[FREE PDF sample] Control of mechatronic systems patrick o. j. kaltjob ebooks

Page 1


Control of Mechatronic Systems Patrick O. J. Kaltjob

Visit to download the full and correct content document: https://ebookmass.com/product/control-of-mechatronic-systems-patrick-o-j-kaltjob/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Fear of Missing Out Patrick J. Mcginnis

https://ebookmass.com/product/fear-of-missing-out-patrick-jmcginnis/

Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics: New Modelling and Control Methods Applied to a Collection of Non-Smooth Systems Na J.

https://ebookmass.com/product/adaptive-identification-andcontrol-of-uncertain-systems-with-nonsmooth-dynamics-newmodelling-and-control-methods-applied-to-a-collection-of-nonsmooth-systems-na-j/

Embedded Mechatronic Systems, Volume 1: Analysis of Failures, Predictive Reliability 2nd Edition

Abdelkhalak El Hami

https://ebookmass.com/product/embedded-mechatronic-systemsvolume-1-analysis-of-failures-predictive-reliability-2nd-editionabdelkhalak-el-hami/

Instrumentation And Control Systems Reddy

https://ebookmass.com/product/instrumentation-and-controlsystems-reddy/

Embedded Mechatronic Systems, Volume 2: Analysis of Failures, Modeling, Simulation and Optimization 2nd Edition

https://ebookmass.com/product/embedded-mechatronic-systemsvolume-2-analysis-of-failures-modeling-simulation-andoptimization-2nd-edition-abdelkhalak-el-hami/

Instrumentation and Control Systems William Bolton

https://ebookmass.com/product/instrumentation-and-controlsystems-william-bolton/

Stability, control and application of time-delay systems Gao

https://ebookmass.com/product/stability-control-and-applicationof-time-delay-systems-gao/

978-0134407623 Modern Control Systems (13th Edition)

https://ebookmass.com/product/978-0134407623-modern-controlsystems-13th-edition/

Introduction to linear control systems Bavafa-Toosi

https://ebookmass.com/product/introduction-to-linear-controlsystems-bavafa-toosi/

ControlofMechatronicSystems

VicePresidentandEditorialDirector:AmandaL.Miller

AcquisitionsEditors:EricWillnerandAnneHunt

EditorialAssistant:AnneHunt

EditorialSupervisionandProduction:RosieHayden

ProductionManager:AmudhapriyaSivamurthy

CoverManager:HannahLee

MarketingManager:SarahBrett

ControlofMechatronicSystems

Model-DrivenDesignandImplementationGuidelines

PatrickO.J.Kaltjob

EcoleNationaleSuperieurePolytechnique Yaounde,Cameroun

Thiseditionfirstpublished2021

©2021PatrickO.J.Kaltjob

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw. Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/ permissions.

TherightofPatrickO.J.Kaltjobtobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappears instandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorksdoesnotwarrant theaccuracyofthetextorexercisesinthisbook.Thiswork’suseordiscussionofMATLABsoftwareorrelated productsdoesnotconstituteendorsementorsponsorshipbyTheMathWorksofaparticularpedagogicalapproachor particularuseoftheMATLABsoftware.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparing thiswork,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsof thisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives, writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductis referredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisher andauthorsendorsetheinformationorservicestheorganization,website,orproductmayprovideor recommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedin renderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.You shouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthiswork mayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernor authorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial, incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Kaltjob,PatrickO.J.,author.

Title:Controlofmechatronicsystems:model-drivendesignand implementationguidelines/PatrickO.J.Kaltjob.

Description:Hoboken,NJ:JohnWiley&Sons,2020.|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2018051541(print)|LCCN2019022413(ebook)|ISBN 9781119505808(hardcover)

Subjects:LCSH:Mechatronics.|Manufacturingprocesses.

Classification:LCCTJ163.12.K342019(print)|LCCTJ163.12(ebook)| DDC621–dc23

LCrecordavailableathttps://lccn.loc.gov/2018051541

LCebookrecordavailableathttps://lccn.loc.gov/2019022413

CoverdesignbyWiley

Coverimage:©MennovanDijk/iStock.com

Setin10/12ptWarnockProbySPiGlobal,Chennai,India 10987654321

TotheHolyTrinityandSaintMary

SpecialthankstoStella,Emmanuelle,Naomi,Lukà,andDavid

ToAaron†,Thomas,Olive,andAnne

Contents

Preface xiii

Acknowledgment xix

AbouttheCompanionWebsite xxi

1IntroductiontotheControlofMechatronicSystems 1

1.1Introduction 1

1.2DescriptionofMechatronicSystems 1

1.3GenericControlledMechatronicSystemandInstrumentationComponents 6

1.3.1TheDataProcessingandComputingUnit 6

1.3.2DataAcquisitionandTransmissionUnits 7

1.3.3Electrically-drivenActuatingUnits 7

1.3.4MeasuringandDetectingUnits 7

1.3.5SignalConditioningUnits 7

1.4FunctionsandExamplesofControlledMechatronicSystemsandProcesses 8

1.5ControllerDesignIntegrationStepsandImplementationStrategies 9 ExercisesandProblems 16 Bibliography 26

2Physics-BasedSystemsandProcesses:DynamicsModeling 27

2.1Introduction 27

2.2GenericDynamicModelingMethodology 27

2.3TransportationSystemsandProcesses 28

2.3.1SeaGantryCraneHandlingProcess 28

2.3.1.1Model1 33

2.3.1.2Model2 33

2.3.2VerticalElevatorSystem 35

2.3.3HybridVehiclePowertrainwithParallelConfiguration 38

2.3.3.1MotorDrivingandRegeneratingModel 40

2.3.3.2VehicleGearBoxModel 41

2.3.3.3BrakeSystemModel 41

2.3.4DriverlessVehicleLongitudinalDynamics 42

2.3.5AutomatedSegwayTransportationSystems 45

2.4BiomedicalSystemsandProcesses 47

2.4.1InfantIncubator 47

2.4.2BloodGlucose-InsulinMetabolism 50

2.5FluidicandThermalSystemsandProcesses 53

2.5.1MixingTank 53

2.5.2PurifiedWaterDistributionProcess 57

2.5.3ConveyorCakeOven 60

2.5.4PoultryScaldingandDefeatheringThermalProcess 64

2.6ChemicalProcesses 68

2.6.1CrudeOilDistillationPetrochemicalProcess 68

2.6.2LagerBeerFermentationTank 73

2.7ProductionSystemsandProcesses 75

2.7.1SingleAxisDrillingSystem 75

2.7.2Cement-BasedPozzolanaPortalScraper 78

2.7.3VariablePitchWindTurbineGeneratorSystem 81 ExercisesandProblems 84

Bibliography 102

3Discrete-TimeModelingandConversionMethods 105

3.1Introduction 105

3.2DigitalSignalProcessingPreliminaries 105

3.2.1DigitalSignalCharacterization 105

3.2.2DifferenceEquation:Discrete-TimeSignalCharacterizationUsingApproximation Methods 109

3.2.2.1NumericalApproximationUsingForwardDifference 109

3.2.2.2NumericalEquivalenceUsingBackwardDifference 110

3.2.2.3NumericalEquivalenceUsingBilinearTransform 110

3.2.3 Z -TransformandInverse Z -Transform:TheoremsandProperties 117

3.2.4ProcedureforDiscrete-TimeApproximationoftheContinuous ProcessModel 119

3.2.4.1 Z -TransferFunctionsandBlockDiagramManipulation 119

3.2.5ConversionandReconstructionoftheContinuousSignal:Samplingand HoldDevice 124

3.2.5.1SamplerandHold-BasedProcessModel 124

3.2.5.2ConstructionMethodsofaContinuousSignalfromaDataSequence 127

3.3SignalConditioning 135

3.4SignalConversionTechnology 137

3.4.1Digital-to-AnalogConversion 137

3.4.2Analog-to-DigitalConversion 140

3.5DataLoggingandProcessing 145

3.5.1ComputerBusStructureandApplications 145

3.6ComputerInterfaceandDataSamplingIssues 149

3.6.1SignalConversionTimeDelayEffects 155

3.6.1.1NyquistSamplingTheoremandShannon’sInterpolationFormula 156

3.6.2EstimationoftheMinimumSamplingRatetoBeSelected 157

3.6.2.1RemarksonSamplePeriods 160 ExercisesandProblems 161 Bibliography 168

4Discrete-TimeAnalysisMethods 169

4.1Introduction 169

4.2AnalysisToolsofDiscrete-TimeSystemsandProcesses 169

4.2.1DiscretePoleandZeroLocation 169

4.2.2DiscreteFrequencyAnalysisTools:FourierSeriesandTransform (DFT,DTFT,andFFT) 176

4.2.2.1DiscreteSystemFrequencyResponse 178

4.2.2.2SketchingProcedurefortheFrequencyResponseofaDiscreteSystem 179

4.2.2.3PropertiesofaFrequencyResponse 179

4.3Discrete-TimeControllerSpecifications 181

4.3.1TimeDomainSpecifications 182

4.3.2FrequencyResponseSpecifications 184

4.4Discrete-TimeSteady-StateErrorAnalysis 186

4.5StabilityTestforDiscrete-TimeSystems 187

4.5.1Bound-InputBound-Output(BIBO)StabilityDefinition 188

4.5.2Zero-InputStabilityDefinition 188

4.5.3BilinearTransformationandtheRouth–HurwitzCriterion 188

4.5.4Jury–MardenStabilityTest 190

4.5.5Frequency-BasedStabilityAnalysis 191

4.6PerformanceIndicesandSystemDynamicalAnalysis 191 ExercisesandProblems 192 Bibliography 194

5ContinuousDigitalControllerDesign 197

5.1Introduction 197

5.2DesignofControlAlgorithmsforContinuousSystemsandProcesses 197

5.2.1DirectDesignControllerAlgorithms 199

5.2.2DiscretePIDControllerAlgorithms 201

5.2.2.1ProportionalControlAlgorithm 201

5.2.2.2DerivativeControlAlgorithm 202

5.2.2.3IntegralControlAlgorithm 202

5.2.2.4PIControlAlgorithm 202

5.2.2.5PDControlAlgorithm 202

5.2.2.6ClassicalPIDControllerAlgorithm 202

5.2.2.7PropertiesofandSomeRemarksonPIDControllerAlgorithms 204

5.2.3PIDControllerGainsDesignUsingaFrequencyResponseTechnique 205

5.2.3.1DesignProcedureforPIDControllerDesign 205

5.2.4PIDControllerGainsDesignUsingaRootLocusTechnique 220

5.2.4.1DesignProcedures 221

5.2.5FeedforwardControlMethods 226

5.2.5.1CommandInputFeedforwardControlAlgorithm 226

5.2.5.2DisturbanceFeedforwardControlAlgorithm 234

5.3ModernControlTopologies 235

5.3.1StateFeedbackPIDControlAlgorithms 235

5.3.2MPCAlgorithms 246

5.3.3Open-LoopPositionControlUsingSteppingMotors 249

5.4InductionMotorControllerDesign 252

5.4.1ScalarControl(V/f Control) 252

5.4.1.1Open-LoopScalarControl 253

5.4.1.2Closed-LoopScalarControl(SlipControl) 253

5.4.2VectorControl 253

5.4.2.1DirectTorqueControl 254

5.4.2.2SpeedControlofACMotors 256

x Contents

5.4.2.3SpeedControlofDCMotors 257 ExercisesandProblems 259 Bibliography 281

6Boolean-BasedModelingandLogicControllerDesign 283

6.1Introduction 283

6.2GenericBoolean-BasedModelingMethodology 284

6.2.1SystemOperationDescriptionandFunctionalAnalysis 284

6.2.2CombinatorialandSequentialLogicSystems 288

6.2.2.1CombinationalModelingTools:TruthTable,SOP,ProductofSums(POS), K-Maps 289

6.2.2.2SequentialModelingTools:SequenceTable,SwitchingTheory,andState Diagram 290

6.3ProductionSystems 297

6.3.1PorticoScratcher 297

6.4BiomedicalSystems 299

6.4.1Robot-AssistedSurgery 299

6.4.2LaserSurgeryDevices 303

6.5TransportationSystems 307

6.5.1ElevatorMotionSystems 307

6.5.2Fruit-PickerArm 311

6.5.3DriverlessCar 313

6.6Fail-SafeDesignandInterlockIssues 317

6.6.1LogicControlValidation(Commissioning) 317 ExercisesandProblems 318 Bibliography 336

7HybridControllerDesign 337

7.1Introduction 337

7.2RequirementsforMonitoringandControlofHybridSystems 337

7.2.1RequirementsforHybridControlSystemDesign 338

7.2.2RequirementsforOperationsMonitoringSystemDesign 338

7.2.3ProcessInterlockDesignRequirements 339

7.3DesignMethodologyforMonitoringandControlSystems 340

7.4ExamplesofHybridControlandCaseStudies 347

7.4.1ElevatorMotionSystem 347

7.4.2Bottle-CleaningProcess 350

7.4.3Cement-DryingProcess 352 ExercisesandProblems 362 Bibliography 375

8MechatronicsInstrumentation:ActuatorsandSensors 377

8.1Introduction 377

8.2ActuatorsinMechatronics 378

8.3ElectromechanicalActuatingSystems 379

8.3.1Solenoids 379

8.3.2DigitalBinaryActuators 381

8.3.3DCMotors 382

8.3.4ACMotors 387

8.3.5SteppingMotors 389

8.3.6TransmissionMechanicalVariables 390

8.4Electro-FluidicActuatingSystems 393

8.4.1ElectricMotorizedPumps 393

8.4.2Electric-DrivenCylinders 395

8.4.3Electrovalves 396

8.5ElectrothermalActuatingSystems 398

8.6SensorsinMechatronics 400

8.6.1MeasurementInstruments 402

8.6.1.1RelativePosition(Distance) 402

8.6.1.2AngularPositionMeasurementUsinganEncoderandaResolver 409

8.6.1.3VelocityMeasurement 412

8.6.1.4AccelerationMeasurement 414

8.6.1.5ForceMeasurement 416

8.6.1.6TorqueMeasurement 417

8.6.1.7FlowMeasurement 417

8.6.1.8PressureMeasurement 419

8.6.1.9Liquid-LevelMeasurement 420

8.6.1.10RadioFrequency-BasedLevelMeasurement 422

8.6.1.11SmartandNanoSensors 422

8.6.2DetectionInstruments 423

8.6.2.1ElectromechanicalLimitSwitches 424

8.6.2.2PhotoelectricSensors 424

8.6.2.3RFID-BasedTrackingandDetection 424

8.6.2.4BinaryDevices:PressureSwitchesandVacuumSwitches 426 ExercisesandProblems 426 Bibliography 434

AStochasticModeling 437

A.1DiscreteProcessModelState-SpaceForm 437

A.2Auto-RegressiveModelwithaneXogenousInput:ARXModelStructure 438

A.3TheAuto-RegressiveModel–ARModelStructure 438

A.4TheMovingAverageModel–MAModelStructure 438

A.5TheAuto-RegressiveMovingAverageModel–ARMAModelStructure 439

A.6TheAuto-RegressiveMovingAveragewitheXogenous InputModel–ARMAXModelStructure 439

A.7SelectionofModelOrderandDelay 439

A.8ParameterEstimationMethods 440

A.9LSEstimationMethods 442

A.10RLSEstimationMethods 443

A.11ModelValidation 443

A.12PredictionErrorAnalysisMethods 444

A.13EstimationofConfidenceIntervalsforParameters 444

A.14CheckingforI/OConsistencyforDifferentModels 445

BStepResponseModeling 447

C Z -TransformTables 451

DBooleanAlgebra,BusDrivers,andLogicGates 455

D.1SomeLogicGates,Flip-Flops,andDrivers 455

D.2OtherLogicDevices:DriversandBusDrivers 457

D.3Gated R S Latch 459

D.4D-Type(Delay-Flip-Flop) 459

D.5RegisterorBuffer 461

D.6Adder 461

ESolid-StateDevicesandPowerElectronics 463

E.1PowerDiodes 463

E.2Diode–TransistorLogic(DTL) 464

E.3PowerTransistors 465

E.4Resistor–TransistorLogic(RTL) 465

E.5Transistor–TransistorLogic(TTL) 466

E.6MetalOxideSemiconductorFET(MOSFET) 466

E.7Thyristors 467

Index 469

Preface

Thecontrolofmechatronicsystemsandelectrical-drivenprocessesaimstoprovidetools toensuretheiroperatingperformanceintermsofproductivity,optimization,reliability, safety,continuousoperations,andevenstability.Thisisusuallyachievedthroughhybrid controlparadigmsusingdigitaloranalogtools.Nowadays,digitaltoolsarewidelyusedto implementcontrolsystems,astheyoffernumerousadvantagesincludingtheirability:(i)to easecontrol-systemimplementation;(ii)todesigncomplexandbuilt-inintelligentinformation processingcombiningmultiplefunctionsforcontrol,faultdetectionanddiagnostic,monitoring,anddecisionplanning;(iii)tointegratelogicandcontinuouscontrolalgorithms,aswell assupervisionprograms,intohybridcontrolstrategies;(iv)toenhancethesynchronization ofinputandoutputprocessoperations;(v)tocoordinatecontrolactionsamonggeographicallydistributedsystemsandprocesses;and(vi)toachievereliableandoptimaloperating conditions.

Thedigitalcontrolsystemarchitectureusuallyconsistsoftheintegrationofthefollowing functionalunits:adata-processingandcomputingunit,anelectrical-drivenactuatingunit,a measuringanddetectingunit,adataacquisition(DAQ)andtransmittingunit,andasignalconditioningunit.Thedata-processingandcomputingunitcanbeimplementedthroughdevices suchasamicrocontroller(μC),aprogrammablelogiccontroller(PLC)withacontrolfunction, adigitalsignalprocessing(DSP)unit,andafield-programmablegatearray(FPGA).

Thedesignofefficientcontrolsystemsrequiresthemathematicalmodelingofmechatronic systemsandprocessdynamics.Thiscanbeachievedinaccordancewiththeoperatingcharacteristics(discreteandcontinuous)andobjectives,aswellasthetechnologicalconstraints, oftherelatedinstrumentation(signalconversion,transmission,conditioning,measurement, actuation,etc.).However,inmostofthecurrentengineeringliteratureonthedesignofdigitalcontrolsystems,themathematicalfoundationofdiscrete-timeanddiscrete-eventsystemsis usuallypresentedseparatelyfromthetechnologicalconstraintsofcontrolinstrumentation.For example,theoperatingtime-delaymodelsandsignal-to-noiseratiosofdigitaldeviceinterfaces arenotusuallyconsidered.Hence,thetheoreticalcontrolalgorithmsproposedhavelimited practicalapplicability.

Challengesinthedevelopmentofapracticaldesignapproachforthecontrolofmechatronic systemsandelectrical-drivenprocessesare:(i)tosizeandselectcontrolinstrumentationin accordancewithcontrolledsystemdesignobjectives;(ii)todevelopaccordinglythemathematicaldiscretehybridmodelcapturingtheircontinuousanddiscreteeventbehavioristiccharacteristics;and(iii)tointegratethecontrolsystemswithrespecttotechnologicalconstraints andoperationalcharacterization(discreteandcontinuous)(e.g.timedelays,signal-to-noise ratios,etc.).

Thisbookintendstorevisitthedesignconceptforthecontrolofmechatronicsystems andelectrical-drivenprocesses,alongwiththeselectionofcontrolinstrumentation.By

reviewingthetheoryondiscrete-timeanddiscrete-eventsystems,aswellasvariouselements ofcontrolinstrumentation,itoffersanintegratedapproachfor:(i)themodelingandanalysis ofmechatronicsystemsdynamicsandelectrical-drivenprocessoperations;(ii)theselectionof actuating,sensing,andconversiondevices;and(iii)thedesignofvariouscontrollersforsingletomultiple-functionelectrical-drivenproducts(mechatronicsystems)andprocesses.Furthermore,itcoverssomedesignapplicationsfromseveralengineeringdisciplines(mechanical, manufacturing,chemical,electrical,computer,biomedical)throughreal-lifedigitalcontrol systemdesignproblems(e.g.driverlessvehicles,newbornincubators,elevatormotion)and industrialprocesscontrolcasestudies(e.g.powergrids,windgenerators,crudeoildistillation, brewerybottlefilling,beerfermentation).

Throughthisbook,thereadershouldgainmethodsfor:(i)modelformulation,analysis,andauditingofsingle-tomultiple-functionelectrical-drivenproductsandprocesses; (ii)model-drivendesignofthesoftwareandhardwarerequiredfordigitalcontrolinstrumentation;(iii)sizingandselectionofelectrical-drivenactuatingsystems(includingelectric motors),alongwiththeircommonlyusedelectro-transmissionelementsandbinaryactuators; (iv)selectionandcalibrationofdevicesforprocessvariablemeasurementandcomputer interfaces;and(v)modeling,operating,andintegratingawidevarietyofsensorsandactuators. Hence,thetextbookisorganizedintoeightchapters:

1) IntroductiontotheControlofMechatronicSystems.Chapter1givesabriefconceptualdefinitionandclassificationofmechatronicsystems,electrical-driventechnicalprocesses,and controlsystemsstructure.Here,afunctionaldecompositionofthegenericcontrolsystem architectureispresented,alongwithsomeexamplestoillustratecontrolinstrumentation forsensing,actuating,computing,signalconverting,andconditioning.Furthermore,typicalfunctionsofgenericcontrolledsystemsforelectromechanicalproductsandprocesses aredescribed,alongwiththeinterconnectionbetweenthecontrolinstrumentationelements.Genericrequirementsforcontrolsystemdesignareoutlinedbasedonchallengesto software-based(designofhybridarchitecture)andhardware-based(instrumentationsizing,compliance,andselection)controlsystemintegration.Thisissummarizedwithinalist ofthemajorstepsincontroldesignprojects.

2) Physics-BasedSystemsandProcesses:DynamicsModeling .Chapter2presentsnumerous examplesofdynamicsmodelingforvariouselectrical-drivensystemsandprocesses,includingtransportationsystems(e.g.asea-portgantrycrane,ahybridvehicle,aSegway,an elevator,adriverlesscar),productionsystemsandprocesses(e.g.anenergy-basedwind turbine,adrillingmachine,acement-basedpozzolanascratcher),chemicalprocesses(e.g. oildistillation,acakeconveyoroven,citywatertreatment,fermentation,poultryscalding anddefeathering),fluidicandthermalsystemsandprocesses(amixingtank,purifiedwater distribution,aconveyoroven,poultryscaldinganddefeatheringthermalprocesses),and biomedicalsystems(e.g.aninfantincubator,humanbloodglucoseinsulinmetabolism). Systemsandprocessbehaviorscanbecapturedthroughdifferentialequationsusingan experimentaldatamodelingapproachandclassicalphysicallawsofconservationandcontinuity.Theresultingmodelsarecapableofdisplayingmultipleandnonlinearvariablesas wellastime-variantparametercharacteristics,whichcanfurtherbesimplifiedaccordingto thesystemphysicalpropertiesoroperatingboundaries.Amethodologyforphysics-based modelingispresentedthroughthedeterministicorstochasticbehaviormodelsofcommonlyencounteredelectrical-drivensystemsandlarge-scaleprocesses.Areviewonlinear modelingmethodssuchasstochastics,dynamicsresponses,andstatespaceispresentedin theAppendices.

3) Discrete-TimeModelingandConversionMethods.Chapter3focusesonmethodsforderivingadiscreteapproximationofcontinuoussystemsandsignalsusingtoolssuchasthehold equivalent,pole-zeromapping,numericalintegration,and z-transformationtheorems.A technologicaldescriptionofcomputercontrolarchitectureandinterfaceisproposedwith respecttoDAQunitoperations,fromthebusstructuretodatagathering,logging,andprocessingwithrespecttosignalnoisereductionandapproximationconsideration.Critical issuesrelatedtosignalconversion,suchasaliasingeffects,alongwithamethodologyforthe selectionofasampleperiod,arealsocovered.Overall,thechaptertopicsincludetechnology andmethodsforcontinuoussignaldigitalconversionandreconstruction,suchasbilinear transformation,discrete-timecommandsequencegeneration,computercontrolinterface fordatalogging,conditioning,andprocessing,sampletimeselection,andcomputerconversiontechnologyusingvariousconversiontechniques(successiveapproximation,dual-slope ADC,delta-encodedADC,etc.),aswellasprocessingdelayeffects.

4) Discrete-TimeAnalysisMethods.Chapter4presentsmethodsrelatedtodiscretesystem dynamicalanalysisinthefrequencyandtimedomains.Moreover,stabilitydefinitions andtestsfordiscretetimesystemsarediscussedandcontrolledsystemperformance assessmenttoolsareoutlined.Thechapteraimstopresentdiscretecontrollerdesignspecifications.TopicsincludefrequencyanalysistoolssuchasDTFT,FFT,andDFT,discrete zero-andpole-locationplots,stabilitytestsandcriteriafordiscretetimesystems (Jury–Marden,Routh–Hurwitz),steady-stateerrors,performanceindices(ITAE,ISE),and timeandfrequencypropertiesforcontrollerdesign(settlingtime,percentageovershoot, gainandphasemargins).

5) ContinuousDigitalControllerDesign.Chapter5presentsvariousapproachestothedesign ofPIDcontrolleralgorithms,suchascontinuoustimedesign,discretedesign,directdesign usingrootslocus,andfrequency-responsetechniques,aswellassomeadvancedtechniques suchasmodelpredictivecontrol.Hence,usingtime-orfrequency-domaincontrollerspecifications,numerousexamplesofthedesignandtuningofcontrolalgorithmsaredescribed, rangingfromPIDfamily,deadbeat,feedforward,andcascadetonon-interactingcontrol algorithms.Inadditiontostabilityanalysistests,performanceindicesanddynamics responseanalysisarederivedinfrequencyandtimedomains.Furthermore,theopen-loop controllerdesignforsteppermotorsandscalarandvectorcontroldesignsforinduction motorsaredescribed.Modelpredictivecontrolalgorithmssuitableforprocessoperations withphysical,safety,andperformanceconstraintsarealsopresented.Comparativeanalyses betweenclassicalPIDcontrollerswithvariousstatefeedbacktopologiesforDCmotor speedcontrolareperformed.Overall,chaptertopicsincludecascadecontrol,designand tuningmethodsfordiscrete-timeclassicalPIDfamilycontrollers,andscalarandvector control.Thedigitalstatefeedbackcontrollerconceptisrevisitedforcaseswhereitis notpossibletomeasureallstatevariables.Comparatively,analysesbetweenclassicalPID controllersandvariousstatefeedbacktopologiesforDCmotorspeedcontrolarepresented.

6) Boolean-BasedModelingandLogicControllerDesign.Chapter6presentsBoolean function-basedmodelsthathavebeenderivedbyusingsequentialorcombinatoriallogic-basedtechniquestocapturetherelationshipbetweenthestateoutputsof discrete-eventsystemoperationsandthestateinputsoftheirtransitionconditions.Hence, afterperformingprocessdescriptionandfunctionalanalysis,adesignmethodologyofa logiccontrollerforprocessoperations(discreteeventsystems)isproposed.Subsequent systemsbehavioristicformalmodelingisachievedbyusingtechniquessuchastruthtables andK-maps,sequencetableanalysisandswitchingtheory,statediagrams(Mealyand Moore),andevenstatefunctioncharts.Someillustrativeexamplescoveringkeylogic

controllerdesignstepsarepresented,fromprocessschematicsandinvolvedI/Oequipment listings,wiringdiagramswithsomedesignstrategiessuchasfail-safedesign,andinterlocks, tostatetransitiontables,I/OBooleanfunctions,andtimingdiagrams.Examplesoflogic controllerdesignsincludecasesofelevatorverticaltransportation,anautomaticfruit picker,adriverlesscar,andbiomedicalsystemssuchasrobotsurgeryandlaser-based surgery.Overall,thechaptertopicscover:(i)themethodologyforBooleanalgebrabasedon themodelingofdiscreteeventsystems;and(ii)logiccontrollerdesignmethodologyforthe derivationofI/OBooleanfunctionsbasedontruthtablesandKarnaughmaps,switching theoryorstatediagrams,wiringandelectricaldiagrams,andP&IandPFdiagrams.

7) HybridProcessControllerDesign.Chapter7presentsagenericdesignandimplementation methodologyforprocessmonitoringandcontrolstrategies(logicandcontinuous),with algorithmstoensuretheoperationalsafetyofhybridsystems(i.e.systemsintegrating discrete-eventanddiscrete-timecharacteristics).First,thefunctionalandoperational processrequirementsareoutlined,inordertodefinehybridcontrolandsupervision systemswithrespecttologicandcontinuouscontrolsoftware,dataintegrationandprocess datagathering,andmulti-functionalprocessdataanalysisandreporting.Subsequently,a methodologyisproposedforthedesignofmonitoringandcontrolsystems.Somecases areusedtoillustratethedesignofprocessmonitoringandhybridcontrolforelevator motion,dryingcementpozzolana,andabrewerybottle-washingprocess.Overall,chapter topicsincludehybridcontrolsystemdesign,pipingandinstrumentationdiagrams,system operations,FASTandSADTdecompositionmethods,processstartandstopoperating modegraphicalanalysis,andasequentialfunctionalchart(SFC),aswellasprocessinterlock design.

8) MechatronicsInstrumentation:ActuatorsandSensors.Chapter8providesanoverviewof electrical-drivenactuatorsandsensorsencounteredinmechatronics,includingtheirtechnicalspecificationsandperformancerequirements.Thisiscoveredforelectromechanical actuatingsystemssuchaselectricmotorsaswellassomeelectrofluidicsandelectrothermalactuatingsystems.Similarly,binaryactuatorssuchaselectroactivepolymers, piezo-actuators,shapealloys,solenoids,andevennanodevicesaretechnicallydescribed andmodeled.Additionally,aspectrumofdigitalandanalogsensinganddetectingmethods aredescribed,alongwiththetechnicalcharacterizationandphysicaloperatingprinciples oftheinstrumentationcommonlyencounteredinmechatronicsystems.Presentedsensors includemotionsensors(position,distance,velocity,flow,andacceleration),forcesensors, pressureortorquesensors(contact-freeandcontact),temperaturesensorsanddetectors,proximitysensors,lightsensorsandsmartsensors,capacitiveproximity,pressure switchesandvacuumswitches,RFID-basedtrackingdevices,andelectromechanical contactswitches.Inaddition,somesmartsensinginstrumentationbasedonelectrostatic, piezo-resistive,piezo-electric,andelectromagneticsensingprinciplesarepresented. Overall,chaptertopicsincludeactuatingsystemssuchasmotors(AC,DC,andstepper), belts,screw-wheels,pumps,heaters,andvalves,alongwithdetectionandmeasurement devicesofprocessvariables(force,speed,position,temperature,pressure,gasandliquid chemicalcontent),RFIDdetection,sensorcharacteristics(resolution,accuracy,range,etc.), andnanoandsmartsensors.

Thistextbookemphasizesthemodelingandanalysiswithinreal-lifeenvironmentsaswellas theintegrationofcontroldesignandinstrumentationcomponentsofmechatronicsystems throughtheselectionandtuningofactuating,sensing,transmitting,andcomputingorcontrollingunits.Further,itlooksatthematchingandinterconnectingofcontrolinstrumentationsuch assensors,transducers,andactuatorsparticularlytheinterfacebetweenconnecteddevicesand

signalconversion,modification,andconditioning.Assuch,thereadercanexpectbytheend ofthebooktohavefullymastered:(i)thedesignrequirementsanddesignmethodologyfor controlsystems;(ii)thesizingandselectionoftheinstrumentationinvolvedinprocesscontrol, aswellasmicroelectromechanicaldevicesandsmartsensors;(iii)theuseofmicroprocessors forprocesscontrol,aswellassignalconditioning;and(iv)thesizingandselectionofactuatingequipmentforelectrical-drivensystemsandindustrialprocesses.Numerousexamplesand casestudiesareusedtoillustrateformalmodeling,hybridcontrollerdesign,andtheselectionof instrumentationforelectrical-drivenmachineactuationandDAQrelatedtosystemsdynamics andprocessoperations.Throughthesecasestudies,thereadershouldgainapracticalunderstandingoftopicsrelatedtothecontrolsystemandinstrumentation,allowinghimorhertofill acontrolandinstrumentengineeringpositionwhereheorsheisexpected:(i)topossessagood knowledgeofinstrumentationoperatingconditionsandcontrolrequirements;(ii)tosizeand selectcontrolinstrumentation;(iii)todesign,develop,andimplementdigitalcontrollers;(iv)to designengineeringprocessesandelectrical-drivensystems;(v)tocollaboratewithdesignengineers,processengineers,andtechniciansinthecost-andtime-basedacquisitionofsystems andprocessescontrolequipment;and(vi)toperformtechnicalaudittoensureinstrument compliancewithhealth-and-safetyregulations.

Thisbookwasconceivedtodevelopthereader’sskillsinengineering-basedproblem solving,engineeringsystemdesign,andthecriticalanalysisandimplementationofcontrol systemsandinstrumentation.Itallowsself-studyviacomprehensiveandstraightforward step-by-stepmodularprocedures.Inaddition,examples(withtheiraccompanyingMATLAB® routines,aswellas)anddesign-andselection-relatedexercisesandproblemsareprovided, alongwiththeirsolutions.Furthermore,adedicatedcompanionwebsite(emailauthorat kaltjob@uwalumni.comtohaveaccesstosecuredwebsite)allowsthereadertodownload additionalmaterialforteaching,suchasslidepresentationsonthechaptermaterial,datafiles foradditionallaboratorysessions,examplefiles,andinnovative2Dand3Dvirtuallabsfor physicalreal-lifesystems(i.e.model-basedsimulationtoolsthatcanbeassociatedtoreal-life systemsforin-classlabsessions).

Suggestionsforteachingplansforappliedcontroltheoryofmechatronicsystemsand electrical-drivenprocesseswouldbeasfollows:(i)Chapter1throughChapter5(up toSection5.3.1),foranintroductorydigitalcontrol-levelcourselastingonesemester; (ii)Chapters2,3,and5(Sections5.3and5.4)foradvancedcontrolstudentswithacontrol theorybackground;(iii)Chapters1,3(Sections3.3and3.4),and8forelectric-drivenmachine andinstrumentationstudentswithcomputerhardwareandsoftwareprogrammingexperience; (iv)Chapters2,3(Sections3.3and3.4),5(Sections5.2.4,5.3,and5.4),and6–8forfieldcontrol andinstrumentationengineersinterestedinthedesignormigrationofprocesscontrolof hybridsystems.

Acknowledgment

ThisbookmakesextensiveuseofMATLAB® routines,distributedbyMathworks,Inc.Auser withacurrentMATLABlicensecandownloadtrialproductsfromtheirwebsite.Someone withoutaMATLABlicensecanfilloutarequestformonthesite,andasalesrepwillarrange thetrialforthem.ForadditionalMATLABproductinformation,pleasecontact:

TheMathWorks,Inc.

3AppleHillDrive

Natick,MA,01760-2098USA

Tel:508-647-7000

Fax:508-647-7001

E-mail:info@mathworks.com

Web:www.mathworks.com

AbouttheCompanionWebsite

Thisbookisaccompaniedbyacompanionwebsitewhichaimstosupporttheteachingefforts ofinstructorsthrough: (emailauthoratkaltjob@uwalumni.comtohaveFREEaccesstothesecuredwebsite)

Thewebsiteincludes:

I) Lecturesmaterialforfollowingcoursespackage:

1. Digitalcontrolsystems

2. Instrumentation:sizingandselectionsensorsandactuators

3. Mechatronicsystemsdesign

4. Processautomationandmonitoring

5. Advancedcontrolsystems:predictive,distributed,adaptivecontrolstrategies

6. Electricmotor/machinecontrol:stepper,DC,AC/induction

7. Controlandinstrumentation

II) Foreachcourselistedabovereadingguides,otherclassroomresources(visualsummary, courseoutlines/summary,animationslides);

III) Foreachlecturesession,multiplechoicequestions,foreachcoursesampleexams;

IV) foreachTextbookchapter,solutionmanual,studyquestions,flashcards;

V) Solvedreal-lifeproblemsandprojects,2Dand3Dapplicationsforsessionsoflaboratory simulation.

IntroductiontotheControlofMechatronicSystems

1.1Introduction

Therapidexpansionofautomatedelectrically-drivensystems(e.g.electromechanical machines)isrelatedtothedevelopmentofdigitalcontrolstrategiesinordertoenhancetheir performanceandextendtheirfunctionalitywhilesignificantlyreducingtheiroperatingcost andcomplexity.However,thosedigitalcontrolstrategiesaredependentontheperformance ofthecontrolinstrumentationrelatedtomeasurement,signalconditioning,actuating,and digitalcontroltechnologies.Recenttechnologyadvancementsofferaplethoraofcontrol systemsinstrumentation,eachwithdesign-specificrequirementsandcomplianceconstraints. Hence,inadditiontosystemmodeling,thedesignofdigitalcontrolstrategieshastoconsider: (i)theselectionofcontrolinstrumentationinaccordancewithperformanceobjectives;and(ii) theintegrationofthecontrolsystemsinstrumentationandprocessequipmentwithrespectto operatingconstraints.

Consequently,itissuitabletolayoutagenericdesignprocedurefordigitalcontrolsystems,especiallyin:(i)controllingelectrically-drivensystems;(ii)sizingandselectingcontrol instrumentationrelatedtoinformationprocessingandcomputing,electrically-drivenactuation,processsensinganddataacquisition;(iii)integratingthosecontrolinstrumentationwith respecttocontrolledsystemperformanceobjectivesandoperatingconstraints;and(iv)integratingmultifunctionalcontrolapplications.

Inthischapter,thedefinitionandclassificationofelectrically-drivensystemsandtechnicalprocessesarepresentedfirst.Thenthefunctionalrelationshipbetweenelectromechanical machinecontrolandcontrolwithininterconnectedandsynchronizedelectromechanicalsystemsisoutlined.Variouscomponentsofcontrolsystemsinstrumentationaredescribedalong withtheirdesignrequirements.Furthermore,majorstepsofcontrolsystemmigrationprojects arepresentedwithsomeillustrativeexamplesofindustrialprocesscontrol.Finally,keyproject managementstepsandtheassociatedsubsequentdesigndocumentsarelisted.

1.2DescriptionofMechatronicSystems

Mechatronicsystemsareeitherelectrically-drivenproductsortechnicalprocesses. Electricallydrivenproducts aremachinestransformingcurrent,voltage,orotherelectricalpowerinto mechanical,fluidic,pneumatic,hydraulic,thermal,orchemicalpower.Hence,thosesystems canbeclassifiedaccordingtotheirfunctionalobjectiveseitheras:(i)specializedmachines performingspecificoperations;or(ii)multipurposeandadjustablemachines.Controlsystems areasetoftechnologiesenablingalgorithmiccomputingorsignalprocessingdevicestouse signalsemittedfromanalogordigitaldetecting,sensing,andcommunicatingdevicesinorder ControlOfMechatronicSystems:Model-DrivenDesignAndImplementationGuidelines, FirstEdition.PatrickO.J.Kaltjob. ©2021PatrickO.J.Kaltjob.Published2021byJohnWiley&SonsLtd.

2 1IntroductiontotheControlofMechatronicSystems

toperformautomaticoperationsofsystemsorprocessactuation.Suchsystemsareexpected toperformthemroutinelyandindependentlyofhumaninterventionwithaperformance superiortomanualoperation.

Thus,controlsystemsaimtoprovidethenecessaryinputsignalstoachievethedesiredpatternsofvariationsofspecificprocessvariables.Therefore,thefunctionsofcontrolsystemsare embeddedinelectromechanicalsystems(machineorproductcontrol).

Example1.1 Figure1.1showsatypical3Dprintingrobotforcustomizedcookingwithspeedandtemperature-controlledsystemwhichcouldbecombinedwithmonitoringindicatorsfor cookingtimeandcookingstage,aswellasacontrolpanelallowingtheselectionofthefinal mixingoftheproductandcookingprogram.Thissystemwouldrequire:

1) theangularpositioncontrolofapressurevalvedeliveringsemi-liquefiedfood(paste),the x-y axispositioncontrolofthecarriagedrivingtheextruderhead(nozzle)madeoftwomotors withascrewmechanism,thetableangularspeedandthe z-axispositioncontrol;

2) theheatertemperaturecontrol(nozzlelevel);

3) theremotepressureandforcecontrolforthevalveinchargeofinjectingpressuredfood pastefeedbasedonenvironmental(e.g.spacemission)andbiologicalconditions(e.g.lower gravityforces);and

4) thelogiccontrolforthediscreteselectionofingredients.

Suchcontroldesigncombinationenhancestheproductormachinefunctionalitywhilereducingoperatingandmaintenancecosts.Thisisdonebyintegratingdataprocessingandcomputing

1.2DescriptionofMechatronicSystems 3 operationswithinafielddeviceormachine(e.g.washingmachine,navigationsystemsetc.). Amongthecommonlyencounteredautomatedmachinesorproductsarethosewith:(i)embeddedcontrolfunctions;(ii)dedicatedcontrolfunctions;or(iii)acontrolfunctionlimitedtoa coupleofsensorsandactuatorsinvolved.

Atechnicalprocessisthesumofallinteractingmachineswithinthatprocesstransformingand/orstoringmaterial,energy,orinformation.Suchtechnicalprocessescanbeclassified accordingtotheiroperationalobjectivesasfollows:

1) Transportation-relatedprocesses,suchasmaterialhandlingprocesses,energyflowprocesses,andinformationtransmissionprocesses.

2) Transformation-relatedprocesses,suchaschemicalprocesses,manufacturingprocesses, powergeneration,andstorageprocesses.

Technicalprocessescanbecharacterizedaccordingtofunctionalobjectives,suchas:

1) Processescharacterizedbyacontinuousflowofmaterialorenergy(e.g.cementdrying process,electricpowerdistribution,paperproduction).Here,theprocessvariablesare physically-relatedvariableswithacontinuousrangeofvalues,suchastemperaturesina heatingsystem.Theprocessparametersarephysicalproperties(e.g.powertransmission networkimpedance,liquefiedgasdensity).Processcontrolconsistsofmaintainingthe processstateonadeterminedlevelortrajectory.Inthiscase,processdynamicsmodelscan beobtainedthroughdifferentialequations.

2) Processescharacterizedbydiscreteeventoperationsrepresentingdifferentprocessstates suchasdeviceactivationordeactivationduringthestartuporshutdownofaturbine.Here, processvariablesarebinarysignalsindicatingthediscretestatusofdevicesormachines involvedinprocessoperationsaswellaschangeinlogicdevices(e.g.activatingeventsresultingfromON/OFFswitchpositioning).Theprocessdiscreteeventmodelscanbeobtained throughBooleanfunctionsorlogicflowcharts.

3) Processescharacterizedbyidentifiableobjectsthataretransformed,transportedorstored, suchassilicon-basedwaferproduction,dataprocessingandstorageoperations.Here,processvariablesindicatethestatechangesofobjectsandcanhaveacontinuousrangeofvalues (i.e.temperatureofaslabinacloggingmill,sizeofapartinastore)orbinaryvariables.Those variablescanalsobenon-physicalcategories(i.e.type,design,application,depotnumber) assignedtotheobjects.

Example1.2 Figure1.2,depictingasalt-generatingsolar-basedthermalpowerplantsubstation,illustratesanexampleofnon-continuousprocesses(discreteevent-orobject-related).In thispowerplant,solarradiationiscollectedbythousandsofsun-trackingmirrors(heliostats), whichreflectittowardasinglereceiveratopacentrallylocatedtower.Solarradiationisthe electromagneticradiationemittedbythesun.Assuch,itisnecessaryto:

1) Controlthecollectorangleandposition(suntracker)tofacethesuntocollectthemaximum solarradiationaswellastomaintainpeakpowerdespitevaryingclimateconditions.Thisis donebyadjustingtheoperatingsettingbasedonmeasuredvoltageandcurrentoutputsof thearray.

2) Logicallycontroltheenergystoragebyswitchingbetweencharging/dischargingoperating modesbasedonclimaticconditions(sunavailability),batterychargestatus,loadlevels,and levelofenergycollectedthroughsolarirradiationbymirrorarrays.

3) Controlthetemperatureofthecollectorusedtomeltasalt.Thehotmoltensaltisstoredin astoragetanktogeneratesteamandlaterusedtodrivetheturbineandattachedgenerator.

4) Controltheflowofheatedfluidcirculatingbetweenthetankandthecollector.Thisfluid withmoltensaltatalowtemperatureispumpedtothecoldcollectortowerforthenext thermalcycle.Theoperatingtemperatureoverthisthermalcyclederivesthequantityof energytobeextracted.

Digitalcontrolsystems aimtocoordinatetheoperationsofseveralelectrically-driven machinesinordertomeetspecificoperationalobjectivessuchaswaterpurification,voltage controlinanelectricalpowergrid,ortemperatureregulationinafermentationtank.Thus,it isusuallynecessarytoensuretheintegrationofalargenumberofcontrolsysteminstruments (fromdataprocessingandcomputingunitstomeasuringunits).Figure1.3illustratesthe genericcomponentsinthedesignofcomputercontrolsystemswithsupervisoryfunctions.An exampleoftherelationshipbetweenatechnicalprocessandelectromechanicalsystemcontrol isillustratedinFigure1.4.

Figure1.2 Steam-basedpowergenerationtechnicalprocessschematic.

Process supervisory and safety requirements

Operator panel

Operating conditions

Configuration variables

Control variables

Operating variables

Controller logic and panel design

Computer control and supervisory system

Operating variables

Machine or process sequences

Machine or process safety

Disturbance variables

Manipulated variables

Measured variables

Process status

Electrical systems or processes

Detecting and measurement system

Figure1.3 Genericcontrolledmechatronicsystemsandinstrumentationblockdiagram.Source:Adaptedfrom KaltjobP.

Process material, energy, information inputs

Device control

Network transmission

Actuator Sensor

Electrically-driven machine

Central control

Network transmission

Electrically-driven machine

Actuator Sensor

Device control

Technical process control

Process material, energy, information outputs

Voltage, current inputs

Voltage, current inputs

Electrically-driven machine Logic control Detector

Actuator

Device control Sensor

Machine control

Voltage, current outputs

Integrated actuator

Embedded control Smart sensor Electrically-driven machine

Embedded device control

Voltage, current outputs

Figure1.4 Relationshipbetweentechnicalprocessandmachinecontrolsystems.Source:BasedonKaltjobP.

1.3GenericControlledMechatronicSystemandInstrumentation Components

Throughfunctionalsystemdecomposition,thedigitalcontrolsystemarchitecturecanbe dividedintothefollowingfunctionalunits:dataprocessingandcomputing,electrically-driven actuating,measuringanddetecting,dataacquisition,transmission,andsignalconditioning. Allthesecomponentsarepresentedinthesubsequentsubsections.Figure1.5summarizesthe connectionsbetweenallthemajorcontrolsystemsandinstrumentationcomponents.

1.3.1TheDataProcessingandComputingUnit

Thedataprocessingandcomputingunitisused:(i)tocontrolandregulatemachineoperations; (ii)tomonitormachinesandprocessesoperations;and/or(iii)tocoordinateoperationswithin thesameprocess.Dataprocessingandcomputingcouldbeperformedeither:

1) offline:thatis,thereisnodirectorreal-timeconnectionbetweentheprocessexecutionand thedataprocessingandcomputingunit;

2) onlineforopen-loopoperations:thatis,theprotection(safety)ofprocessoperationsand interlocking;or

3) onlineforclosed-loopoperations.

Commonlyencountereddataprocessingandcomputingdevicesare:digitalsignalprocessingdevices,programmablelogiccontrollers,microcontrollers,fieldprogrammablegatearrays amongothers,andadistributedcontrolsystem(DCS)(consistingofahistorianserverconnectedtoanetworkoffieldcontrollerdevices).Thosedevicesexecuteprogramroutinesfor:

1.3GenericControlledMechatronicSystemandInstrumentationComponents

(i)theacquisitionofprocessvariables;(ii)processconditionmonitoringandexceptionhandling(i.e.executingprocesssafetyoperations);(iii)thecontrolofmachineoperations(e.g. activation/deactivationofmotor,trackingofmotorspeed);and(iv)thearchivingandsharing ofprocessdatawithothercontroldevicesthroughthecommunicationnetwork.

1.3.2DataAcquisitionandTransmissionUnits

Dataacquisitionandtransmissionunitsareused:(i)tointerfacewithvariouscontroldevices (e.g.operatorpanel,detectingandmeasuringfielddevices);(ii)totransportprocessdata betweennetworknodes;(iii)tointegrateprocessdatafromdifferentsourcesonasingle platform;and(iv)tointegratecontrolfunctions(e.g.machinecontrolandprocesscontrol). Theseunitsoperatethroughdatatransferplatformsandtheirdatadistributionservice protocols.TheycanbedesignedbasedontheOpenSystemsInterconnectionmodel,whichis summarizedas:

1) thephysicallayer,beingeitherwiredorwirelessconnection,suchastwisted-pairwiring, fiber-opticcableorradiolink,andthecommutationunitconnectingthenetworktothe devices(e.g.fieldbusesfordatatransferbetweenprimarycontrollersandfieldcontrol devices);

2) thenetwork,transmission,andtransportlayersperformingfunctionssuchasdatarouting overthenetwork,dataflowcontrol,packetsegmentationanddesegmentation,errorcontrol andclocksynchronization.Inaddition,theselayersprovidemechanismsforpackettracking andtheretransmissionoffailedpackets;and

3) thesessionandpresentationlayersmainlyusedfordataformatting.

1.3.3Electrically-drivenActuatingUnits

Electrically-drivenactuatingunitsconvertvoltageorcurrentsignalsfromthecomputingunit intoappropriateinputforms(mechanical,electrical,thermal,fluidicetc.)fortheexecution ofmachine’sandprocessoperations.Thenthoseconvertedsignalsproducevariationsinthe machine’sphysicalvariables(e.g.torque,heat,orflow),oramplifytheenergylevelofthesignal, causingchangesintheprocessoperationdynamics.Someexamplesofactuatingelementsare relays,magnets,andservomotors.

1.3.4MeasuringandDetectingUnits

Measuringanddetectingunitsconsistoflow-powerdevices,suchassensorsandswitch-based detectorsinterfacingwithelectrically-drivenmachinesinvolvedinprocessoperations.Assuch, theyconvertrelatedphysicaloutputsignalsfromtheactuatingunitintovoltageorbinarysignalsreadytobeusedwithinthedataprocessingandcomputingunit.Somekeyfunctionsof thesedevicesare:(i)dataacquisitionrelatedtothechangeofmachinevariables;and(ii)conversionofthemachine-gatheredsignalintoelectricaloropticalsignals.Dependingonthenature oftheprocesssignalgenerated,asignalconditionercanbeadded.

1.3.5SignalConditioningUnits

Signalconditioningelementsconvertthenatureofthesignalgeneratedbythesensingdevice intoanothersuitablesignalform(usuallyelectrical).Thesignalconditioningunitscanalsobe embeddedwithinthesensingdevices.AnexampleofsuchaunitisaResistanceTemperature

Detector(RTD).Here,achangeinthetemperatureofitsenvironmentisconvertedintoavoltagesignalreflectingitsresistancechangethroughaWheatstonebridgeandthebridgeisasignal conditioningmodule.

1.4FunctionsandExamplesofControlledMechatronicSystems andProcesses

Mechatronicsystemsandprocesseshavebuilt-inintelligencethrougheithertheiradvanced informationprocessingsystemssuchasmultifunctionalcontrolsystemsorintelligent electromechanicalsystems(includingthermal,fluid,andmechanicalprocesses)suchas power-efficientmulti-axisactuationwithmotionprecisionanddetectionfeaturesorminiaturizedsmartdeviceswithembeddedinformationprocessingcapabilities.Theresulting controlledmechatronicsystemsandprocessesaimtoachievevariousobjectives:synchronize, controlandsequenceprocessoperations,ordetectandmonitorprocessstatus.

Table1.1presentssometypicalprocesscontrolobjectivesandtheircorrespondingcontrol functionsalongwithsomeillustrativeexamples.

Example1.3 Robot-assistedsurgeryisusingimage-guidedsystemstocommandandcontrol operationsinintravascularsurgery,asdepictedinFigure1.6.Suchasystemhasanembedded andintegratedcontrolsystemforitsmotionanddirection,aswellasoperationmonitoring, andmotionsynchronizationbetweenrobotarms.Expectedcontrolfunctionsinclude:

1) forcecontrolofarobotarmgripper;

2) synchronizedangularpositionandvelocitycontrolofeachmotor-drivenrobotjoint;

3) logiccontrolofreal-timeanomaliesdetection(locationoftheabnormalcellordysfunctionalorgan)andinspectionusing3Dimagingcameraprocessing(coloruniformity,selectionbasedonsizeandshape)andlaserrangingsensors;

4) pathgenerationandmotionplanning(position,speed,andaccelerations)forrobotnavigationwhileensuringcollisionavoidanceoftherobotmanipulator;and

5) logiccontrolofthediscreteselectionofsuitablecuttingtoolsfortherobotarms.

Table1.1 Functionsandimplementationstrategiesforcontrollingmechatronicsystemsandprocesses.

Controlsystem processingfunctions

Assessing,reporting,and monitoring

Safetycompliance, detection,and diagnostics

Controlandperformance enhancement

Implementation controlstrategies

Recordingprocessvariables throughsensorsanddetectors; real-time,model-based measurement,setting parameters,andinputsignals.

Interlockingincaseofdetected failuremodes,maintaining safetyoperationswhileensuring malfunctionhandling.

Controllingorregulatingsystem variables.

Examplesofcontrolledmechatronic systemsandprocesses

Remotepowerflowmeasurement, configurationandvoltagecontrol (SCADA)throughswitchgears, transformers,andcondensersina smartpowergrid.

Integratedsafetyandmonitoringof petrochemicalprocessvariablesand parameters(flowrate,temperatureetc.)

Positionandtemperature measurementaswellascontrolofa2D cuttingmachineryprocess.

Figure1.6 Image-guidedtele-assistedrobotintravascularsurgery.

Example1.4 Anunmannedelectricvehicledrivingsystemisexpectedtohaveanembedded andintegratedcontrolsystemforspeedanddirectioncontrol,trafficlightmonitoring,and motionsynchronizationwithotherusers.ConsiderthedriverlessvehicleinFigure1.7(a): ablockdiagramwithallrelevantinputandoutput(I/O)variablesinvolvedisdepictedin Figure1.7(b).

Example1.5 Here,anexampleofcontrolsystemforacrane-basedverticalmotionprocess isillustratedinFigure1.8,whileitsfeedbackblockdiagramandthelogiccontrolconnections areshowninFigure1.9(a)and(b).

Example1.6 Here,amilkybeverageprocessingfactoryisillustratedinFigure1.10.Inaprocessofsuchscale,asupervisory,control,anddataacquisitionsystem(SCADA)isusedtocollect plant-widedatathroughanindustrialnetworktoarchiveandtoensuretheexecutionofderived processsequences.Theequivalentblockdiagramdepictingtherelevantcomponentsofsuch SCADA-orientedprocesscontrolsystemispresentedinFigure1.11.

1.5ControllerDesignIntegrationStepsandImplementation Strategies

Mechatronicsystemsandprocessesaresystemsembeddingautomaticinformationprocessing functionssuchasforreporting,betterperformanceandcontrol,andsafeoperation.Such functionsareimplementedusingvariouscontrolstrategiesthroughadvancedcontroldesign algorithms,alongwithassociatedsmartactuatingorsensingdevices.Becauseacombination ofcontrolstrategiesiscommonlyusedandoperatedsimultaneously,itisnecessarytodevelop adesignmethodologytointegratecontrolstrategieswithinformation-drivenprocessing functionstoensurenear-optimalperformanceundervariousfunctionalitiesandsafeoperating conditions.Inaddition,thecontrolsystemmustcombinedigitallogicsequentialcontrolwith continuouscontroltoensureasynergeticeffectontheoperationofthemechatronicsystem.

Right hand joystick
Left hand joystick
Surgeon manipulating panel

Figure1.7 (a)Chassisofadriverlessvehicle.Source:BasedonKaltjobP.(b)Hybridcontrolblockdiagramofa driverlessvehicle.

Shaft position encoder

Command linear position, c(t),

Command angular position, θ(t) Cabin

Motor current, i(t)

Figure1.8 Crane-basedverticalmotioncontrolsystemschematic.Source:AdaptedfromKaltjobP.

Thisisusuallyencapsulatedinanautomationsoftwaresolutionassociatedwithsolidstate computingdevices(powerelectronics).

Furthermore,thecontrolarchitectureofthemechatronicsystemcoulduseeitherdecentralizedcontrolsystems,DCSs,hybridcontrolsystems,monitoringandcontrolsystems, fault-tolerantcontrolsystems,andembeddedcontrolsystems.Hence,someofthemare expectedtorequireremoteandsynchronizationtoolsthroughdatatransmissionandacquisitiontoolstoensurethecoordinationbetweenoperatingentitiesaswellbetweenmechatronic systemcomponents.Recallingthatanymechatronicsystemisbyitsdesignacombination ofelectrical,mechanical,andinformationprocessingtechnology,thecontrolsolutionof amechatronicsystemcouldcombine:(i)built-inintelligence;(ii)real-timeprogramming; and(iii)multifunctionaloperatingcharacteristics.Forexample,thiscouldresultinhigher serviceproductivity,quality,andreliability(e.g.reducedfailurerate),byembeddingintelligent, self-correctingsensoryfeedbacksystems.Thusanintegratedapproachissuitableforthe controlofanymulti-functionalmechatronicsystem.

Regardingmechatronicsystemsandprocesses,threemaintypesofintegratingcontroldesign strategycanbeconsidered:(i)spatialandstructuralintegration;(ii)functionalintegration;and (iii)performance-basedintegration.Here,thistextbookfocusesoncontroldesignintegration relatedtoinformationprocessing(i.e.advancedcontrolfunctionalongwithmonitoringand diagnosticfeatures).Assuch,inordertoachieveanefficientcontrolledmechatronicsystem,any controldesignprojectstepsmustencompassacoherentsynergyofselectionanddesigneffort

Reference inputs

Speed position

Position encoder

Tachometer

Continuous control

Hybrid control system

Lift traction system

Elevator cabin motor

Door system

Up/Down direction

Floor selection

Emergency stop Hold PB Control panels

Logic control

Monitoring unit

Floor panel outside elevator

Selection Up/Dn PBs Lights (floor Up/Dn indicators)

Data acquisition unit

Panel inside elevator

Selection floor PBs Emergency horn Lights (floor selections)

Elevator door motor

Limit switches

Detectors

(a)

Control unit

Driving control circuitry and programs Driving control circuitry and programs PWM controller

Data acquisition unit Safety programs (interlocks)

(b) Weight Obstruct Open/close Floor

Floor gate motor

Conversion unit

Sensing unit

Actuating unit

Vertical lift traction system

Bi-directional Motor and coupler

Conversion unit Floor gate system

Fan motor PLC PLC

Sensing unit

Conversion unit

Sensing unit

Bi-directional motor

Elevator door system

Bi-directional motor

Figure1.9 (a)Blockdiagramofthecranemotionfeedbackcontrolsystem.(b)Logiccontrolconnectionsofthe cranemotionfeedbackcontrolsystem.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.