Essentials of fluidization technology john r. grace download pdf

Page 1


Essentials of Fluidization Technology

Visit to download the full and correct content document: https://ebookmass.com/product/essentials-of-fluidization-technology-john-r-grace/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Essentials of Economics 12th Edition Bradley R.

Schiller

https://ebookmass.com/product/essentials-of-economics-12thedition-bradley-r-schiller/

Essentials of Economics, 5th edition (2022) R. Glenn

Hubbard

https://ebookmass.com/product/essentials-of-economics-5thedition-2022-r-glenn-hubbard/

Essentials of Economics 9th Edition John Sloman

https://ebookmass.com/product/essentials-of-economics-9thedition-john-sloman/

The Greatest Romance Novels of Grace Livingston Hill

Grace Livingston Hill

https://ebookmass.com/product/the-greatest-romance-novels-ofgrace-livingston-hill-grace-livingston-hill/

Essentials of Mechanical Ventilation 4th Edition

Edition Dean R. Hess

https://ebookmass.com/product/essentials-of-mechanicalventilation-4th-edition-edition-dean-r-hess/

The Ninth Life of a Diamond Miner: Grace Tame Memoir

Grace Tame

https://ebookmass.com/product/the-ninth-life-of-a-diamond-minergrace-tame-memoir-grace-tame/

Technology for Business John Blakemore

https://ebookmass.com/product/technology-for-business-johnblakemore/

Essentials of Statistics for Business & Economics 9th

Edition David R. Anderson

https://ebookmass.com/product/essentials-of-statistics-forbusiness-economics-9th-edition-david-r-anderson/

Confronting the Enigma of Time John R Fanchi

https://ebookmass.com/product/confronting-the-enigma-of-timejohn-r-fanchi/

EssentialsofFluidizationTechnology

EssentialsofFluidizationTechnology

Editors

Prof.JohnR.Grace

UniversityofBritishColumbia ChemicalandBiologicalEngineering VancouverCampus 2360EastMall

Canada

V6T1Z3NK

Prof.XiaotaoBi

UniversityofBritishColumbia ChemicalandBiologicalEngineering VancouverCampus 2360EastMall

Canada

V6T1Z3NK

Prof.NaokoEllis UniversityofBritishColumbia ChemicalandBiologicalEngineering VancouverCampus 2360EastMall

Canada

V6T1Z3NK

CoverCredit:iStock#1153898634/ DamienGeso.

Allbookspublishedby Wiley-VCH arecarefullyproduced.Nevertheless, authors,editors,andpublisherdonot warranttheinformationcontainedin thesebooks,includingthisbook,to befreeoferrors.Readersareadvised tokeepinmindthatstatements,data, illustrations,proceduraldetailsorother itemsmayinadvertentlybeinaccurate.

LibraryofCongressCardNo.: appliedfor

BritishLibraryCataloguing-in-Publication Data

Acataloguerecordforthisbookis availablefromtheBritishLibrary.

Bibliographicinformationpublishedby theDeutscheNationalbibliothek TheDeutscheNationalbibliotheklists thispublicationintheDeutsche Nationalbibliografie;detailed bibliographicdataareavailableonthe Internetat <http://dnb.d-nb.de>

©2020Wiley-VCHVerlagGmbH& Co.KGaA,Boschstr.12,69469 Weinheim,Germany

Allrightsreserved(includingthoseof translationintootherlanguages).No partofthisbookmaybereproducedin anyform–byphotoprinting, microfilm,oranyothermeans–nor transmittedortranslatedintoa machinelanguagewithoutwritten permissionfromthepublishers. Registerednames,trademarks,etc.used inthisbook,evenwhennotspecifically markedassuch,arenottobe consideredunprotectedbylaw.

PrintISBN: 978-3-527-34064-4

ePDFISBN: 978-3-527-69947-6

ePubISBN: 978-3-527-69949-0

oBookISBN: 978-3-527-69948-3

CoverDesign:Adam-Design,Weinheim, Germany

Typesetting SPiGlobal,Chennai,India PrintingandBinding

Printedonacid-freepaper 10987654321

Contents

Preface xix Acknowledgement xxi

1Introduction,History,andApplications 1 JohnR.Grace

1.1DefinitionandOrigins 1

1.2Terminology 2

1.3Applications 3

1.4OtherReasonsforStudyingFluidizedBeds 4

1.5SourcesofInformationonFluidization 8 References 8 Problems 9

2Properties,MinimumFluidization,andGeldart Groups 11 JohnR.Grace

2.1Introduction 11

2.2FluidProperties 11

2.2.1GasProperties 11

2.2.2LiquidProperties 12

2.3IndividualParticleProperties 12

2.3.1ParticleDiameter 12

2.3.2ParticleShape 12

2.3.3DensityandInternalPorosity 13

2.3.4SurfaceRoughness 14

2.3.5TerminalSettlingVelocity 14

2.3.6CoefficientsofRestitution(Particle–Particleand Particle–Wall) 15

2.3.7DielectricConstantandElectricalConductivity 16

2.3.8ThermalProperties 16

2.4BulkParticleProperties 16

2.4.1MeanParticleDiameterandParticleSizeDistribution 16

2.4.2BulkDensity,Voidage,and“Flowability” 16

2.5MinimumFluidizationVelocity 18

2.5.1Measuring U mf Experimentally 18

2.5.1.1PressureDropvs.SuperficialVelocityMethod 18

2.5.1.2OtherExperimentalMethodsofDetermining U mf Experimentally 20

2.5.2Predicting U mf BasedonParticleandFluidProperties 20

2.5.3OtherFactorsInfluencingtheMinimumFluidizationVelocity 23

2.6GeldartPowderClassificationforGasFluidization 24

2.7VoidageatMinimumFluidization 27

SolvedProblem 28

Notations 28

References 29

Problems 31

3LiquidFluidization 33

3.1Introduction 33

3.2FieldofExistence 33

3.3OverallBehaviour 35

3.4SuperficialVelocity–VoidageRelationship 37

3.5ParticleSegregationandMixing 40

3.6LayerInversionPhenomena 41

3.6.1PredictingtheLayerInversionVoidage(viatheParticleSegregation Model) 43

3.6.2LayerInversionVelocity 46

3.7HeatandMassTransfer 46

3.7.1InterphaseTransfer 46

3.7.2Bed-to-SurfaceTransfer 47

3.8DistributorDesign 48

SolvedProblems 48 Notations 51 References 52 Problems 53

4GasFluidizationFlowRegimes 55 XiaotaoBi

4.1OnsetofFluidization 55

4.2OnsetofBubblingFluidization 55

4.3OnsetofSluggingFluidization 57

4.4OnsetofTurbulentFluidization 58

4.5TerminationofTurbulentFluidization 62

4.6FastFluidizationandCirculatingFluidizedBed 62

4.7FlowRegimeDiagramforGas–SolidFluidizedBeds 64

4.8GeneralizedFlowDiagramforGas–SolidVerticalTransport 65

4.9EffectofPressureandTemperatureonFlowRegime Transitions 68

SolvedProblems 70

Notations 71 References 72 Problems 74

5ExperimentalInvestigationofFluidizedBed Systems 75 NaokoEllis

5.1Introduction 75

5.1.1DesignGoals 75

5.1.2PurposeofExperiments 76

5.2ConfigurationandDesign 76

5.2.1ColumnMaterial 78

5.2.2DistributorPlate 79

5.2.3PlenumChamber 81

5.2.4FeedingSystem(SeeAlsoChapter11) 81

5.2.4.1HopperDesign 82

5.2.5AuxiliaryComponents 83

5.2.5.1SecondaryInjectionofFluid 84

5.3FluidizabilityandQualityofFluidization 84

5.3.1CharacterizationofFlowabilityofParticles 84

5.3.2ParticlePropertiesandFluidizability 86

5.3.3QualityofFluidization 86

5.4InstrumentationandMeasurements 87

5.4.1PressureMeasurements 87

5.4.2ThermalSensors 89

5.4.3OpticalProbes 89

5.4.4Non-invasiveMeasurements 90

5.4.5VisualizationMeasurements 91

5.4.6AcousticEmissionMeasurements 92

5.4.7SolidsCirculationFlux 92

5.4.8GasorSolidsSampling 92

5.4.9MixingandResidenceTimeDistribution 93

5.5OperationofFluidizedBeds 93

5.5.1Start-UpandShutdown 94

5.5.2Steady-StateOperation 94

5.6DataAnalysis 95

5.6.1FrequencyAnalysis 95

5.6.2BivariateTimeSeries 96

5.6.2.1JointProbabilityDensityFunction 96

5.6.2.2Cross-CorrelationFunction 96

5.6.2.3Cross-SpectralDensityFunction 97

5.6.3OtherSignalAnalyses 98 SolvedProblem 98 Notations 98 References 100 Problems 104

6ComputationalFluidDynamicsandItsApplicationto Fluidization 109 TingwenLiandYupengXu

6.1Two-FluidModel 110

6.1.1GoverningEquations 110

6.1.2KineticGranularTheory 112

6.1.3FrictionalModel 114

6.1.4LimitationsofTFM 115

6.2DiscreteParticleMethod 115

6.2.1GoverningEquations 116

6.2.2LimitationsofCFD–DPM 119

6.3Gas–SolidInteraction 119

6.3.1Gas–SolidDrag 119

6.3.2Gas–SolidHeatTransfer 121

6.4BoundaryConditions 122

6.5ExampleandDiscussion 123

6.5.1TFMSimulationofaBubblingFluidizedBedwithTube Bundle 123

6.5.2CFD–DPMSimulationofaSmall-ScaleCirculatingFluidized Bed 124

6.5.3Discussion 125

6.6ConclusionandPerspective 126 SolvedProblem 126 Notations 127 References 128

7HydrodynamicsofBubblingFluidization 131 JohnR.Grace

7.1Introduction 131

7.2WhyBubblesForm 133

7.3AnalogyBetweenBubblesinFluidizedBedsandBubblesin Liquids 134

7.4HydrodynamicPropertiesofIndividualBubbles 135

7.4.1RisingVelocityofSingleBubbles 135

7.4.2BubbleWakes 135

7.4.3BubbleBreakupandMaximumStableSize 137

7.4.4InterphaseMassTransferandCloudFormation 137

7.5BubbleInteractionsandCoalescence 139

7.6FreelyBubblingBeds 139

7.6.1FlowofGasbyTranslationofBubbles 139

7.6.2MeanBubbleDiameterasaFunctionofHeightandGas Velocity 140

7.6.3RisingVelocityofBubblesinFreelyBubblingBed 142

7.6.4BubbleVolumeFraction(Holdup) 142

7.6.5BedExpansion 142

7.6.6RadialNonuniformityofBubblesandItsEffectonMixing 143

7.6.7TurnoverTime,SolidsMixing,andParticleSegregation 144

7.6.8GasMixing 145

7.7OtherFactorsInfluencingBubblesinGas-FluidizedBeds 146 SolvedProblem 147 Notations 147 References 148 Problems 152

8SlugFlow 153

JohnR.Grace

8.1Introduction 153

8.2TypesofSlugFlow 153

8.3AnalogyBetweenSlugsinFluidizedBedsandSlugsinLiquids 155

8.4ExperimentalIdentificationoftheSlugFlowRegime 155

8.5TransitiontoSlugFlow 156

8.6PropertiesofSingleSlugs 156

8.7HydrodynamicsofContinuousSlugFlow 158

8.7.1SlugRisingVelocity 158

8.7.2SlugSpacingandLength 158

8.7.3TimeBetweenSuccessiveSlugsandSlugFrequency 159

8.7.4BedExpansion 159

8.7.5UniformityandSymmetryofFlow 159

8.8MixingofSolidsandGasinSluggingBeds 159

8.9SluggingBedsasChemicalReactors 160

SolvedProblem 160

Notations 161 References 161

9TurbulentFluidization 163

XiaotaoBi

9.1Introduction 163

9.2FlowStructure 165

9.2.1AxialandRadialVoidageDistribution 165

9.2.2LocalVoidSizeandRiseVelocity 166

9.2.3VoidPhaseVolumeFraction,VoidPhase,andDensePhaseSolids Holdup 167

9.3GasandSolidsMixing 168

9.3.1GasMixing 168

9.3.2SolidsMixing 171

9.4EffectofColumnDiameter 172

9.5EffectofFinesContent 173

SolvedProblem 173 Notations 175 References 176 Problems 180

10EntrainmentfromBubblingandTurbulentBeds 181 FarzamFotovat

10.1Introduction 181

10.2Definitions 182

10.2.1TransportDisengagementHeight(TDH) 182

10.2.2Elutriation 184

10.3EjectionofParticlesintotheFreeboard 184

10.4EntrainmentBeyondtheTransportDisengagementHeight 185

10.5EntrainmentfromTurbulentFluidizedBeds 190

x Contents

10.6ParametersAffectingEntrainmentofSolidParticlesfromFluidized Beds 191

10.6.1PropertiesofParticles 191

10.6.2GeometryandShapeofFreeboard 192

10.6.3DenseBedHeight 192

10.6.4Internals 192

10.6.5PressureandTemperature 193

10.6.6ElectrostaticCharges 194

10.7PossibleMeansofReducingEntrainment 195 SolvedProblem 195

Notations 196 References 197 Problems 201

11StandpipesandReturnSystems,SeparationDevices, andFeeders 203

TedM.KnowltonandSuryaB.ReddyKarri

11.1StandpipesandSolidsReturnSystems 203

11.1.1PackedBedFlow 206

11.1.2FluidizedBedFlow 206

11.1.3TypesofStandpipes 206

11.1.3.1OverflowFluidizedStandpipe 207

11.1.3.2UnderflowPackedBedStandpipe 208

11.1.3.3UnderflowFluidizedStandpipes 210

11.2StandpipesinRecirculatingSolidsSystems 212

11.2.1AutomaticSolidsRecirculationSystems 212

11.2.2ControlledSolidsRecirculationSystems 213

11.2.3FunctionofaStandpipe 215

11.3StandpipesUsedwithNonmechanicalSolidsFlowDevices 216

11.3.1NonmechanicalSolidsControlModeOperation 216

11.3.2AutomaticSolidsFlowDevices 219

11.3.2.1CycloneDiplegs 219

11.4SolidsSeparationDevices 222

11.4.1Cyclones 222

11.4.1.1CycloneTypes 223

11.4.1.2FlowPatternsinCyclones 225

11.4.1.3CyclonesinSeries 226

11.4.1.4CyclonesinParallel 226

11.4.1.5Internalvs.ExternalCyclones 227

11.4.1.6CycloneInletDesign 227

11.4.1.7EffectofSolidsLoading 227

11.4.1.8GasOutletTube 228

11.4.1.9InletGasVelocity 228

11.4.1.10CycloneDimensionsandDesign 228

11.4.2OtherSeparationDevices 229

11.4.2.1ParticulateScrubbers 229

11.4.2.2FabricFilters 229

11.4.2.3GranularBedFilters 230

11.4.2.4ElectrostaticPrecipitators 230

11.4.2.5U-Beams 230

11.5SolidsFlowControlDevices/Feeders 230

SolvedProblem 232 Notations 233 References 235 Problems 237

12CirculatingFluidizedBeds 239

ChengxiuWangandJesseZhu

12.1Introduction 239

12.1.1WhatIsaCirculatingFluidizedBed? 239

12.1.2KeyCharacteristicsofCirculatingFluidizedBeds 240

12.2BasicParameters 241

12.3AxialProfilesofSolidsHoldup/Voidage 243

12.4RadialProfilesofSolidsDistribution 246

12.5TheCirculatingTurbulentFluidizedBed 249

12.6Micro-flowStructure 250

12.7GasandSolidsMixing 256

12.8ReactorPerformanceofCirculatingFluidizedBeds 258

12.9EffectofReactorDiameteronCFBHydrodynamics 261 Notations 262 References 263 Problems 268

13OperatingChallenges 269

PoupakMehraniandAndrewSowinski

13.1Electrostatics 269

13.1.1MeasurementandPredictionofElectrostaticCharge 271

13.1.2MitigationTechniques 272

13.1.3Summary 273

13.2Agglomeration 273

13.3Attrition 274

13.3.1ModellingAttrition 276

13.4Wear 278

SolvedProblems 280 Notations 286 References 287 Problem 290

14HeatandMassTransfer 291 DeningEricJia

14.1HeatTransferinFluidizedBeds 291

14.1.1InterphaseHeatTransfer 293

14.1.2Bed-to-SurfaceHeatTransfer 294

14.1.2.1GeneralConsiderations 294

14.1.2.2ParticleConvectiveComponent 294

14.1.2.3GasConvectionComponent 298

14.1.2.4MaximumHeatTransferCoefficient 299

14.1.3HeatTransferCorrelationsforFluidizedBeds 302

14.1.3.1CorrelationsforBed-to-SurfaceHeatTransfer 303

14.1.4HeatTransferBetweenFluidizedBedandImmersedSurfaces 304

14.1.4.1CorrelationsforVerticalTubes 306

14.1.4.2Martin’sCorrelationsforHeatTransfertoImmersedSurfaces 309

14.1.4.3FinnedTubesandNon-cylindricalTubes 312

14.1.4.4TubesinFreeboardRegion 313

14.1.4.5MethodsofAugmentingBed-to-SurfaceHeatTransfer 314

14.1.5RadiativeHeatTransfer 314

14.1.6HeatTransferinFastandCirculatingFluidizedBeds 316

14.2MassTransferinFluidizedBeds 318

14.2.1ParticleandFluidMassTransferintheDensePhase 318

14.2.2BubbletoDense-PhaseInterphaseMassTransfer 320

SolvedProblem 320

Notations 323 References 325 Problem 329

15CatalyticFluidizedBedReactors 333 AndrésMahecha-Botero

15.1Introduction 333

15.2ReactorDesignConsiderations 334

15.2.1SuitabilityofFluidizedBedsforCatalyticProcesses 334

15.2.2ReactorTypesbyFlowRegimeandPhase 334

15.3ReactorModelling 334

15.3.1ModelDevelopment 337

15.3.2ModelStructureandReactionConsiderations 338

15.3.2.1FlowRegimeConsiderations 338

15.3.2.2ReactionEquilibriumConsiderations 339

15.3.2.3ReactionKineticsConsiderations 340

15.4FluidizedBedCatalyticReactorModels 342

15.4.1Mass/MoleandEnergyBalances 345

15.4.2ReactionRateExpressions 345

15.4.2.1Single-PhaseModels 346

15.4.3ModelsBasedonStandardTwo-PhaseTheory 349

15.4.3.1DivisionofFlowandCalculationofFluidizedBedParameters 349

15.4.4MoreSophisticatedModels 352

15.4.4.1ComprehensiveReactorModelling 352

15.4.4.2ComputationalFluidDynamics(CFD)ModelsforFluidizedBed CatalyticReactors 353

15.4.5ModelVerificationandValidation 353

15.4.6RecommendationsforProgrammingandNumericalSolutionof ReactorModels 356

15.5Conclusions 356 Notations 357 References 358 Problems 361

16FluidizedBedsforGas–SolidReactions 363

JaberShabanianandJamalChaouki

16.1Introduction 363

16.2Gas–SolidReactionsforaSingleParticle 364

16.2.1ReactionModelsforNon-porousParticles 365

16.2.1.1ShrinkingParticle 366

16.2.1.2ShrinkingUnreactedCoreModel 369

16.2.2ReactionModelsforPorousParticles 373

16.2.2.1ReactionsofCompleteConsumptionoftheParticle 373

16.2.2.2ReactionsforPorousParticlesofUnchangingOverallSize 374

16.2.3ReactionModelsforSolid–SolidReactionsProceedingThrough GaseousIntermediates 377

16.3ReactionsofSolidParticlesAlone 377

16.4ConversionofParticlesBathedbyUniformGasCompositionina DenseGas–SolidFluidizedBed 378

16.5ConversionofBothSolidsandGas 381

16.5.1ReactorPerformanceCalculationforaBedofFineParticles (CaseI) 382

16.5.2ReactorPerformanceCalculationforaBedofCoarseParticles (CaseII) 385

16.6ThermalConversionofSolidFuelsinFluidizedBedReactors 386

16.7FinalRemarks 390 SolvedProblems 391 Acknowledgments 398 Notations 398 References 401 Problems 403

17Scale-UpofFluidizedBeds 405

NaokoEllisandAndrésMahecha-Botero

17.1ChallengesofScale 405

17.2HistoricalLessons 407

17.3InfluenceofScaleonHydrodynamics 408

17.3.1BubblingFluidization 408

17.3.2TurbulentFluidizationFlowRegime 410

17.3.3FastFluidization 411

17.4ApproachestoScale-Up 412

17.4.1FramingQuestions 412

17.4.2GeneralApproaches 412

17.4.3DimensionalSimilitude(ScalingModels) 413

17.4.4OtherModels 414

17.5PracticalConsiderations 415

17.5.1PurposeofPilot-ScaleUnits 415

17.5.2Pilot-ScaleUnits 416

17.5.2.1BiomassCombinedHeatandPower(CHP)GüssingCase 416

17.5.2.2DualGasifierwithCO2 Capture 417

17.5.2.3CalciumLoopingTechnologies 419

17.6Scale-UpandIndustrialConsiderationsofFluidizedBedCatalytic Reactors 419

17.6.1ChallengesofScale-UpofFluidizedBedCatalyticReactors 419

17.6.2PracticalRecommendationsforIndustrialImplementationof ReactorSystems 422 SolvedProblems 424 Notations 426 References 426 Problems 429

18BafflesandAidstoFluidization 431 YongminZhang

18.1IndustrialMotivation 431

18.2BafflesinFluidizedBeds 432

18.2.1ClarificationofBafflesinLow-VelocityDenseFluidizedBeds 432

18.2.2GeometricCharacteristicsofBaffles 432

18.2.2.1HorizontalBaffles 432

18.2.2.2VerticalBaffles 435

18.2.2.3FixedPackings 436

18.2.3BafflesinLow-VelocityDenseFluidizedBeds 439

18.2.3.1EffectofBafflesonBedHydrodynamics 439

18.2.3.2PerformanceofBafflesinIndustrialFluidizedBedReactors 445

18.2.3.3OtherFindingsandApplications 446

18.2.4BafflesorInsertsinHigh-VelocityFastFluidizedBeds 446

18.2.5DesignofBafflesforIndustrialFluidizedBeds 447

18.3OtherAidstoFluidization 449

18.3.1BriefIntroduction 449

18.3.2ElectricalFields 450

18.3.3MagneticFields 450

18.3.4PulsationsandVibrations 451

18.3.5GlidantsandAntistaticAgents 451

18.4FinalRemarks 452

Notations 452

References 452

Problem 455

19JetsinFluidizedBeds 457 CedricBriensandJenniferMcMillan

19.1Introduction 457

19.2JetsatGasDistributors 457

19.2.1CriterionforUniformGasDistribution 459

19.2.1.1“Dry”DistributorPressureDrop 461

19.2.1.2ActualDistributorPressureDrop 461

19.2.2DefluidizedZones 462

19.2.3ErosionofInternals 464

19.2.3.1PenetrationofUpwardVerticalJets 465

19.2.3.2PenetrationofHorizontal,Inclined,andDownwardVertical Jets 466

19.2.3.3AngleofUpwardJets 466

19.2.3.4MergingandCoalescence 466

19.3MassTransfer,HeatTransfer,andReactioninDistributorJets 467

19.4ParticleAttritionandTribochargingatDistributorHoles 467

19.5JetsFormedinFluidizedBedGrinding 469

19.5.1Mechanisms 469

19.6Applications 471

19.7JetPenetration 471

19.8SolidsEntrainmentintoJets 471

19.9NozzleDesign 472

19.9.1NozzleInclination 472

19.9.2ImpactofBedHydrodynamics 473

19.9.3OpposingJets 473

19.10Jet-TargetAttrition 473

19.10.1PredictionofAttritionRates 474

19.11JetsFormedWhenSolidsAreFedintoaFluidizedBed 475

19.11.1Mechanisms 475

19.11.2Applications 475

19.11.3JetPenetration 476

19.11.4SolidsEntrainment 476

19.11.5InjectionSystemDesign 476

19.11.6NozzleInclination 476

19.11.7ImpactofBedHydrodynamics 476

19.12JetsFormedWhenLiquidIsSprayedintoaGas-Fluidized Bed 477

19.12.1PureLiquidJets 477

19.12.2MechanismforGas–LiquidJets 477

19.12.3Applications 478

19.13JetPenetration 478

19.13.1SolidsEntrainment 478

19.13.2InjectionSystemDesign 479

19.13.2.1UpstreamPipingDesign 479

19.13.2.2SprayNozzleDesign 480

19.13.2.3LaboratoryNozzles 480

19.13.2.4Non-rodableCommercialNozzles 480

19.13.2.5RodableCommercialNozzles 480

19.13.2.6DownstreamAttachments 481

19.13.2.7ImpactAttachments 481

19.13.2.8Shrouds 481

19.13.2.9GasJets 482

19.13.2.10DraftTubes 482

19.13.3NozzleInclination 482

19.13.4InteractionsBetweenSprayJets 483

19.13.5ImpactofBedHydrodynamics 483

SolvedProblems 483

Notations 487 References 488 Problem 497

20DownerReactors 499

ChangningWuandYiCheng

20.1DownerReactor:ConceptionandCharacteristics 499

20.2Hydrodynamics,Mixing,andHeatTransferofGas–SolidFlowin Downers 501

20.2.1BasicHydrodynamicBehaviour 501

20.2.2MixingBehaviourofSolidsinDowners 503

20.2.3HeatTransferinDowners 506

20.3ModellingofHydrodynamicsandReactingFlowsinDowners 508

20.3.1ReactionEngineeringModel 509

20.3.2Eulerian–EulerianModel 509

20.3.3Eulerian–LagrangianModel 511

20.4DesignandApplicationsofDownerReactors 514

20.4.1InletDesign 514

20.4.2FastSeparationofGasandSolidsatDownerExit 517

20.4.3High-DensityDowner 518

20.4.4Downer–RiserCoupledReactors 518

20.4.5ApplicationCase1:FCC 519

20.4.6ApplicationCase2:Gasification 521

20.4.7ApplicationCase3:CoalPyrolysisinPlasma 521

20.5ConclusionsandOutlook 523 SolvedProblem 523

Notations 525 References 526 Problems 528

21Spouted(andSpout-Fluid)Beds 531

NormanEpstein

21.1Introduction 531

21.2Hydrodynamics 532

21.2.1ConstraintsonFluidInletDiameterandConeAngle 532

21.2.2MinimumSpoutingVelocity 533

21.2.3MaximumSpoutableBedHeight 534

21.2.4FluidFlowinAnnulus 535

21.2.5FluidFlowinSpout 536

21.2.6PressureDrop 536

21.2.7BehaviourofSolidParticles 537

21.3HeatandMassTransfer 538

21.4ChemicalReaction 538

21.5Spoutingvs.Fluidization 539

21.6Spout-FluidBeds 540

21.7Non-conventionalSpoutedBeds 543

21.8Applications 546

21.9MultiphaseComputationalFluidDynamics 547

SolvedProblem 547

Notations 548 References 549

22Three-Phase(Gas–Liquid–Solid)Fluidization 553 DominicPjontek,AdamDonaldson,andArturoMacchi

22.1Introduction 553

22.1.1GeneralDescriptionandClassification 553

22.1.2Applications 554

22.2ReactorDesignandScale-up 556

22.2.1ReactorDesign 556

22.2.2ReactorScale-up 558

22.3CompartmentalFlowModels 558

22.3.1PlenumandFluidDistributor 560

22.3.2FluidizedBed 561

22.3.3Freeboard 562

22.4FluidDynamicsinThree-PhaseFluidizedBeds 562

22.4.1FlowRegimes 562

22.4.1.1MinimumFluidization 562

22.4.1.2BubblingRegimes 564

22.4.2PhaseHoldups 565

22.4.2.1Modelling:Global(BedVolumeAveraged) 565

22.4.2.2BedContractionvsExpansion 568

22.4.2.3ParticleEntrainment 568

22.5PhaseMixing,MassTransfer,andHeatTransfer 569

22.5.1PhaseMixing 569

22.5.2Surface-to-BedHeatTransfer 570

22.5.3InterphaseGas–LiquidandLiquid–SolidMassTransfer 571

22.5.3.1Gas–LiquidMassTransfer 572

22.5.3.2Liquid–SolidMassTransfer 572

22.6Summary 574

SolvedProblems 574

Notations 582 References 585 Problems 587

Index 591

Preface

Wearepleasedtopresentthefirstcomprehensiveteachingbookon fluidized beds tobepublishedinnearlythreedecadessincethesecondeditionoftheKunii andLevenspiel, FluidizationEngineering bookin1991andthe GasFluidizationTechnology bookeditedbyGeldart,publishedin1986.Duringtheinterveningperiod,therehasbeenconsiderableprogress,leadingtonewunderstanding insuchareasasmultiphasecomputationalfluiddynamics(CFD),interparticle forces,electrostatics,jets,downers,andadvancedexperimentalmethodologies (suchasparticletracking,MRI,andvarioustypesoftomography).Thesenew areasare,toadegree,coveredinthisbook,whilewehavealsodrawnheavily onthe“moreclassical”fluidizationliterature.Wehavealsoincludedchapterson liquidandthree-phasefluidization,spoutedbeds,CFD,anddowners,topicsnot includedinpreviousfluidizationbooksintendedaseducationaltexts.

Therehavealsobeenanumberofnewfluidizedbedapplicationsand processesinrecenttimes,mostnotablyinchemicallooping,processingof silicon-containingmaterialsforsolarapplications,extractionofadvancedmaterials,thermochemicalconversionofbiomassresiduestoenergyandbiofuels, andeffortstoproduceorutilizenanoparticles.Whilethesenewprocesses arenotdealtwithexplicitlyindepthinthebook,theyhaveinfluencedthe fluidizationresearchcommunityandtopicsofresearcharticles,henceaffecting theknowledgereflectedinthisbook.Theauthorswhohavecontributedtothe bookcombinesomewhohavebeenengagedinthisfieldformanydecadeswith anewgenerationoffluidizationexperts,eagertoadvancetheunderstanding andapplicabilityoffluidizedbeds.

Inchoosingthematerialtobeincludedinthebook,wehavebeenguided bytheword“Essentials”inthetitle.Thuswehavehadtoleaveoutmaterial,which,whileinteresting,isnotessentialformostbeginnersandgeneral readers.However,readersshould,afterclosereadingofthechapters,beable todelveintotheextensivespecializedresearchliteraturewithagoodgeneral background.Ourbookwillhaveserveditspurposeifithelpsreaders,whether thesebeyoungengineersworkinginindustryorgraduatestudentsundertaking researchprojectsrelatedtofluidization,becomefamiliarwiththebroadareas

xx Preface offundamentalandpracticalknowledgeunderlyingthefield.Incorporationofa smallnumberofsolvedproblemsandunsolvedproblemexercisesisintended tofurthertheunderstandingofthetopicscovered.Inadditiontosingle-reader usage,weintendthatthisbookbeavailableasatextbookforcoursesrelatedto fluidizationandmultiphasesystems.

Vancouver 31October2019

Acknowledgement

Wethanktheauthorsforrespondingwithenthusiasmtoourproposaltowrite chaptersofthebookandfortheirhelpinpreparingandrevisingthematerial.We thankZezhongJohnLiforassistancewithfigures,logistics,andadministrative details.WearegratefultotheNaturalSciencesandEngineeringResearchCouncil ofCanadaforfundingsomeoftheexpensesrelatedtothepreparationofthis book,aswellasforcoveringthecostsofanumberofstudiesthathavecontributed toourexperienceandexpertiseinfluidizationandrelatedareas.

Introduction,History,andApplications

UniversityofBritishColumbia,DepartmentofChemicalandBiologicalEngineering,2360EastMall, Vancouver,CanadaV6T1Z3

1.1DefinitionandOrigins

Fluidizationoccurswhensolidparticlesaresupportedandallowedtomoverelativetoeachotherasaresultofverticalmotionofafluid(gasorliquid)ina definedandcontainedvolume.Mostcommonly,thefluidisagasblownupwards byablowerorcompressorthroughaperforatedflatplateoraseriesoforifices, butmanyotherconfigurationsarepossible.Onceanassembly(“bed”)ofparticles hasbeenactuatedinthismanner,itissaidtobea“fluidizedbed.”

Theoriginoffluidizedbedsisunclear,butliquid-fluidizedbedslikelypreceded gas-fluidizedbeds.Forexample,earlyfluidizationhasbeenattributedtoAgricola[1]whenhedescribedandillustratedhandjiggingfororedressing.Thefirst industrialapplicationsoffluidizedbedswerelikelybedsoforeparticlesfluidized byliquidsinordertoclassifythembysizeordensityinanoperationknownas “teetering”[2].

Thefirstwidespreadapplicationofgas-fluidizedbedswasinthe1920sin GermanywhenWinkler[3]patentedanovelgasifier.However,theterms “fluidization”and“fluidbed”didnotemergeuntilabout1940whenresearchers intheUnitedStatesdevelopedgas-supportedbedsforcatalyticcrackingof heavyhydrocarbons[4,5].Aplaquecommemoratingthedevelopmentofthe fluidbedreactoratalocaloilrefinerywaserectedattheLouisianaArtand ScienceMuseuminBatonRougein1998.

Theterm“circulatingfluidizedbed”(or“CFB”)hasbeenusedsincethe1980s tocoverconfigurationswherethereisnoupperbedsurface,withparticlessupportedbyfluidcontainedinequipmentthatincorporatesoneormoregas–solid separator(usuallycyclones),aswellasrecirculationpipingasanintegralpart ofthesystem.Thesehavebecomepopular,mostlyforcalcination,energy,and metallurgicaloperations[6].

Commercialfluidizedbedreactorsarenowamongthelargestchemicalreactorsintheworld.Forexample,inChinafluidizedbedcombustorshavereached apowercapacityof660MWe [7].

EssentialsofFluidizationTechnology, FirstEdition.EditedbyJohnR.Grace,XiaotaoBi,andNaokoEllis. ©2020Wiley-VCHVerlagGmbH&Co.KGaA.Published2020byWiley-VCHVerlagGmbH&Co.KGaA.

1.2Terminology

Asinotherfields,specializedterminologyisusedbythefluidizationcommunity. Definitionsofthefollowingtermsmaybehelpfulforthosenewtothefield:

Agglomeration:Particlesstickingtogethertoformassemblies(agglomerates).

Attrition:Break-upofparticlesduetocollisionsorotherinteractionsand stresses.

Bedexpansion:Heightofoperatingfluidizedbeddividedbystaticbedheightor bedheightatminimumfluidization.

Bubbles:Voidscontainingfew,ifany,particles,risingrelativetotheparticles abovethemandbehavinginasomewhatanalogousmannertobubblesinliquids.

Choking:Collapseofdilutegas–solidsuspensionintodensephaseflowwhen decreasingthegasvelocityatconstantsolidsflow.Fordifferentmodesofchoking,see[8].

Circulatingfluidizedbed:Fluidandparticlesinrelativemotioninaconfigurationwherethereisnodistinctupperbedsurfaceandentrainedparticlesare continuouslyseparatedandreturnedtothebaseofariser.

Cluster:Groupofparticlestravellingtogetherduetohydrodynamicfactors.

Densephase:Gas–solidregionwheretheconcentrationofparticlesissufficientlyhighthattherearesignificantparticle–particleinteractionsand contacts.

Dilutephase:Regionwhereparticleconcentrationislowenoughthatinterparticlecontactsarerelativelyrare.

Downer:Vesselinwhichparticlesarecontactedwithafluidwhiletheyfalldownwards.

Distributor:Horizontalplatewithperforations,nozzles,orotheropeningsor othermeansofintroducingafluidizingfluidtosupporttheweightofparticles andcausethemtomovewhilealsosupportingthedeadweightoftheparticles whentheflowoffluidisinterrupted.

Elutriation:Progressiveselectiveremovaloffinerparticulatesbyentrainment.

Fines:Relativelysmallparticles,typicallythosesmallerthan37or44 μmindiameter.

Fluid:Eithergasorliquid,usuallytheformerinthecontextoffluidization.

Freeboard:Regionextendingfromdensefluidizedbeduppersurfacetotopof vessel.

Geldartpowdergroup:SeeChapter2.

Grid:Alternatenameforgasdistributorsupportingthefluidizedbedandassuringuniformentryofgasatitsbase.

Loopseal:Commonconfiguration(seeChapter11)forrecirculatingsolidstothe bottomofafluidizedbedorriserwithoutreverseflowofgas.

Membranewalls:Containingwallconsistingofverticalheattransfertubes connectedbyparallelfins,commonlyusedincombustionapplications(see Chapter14).

Membranereactor:Reactorcontainingsolidsurfaces(“membranes”)thatare selectivelypermeabletooneormorecomponentofthegasmixture.

1.3Applications 3

Plenumchamber:Pressurizedchamberbelowthedistributorofafluidization columnfromwhichfluidizingfluidisfedintothebedabovethedistributor.

Riser:Tallcolumninwhichparticlesarecarried,onaverage,upwardsbyan ascendingfluid.

Segregation:Tendencyforparticlesofdifferentphysicalcharacteristics(e.g.differentsize,density,and/orshape)topreferentiallybecomemoreconcentrated indifferentspatialregions.

Solids:Generictermreferringtosolidparticles.

Superficialvelocity:Volumetricflowrateoffluiddividedbytotalcolumn cross-sectionalarea.

Voidage:Fractionofbedvolumeorlocalvolumeoccupiedbyfluid.

Windbox:Sameasplenumchamber,butonlywhenthefluidizingfluidisagas.

Othertermsareintroducedanddefinedasneededinthetext.

1.3Applications

Gas-fluidizedbedsaccountformostofthecommercialapplicationsoffluidized beds.Relativetopackedbeds,gas-fluidizedbedscommonlyofferthefollowing advantages:

➢ Temperatureuniformity(withvariationsseldomexceeding10 ∘ Cinthedense bedandeliminationof“hotspots.”)

➢ Excellentbed-to-surfaceheattransfercoefficients(typically1orderofmagnitudebetterthaninfixedbedsand2ordersofmagnitudebetterthaninempty columns.)

➢ Abilitytoaddandremoveparticlescontinuously,facilitatingcatalystregenerationandcontinuousoperation.

➢ Relativelylowpressuredrops(essentiallyonlyenoughtosupportthebed weightperunitcross-sectionalarea.)

➢ Scalabletoverylargesizes(e.g.therearecommercialfluidizedbedreactors hundredsofsquaremetresincross-sectionalarea.)

➢ Excellentcatalysteffectivenessfactors(i.e.verylowintra-particlemasstransferresistances):Withparticles1orderofmagnitudesmallerthaninfixed beds,i.e.catalystparticlessmallerthan100 μm,effectivenessfactorsusually approach1.

➢ Goodturndowncapability:Thegasflowratecanbevariedoverawiderange, typicallybyatleastafactorof2–3.

➢ Abilitytotoleratesomeliquid:Forexample,inanumberofprocesses,suchas fluidcatalyticcracking,liquidsaresprayedintothecolumnwheretheyvaporizeandthenreact.

➢ Wideparticlesizedistributions(typicallywitharatioofuppertolowerdecile particlediameter, d p90 /d p10 ,of10:20).

Theseadvantagesmustbesignificantenoughtocompensateforsomesignificantdisadvantagesofgas-fluidizedbeds:

❖ Substantialvertical(axial)mixingofgas:Gasisdraggeddownwardsby descendingparticlesresultingin“backmixing”andlargedeviationsfromplug flow,withtypicalaxialPecletnumbersoforder5–10.

❖ Substantialaxialdispersionofsolids:Vigorousmotionofparticlesandtheir clustersresultsinsubstantialaxialdispersionandbackmixingofsolids.Asa result,incontinuousprocesses,someparticlesspendverylittletimeinthe bed,whileothersspendmuchlongerthanthemeanresidencetime.

❖ Bypassingofgas:Gasassociatedwithalower-densityphase,e.g.risingas bubbles,passesthroughthebedmorequicklyandwithlessaccesstoparticlesthangasassociatedwithadenserphaseinwhichthereisbettergas–solid contacting.

❖ Limitationsonparticlesthatcanbesuccessfullyfluidized:Particlesof extremeshapes(e.g.needleorflatdiscshapes)orsmallerthanabout30 μm inmeandiameteraredifficult,orevenimpossible,tofluidize.

❖ Entrainment:Particles,especiallyfineones,arecarriedupwardsbythe exhaustorproductgasandleavethecolumnthroughtheexit.Tominimize theirlosses,entrainedparticlesmustnormallybecontinuouslycapturedand returnedtothebottomofthevessel.

❖ Attrition:Particlescanbreakorbeabradedwhentheycollide/interactwith eachotherandwithfixedsurfaces.

❖ Wearonsurfaces:Particlemotiontendscauseserosion/wastageoffixedsurfaces.

❖ Complexityandrisk:Fluidizedbedsaremorecomplextodesign,operate, andmodelthancomparablefixedbedreactors.Asaresult,thereisgreater riskofproblemsandlessthandesiredperformance.

Theadvantagesidentifiedabovehavebeenfoundtooutweighthedisadvantagesinanumberofindustriallysignificantprocesses.Themostimportantof theseprocessesarelistedinTable1.1.Usefulreviewsoftheearlyyearsofthese processeswereprovidedbyGeldart[9–11].

PracticalinformationrelatedtomanyoftheprocesseslistedinTable1.1was summarizedbyYerushalmi[12].Forinformationonarecentlycommercialized process,seeTianetal.[13].Forapplicationsrelatedtofoodprocessing,seeSmith [14].ThetypicaloperatingrangeforcatalyticfluidizedbedreactorsaresummarizedinTable1.2.Particlestendtobelargerandgassuperficialvelocitiestobe higherinthecaseofphysicaloperationsandforgas–solidreactionsthanforcatalyticprocesses.

Applicationsofliquid-fluidizedbeds,spoutedbeds,andgas–liquid–solid(i.e. three-phase)fluidizedbedsarecoveredinChapters3,21,and22,respectively.

1.4OtherReasonsforStudyingFluidizedBeds

Inadditiontobeingusefulinmanycommercialapplications,assummarized aboveandasoutlinedinlaterchapters,thereareotherreasonsforinterestin thebehaviouroffluidizedbeds:

Table1.1 Industrialapplicationsofgas-fluidizedbeds.

PhysicaloperationsSolid-catalyzedreactionsGas–solidreactions

DryingofparticlesFluidcatalyticcrackingCombustionandincineration

GranulationAcrylonitrileGasification

Coatingofsurfacesby

ChemicalVapour

Deposition

EthylenedichloridePyrolysis

Particlemixing/blendingCatalyticcombustionTorrefaction

PreheatingandheatingEthanoldehydrationRoastingofores

SteamraisingEthylenesynthesisReductionofironoxide

FreezingMaleicanhydridePolyolefinproduction

Quenching/temperingFischer–TropschsynthesisFluidcokingandflexicoking

Carburizing,nitridingAnilineCalcination

Constanttemperature baths

MethanoltoolefinsCatalystregeneration

FilteringofparticlesMethanoltogasolineChlorination,fluoridation

FeedingofparticlesOxidative dehydrogenation

Hydrochlorinationofsilicon

SorptionofharmfulgasesPhthalicanhydrideSilanedecomposition → pureSi

TreatmentofburnvictimsCatalyticreformingCarbonnanotubesviaChemical VapourDeposition

TarcleaningGas–solidfermentation

SteamreformingMelamineproduction

MethanationTitaniumdioxidepigment

Table1.2 Usualoperatingrangesforsolid-catalyzedgas-phase reactors.

VariableRangeandcomments

Sautermeanparticlediameter50–100 μm

ParticlesizedistributionBroad,e.g.0–200 μm

ReactordiameterUpto ∼7m

PressureUpto ∼80bars

TemperatureUpto ∼600 ∘ C

Superficialgasvelocity ∼0.3–12m/s

Staticbeddepth1–10m

ImmersedsurfacesMaycontainhorizontalor verticalheattransfersurfaces

Gas–solidseparationHeavilyreliantongascyclones

Table1.3 SummaryofproceedingsofmajorfluidizationandCFBconferences.

YearDesignationConferencelocationEditor(s)Publisher

1967International Symposiumon Fluidization Eindhoven,NetherlandsDrinkenburgNetherlandsUniversityPress

1975Fluidization Technology Asilomar,CaliforniaKeairnsandDavidsonHemisphere

1978FluidizationCambridge,UKDavidsonandKeairnsCambridgeUniversityPress 1980FluidizationHenniker,NH,USAGraceandMatsenPlenumPress 1983FluidizationKashikojima,JapanKuniiandToeiEngineeringFoundation 1985CFBIHalifax,CanadaBasuPergamonPress 1986FluidizationVLyngby,DenmarkOstergaardandSorensenEngineeringFoundation 1988CFBIICompiègne,FranceBasuandLargePergamonPress 1989FluidizationVIBanff,CanadaGrace,Shemilt,BergougnouEngineeringFoundation 1990CFBIIINagoya,JapanBasu,Horio,HasataniPergamonPress 1992FluidizationVIIGoldCoast,AustraliaPotterandNicklinEngineeringFoundation 1993CFBIVHiddenValley,USAAvidanAIChE 1995FluidizationVIIITours,FranceLargeandLaguérieEngineeringFoundation 1996CFBVBeijing,ChinaKwaukandLiSciencePress,Beijing 1998FluidizationIXDurango,USAFanandKnowltonEngineeringFoundation 1999CFBVIWürzburg,GermanyWertherDECHEMA 2001FluidizationXBeijing,ChinaKwauk,Li,YangUnitedEngineeringFoundation

2002CFBVIINiagaraFalls,CanadaGrace,Zhu,deLasaCanadianSocietyforChemical Engineering

2004FluidizationXIIschia,ItalyArena,Chirone,Miccio,SalatinoEngineeringConferencesInternational 2005CFBVIIIHangzhou,ChinaCenInternationalAcademicPublishers 2007FluidizationXIIHarrison,CanadaBi,Berruti,PugsleyEngineeringConferencesInternational 2008CFBIXHamburg,GermanyWerther,Nowak,Wirth,HartgeTuTechInnovation 2010FluidizationXIIIGyeong-ju,KoreaKim,Kang,Lee,SeoEngineeringConferencesInternational 2011CFB10Sunriver,Oregon,USAKnowltonEngineeringConferencesInternational 2013FluidizationXIVNoordwijkerhout,NetherlandsKuipers,Mudde,vanOmmen,DeenEngineeringConferencesInternational 2014CFB11Beijing,ChinaLi,Wei,Bao,WangChemicalIndustryPress 2016FluidizationXVMontebello,CanadaChaoukiandShabanianVol.316ofPowderTechnology,Elsevier 2017CFB12Krakow,PolandNowak,Sciazko,MirekJournalofPowerTechnologiesand ArchivumCombustionis 2019FluidizationXVIGuilin,ChinaWangandGeAmericanInstituteofChemical Engineering 2020CFB13Vancouver,CanadaBi,Briens,Ellis,WormsbeckerGLAB

⬩ Theyareinherentlyfascinatingtoobserve,evenfindingtheirwayintokinetic art.

⬩ Duetotheircomplexflowpatternsandthemanyfactorsinvolved,fluidized bedsarechallenginganddifficulttomodel,withsomesurprisingfeatures.

⬩ Theymayberelatedtosomenaturalphenomena,inparticularavalanches, pyroclasticflowsassociatedwithvolcaniceruptionsandatmosphericconvectionofwaterdrops,snowflakes,andhailstones[15,16].Therehasevenbeen speculationthatsomecratersonthesurfaceofthemoonmayberelatedto eruptionoffluidizationbubbles.

1.5SourcesofInformationonFluidization

Thousandsofpapershavebeenpublishedinthescientificandengineering literature(journalsandbooks)onfluidizationfundamentalsandapplications. Duetolengthrestrictionsanditsscope,thisbookcitesonlyasmallfraction ofthesearticles.Inadditiontothemanyresearcharticlesthatappearin journalslike PowderTechnology, Particuology, AdvancedPowderTechnology, and theInternationalJournalofMultiphaseFlow,manyrelevantpapersappear inthemajorchemicalengineeringjournalssuchas ChemicalEngineering Science, IndustrialandEngineeringChemistryResearch,and AmericanInstitute ofChemicalEngineers(AIChE)Journal ,aswellasawidevarietyofother engineering-andphysics-relatedjournals.Inaddition,therearemanypublished proceedingsofconferencesandsymposiaonfluidization.Themostusefulof theseforthoseinterestedinfundamentalsoffluidizedbedshaveappearedin refereedproceedingsoftri-annualFluidizationconferences,coordinatedfor manyyearsbytheEngineeringFoundationandthenbyEngineeringConferences International,andtri-annualCFBconferences(recentlyrenamed“International ConferenceonFluidizedBedTechnology.”)Informationontheseproceedings issummarizedinTable1.3.Lessrigorouslyrefereedproceedingsoffluidized bedcombustion,originallycoordinatedandpublishedbytheAmericanSociety ofMechanicalEngineersattwo-yearintervals,andmorerecentlyeverythree years,alsocontainmanyappliedandfundamentalfluidizationarticles.Periodic China–JapanConferencesonFluidizationhavealsoledtoaseriesofwell-edited volumes.

References

1 Agricola,G.(1556). DeReMetallica (trans.H.C.HooverandL.H.Hoover), 310–311.NewYork,1950:Dover.

2 Epstein,N.(2005).Teetering. PowderTechnol. 151:2–14.

3 Winkler,F.(1922).VerfahrenzumHerstellenWassergas.GermanPatent 437,970.

4 Jahnig,C.E.,Campbell,D.L.,andMartin,H.Z.(1980).Historyoffluidized solidsdevelopmentatExxon.In: Fluidization (eds.J.R.GraceandJ.M. Matsen),3–24.PlenumPress.

5 Squires,A.M.(1986).Thestoryoffluidcatalyticcracking:thefirst“circulating fluidbed.”.In: CirculatingFluidizedBedTechnology (ed.P.Basu),1–19.New York:PergamonPress.

6 Reh,L.(1971).Fluidbedprocessing. Chem.Eng.Prog. 67:58–63.

7 Cai,R.,Ke,X.W.,Lyu,J.F.etal.(2017).Progressofcirculatingfluidizedbed combustiontechnologyinChina:areview. CleanEnergy 1(1):36–49.https:// doi.org/10.1093/ce/zkx001.

8 Bi,H.T.,Grace,J.R.,andZhu,J.(1993).Typesofchokinginverticalpneumaticsystems. Int.J.Multiph.Flow 19:1077–1092.

9 Geldart,D.(1969).Physicalprocessingingasfluidisedbeds. Chem.Ind. 33: 311–316.

10 Geldart,D.(1967).Thefluidisedbedasachemicalreactor:acriticalreview ofthefirst25years. Chem.Ind. 31:1474–1481.

11 Geldart,D.(1968).Gas-solidreactionsinindustrialfluidizedbeds. Chem.Ind. 32:41–47.

12 Yerushalmi,J.(1982).Applicationsoffluidizedbeds,Chapter8.5.In: HandbookofMultiphaseSystems (ed.G.Hetsroni),8-152–8-216.Washington,DC: HemispherePublishing.

13 Tian,P.,Wei,Y.,Ye,M.,andLiu,Z.(2015).Methanoltoolefins:Fromfundamentalstocommercialization. ACSCatal. 5:1922–1938.

14 Smith,P.G.(2007). ApplicationsofFluidizationtoFoodProcessing .Oxford, UK:BlackwellScience.

15 Wilson,C.J.N.(1984).Theroleoffluidizationintheemplacementofpyroclasticflow:experimentalresultsandtheirinterpretation. J.Volcanol.Geotherm. Res. 20:55–84.

16 Horio,M.(2017).Fluidizationinnaturalphenomena,referencemodule.In: Chemistry,MolecularSciencesandChemicalEngineering (ed.J.Reedijk). Waltham,MA:Elsevierhttps://doi.org/10.1016/B978-0-12-409547-2.12185-7.

17 Gullichsen,J.andHarkonen,E.(1981).Mediumconsistencytechnology. TAPPIJ. 64:69–72.and113–116.

Problems

1.1 GullichsenandHarkonen[17]appliedtheterm“fluidization”tothecreation ofafluid-likestateinpulpfibreaqueoussuspensionsduetorapidcentrifugalmechanicalmixing.Isthisuseofthetermconsistentwiththedefinition offluidizationgiveninthischapter?

1.2 Imagineareactorofcross-sectionalarea100m2 containingcatalystparticlesofdiameter60 μmanddensity1600kg/m3 .Thevoidfractionofthe staticmaterialis0.52.Howmanyparticlesareneededtofillthereactorto astaticbeddepthof6m?Whatisthetotalmassoftheseparticles?

Properties,MinimumFluidization,andGeldartGroups

UniversityofBritishColumbia,DepartmentofChemicalandBiologicalEngineering,2360EastMall, Vancouver,CanadaV6T1Z3

2.1Introduction

Thischapteridentifiesthekeyparticleandfluidpropertiesthataffecttheabilitytofluidizeparticlesandthatplayamajorroleindeterminingtheproperties offluidizedbeds.Itisimportanttocharacterizetheseproperties,oratleastto considerwhethereachcouldberelevant,whendecidingwhetherornotagiven processmightbenefitfromfluidization,aswellaswhendesigning,operating, andmodellingfluidizedbedprocesses.Thechapteralsoconsidersdifferentmethodsofmeasuringandpredictingboththeminimumfluidizationvelocityandthe bedvoidageatminimumfluidization,twoveryimportantquantitiesaffectingthe propertiesoffluidizedbeds.Finally,weintroducethefourGeldartpowdergroups forparticlesfluidizedbygases.Thisclassificationiswidelyusedindiscussing, characterizing,andexplaininggasfluidization.

2.2FluidProperties

2.2.1GasProperties

Gaspropertiesthatinfluencethepropertiesofgas-fluidizedbedsare:

Density:Highergasdensityleadstoincreaseddragonparticlesandhenceearlier andmorevigorousfluidization.Gasdensityincreaseswithincreasingpressure anddecreaseswithincreasingtemperature.Idealgasbehaviourcanusuallybe assumedasagoodapproximationwhenassessingtherolesoftemperatureand pressureongas-fluidizedbeds.

Viscosity:Highergasviscositycausesgreaterdragforsmallparticles,butplays onlyasmallroleforlarger(e.g.GeldartD)particles(seeSection2.6).Gas viscosityisalmostindependentofpressure,butincreaseswithincreasing temperature.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.