Buy ebook Heat stress tolerance in plants: physiological, molecular and genetic perspectives kumar c

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/heat-stress-tolerance-in-plants-physiological-molecul ar-and-genetic-perspectives-kumar/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Plants and their Interaction to Environmental Pollution: Damage Detection, Adaptation, Tolerance, Physiological and Molecular Responses Azamal Husen

https://ebookmass.com/product/plants-and-their-interaction-toenvironmental-pollution-damage-detection-adaptation-tolerancephysiological-and-molecular-responses-azamal-husen/

Plant Micronutrient Use Efficiency: Molecular and Genomic Perspectives in Crop Plants 1st Edition

https://ebookmass.com/product/plant-micronutrient-use-efficiencymolecular-and-genomic-perspectives-in-crop-plants-1st-editionmohammad-anwar-hossain/

Cation Transporters in Plants Santosh Kumar Upadhyay

https://ebookmass.com/product/cation-transporters-in-plantssantosh-kumar-upadhyay/

Phenotyping crop plants for physiological and biochemical traits 1st Edition Latha

https://ebookmass.com/product/phenotyping-crop-plants-forphysiological-and-biochemical-traits-1st-edition-latha/

Pesticides

in

Biochemical

Crop Production: Physiological and

Action Prabhat Kumar Srivastava (Editor)

https://ebookmass.com/product/pesticides-in-crop-productionphysiological-and-biochemical-action-prabhat-kumar-srivastavaeditor/ (eTextbook PDF) for Biochemical, Physiological, and Molecular Aspects of Human Nutrition 4th Edition

https://ebookmass.com/product/etextbook-pdf-for-biochemicalphysiological-and-molecular-aspects-of-human-nutrition-4thedition/

Biochemical, Physiological, and Molecular Aspects of Human Nutrition E Book 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/biochemical-physiological-andmolecular-aspects-of-human-nutrition-e-book-3rd-edition-ebookpdf/

Medicinal Plants in Asia and Pacific for Parasitic Infections: Botany, Ethnopharmacology, Molecular Basis, and Future Prospects Christophe Wiart

https://ebookmass.com/product/medicinal-plants-in-asia-andpacific-for-parasitic-infections-botany-ethnopharmacologymolecular-basis-and-future-prospects-christophe-wiart/

Physiological and molecular triggers for SARS-CoV membrane fusion and entry into host cells Jean Kaoru Millet

https://ebookmass.com/product/physiological-and-moleculartriggers-for-sars-cov-membrane-fusion-and-entry-into-host-cellsjean-kaoru-millet/

HeatStressToleranceinPlants

HeatStressToleranceinPlants

Physiological,MolecularandGenetic Perspectives

Editedby

ShabirHussainWani

Sher-e-KashmirUniversityofAgriculturalSciencesand TechnologyofKashmir,India

VinayKumar ModernCollege,SavitribaiPhulePuneUniversity,India

Thiseditionfirstpublished2020

©2020JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfrom thistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofShabirHussainWaniandVinayKumartobeidentifiedastheauthorsofthiseditorial materialinthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffice(s)

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

9600GarsingtonRoad,Oxford,OX42DQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Some contentthatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthis workandspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarranties ofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedby salesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefact thatanorganization,website,orproductisreferredtointhisworkasacitationand/orpotential sourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendationsit maymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrendering professionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyour situation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbe awarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthiswork waswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossof profitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Wani,ShabirHussain,editor.|Kumar,Vinay(Biotechnologist), editor.

Title:Heatstresstoleranceinplants:physiological,molecularand geneticperspectives/[editedby]ShabirHussainWani,VinayKumar. Description:Firstedition.|Hoboken,NJ:JohnWiley&Sons,Inc.,2020. |Includesbibliographicalreferencesandindex.

Identifiers:LCCN2019032800(print)|LCCN2019032801(ebook)|ISBN 9781119432364(cloth)|ISBN9781119432395(adobepdf)|ISBN 9781119432388(epub)

Subjects:LCSH:Plants--Effectofheaton.|Plants--Effectofstresson.| Vegetationandclimate--Research.

Classification:LCCQK755.5.H432020(print)|LCCQK755.5(ebook)|DDC 581.4/2--dc23

LCrecordavailableathttps://lccn.loc.gov/2019032800

LCebookrecordavailableathttps://lccn.loc.gov/2019032801

CoverDesign:Wiley

CoverImages:Miazeplantdamaged©AphakornFuengtee/Shutterstock,DNAstructureisolated ©andreacrisante/Shutterstock

Setin10/12ptWarnockProbySPiGlobal,Chennai,India

PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY 10987654321

Contents

ListofContributors xiii

Foreword xix

AbouttheBook xxi

AbouttheEditor xxiii

1HeatToleranceinCotton:Morphological, Physiological,andGeneticPerspectives 1 MuhammadTehseenAzhar,ShabirHussainWani, MuhammadTaneesChaudhary,TariqJameel, ParwinderKaur,andXiongmingDu

1.1Introduction 1

1.1.1MorphologicalandPhysiologicalTraits 2

1.1.1.1SeedlingandRootGrowth 3

1.1.1.2StomatalConductance 3

1.1.1.3CellMembraneThermostability 4

1.1.1.4CanopyTemperature 5

1.1.1.5ChlorophyllContent 6

1.1.2GeneticsandMolecularBasisofHeatTolerancein Cotton 8

1.1.3ConventionalBreedingApproaches 9

1.1.4ModernMolecularBreedingApproaches 10

1.2ConclusionandFutureProspects 12 References 12

2SeedPrimingasaMethodtoGenerate Heat-stressToleranceinPlants:A Minireview 23

AdityaBanerjeeandAryadeepRoychoudhury

2.1Introduction 23

2.2MechanismofHeatStressInjuryinPlants 24

2.3SeedPrimingGeneratingHeat-stressTolerance 26

2.4Conclusion 27

2.5FuturePerspectives 27 Acknowledgments 28 References 28

3HowEffectiveAreStress-associatedProteins inAugmentingThermotolerance? 33 InèsKarmousandSandeepKumarVerma

3.1Introduction 33

3.1.1HeatShockProteins(HSPs) 34

3.1.2Proline 36

3.1.3Dehydrins(DHNs) 37

3.1.4RoleofMetabolicProteinsinThermotolerance 37

3.2Conclusion 40 References 40

4BiochemicalandMolecularMarkers: UnravelingTheirPotentialRoleinScreening GermplasmforThermotolerance 47

AhmedIsmail,KareemA.Mosa,MunaA.Ali,and MohamedHelmy

4.1Introduction 47

4.2TypesofMarkers 48

4.3MorphologicalMarkers 49

4.4MolecularMarkers 49

4.5BiochemicalMarkers 53

4.6QuantitativeTraitLociforPlant Thermotolerance 54

4.7PlantMetabolitesUnderHeatStress 61

4.8AntioxidantEnzymesandHeatStress 63

4.9Conclusion 68 References 70

5AlterationinCarbohydrateMetabolism ModulatesThermotoleranceofPlantunder HeatStress 77 RoselineXalxo,BhumikaYadu,JipsiChandra, VibhutiChandrakar,andS.Keshavkant

5.1Introduction 77

5.1.1HeatStressandThermotolerance 79

5.1.1.1MorphologicalAlterations 80

5.1.1.2AnatomicalAlterations 80

5.1.1.3PhysiologicalandBiochemical Modifications 81

5.1.1.4CellMembraneIntegrity 82

5.2CarbohydrateasProtectivesMolecules 83

5.2.1Osmolyte 83

5.2.2Thermoprotectant 84

5.3CarbohydratesasSignalingMolecules 85

5.3.1ReproductiveCellDevelopment 85

5.3.2SeedDevelopment 86

5.3.3SeedGerminationandYieldLoss 87

5.4AdverseImpactsofHeatStress 87

5.4.1Photosynthesis 87

5.4.1.1AlteredCarbonAssimilation 88

5.4.1.2ChlorophyllBreakdown 88

5.4.2MajorandMinorCarbohydrate Metabolism 89

5.4.3ExpressionofRegulatoryGenes 89

5.4.4EnzymeActivity 90

5.5MechanismsInvolvedinThermotolerance 93

5.5.1GlucoseandHeat-stressTolerance 93

5.5.2SucroseandHeat-stressTolerance 94

5.5.3FructanandHeat-stressTolerance 95

5.5.4TrehaloseandHeat-stressTolerance 96

5.5.5RaffinoseandHeat-stressTolerance 97

5.6GeneticApproaches/StrategiesforImproving Thermotolerance 97

5.6.1GeneticallyModifiedCropProduction 97

5.6.2TransgenicStrategies 99

5.7ConclusionsandFuturePerspectives 102 References 103

viii Contents

6TranscriptomicstoDissectPlantResponses toHeatStress 117 SagarSatishDatir

6.1Introduction 117

6.1.1TranscriptomeSequencingandExpressionProfilingof GenesInvolvedinHeatStressResponse 119

6.1.1.1Rice(Oryzasativa L.) 119

6.1.1.2Wheat(Triticumaestivum L.) 123

6.1.1.3Maize(Zeamays L.) 125

6.1.1.4Switchgrass(Panicumvirgatum L.)andRyegrass (Loliumperenne L.) 126

6.1.1.5Spinach(Spinaciaoleracea L.) 128

6.1.1.6 Brassicarapa L. 129

6.1.1.7Banana(Musaacuminate Colla) 130

6.2Conclusions 131 References 132

7ProteomicsasaToolforCharacterizingthe AlterationinPathwaysAssociatedwith DefenseandMetaboliteSynthesis 141 ReetikaMahajanandSajadMajeedZargar

7.1Introduction 141

7.2WhatIsProteomics? 142

7.3NeedofProteomicsinPost-genomicEra 143

7.4DifferentBranchesofProteomics 143

7.5TechniquesUsedinQuantitativeProteomics 145

7.5.1Gel-basedandGel-freeMethods 146

7.5.2Label-basedandLabel-freeMethods 149

7.6RoleofProteomicsinStudyingAlterationinPathways AssociatedwithDefenseandMetabolite Synthesis 150

7.7ConclusionandFuturePerspective 156 References 156

8RNAWorldandHeatStressTolerancein Plants 167 UsmanIjaz,MuhammadAmjadAli,HabibullahNadeem, LinTan,andFarrukhAzeem

8.1Introduction 167

8.2PlantmicroRNAs 168

8.3SmallInterferingRNA(siRNA) 177

8.4LongNoncodingRNAs(lncRNAs) 178

8.5CircularRNAs(circRNAs) 179

8.6ConclusionsandFuturePerspectives 180 References 180

9HeatShockProteins:MasterPlayersfor Heat-stressToleranceinPlantsduringClimate Change 189

AnnuYadav,JitenderSingh,KoushleshRanjan,Pankaj Kumar,ShivaniKhanna,MadhuriGupta,VinayKumar, ShabirHussainWani,andAnilSirohi

9.1Introduction 189

9.2ClassificationofHSPs 192

9.2.1HSP100 192

9.2.1.1StructureofHSP100 192

9.2.1.2ModeofAction:TheHSP100ChaperoneCycle 192

9.2.2HSP90 195

9.2.2.1StructureofHSP90 197

9.2.2.2ModeofAction:TheHSP90ChaperoneCycle 197

9.2.3HSP70 198

9.2.3.1StructureofHSP70 198

9.2.3.2ModeofAction:TheHsp70ChaperoneCycle 198

9.2.4HSP60 199

9.2.4.1StructureofHSP60 201

9.2.4.2ModeofAction:TheHsp60ChaperoneCycle 201

9.2.5TheSmallHeatShockProteinFamily(sHSPs) 202

9.2.5.1StructureofsHSP 202

9.2.5.2ModeofAction:SmallHeatShockProteins 203

9.3HSPsExpressionUnderHeatStressCondition 203

9.4ConclusionandFutureProspects 205 References 205

10TheContributionofPhytohormonesinPlant Thermotolerance 213

SonalMishra,MansiBhardwaj,ShaktiMehrotra,AksarAli Chowdhary,andVikasSrivastava

10.1Introduction 213

10.2ProtectantsinHeatStressAlleviation 215

10.2.1Osmolytes 215

x Contents

10.2.2Nutrients 215

10.2.3SignalingMolecules 217

10.2.4Polyamines 217

10.2.5Phytohormones 218

10.3ApplicationofHormonesinHTManagement 218

10.3.1Auxin 219

10.3.2Gibberellin 221

10.3.3Cytokinin 222

10.3.4AbscisicAcid 224

10.3.5Ethylene 225

10.3.6SalicylicAcid 225

10.3.7JasmonicAcid 227

10.3.8Brassinosteroid 228

10.4ConclusionandProspects 229 Acknowledgements 229 References 230

11ExploringIn-builtDefenseMechanismsin PlantsunderHeatStress 239 GiridaraKumarSurabhiandJatindraKumarSeth

11.1Introduction 239

11.2EffectofHeatStressonCropPlants 240

11.2.1HeatStressEffectsonPhysiologyandCell Structures 241

11.2.2HeatStressEffectsonVegetativeStages 242

11.2.3HeatStressEffectsonReproductiveStage 243

11.2.4HeatStressEffectsonYield 243

11.3ThresholdTemperature 244

11.4In-builtDefenseSysteminPlantstoOvercomeHigh TemperatureStress 245

11.4.1AccumulationofThermoprotectants 245

11.4.1.1HeatShockProteins(HSPs) 245

11.4.1.2Proline 246

11.4.1.3Glycinebetaine(GB) 248

11.4.1.4AbscisicAcid(ABA) 249

11.4.1.5SalicylicAcid(SA) 250

11.4.1.6HeatStressEffectsonSecondaryMetabolism 255

11.4.2TranscriptionalRegulation 256

11.4.3RoleofSmallRNAs(miRNAs)inHeat-stress

Tolerance 258

11.5Conclusion 261

Acknowledgement 262 References 263

Index 283

ListofContributors

MunaA.Ali DepartmentofApplied Biology,CollegeofSciences UniversityofSharjah Sharjah, UAE

MuhammadAmjadAli DepartmentofPlant Pathology UniversityofAgriculture Faisalabad, Pakistan

FarrukhAzeem DepartmentofBioinformatics andBiotechnology GovernmentCollege UniversityFaisalabad(GCUF) Faisalabad, Pakistan and

HaikouExperimentalStation ChineseAcademyofTropical AgriculturalSciences (CATAS),HainanKey LaboratoryofBananaGenetic Improvement Haikou,HainanProvince China

AdityaBanerjee DepartmentofBiotechnology St.Xavier’sCollege (Autonomous) Kolkata,WestBengal, India

MansiBhardwaj ICAR-NationalInstitutefor PlantBiotechnology IARICampus,NewDelhi, India

xiv ListofContributors

JipsiChandra SchoolofStudiesin Biotechnology

Pt.RavishankarShukla University

Raipur, India

VibhutiChandrakar SchoolofStudiesin Biotechnology

Pt.RavishankarShukla University

Raipur, India

MuhammadTaneesChaudhary DepartmentofPlantBreeding andGenetics

UniversityofAgriculture

Faisalabad, Pakistan

AksarAliChowdhary DepartmentofBotany

CentralUniversityofJammu

Samba, India

SagarSatishDatir BiologyDepartment Queen’sUniversity

Kingston,ON, Canada and DepartmentofBiotechnology

SavitribaiPhulePune University

Pune,MS, India

XiongmingDu InstituteofCottonResearch ofChineseAcademyof AgriculturalSciences,State KeyLaboratoryofCotton Biology

Anyang,Henan, China

MadhuriGupta CollegeofBiotechnology

SardarVallabhbhaiPatel UniversityofAgriculture& Technology

Meerut,UttarPradesh, India

MohamedHelmy TheDonnelleyCentre UniversityofToronto Toronto,ON, Canada

UsmanIjaz DepartmentofBioinformatics andBiotechnology GovernmentCollege UniversityFaisalabad(GCUF) Faisalabad, Pakistan

AhmedIsmail DepartmentofBiotechnology, FacultyofAgriculture Al-AzharUniversity Cairo, Egypt and

PublicHealthDepartment, CollegeofAppliedMedical Science

MajmaahUniversity

MajmaahCity, KSA

TariqJameel DepartmentofPlantBreeding andGenetics

UniversityofAgriculture

Faisalabad, Pakistan

InèsKarmous BiotechnologyLaboratory, DepartmentofBiology

BoluAbantIzzetBaysal University

Bolu, Turkey

ParwinderKaur

UWASchoolofAgriculture andEnvironment

TheUniversityofWestern Australia

Crawley,WesternAustralia, Australia

S.Keshavkant SchoolofStudiesin Biotechnology

Pt.RavishankarShukla University

Raipur, India and

ListofContributors xv

NationalCenterforNatural Resources

Pt.RavishankarShukla University

Raipur, India

ShivaniKhanna CollegeofBiotechnology

SardarVallabhbhaiPatel UniversityofAgriculture& Technology

Meerut,UttarPradesh, India

PankajKumar CollegeofBiotechnology

SardarVallabhbhaiPatel UniversityofAgriculture& Technology

Meerut,UttarPradesh, India

VinayKumar DepartmentofBiotechnology ModernCollegeofArts, ScienceandCommerce, SavitribaiPhulePune University,Pune, India

ReetikaMahajan Govt.DegreeCollegePoonch JammuandKashmir, India

xvi ListofContributors

ShaktiMehrotra DepartmentofBiotechnology InstituteofEngineeringand Technology

Lucknow, India

SonalMishra SchoolofBiotechnology UniversityofJammu Jammu, India

KareemA.Mosa DepartmentofBiotechnology, FacultyofAgriculture Al-AzharUniversity

Cairo, Egypt and DepartmentofApplied Biology,CollegeofSciences UniversityofSharjah

Sharjah, UAE

HabibullahNadeem DepartmentofBioinformatics andBiotechnology GovernmentCollege UniversityFaisalabad(GCUF) Faisalabad, Pakistan

KoushleshRanjan DepartmentofVeterinary PhysiologyandBiochemistry CollegeofVeterinaryand AnimalSciences,Sardar VallabhbhaiPatelUniversity ofAgricultureand Technology

Meerut,UttarPradesh, India

AryadeepRoychoudhury DepartmentofBiotechnology St.Xavier’sCollege (Autonomous)

Kolkata,WestBengal, India

JatindraKumarSeth PlantMolecularBiologyand ‘OMICS’Laboratory RegionalPlantResource Centre

Bhubaneswar,Odisha, India

JitenderSingh CollegeofBiotechnology SardarVallabhbhaiPatel UniversityofAgriculture& Technology

Meerut,UttarPradesh, India

AnilSirohi CollegeofBiotechnology

SardarVallabhbhaiPatel UniversityofAgriculture& Technology

Meerut,UttarPradesh, India

VikasSrivastava DepartmentofBotany CentralUniversityofJammu Samba, India

GiridaraKumarSurabhi PlantMolecularBiologyand ‘OMICS’Laboratory RegionalPlantResource Centre

Bhubaneswar,Odisha, India

LinTan HaikouExperimentalStation, ChineseAcademyofTropical AgriculturalSciences (CATAS)

HainanKeyLaboratoryof BananaGeneticImprovement

Haikou,HainanProvince, China

MuhammadTehseenAzhar DepartmentofPlantBreeding andGenetics UniversityofAgriculture Faisalabad, Pakistan

ListofContributors

SandeepKumarVerma BiotechnologyLaboratory, DepartmentofBiology

BoluAbantIzzetBaysal University

Bolu, Turkey

ShabirHussainWani MountainResearchCentre forFieldCrops

Khudwani,Sher-e-Kashmir UniversityofAgricultural SciencesandTechnologyof Kashmir

JammuandKashmir, India

RoselineXalxo SchoolofStudiesin Biotechnology

Pt.RavishankarShukla University

Raipur, India

AnnuYadav CollegeofBiotechnology

SardarVallabhbhaiPatel UniversityofAgriculture& Technology

Meerut,UttarPradesh, India

xviii ListofContributors

BhumikaYadu SchoolofStudiesin Biotechnology

Pt.RavishankarShukla

University

Raipur, India

SajadMajeedZargar DivisionofPlant Biotechnology

Sher-e-KashmirUniversityof AgriculturalScienceand TechnologyofKashmir

Shalimar,Srinagar, JammuandKashmir, India

Foreword

Oneoftheprevalentenvironmental stressesencounteredbyplantsduringtheirimportantgrowthstagesis heatstress.Exposuretoheatstress forprolongedperiodscanevenresult inplantdeath.Plantscanbedamagedbyeitherhighdayorhighnight temperaturesandbyeitherhighair orhighsoiltemperatures.Predictions indicatethattemperatureswillintensifybyanother2–6 ∘ bytheclimaxof thiscenturywhichwillincreasethelikelihoodofmorefrequentandmoresevereheatstressinplants,begettingaserious reductionincropyields.Thegeneticbasisofheatstressadaptationispoorlyunderstood.Conventionalbreedingmethodshave metwithlimitedsuccessinimprovingtheheat-stresstolerance ofimportantcropplantsthroughinterspecificorintergeneric hybridization.Therefore,itisimperativetoaccelerateeffortsfor unravelingthebiochemical,physiological,andmolecularmechanismsunderlyingheat-stresstoleranceinplants.Heatstress caninducediversephysiologicalandmolecularresponsesin plantsthatleadtothedisturbanceofvariouscellularmetabolic processes,impairmembranestability,causeproteindenaturationandthermalaggregation,andconsequentlyaffectplant growthanddevelopment.Theheatstressresponseisalsoillustratedbytheinhibitionofregulartranscriptionandtranslation, elevatedexpressionofheatshockproteins(HPSs),andinductionofheattolerance.Recentadvancesinmoleculargenetics

Foreword

approacheshaveprovidednewinsightsintotheplantheatstress response.TheQTL-basedapproachesallowlocitobeidentified formarkersthatarelinkedtoheattolerance.Further,discovery ofnovelgenesandpathways,analysesofexpressionpatterns, andthedeterminationoffunctionofthesegenesduringheat stressadaptationwillofferabasisforefficientengineeringstrategieswiththeaimtoenhanceheatstresstoleranceinplants.

Iamdelightedthattheeditedvolume Heat-StressTolerance inPlants:Physiological,MolecularandGeneticPerspectives is beingpublished.Thechaptersincludedinthisbookarenicely writtenbyscientistsandresearchers.Thisbookdescribesrecent advancesinheat-stresstoleranceutilizinggeneticandgenomic approachesandtheirapplicationinimportantagricultural crops.Recentadvancementsinplantomicsandtheirimportanceandapplicationinthedevelopmentofheat-stress-tolerant cropshavealsobeenincluded.

Icongratulatetheeditorsforunravellingthisvolumeandhope thatthiswillbeausefulreferencematerialforresearchers,students,andpolicymakers.

9thMay2019

NewDelhi

T.Mohapatra

AbouttheBook

Theglobalpopulationis7.3billionandby2050itisexpectedto reach9.7billion,whileatthesametimeagriculturalproductivityisnotincreasingwiththesamespeed,owingtothemounting environmentalconstraintsasaresultofclimatechange.Heat stress,whichcanbedefinedasaperiodinwhichtemperatures arehotenoughforasufficientperiodoftimetocauseirreversible damagetoaplant’sfunctionordevelopment,isoneofthemajor environmentalstresseshamperingplantgrowthandproductivityseverely.Theprojectionsabouttheincreaseinglobalambient temperaturesoverthenextfewdecadesareexpectedtoincrease theintensityoftheimpactofheatstressonplants.

Owingtolimitedgeneticbasisforplantheatstressresponses andtolerancebesideslimitedsuccessofconventionalbreedingapproaches,adeeperunderstandingofthemechanisms underlyingplants’responsestoheatstressisneeded.Recent investigationsconfirmedthatheatstressinhibitstranscription andtranslation,andincreasesthelevelsofheatshockproteins(HSPs).Duringextremeheatstressconditions,signaling pathwaysleadingtoapoptoticcelldeatharealsoactivated.As molecularchaperones,HSPsofferprotectiontocellsagainst thedestructiveeffectsofheatstressandaugmentsurvival.The improvedexpressionofHSPsisregulatedbyheatshocktranscriptionfactors(HSFs).Severalrecentadvancesinidentifying gene(s)and/orpathwaysandtheirrolesinheatstressresponses andtolerancehaveofferedopportunitiesforresearchersto explorethesegene(s)forengineeringheat-stresstolerancein majorcrops.Studiesinvolvingfullgenomeprofiling/sequencing, andmutationalandtransgenicplantanalyseshaveprovideda

xxii AbouttheBook

deepinsightofthecomplextranscriptionalmechanismthat operatesunderheatstress.

Throughthisbook,weintendtointegratethecontributions frompotentialplantscientiststargetingheat-stresstolerance mechanismsusingphysiological,biochemical,molecular,and geneticapproaches.

AbouttheEditor

Dr.ShabirHussainWani isseniorAssistantProfessorat MountainResearchCentreforFieldCrops,Khudwani–192101, Sher-e-KashmirUniversityofAgriculturalSciencesandTechnologyofKashmir,JammuandKashmir,India.Hereceived aPhDinplantbreedingandgeneticson“transgenicricefor abioticstresstolerance”fromthePunjabAgriculturalUniversityLudhiana,India.AfterobtaininghisPhD,heworkedasa researchassociateintheBiotechnologyLaboratory,Central InstituteofTemperateHorticulture(ICAR),Srinagar,India.He thenjoinedtheKrishiVigyanKendra(FarmScienceCentre)as programcoordinatoratSenapati,Manipur,India.Heteaches coursesrelatedtoplantbreeding,seedscienceandtechnology,andstressbreeding,andhaspublishedmorethan100 papers/chaptersinjournalsandbooksofinternationaland nationalrepute.Heservedasguesteditorandreviewseditorfor thejournal FrontierinPlantScience (2015–2018).Hehasalso editedseveralbooksoncurrenttopicsincropimprovement forabioticstresstolerancepublishedbySpringerNatureand CRCPress.HisPhDresearchfetchedfirstprizeintheNorth ZoneCompetition,atnationallevel,inIndia.Hewasawarded YoungScientistAwardfromtheSocietyforPromotionofPlant Sciences,Jaipur,India,in2009.HeisafellowoftheSocietyfor PlantResearch,India.Recently,healsoreceivedYoungScientistAward(Agriculture)2015fromSocietyforPlantResearch, Meerut,India.HealsoservedasvisitingScientistatDepartment ofPlantSoilandMicrobialSciences,MichiganStateUniversity, USAundertheUGCRamanPostDoctoralFellowshipprogram.

xxiv AbouttheEditor

Currently,heisinchargeofWheatimprovementprogramat MRCFCKhudwaniSKAUSTKashmir.

Dr.VinayKumar isanAssociateProfessoratthePostgraduateDepartmentofBiotechnology,ProgressiveEducation Society’sModernCollegeofArts,ScienceandCommerce, Ganeshkhind,Pune,IndiaandaVisitingFacultyattheDepartmentofEnvironmentalSciences,SavitribaiPhuleUniversity, Pune,India.HeobtainedhisPhDinBiotechnologyfrom SavitribaiPhulePuneUniversity(formerlyUniversityofPune) in2009.ForhisPhD,heworkedonmetabolicengineeringof riceforimprovedsalinitytolerance.Hehaspublishedmore than40peer-reviewedresearch/reviewarticles,contributed 18bookchaptersandedited4booksincludingthis,published bySpringerandWiley.HeisarecipientoftheGovernmentof India’sScienceandEngineeringBoard,DepartmentofScience andTechnology(SERB-DST)YoungScientistAwardin2011. Hiscurrentresearchinterestsincludeelucidatingmolecular mechanismsunderlyingsalinitystressresponsesandtoleranceinplants.Hisresearchgroupisengagedindeciphering themolecularmechanismsresponsibleplantabioticstress tolerance.

HeatToleranceinCotton:Morphological, Physiological,andGeneticPerspectives

MuhammadTehseenAzhar 1 ,ShabirHussainWani 2 , MuhammadTaneesChaudhary 1 ,TariqJameel 1 , ParwinderKaur 3 ,andXiongmingDu 4

1 DepartmentofPlantBreedingandGenetics,UniversityofAgriculture,Faisalabad, Pakistan

2 MountainResearchCentreforFieldCrops,Khudwani,Sher-e-KashmirUniversityof AgriculturalSciencesandTechnologyofKashmir,JammuandKashmir,India

3 UWASchoolofAgricultureandEnvironment,TheUniversityofWesternAustralia, Crawley,WesternAustralia,Australia

4 InstituteofCottonResearchofChineseAcademyofAgriculturalSciences,StateKey LaboratoryofCottonBiology,Anyang,Henan,China

1.1Introduction

Cottonbelongingstothegenus Gossypium andfourspecies, namely G.hirsutum L., G. barbadense L., G.arboreum L.,and G.herbaceum L.,thatweregrownindependentlyforthepurpose oftextilefiber(Fryxell1992).Cottonismainlygrownintropical andsub-tropicalareashavingtemperaturesvaryingfrom40to 45 ∘ C(Ashrafetal.1994).Thephenologicaldevelopmentand accumulationofplantbiomassdependupontemperatureduring itsgrowingseason(Echeretal.2014).Cottonshedsitsflowers andsquareswhenthetemperaturereaches36 ∘ C(Reddyetal. 1991).Theplantreproduction,metabolism,andproductivity ofcottonareadverselyaffectedbyhigh-temperaturestress (Demireletal.2014).Theresponseofplantstoheatstress dependsuponthedurationanddegreeofheatstress(Hasanuzzamanetal.2013).Furthermore,high-temperaturestressis closelyrelatedtowaterdeficitandcanbefurtherexacerbated bylimitedorunreliableavailabilityofwaterincotton-growing

HeatStressToleranceinPlants:Physiological,MolecularandGeneticPerspectives, FirstEdition. EditedbyShabirHussainWaniandVinayKumar. ©2020JohnWiley&SonsLtd.Published2020byJohnWiley&SonsLtd.

areas(Rizhskyetal.2004).Thepresenceofgeneticvariation withinaspeciesisaprerequisiteforabreedingprogramforthe developmentofgenotypesresponsivetoheatstress(Azharetal. 2009).Allmetabolicandbiochemicalactivitiesofplantsrequire anoptimumtemperaturerange,whichistermedthethermal kineticwindow(TKW).Planttemperatureshouldbewithin rangeoftheTKW.Theplantcomesunderheatstressifits temperaturegoesbeloworaboveTKW.ATKWof23.5–32 ∘ C isrequiredforproperplantgrowth(Sawanetal.2009).Plant breedersarecontinuallyscreeningcottongermplasmforheat stressduetoclimatechange.Likeotherphysiologicaltraits, seedcottonyield(SCY)isconsideredabeneficialtraitforthe developmentofcottongermplasmagainsthightemperature butitiscomplex,andaffectedbyclimaticconditions,andso requiresveryspecializedbreedingprograms,buteventhenone cannotavoidenvironmentalvariations(Dem ˙ Ireletal.2016). Hightemperatureexertsnegativeimpactduetoinhibition ofphotosynthesisprocess(DeRidderandSalvucci2007).The modificationsinducedbyhightemperaturemaybedirect, owingtochangesinthephysiologicalprocess,orcanbeindirect byalteringthedevelopmentalpatterns.Forexample,developing seedsmaybeaffectedbyheatstressthatmaydelaythegerminationorlossofvigor.Ultimatelyitwillleadtoreducedemergence andseedlingestablishment(Wahidetal.2007).Theexposureof cottontohightemperaturecausessheddingof35%premature flowerand50–75%ofbollsinvariableclimaticconditions.

1.1.1MorphologicalandPhysiologicalTraits

Oneofthemosteconomicalandsuitablewaystomitigatethe adverseeffectsofheatstressistodeveloporidentifyheattolerantcultivars.Undervariousheatstressregimes,plants exhibitdifferentkindsofsurvivalmechanism,whichinclude variousheatstressavoidancemechanisms,phonologicalalterationslikevariableleafangle,transpirationalmechanism,or changesinlipidmembranecomposition,andvariousmorphologicalchanges(Niinemets2010).Plants’stomataclosing mechanism,reducedwaterloss,largerstomatalandtrichomatousdensitiesandwideningxylemvesselsarethemostcommon

approachesfollowedbytheplantunderdifferentconditionsof heatstress(Hasanuzzamanetal.2013).

Researchworkabouttheuseofvariousplantandphysiological traitsisreviewedintheproceedingparagraphs.

1.1.1.1SeedlingandRootGrowth

Thegerminationanddevelopmentofseedlingsofcropplants dependuponremainingwiththeoptimumtemperaturerange of28to30 ∘ C.Thebasetemperatureisabout12 ∘ Cforseed germinationand15.5 ∘ Cforseedlinggrowth.Cooltemperature between2and4 ∘ Cisamajorprobleminvariousplacesin theUnitedStates,mainlyacrosstheDeltaregionofMississippiduringgerminationandinitialgrowthoftheseedlings. Genotypicdifferenceshavebeenobservedforgermination androotdevelopmentundercoolsoiltemperatures(Mills etal.2005).WhileatthetimeofsowinginnorthernIndia,the windvelocityandsoiltemperatureareveryhigh,resultingin arapidlossofsoilmoisture(Latheretal.2001).McMichael andBurke(1994)revealthatsoilwithatemperaturerangeof between20and32 ∘ Cissuitableforproperrootgrowthand development.Roottemperaturestressrangesbetween35and 40 ∘ Candbadlyaffectsthehydraulicconductivityandnutrient uptakeabilityoftheplantandcauseslowhormonesynthesis, andbadlyaffectshormonetransportation(ClarkandReinhard 1991;BurkeandUpchurch1995).Synthesisofcytokininswhich originatepredominantlyinrootsisamongthemostsensitive processes(Paulsen1994).Manyfunctionsofroots–comprising theuptakeofnutrientsandwater,assimilationandsynthesisofmetabolites,andtranslocation–areverysensitiveto temperature.Roottemperaturemaybemorecriticalthan shoottemperaturesforplantgrowthbecauserootstoleratea shorterrangeoftemperatureandarelessadaptabletoextreme variations(Nielsen1974).

1.1.1.2StomatalConductance

Stomatalclosurestoreducetranspirationratesalsoreducephotosynthesisrates.Increasedstomatalconductancehelpswith thecoolingofleavesbyevaporationandtherebyreducesthermalstress.Optimumtemperaturesof < 30 ∘ Cduringdaytimein uplandandPimacottonarewellbelowcommonlyoccurringair

temperaturesinmostcotton-growingareas(Radinetal.1994). Stomatalconductanceandnetphotosynthesisareinhibitedby moderateheatstressinmanyplantspecies,owingtodecreases intheactivationstateofrubisco(Crafts-BranderandSalvucci 2002;Moralesetal.2003).Stomatacouldbeexploredforthe developmentofheattoleranceincropplantsbecausetheyregulatethetranspirationrateanddeterminethedegreetowhich waterevaporationcancooldowntheleaves.Ifstomataopen widerinhigher-yieldinglines,transpirationmaybeincreased andphotosyntheticratesimprovedbecauseCO2 aswellas watervaporsmustdiffusethroughthestomata.Abroader examinationof16speciesperformedbyMonteith(1995) supportedthetheorythatstomatarespondnottohumidity levelsbuttorespirationrates.Moneith(1995)alsoidentified thatstomatafromallinvestigatedspecieshadpatchystomata closureinresponsetoincreasedrespirationratestolimitwater loss.Manystudieswereintendedtoassessthegermplasmof cottonandwheatbyusingstomatalconductanceandphotosynthesisascriteriafortheidentificationofheat-tolerant genotypes(Cornishetal.1991;Luetal.1998;Ulloaetal.2000; Rahman2005).

1.1.1.3CellMembraneThermostability

Theconventionalscreeningmethodsoflargegermplasmare timeconsumingandlaboriousbutthesuccessofanybreeding programdependsoneffectiveevaluationtechniques(Asha andLalAhamed2013).Cellmembranethermostability(CMT) protocolhasbeensuggestedbySullivan(1972)asadependablemethodformeasuringheattolerancebyquantifyingthe amountofelectrolyteleakagefromleafdisksafterexposure toheatstress,andthistechniquehasbeenusedefficiently inpotato(Coriaetal.1998),rice(Maavimanietal.2014), tomato(Golametal.2012),soybean(Martineauetal.1979), wheat(Blumetal.2001),sorghum(Marcum1998),andbarley (WahidandShabbir2005).Membranethermostabilityhasbeen reportedtohaveastronggeneticcorrelationwithgrainyieldin wheat.Heritabilityofmembranethermostabilityinmaizewas estimatedtobe73%.CMThasbeenusedincottonasasuitable screeningandselectioncriterionforheattolerance,owingto itsabilitytodistinguishheat-sensitiveand-tolerantgenotypes

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.