.6.1.3LightMode(Microbend)IntensityModulationSensor 80

3.6.1.4RefractiveIndexIntensity-ModulatedFibre-OpticSensor 80

3.6.2WavelengthModulationOpticalFibreSensingTechnology 81

3.6.2.1DirectDemodulationSystem 81

3.6.2.2NarrowBandLaserScanningSystem 82

3.6.2.3BroadbandSourceFilterScanningSystem 83

3.6.2.4LinearSidebandFilteringMethod 84

3.6.2.5InterferenceDemodulationSystem 84

3.6.3PhaseModulationOpticalFibreSensingTechnology 86 References 87

4BasicDetectionTechniques 91 DanieleTosiandCarloMolardi

4.1Introduction 91

4.2OverviewofInterrogationMethods 93

4.3Intensity-BasedSensors 97

4.3.1Macrobending 97

4.3.2In-LineFibreCoupling 99

4.3.3BifurcatedFibreBundle 100

4.3.4SmartphoneSensors 100

4.4Polarization-BasedSensors 102

4.4.1PressureandForceDetection 102

4.4.2LossyModeResonanceforRefractiveIndexSensing 104

4.5Fibre-OpticInterferometers 105

4.5.1Fabry–PérotInterferometer(FPI)-BasedFibreSensors 106

4.5.1.1ExtrinsicFPIforPressureSensing 107

4.5.1.2In-LineFPIforTemperatureSensing 108

4.5.2Mach–ZehnderInterferometer(MZI)-BasedFibreSensors 109

4.5.3Single-Multi-SingleMode(SMS)Interferometer-BasedFibre Sensors 109

4.6Grating-BasedSensors 111

4.6.1FibreBraggGrating(FBG) 111

4.6.2FBGArrays 113

4.6.3TiltedandChirpedFBG 115

4.6.4Long-PeriodGrating(LPG) 117

4.6.5FBGFabrication 118

4.7Conclusions 121 References 121

5StructuralHealthMonitoringUsingDistributed Fibre-OpticSensors 125 AlaynLoayssa

5.1Introduction 125

5.2FundamentalsofDistributedFibre-OpticSensors 126

5.2.1RamanDTS 128

5.2.2BrillouinDTSS 129

5.3DFOSinCivilandGeotechnicalEngineering 130

5.3.1Bridges 133

5.3.2Tunnels 134

5.3.3GeotechnicalStructures 137

5.4DFOSinHydraulicStructures 141

5.5DFOSintheElectricGrid 143

5.6Conclusions 145

References 146

6DistributedSensorsintheOilandGasIndustry 151

ArthurH.Hartog

6.1TheLateLifeCycleofaHydrocarbonMolecule 153

6.1.1Upstream 154

6.1.1.1Exploration 154

6.1.1.2WellConstruction 155

6.1.1.3FormationandReservoirEvaluation 157

6.1.1.4Production 158

6.1.1.5ProductionofMethaneHydrates 159

6.1.1.6WellAbandonment 160

6.1.2Midstream:Transportation 160

6.1.3Downstream:RefineryandDistribution 161

6.2ChallengesintheApplicationofOpticalFibrestotheHydrocarbon 161

6.2.1Conditions 161

6.2.2ConveyanceMethods 162

6.2.2.1TemporaryInstallations(InterventionServices) 163

6.2.2.2PermanentFibreInstallations 163

6.2.3FibreReliability 165

6.2.4FibreTypes 166

6.3ApplicationsandTake-Up 168

6.3.1Steam-AssistedRecovery;SAGD 168

6.3.2FlowAllocation:ConventionalWells 171

6.3.3InjectorMonitoring 174

6.3.4ThermalTracerTechniques 175

6.3.5WaterFlowBetweenWells 176

6.3.6Gas-LiftValves 176

6.3.7VerticalSeismicProfiling(VSP) 177

6.3.8HydraulicFracturingMonitoring(HFM) 184

6.3.9SandProduction 185

6.4Summary 186 References 186

7BiomechanicalSensors 193

CiceroMartelli,JeanCarlosCardozodaSilva,AlessandraKalinowski, JoséRodolfoGalvão,andTalitaPaes

7.1OpticalFibreSensorsinBiomechanics:IntroductionandReview 193

7.2OpticalFibreSensors:FromExperimentalPhantomsto InVivo Applications 198

7.2.1ExperimentalPhantomsandModels 198

7.2.1.1Joints 199

7.2.1.2BonesandMuscles 199

7.2.1.3Teeth,LowerJaw(Mandible),andUpperJaw(Maxilla) 200

7.2.1.4ProsthesisandExtracorporealDevices 200

7.2.1.5SoleandInsoles 201

7.2.1.6SmartFabrics 201

7.2.1.7BloodVessels 202

7.2.1.8RespiratoryMonitoring 203

7.2.2 InVitro 203

7.2.3 ExVivo 204

7.2.3.1Joints 204

7.2.3.2BonesandMuscles 205

7.2.3.3Teeth,LowerJaw(Mandible),andUpperJaw(Maxilla) 205

7.2.3.4BloodVessels 205

7.2.3.5MechanicalPropertiesofTissues 207

7.2.4 InVivo 207

7.2.4.1Joints 207

7.2.4.2BonesandMuscles 207

7.2.4.3Teeth,LowerJaw(Mandible)andUpperJaw(Maxilla) 208

7.2.4.4BloodVessels 208

7.2.4.5RespiratoryMonitoring 208

7.2.5 InSitu 208

7.2.5.1Joints 209

7.2.5.2BonesandMuscles 209

7.2.5.3ProsthesesandExtracorporealDevices 210

7.2.5.4SolesandInsoles 210

7.2.5.5CardiacMonitoring 211

7.2.5.6RespiratoryMonitoring 211

7.3FBGSensorsIntegratedintoMechanicalSystems 213

7.3.1FBGSensorsGluedwithPolymer 214

x Contents

7.3.2Polymer-IntegratedFBGSensor 215

7.3.3SmartFibreReinforcedPolymer(SFRP) 218

7.4FuturePerspective 222 Acknowledgment 223 References 224

8OpticalFibreChemicalSensors 239 T.HienNguyenandTongSun

8.1Introduction 239

8.2PrinciplesandMechanismsofFibre-Optic-BasedChemical Sensing 240

8.2.1PrincipleofChemicalSensorResponse 240

8.2.2Absorption-BasedSensors 242

8.2.3Luminescence-BasedSensors 243

8.2.4SurfacePlasmonResonance(SPR)-BasedSensors 245

8.3SensorDesignandApplications 247

8.3.1OpticalFibrepHSensors 247

8.3.1.1PrincipleofFluorescence-BasedpHMeasurements 248

8.3.1.2pHSensorDesign 249

8.3.1.3Set-UpofapHSensorSystem 253

8.3.1.4EvaluationofthepHSensorSystems 254

8.3.1.5Comments 260

8.3.2OpticalFibreMercurySensor 261

8.3.2.1SensorDesignandMechanism 262

8.3.2.2EvaluationoftheMercurySensorSystem 265

8.3.2.3Comments 271

8.3.3OpticalFibreCocaineSensor 271

8.3.3.1SensingMethodology 272

8.3.3.2DesignandFabricationofaCocaineSensorSystem 273

8.3.3.3EvaluationoftheCocaineSensorSystem 275

8.3.3.4Comments 280

8.4ConclusionsandFutureOutlook 281 Acknowledgements 282 References 282

9ApplicationofNanotechnologytoOpticalFibreSensors:Recent AdvancementsandNewTrends 289 ArmandoRicciardi,MarcoConsales,MarcoPisco,andAndreaCusano

9.1Introduction 289

9.2AViewBack 292

9.3NanofabricationTechniquesontheFibreTipforBiochemical Applications 293

9.3.1DirectApproaches 294

9.3.2IndirectApproaches 301

9.3.3Self-Assembly 305

9.3.4SmartMaterialsIntegration 307

9.4NanofabricationTechniquesontheFibreTipforOptomechanical Applications 309

9.5Conclusions 317 References 320

10FromRefractometrytoBiosensingwithOpticalFibres 331 FrancescoChiavaioli,AmbraGiannetti,andFrancescoBaldini

10.1BasicSensingConceptsandParametersforOFSs 332

10.1.1ParametersofGeneralInterest 335

10.1.1.1Uncertainty 335

10.1.1.2AccuracyandPrecision 335

10.1.1.3SensorDriftandFluctuations 336

10.1.1.4Repeatability 336

10.1.1.5Reproducibility 336

10.1.1.6ResponseTime 336

10.1.2ParametersRelatedtoVolumeRISensing 337

10.1.2.1RefractiveIndexSensitivity 337

10.1.2.2Resolution 338

10.1.2.3FigureofMerit(FOM) 339

10.1.3ParametersRelatedtoSurfaceRISensing 339

10.1.3.1SensorgramandCalibrationCurve 340

10.1.3.2LimitofDetection(LOD)andLimitofQuantification(LOQ) 341

10.1.3.3Specificity(orSelectivity) 345

10.1.3.4Regeneration(orReusability) 345

10.2OpticalFibreRefractometers 347

10.2.1OpticalInterferometers 348

10.2.2Grating-BasedStructures 348

10.2.3OtherResonance-BasedStructures 350

10.3OpticalFibreBiosensors 352

10.3.1Immuno-BasedBiosensors 353

10.3.2Oligonucleotide-BasedBiosensors 354

10.3.3WholeCell/Microorganism-BasedBiosensors 357

10.4FibreOpticsTowardsAdvancedDiagnosticsandFuture Perspectives 360 References 361

11Humidity,Gas,andVolatileOrganicCompoundSensors 367

DiegoLopez-TorresandCésarElosua

11.1Introduction 367

11.2OpticalFibreSensorSpecificFeaturesforGasandVOCDetection 368

11.3SensingMaterials 370

11.3.1OrganicChemicalDyes 370

11.3.2Metal–OrganicFramework(MOF)Materials 372

11.3.3MetallicOxides 374

11.3.4Graphene 378

11.4DetectionofSingleGases 379

11.5RelativeHumidityMeasurement 383

11.6DevicesforVOCSensingandIdentification 384

11.7ArtificialSystemsforComplexMixturesofVOCs:Optoelectronic Noses 387

11.8Conclusions 391 References 392

12InteractionofLightwithMatterinOpticalFibreSensors: ABiomedicalEngineeringPerspective 399 SillasHadjiloucas

12.1Introduction 399

12.2EnergyContentinLightandItsEffectinChemicalProcesses 399

12.3RelevanceofWien’sLawtoPhysicochemicalProcesses 402

12.4AbsorptionofLightMolecules 403

12.5TheRoleofElectronSpinandStateMultiplicityinSpectroscopy 404

12.6MolecularOrbitals,BondConjugation,andPhotoisomerization 406

12.7De-excitationProcessesThroughCompetingPathways:TheirEffecton LifetimesandQuantumYield 407

12.8EnergyLevelDiagramsandVibrationalSublevels 412

12.9DistinctionBetweenAbsorptionandActionSpectra 413

12.10LightScatteringProcesses 414

12.10.1ElasticScattering 414

12.10.2InelasticScattering 416

12.11InductionofNon-linearOpticalProcesses 418

12.12ConcentratingFieldstoMaximizeEnergyExchangeintheMeasurement ProcessUsingSlowLight 419

12.12.1SlowLightUsingAtomicResonancesandElectromagneticallyInduced Transparency 419

12.12.2SlowLightUsingPhotonicResonances 424

12.13FieldEnhancementandImprovedSensitivityThroughWhispering GalleryModeStructures 427

12.14EmergentTechnologicalTrendsFacilitatingMulti-parametric InteractionsofLightwithMatter 429

12.14.1IntegrationofOpticalFibreswithMicrofluidicDevicesandMEMS 429

12.14.2Pump–ProbeSpectroscopy 430

12.15ProspectsofMolecularControlUsingFemtosecondFibreLasers 430

12.15.1FemtosecondPulseShaping 430

12.15.2NewOpportunitiesforCoherentControlofMolecularProcesses 432

12.15.3DevelopmentsinEvolutionaryAlgorithmsforMolecularControl 434 References 436

13DetectioninHarshEnvironments 441

KamilKosielandMateusz Śmietana

13.1Introduction 441

13.2OpticalFibreSensorsforHarshEnvironments 442

13.3NeedforHarshEnvironmentSensingBasedonOpticalFibres 443

13.4GeneralRequirementsforHarshEnvironmentOFSs 449

13.5SilicaGlassOpticalFibresforHarshEnvironmentSensing 451

13.6PolymerOpticalFibresforHarshEnvironmentSensing 461

13.7ChalcogenideGlassandPolycrystallineSilverHalideOpticalFibresfor HarshEnvironmentSensing 464

13.8MonocrystallineSapphireOpticalFibresforHarshEnvironment Sensing 467

13.9FutureTrendsinOpticalFibreSensing 469 References 470

14Fibre-OpticSensing:PastReflectionsandFutureProspects 477

BrianCulshawandMarcoN.Petrovich

14.1IntroductoryComments 477

14.2ReflectionsonAchievementstoDate 478

14.3Photonics:HowIsItChanging? 484

14.4SomeFutureSpeculation 486

14.4.1PhotonicIntegratedandPlasmonicCircuits 487

14.4.2MetamaterialsinSensing 490

14.4.3MoreVariationsontheNanoStory 492

14.4.4ImprovingtheSignal-to-NoiseRatio 493

14.4.5QuantumSensing,Entanglement,andtheLike 494

14.4.6TheManyProspectsinFibreDesignandFabrication 495

14.4.7TechnologiesOtherthanPhotonics 500

14.4.8SocietalAspirationsinSensorTechnology 501

14.4.9TheFutureandaQuickLookattheSensingAlternatives 501

xiv Contents

14.4.10SoWhatHasFibreSensingAchievedtoDate 503 14.5ConcludingObservations 504 References 504

Index 511

ListofContributors

FrancescoBaldini

InstituteofAppliedPhysics “Nello

Carrara” (IFAC)

NationalResearchCouncil(CNR)

Florence Italy

FrancescoChiavaioli

InstituteofAppliedPhysics “Nello

Carrara” (IFAC)

NationalResearchCouncil(CNR)

Florence Italy

MarcoConsales OptoelectronicsGroup DepartmentofEngineering UniversityofSannio Benevento

Italy

BrianCulshaw DepartmentofElectronicand ElectricalEngineering UniversityofStrathclyd,Glasgow Scotland,UK

AndreaCusano OptoelectronicsGroup DepartmentofEngineering UniversityofSannio

Benevento

Italy

JeanCarlosCardozodaSilva GraduatePrograminElectricaland ComputerEngineering FederalUniversityofTechnology -ParanáBrazil

IgnacioDelVillar DepartmentofElectrical,Electronic andCommunicationsEngineering PublicUniversityofNavarre

Pamplona

Spain

CésarElosua DepartmentofElectrical,Electronic andCommunicationsEngineering PublicUniversityofNavarre

Pamplona

Spain

JoséRodolfoGalvão GraduatePrograminElectricaland ComputerEngineering FederalUniversityofTechnology -ParanáBrazill

AmbraGiannetti InstituteofAppliedPhysics “Nello Carrara” (IFAC) NationalResearchCouncil(CNR) Florence,Italy

SillasHadjiloucas DepartmentofBiomedicalEngineering UniversityofReading Reading,UK

ArthurH.Hartog WorthyPhotonicsLtd Winchester,UK

T.HienNguyen PhotonicsandInstrumentation ResearchCentre CityUniversityofLondon London,UK

AlessandraKalinowski GraduatePrograminElectricaland ComputerEngineering FederalUniversityofTechnology -ParanáBrazil

KamilKosiel ŁukasiewiczResearchNetwork –InstituteofElectronTechnology Al.Lotników32/46,02-668Warsaw Poland

AlaynLoayssa DepartmentofElectrical,Electronic andCommunicationsEngineering PublicUniversityofNavarre Pamplona,Spain

DiegoLopez-Torres DepartmentofElectrical,Electronic andCommunicationsEngineering, PublicUniversityofNavarre, Pamplona,Spain

DajuanLyu NationalEngineeringLaboratoryfor FibreOpticSensingTechnology (NEL-FOST) WuhanUniversityofTechnology Wuhan,China

CiceroMartelli GraduatePrograminElectricaland ComputerEngineering FederalUniversityofTechnology -ParanáBrazil

IgnacioR.Matias InstituteofSmartCities PublicUniversityofNavarre Pamplona,Spain

CarloMolardi SchoolofEngineering NazarbayevUniversity Astana Kazakhstan

TalitaPaes GraduatePrograminElectricaland ComputerEngineering FederalUniversityofTechnology -ParanáBrazil xvi ListofContributors

MarcoN.Petrovich

OptoelectronicsResearchCentre UniversityofSouthampton Southampton,UK

MarcoPisco

OptoelectronicsGroup DepartmentofEngineering UniversityofSannio Benevento,Italy

ArmandoRicciardi

OptoelectronicsGroup DepartmentofEngineering UniversityofSannio Benevento,Italy

Mateusz Śmietana InstituteofMicroelectronicsand Optoelectronics WarsawUniversityofTechnology Koszykowa Warsaw,Poland

TongSun PhotonicsandInstrumentation ResearchCentre CityUniversityofLondon London,UK

DanieleTosi SchoolofEngineering,Nazarbayev University,Astana,Kazakhstan and LaboratoryofBiosensorsand Bioinstruments NationalLaboratoryAstana Astana,Kazakhstan

MinghongYang

NationalEngineeringLaboratory forFibreOpticSensingTechnology (NEL-FOST),WuhanUniversityof Technology Wuhan,China ListofContributors

Acknowledgment

Aseditors,wewouldliketoexpressourgratitudetoallthemembersof Wiley-IEEEPressfortheirassistanceandhelp.

Alsospecialthankstothewonderfulteamofauthorsthathavewrittenthechaptersofthebook.ToourcollaboratorsinthePublicUniversityofNavarra:Alayn Loayssa,DiegoLópez,andCésarElosua,wemustaddalistofprestigiousauthors thatcovermultiplecountriesallovertheworld:MinghongYangandDajuanLyu, fromtheNationalEngineeringLaboratoryforFibreOpticSensingTechnology (NEL-FOST)WuhanUniversityofTechnology,Wuhan(China);DanieleTosi andCarloMolardi,fromtheNazarbayevUniversity,SchoolofEngineering, Astana(Kazakhstan);ArthurH.Hartog,fromtheWorthyPhotonicsLtd,Winchester(UK);CiceroMartelli,JeanCarlosCardozodaSilva,AlessandraKalinowski,JoséRodolfoGalvão,andTalitaPaes,fromUniversidadeTecnológica FederaldoParaná(Brasil);T.HienNguyenandTongSun,fromthePhotonics andInstrumentationResearchCentre,City,UniversityofLondon(UK);Armando Ricciardi,MarcoConsales,MarcoPisco,andAndreaCusano,fromtheOptoelectronicsGroup,DepartmentofEngineering,UniversityofSannio,(Italy);FrancescoChiavaioli,AmbraGiannetti,andFrancescoBaldini,fromtheInstituteof AppliedPhysics ‘NelloCarrara’ (IFAC),SestoFiorentino(Italy);SillasHadjiloucas,fromtheDepartmentofBiomedicalEngineering,UniversityofReading (UK);KamilKosielandMateusz Śmietana,respectivelyfromthe Łukasiewicz ResearchNetwork-InstytutTechnologiiElektronowejinWarsaw(Poland)and fromtheInstituteofMicroelectronicsandOptoelectronicsintheWarsawUniversityofTechnology(Poland);MarcoN.Petrovich,fromtheUniversityofStrathclyde,RoyalCollegeBuilding,Glasgow,Scotland,(UK);andBrianCulshaw, fromtheOptoelectronicsResearchCentre,UniversityofSouthampton,(UK).

Wewouldlikealsotothankourfamiliesandfriends,becausewithouttheirsupportthisprojectwouldnothavebeenpossible.

xx Acknowledgment

Finally,justasmembersofthisopticalfibresensorcommunity,wewantto thankthededicationtoallthosewhopioneeredthismorethanhalfacentury agoandtothosewhowillcontinuetodoso,becausethisroadismadebywalking and,fortunately,thegoaliseverycloser.

AbouttheEditors

IgnacioDelVillar,PhD,isanAssociateProfessorintheElectrical,Electronicand CommunicationsEngineeringDepartmentatthePublicUniversityofNavarra, Spain,whereheteachesonelectronicsandindustrialcommunications.Heisa memberoftheIEEEandanAssociateEditorofdifferentjournals.Inaddition, hehasparticipatedinmultipleresearchprojectsandco-authoredmorethan 150papers,conferences,andbookchaptersrelatedtofibre-opticsensors.

IgnacioR.Matias,PhD,istheScientificDirectoroftheInstituteofSmartCities andProfessoroftheElectrical,ElectronicandCommunicationsDepartmentatthe PublicUniversityofNavarra,Spain.HewasoneoftheAssociateEditorswho foundedthe IEEESensorsJournal,promotingfibre-opticsensorssincethen throughconferences,specialissues,awards,books,etc.Hehasco-authoredmore than500bookchapters,journalandconferencepapersrelatedtoopticalfibresensors.Heiscurrentlymember-at-largeattheIEEESensorsCouncilAdCom.

Introduction IgnacioR.Matias1 andIgnacioDelVillar2

1 InstituteofSmartCities,PublicUniversityofNavarre,Pamplona,Spain

2 DepartmentofElectrical,ElectronicandCommunicationsEngineering,PublicUniversityofNavarre, Pamplona,Spain

Theopticaltelegraph,inventedin1791byClaudeChappe,consistedofanetworkofstationsthatallowedthetransmissionofinformationataspeedofone symbolintwominutesbetweenParisan dLille(i.e.230km)[1].Eachstation monitored,withtheaidofatelescope,t hecharacterthatwasrepresentedwith awoodensemaphoreintheprevioussta tion.Thissystemwaswidelyusedfor about50yearsbecauseitwasmuchfasterthansendingmessagesbyletter,but itrequireddirectvisionbetweeneachc oupleofconsecutivestations.Consequently,badweather,orsimplytheni ght,preventedits utilization.These arethemainreasonswhywiththeinventionoftheelectricaltelegraph,a systembasedonaguidedelectricalsignal,theutilizationoftheoptical telegraphcamesoontoanend.

However,inparalleltotheinventionoftheelectricaltelegraph,in1841,the pathtowardsopticalguidingwasstartedwithanimportantdiscoverybytwo Frenchresearchers,JeanDanielColladonandJacquesBabinet,whoindependentlydemonstratedthatitwaspossibletoguidelightinacurvedwaveguide [2].Colladonprovedthiswithlightraystrappedinawaterjetbytotalinternal reflection,whereasBabinetdidthesameinabentglassrod.

Anotherbreakthroughoccurredin1966,whenCharlesKao(hereceivedthe NobelPrizeinPhysicsin2009)andGeorgeHockhampublishedaworkdemonstratingthattheattenuationinopticalfibresavailableatthetimewascaused byimpurities,ratherthanfundamentalphysicaleffectssuchasscattering.They

OpticalFibreSensors:FundamentalsforDevelopmentofOptimizedDevices,FirstEdition. EditedbyIgnacioDelVillarandIgnacioR.Matias.

©2021TheInstituteofElectricalandElectronicsEngineers,Inc. Published2021byJohnWiley&Sons,Inc.

pointedoutthatfibreswithlowlosscouldbemanufacturedbyusinghigh-purity glass[3,4].ThisideawasprovedintheNorthAmericancompanyCorningin1970, withthedevelopmentofanopticalfibrewithlosseslowerthan20dB/km.Soon afterwards,in1977,losseswerereducedtosuchapointthatGeneralTelephone andElectronicscouldcarrylivetelephonetraffic,6Mbit/s,inLongBeach, California,whereastheBellSystemcouldtransmita45Mbit/sfibrelinkinthe downtownChicagophonesystem.Sincethatyearopticalfibrehasbecomethe mostwidelyusedguidedmediuminthetwentiethcentury,mainlythanksto thehugebandwidthitpresentscomparedwithotherguidedcommunication mediasuchastwistedpairandcoaxialcable.

Opticalcommunicationisthemainapplicationofopticalfibre.However,there isaseconddomainwherethisstructurecanbeused:sensors.Despitetheimpactof opticalfibreinthedomainofsensorsnotbeingasbigasincommunications,their presenceintheglobalmarketcannotbeneglected.Indeed,itisthenaturaland idealplatformintermsofintegratingthesensorinthecommunicationsystem.

Opticalfibresensors(OFSs)canbeclassifiedinmanydifferentways.Themain classificationconcernstothelocationwherethelightismodulated,existingintwo groups:extrinsicandintrinsicOFSs.Inbothcasesthereisaparameter(physical, chemical,biological,etc.)thatmodulateslight.However,thedifferenceisthatin anextrinsicOFSslightisguidedtotheinteractionregion,extrinsictotheoptical fibre,wherelightismodulated,andafterthismodulationlightiscollectedagainin theopticalwaveguide,whereasinanintrinsicOFSlightisalwaysguidedbythe opticalfibre.InFigure1.1thedifferencebetweenanintrinsicandanextrinsicOFS

isshown.Inthecaseofanextrinsicsensor,lightismodulatedoutsideofthefibre byaliquid(itspropertiesmaychangeasafunctionoftemperature,forinstance), whereasinthecaseoftheintrinsicsensor,afibrehasbeensplicedtotwoother fibres(oneinputandoneoutputfibre),whichallowsanenhancedinteractionwith theoutermedium.Inthiscase,aliquidmodulatesthelightatthesametimeitis beingtransmittedthroughthefibre.

ProbablythefirstOFSwasthefibrescope.In1930HeinrichLamm,aGerman medicalstudent,assembledabundleofopticalfibrestocarryanimage.Hispurposewastousethedeviceforobtainingimagesofinaccessiblepartsofthebody. Hetriedtopatentthedevice,butJohnLogieBairdandClarenceW.Hansellhad patentedasimilarideasomeyearsbefore.ThequalityoftheimagesthatLamm obtainedwasnotgood,butheisthefirstresearcherthatexperimentallyachieved thisbreakthroughinthehistoryofopticalsensors.Afterwards,in1954,theEnglishmanHaroldH.HopkinsandtheIndianNarinderS.Kapanypresentedresults ofbetterqualityonthesameprinciple[5].

Someyearslater,in1967,thefirsteffectivedemonstrationofafibre-opticsensor, theFotonicsensor,waspublished[6].Thedevicewasalsobasedonafibrebundle. However,thistimethearrangementwasdifferent.Someofthefibresemittedlight, andsomeothersdidnot.Thefibrebundleilluminatedasurfaceinfrontofthe fibre,andsomepartoflightwascoupledtothefibresthatdidnottransmitlight. Theamountoflightreflectedbackdependedonthedistancebetweenthefibre bundleendandthesurface.Consequently,thedevicecouldbeusedasadisplacementsensor(Figure1.2).

ThistypeofsensorwasthebasisforthecommercializationoftheMTIFotonic sensor.Inthe1980s,theMTI2000versionallowedmonitoringvibrationanddisplacement.NowadaysitisstillsoldundertheversionMTI2100,whichisthesame conceptbutwithimprovedcharacteristicssuchastheabilitytooperateincryogenic,vacuum,highpressure,orinhighmagneticfieldandharshenvironments. Theresolutionhasalsobeenimprovedfrom1nmintheMTI2000to0.25nm withtheMTI2100andfrequencyresponsefromdirect-coupled(dc)to150kHz intheMTI2000uptodc-500kHzintheMTI2100.

TheconceptusedintheFotonicsensorwasalsothebasisfordetectionofintracranialpressurebyusingasurfacethatisadiaphragmthatcanbedeformedbythe actionofpressure.Dependingonthepressure,thesurfaceisdeformed,andinthis way,thelightcoupledbacktothereceivingfibreismodulated.ThecommercializeddevicewascalledCaminoICPMonitor.

Interferometricfibresensorsemergedinthe1970s,themostsuccessfulone amongthembeingtheopticalfibregyroscope(OFG)(seeFigure1.3).Thebasic principlewasverysimple.Lightfromalaserissplitbyabeamsplitterandenters thefibreonbothends.Bothbeamsgooutofthefibreandaphotodetectorreceives them.ThankstotheSagnaceffect,bothbeamsinterfereconstructivelyand

range 1

range 2

Displacement

Figure1.2 (a–c)Fotonicsensorsetupwithafibrebundlecomposedofonetransmitting andonereceivingfibre:(a)withthesurfacetoocloseandhenceonlyasmallpartis coupledbacktothereceivingfibre;(b)withthesurfaceattheoptimalpositionforahighest coupling;and(c)withthesurfacetoofarandhenceagreatpartoflightislostandnot coupledtothereceivingfibre.(d)MTI2100diagramshowingthepowerdetectedasa functionofthedistance(themaximumisobtainedwhenthedistanceisneithertoobignor toosmall).

Figure1.3 (a)Simplifiedsetup:lightfromalaserissplitbyabeamsplitterandenters thefibreonbothends.Thetwobeamsgooutofthefibreandthephotodetectorreceives them.DuetotheSagnaceffect,bothbeamsinterfereconstructivelyanddestructively dependingontherotationspeedofthedevice.(b)Commercialopticalfibregyrowitha sizecomparabletoacoin(fromKVHwebsite).

destructivelydependingontherotationspeedofthedevice.Thefirstpublication datesfromtheyear1976[7].Sincethatmomentthedevicehasbeenimprovedwith additionalelementssuchaspolarizationcontrol,buttheinitialconceptisstill maintained.ThetruebenefitoftheOFGovertraditionalspinning-massgyrosis thatithasnomovingparts.Asaresult,OFGsarefaster,tougher,morereliable anddemandfarlessmaintenance.Thatiswhytheyhavebecomeanessentialcomponentinplatformstabilizingsystems,forexample,forlargesatelliteantennas,in missileguidance,insubseanavigation,andinaircraftstabilizationandnavigation, andahostofotherapplications[8].Itmovesabout1000millionUS$peryear accordingtoMarketsandMarkets:FibreOpticsGyroscopeMarketbySensing Axis(1,2,and3),Device(Gyrocompass,InertialMeasurementUnit,Inertial NavigationSystem,andAttitudeHeadingReferenceSystem),Application,and Geography – GlobalForecastto2022.

Basedontheacousto-opticeffect,itwaspossiblealsotodevelophydrophones, OFSsthatcoulddetectacousticwaveswhenimmersedinwater.Oneofthefirst approacheswasbasedoninterferometry[9],bycombiningthesignalstransmitted byanopticalfibrethatwasnotimmersedinwaterwiththesignalreflectedatthe endfacetofanotheropticalfibreimmersedinwater.Byexcitinganacousticwave infrontofthefibreimmersedinwater,itwaspossibletoobservevariationsinthe detectedsignal.ThoughithasnotbeenacommercialsuccesslikeOFG,thisapplicationstillattractsinterest,andtheutilizationofaFabry–Pérotcavity(i.e.acoatingontheendfacetoftheopticalfibreimmersedinwater)allowsavoidingtheuse ofthereferencefibrebecauseinthiswayaninterferometricpatternintheoptical spectrumisgenerated.ThesetupisdepictedinFigure1.4,andacommercial deviceisavailableatthecompanyPrecisionAcoustics.Itsimmunityfrom

Photodetector
Beamsplitter
Optical fibre (a) (b)

Figure1.4 OpticalsetupforaFabry–Pérothydrophone[10].OSCisoscilloscope,PD photodiode,PGpulsegenerator,PZTpiezoelectrictransducer,andTLDtunablelaserdiode. Source:ReproducedwithpermissionofElsevier.

electromagneticradiationmakesitparticularlysuitedforhigh-frequencymeasurementsinhostilefields.

Aswecansee,thispropertywasalsoincludedintheFotonicsensorandisoneof thekeyadvantagesofopticalfibresingeneral.However,inordertomakeafibre opticalsensorthefirstoptionofanenduser,moreadvantagesarerequiredcomparedwiththerestofsensorsinthemarket.InthecaseoftheOFG,thekeypropertywasthatitwasnotnecessarytousemovingparts,whichmeanslongduration andfastresponse.

AsecondOFSsuccesswasthemeasurementofcurrentandvoltagewiththeaid oftheFaradayeffect[11,12].Asanexample,ABBhasdevelopedacommercial devicecalledfibre-opticcurrentsensor(FOCS),whichcanbeusedinsteadofmagneticsystemsduetoitsexceptionalaccuracyandreliability.Itcanmeasureuni-or bidirectionalDCcurrentsofupto600kAwithanaccuracyof±0.1%ofthemeasuredvalue(Figure1.5).

Straingaugesareanotherwell-knownapplicationwhereopticalfibrescanbe used.Thefirstworkwaspublishedin1978[13].SOFO,fromthecompanySmartec,isacommercialexamplethatcanbeusedforsurfacemountingorembedding inconcreteandmortars.Itisidealforlong-termstructuraldeformationmonitoringandpresentsa20-yeartrackrecordinfieldapplications.

(a) Faraday effect principle

(b) ABB fibre optic current sensor

Figure1.5 (a)Basicprincipleofopticalfibresensors:thepolarizationoftheinputlightin andopticalfibreisrotatedbytheactionofthemagneticfieldgeneratedaroundaline transmittingcurrent.(b)CommercialABBFOCSsensor.

Inaddition,theinventionofopticalfibreBragggratings(FBGs)in1978[14] widenedevenmorethepossibilitiesofOFSsintermsofdetectionofstrain,because thepathwasopentoincludemultipleBragggratingsinthesameopticalfibre, eachoneoperatingatadifferentwavelength,andtouseamultiplexingtechnology (developedinparallelbackin1980[15]),toanalyseeachsignalseparately.This

FOCS controller
FOCS clamp to a voltage line

canbeusedtomonitorstrainatmultiplepointsinaircrafts,tunnels,etc.,inwhatis typicallycalledstructuralhealthmonitoring[16].ThefirstcommercialBragggratingsensorswereavailablein1995,andsincethatmomentmanycompanieshave commercializedtheirownFBGs.

However,despiteitbeingpossible,unlikeelectronicgauges,toincludemultiple strainOFSsinthesamewireanddespitestrainOFSsbeinglesssensitivetovibrationorheatandfarmorereliablethanelectronicgauges,theyhavenotachieveda commercialsuccesscomparablewiththeOFG.Herewecanseeagoodexampleof theproblemthatfacesOFSs:thereisanelectroniccompetitor,themetallicstrain gauge,thatnowadaysismorewidespreadthanopticalfibregaugesbecauseengineersaremorefamiliarizedwithelectronictechnology.LikeOFSs,electronicsensorshavealsobecomepopularthankstoanothertechnology,electronics,andto thevastutilizationofcopperwireforcommunications.Moreover,thecomputer, thebasicunitintheinformationtechnologyera,isalsobasedonelectronics.All thishasmadeitpossibleforelectronicsensorstonearlymonopolizethedomainof sensors.Therefore,itisnecessarytofindapplicationswhereopticalfibremakesa differencecomparedwiththeelectroniccounterpart.

Inthissense,itisimportanttoconsidertheadvantagesanddisadvantagesof opticalfibre.Themaingoodpointsofopticalfibreare[17,18]:

• Smallsize(itsdiameteristypicallyaround100 μm,whichallowsembeddingin manystructures)andlightweight.

• Lowlosses,whichallowremotesensing.

• Anti-electromagneticinterferenceandanti-radio-frequencyinterference.

• Noelectricalbiasingisrequiredtoguidelight,sotheresultingsensorsarepassive,whichisveryrelevantinenvironmentswithanexplosionrisk.

• Highbandwidth,whichallowsmultiplexingandmulti-parametersensing,

• Distributedsensinginopticalfibrecommunicationlines:itispossibletodevelop modulationtechniquesthatallowphysicalquantitiestobemeasuredalongthe fibreitself.

However,therearealsoimportantconcerns[18],whicharebeingprogressively solvedasthetechnologymatures:

• Cost

• Complexityininterrogationsystems

• Unfamiliarityoftheenduserwiththetechnology

Bytakingalookattheseproperties,itiseasytounderstandwhythemostsuccessfultypeofOFS,intermsofcoveringthesensorsmarket,isdistributedsensing. First,itispossiblewithopticalfibretomakedistributedmeasurementsoverdistancesuptoseveraltensofkilometres,anabilitythatisuniquetofibreoptics. Asecondadvantageofthosementionedaboveisthesmalldiameterofoptical

fibre,whichallowsembeddingitintunnels,bridges,orconcreteconstructions[19, 20],and,onceinstalled,theinitialcostiscompensatedwithacontinuousmonitoringofvariablessuchasstrain,temperature,orvibration,anoperationthatmay lastyearsandthatdoesnotaffecttheopticalfibreitisembeddedin.Thisexplains itssuccessinthefollowingdomains:

• Civilengineering:leakageofdamsandriverembankments,monitoringof cracksinbridgesandotherconcretestructures;structuralhealthmonitoring oflargecivilprojects;andfiremonitoringandsafetyalarmsforroads,subways, tunnels,etc.[21].

• Petrochemical:detectionofoilandnaturalgastransmissionpipelinesorstorage tankleaks;temperaturemonitoringofoildepots,oilpipes,andoiltanks;and detectionoffaultpoints.

• Powercable:detectionandmonitoringofsurfacetemperatureofpowercable andlocationofaccidentpoints;temperaturemonitoringofpowerplantsand substations;anddetectionoffaultpointsandfirealarms.

• Aerospace:monitoringofaircraftpressure,temperature,fuellevel,andlanding gearstatus;temperatureandstrainmonitoringofcompositeskins;andmeasurementofstressandtemperatureofaircraftjetturbineenginesystems[22].

Distributedsensingtechnologycanbeclassifiedintwogroups:quasi-distributed (multiplexingFBGslikeinFigure1.6areagoodexample)anddistributedsensing [24].AcomparisonbetweenbothtechnologiesispresentedinFigure1.7.With quasi-distributedsensing,discretepointscanbemonitored,whereaswithdistributedsensingchangesinanypointintheopticalfibrepathlengthcanbedetected. Effectivegaugelengthsoftheorderof1marecommon,andtherearesomethatgo toevenshorterdiscriminationlengths[8].Regardingpurelydistributedsensing, thefirstworksdatefromthe1980s[25,26],andsincethatmomentuptonow, theutilizationofRayleigh,Brillouin,andRamanscatteringforremotelydetecting changesinaparameterataspecificpointhasbeenwidelyexplored[22,27,28].

Theopticaltime-domainreflectometer(OTDR)isthetypicalcommercialdevice, thoughtherearemanytypesofdetectorssuchastheexamplepresentedin Figure1.7cforsensinganacousticfield.Thebasicprincipleofthistypeofdevice istheinjectionofaseriesofopticalpulsesintothefibreandthefurtherdetection oflightthatisscatteredorreflectedbackfrompointsalongthefibre.Thesepoints maybesplices,failures,orevenchangesintroducedbyvariablessuchastemperature(inthislastcasethesystemcanbeusedtodetectafire),strain,orvibration. Sincethatmomentmanycompanieshavefocusedondistributedsensing,suchas Omnisens,Sensornet,Silixa,Fotec,Luna,OptaSense,orFutureFibreTechnologies,justtomentionafew.

In2017theirmarketwasmorethan1billionUSdollars,anditisexpected togrowata10.4%annualgrowthratethrough2026.Themainapplicationis

(a) Single fibre Bragg grating (FBG) setup

(b) Multiple fibre Bragg grating (FBG) setup

(c) Applications of FBG arrays

Figure1.6 (a)SinglefibreBragggrating.(b)MultiplefibreBragggratingsinamultiplexed systemmonitoredwithaninterrogator.(c)ApplicationsofFBGarraysformonitoringstrainin differentpointsofanaircraftandfordevelopingasmarttextile[23].

theoilandgasverticalsegment,whichoccupieda60.9%shareoftheglobaldistributedfibre-opticsensormarketin2015.Butalsopipelines,intrusiondetection andsecurity,transport,andinfrastructuresareotherimportantdomainswhere thistechnologyisused.

Consequently,itcanbeconcludedthatopticalfibredistributedsensors,along withthegyro,arethetwomostsuccessfulOFSsandbothcasescanserveasan exampletofollowtowardsnewcommercialopportunities.

Inadditiontothis,OFSresearchduringthelastyearshasfocusedontwoimportantfields:thefabricationofspecialtyfibres,wherethemainbreakthrough tookplacein1996withthefirstmicrostructuredopticalfibres[29],andthe

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.