Get Fundamentals of heat engines 1st edition jamil ghojel free all chapters

Page 1


Fundamentals of Heat Engines 1st Edition Jamil Ghojel

Visit to download the full and correct content document: https://ebookmass.com/product/fundamentals-of-heat-engines-1st-edition-jamil-ghojel /

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Fundamentals of Medium/Heavy Duty Diesel Engines –Ebook PDF Version

https://ebookmass.com/product/fundamentals-of-medium-heavy-dutydiesel-engines-ebook-pdf-version/

Fundamentals of Momentum, Heat, and Mass Transfer

Revised 6th Edition

https://ebookmass.com/product/fundamentals-of-momentum-heat-andmass-transfer-revised-6th-edition/

Fundamentals of Heat and Mass Transfer, Seventh Edition 7th Edition eBook

https://ebookmass.com/product/fundamentals-of-heat-and-masstransfer-seventh-edition-7th-edition-ebook/

Heat and mass transfer : fundamentals and applications

6th Edition Yunus A Çengel

https://ebookmass.com/product/heat-and-mass-transferfundamentals-and-applications-6th-edition-yunus-a-cengel/

Heat And Mass Transfer: Fundamentals And Applications

5th Edition – Ebook PDF Version

https://ebookmass.com/product/heat-and-mass-transferfundamentals-and-applications-5th-edition-ebook-pdf-version/

Search Engines: Information Retrieval in Practice 1st Edition Croft

https://ebookmass.com/product/search-engines-informationretrieval-in-practice-1st-edition-croft/

Cowboy Firefighter Heat Kim Redford

https://ebookmass.com/product/cowboy-firefighter-heat-kimredford-2/

Nanofluids for Heat and Mass Transfer Fundamentals, Sustainable Manufacturing and Applications Bharat Bhanvase

https://ebookmass.com/product/nanofluids-for-heat-and-masstransfer-fundamentals-sustainable-manufacturing-and-applicationsbharat-bhanvase/

Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines 1st Edition Jihad Badra (Editor)

https://ebookmass.com/product/artificial-intelligence-and-datadriven-optimization-of-internal-combustion-engines-1st-editionjihad-badra-editor/

FundamentalsofHeatEngines

Wiley-ASMEPressSeries

CorrosionandMaterialsinHydrocarbonProduction:ACompendiumofOperationaland EngineeringAspects

BijanKermani,DonHarrop

DesignandAnalysisofCentrifugalCompressors

ReneVandenBraembussche

CaseStudiesinFluidMechanicswithSensitivitiestoGoverningVariables

M.KemalAtesmen

TheMonteCarloRay-TraceMethodinRadiationHeatTransferandAppliedOptics

J.RobertMahan

DynamicsofParticlesandRigidBodies:ASelf-LearningApproach

MohammedF.Daqaq

PrimeronEngineeringStandards,ExpandedTextbookEdition

MaanH.Jawad,OwenR.Greulich

EngineeringOptimization:Applications,Methods,andAnalysis

R.RussellRhinehart

CompactHeatExchangers:Analysis,DesignandOptimizationUsingFEMandCFD Approach

C.Ranganayakulu,KankanhalliN.Seetharamu

RobustAdaptiveControlforFractional-OrderSystemswithDisturbanceandSaturation MouChen,ShuyiShao,PengShi

RobotManipulatorRedundancyResolution

YunongZhang,LongJin

StressinASMEPressureVessels,Boilers,andNuclearComponents

MaanH.Jawad

CombinedCooling,Heating,andPowerSystems:Modeling,Optimization,andOperation YangShi,MingxiLiu,FangFang

ApplicationsofMathematicalHeatTransferandFluidFlowModelsinEngineeringand Medicine

AbramS.Dorfman

BioprocessingPipingandEquipmentDesign:ACompanionGuidefortheASMEBPE Standard

WilliamM.(Bill)Huitt

NonlinearRegressionModelingforEngineeringApplications:Modeling,Model Validation,andEnablingDesignofExperiments

R.RussellRhinehart

GeothermalHeatPumpandHeatEngineSystems:TheoryandPractice

AndrewD.Chiasson

FundamentalsofMechanicalVibrations

Liang-WuCai

IntroductiontoDynamicsandControlinMechanicalEngineeringSystems

ChoW.S.To

FundamentalsofHeatEngines

JamilGhojel(PhD)

ThisWorkisaco-publicationbetweenJohnWiley&SonsLtdandASMEPress

Thiseditionfirstpublished2020 ©2020JohnWiley&SonsLtd

ThisWorkisaco-publicationbetweenJohnWiley&SonsLtdandASMEPress Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions.

TherightofJamilGhojeltobeidentifiedastheauthorofthisworkhasbeenassertedinaccordance withlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andthe constantflowofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,the readerisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsfor eachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesinthe instructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisherand authorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswith respecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties, includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotional statementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasa citationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthors endorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendations itmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrendering professionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation. Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsites listedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitis read.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Ghojel,Jamil,author.

Title:Fundamentalsofheatengines:reciprocatingandgasturbineinternalcombustionengines/ JamilGhojel.

Description:Firstedition.|Hoboken,NJ,USA:JohnWiley&Sons,Inc., 2020.|Series:Wiley-ASMEpressseries|Includesbibliographical referencesandindex.

Identifiers:LCCN2019047568(print)|LCCN2019047569(ebook)|ISBN 9781119548768(hardback)|ISBN9781119548782(adobepdf)|ISBN 9781119548799(epub)

Subjects:LCSH:Heat-engines.

Classification:LCCTJ255.G452020(print)|LCCTJ255(ebook)|DDC 621.402/5–dc23

LCrecordavailableathttps://lccn.loc.gov/2019047568

LCebookrecordavailableathttps://lccn.loc.gov/2019047569

CoverDesign:Wiley

CoverImages:TurbineBlades©serts/GettyImages,Radsportscarsilhouette©Arand/GettyImages

Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Chennai,India PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY 10987654321

Contents

SeriesPreface ix

Preface xi

Glossary xiii

AbouttheCompanionWebsite xvii

PartIFundamentalsofEngineeringScience 1

IntroductionI:RoleofEngineeringScience 2

1ReviewofBasicPrinciples 4

1.1EngineeringMechanics 4

1.2FluidMechanics 11

1.3Thermodynamics 19 Problems 39

2ThermodynamicsofReactiveMixtures 45

2.1Fuels 45

2.2Stoichiometry 45

2.3ChemicalReactions 47

2.4ThermodynamicPropertiesoftheCombustionProducts 56

2.5FirstLawAnalysisofReactingMixtures 59

2.6AdiabaticFlameTemperature 67

2.7EntropyChangeinReactingMixtures 73

2.8SecondLawAnalysisofReactingMixtures 74

2.9ChemicalandPhaseEquilibrium 75

2.10Multi-SpeciesEquilibriumCompositionofCombustionProducts 81 Problems 90

PartIIReciprocatingInternalCombustionEngines 95

IntroductionII:HistoryandClassificationofReciprocatingInternalCombustion Engines 96

3IdealCyclesforNatural-InductionReciprocatingEngines 99

3.1GeneralisedCycle 99

3.2Constant-VolumeCycle(OttoCycle) 104

3.3ConstantPressure(Diesel)Cycle 106

3.4DualCycle(Pressure-LimitedCycle) 108

3.5CycleComparison 114 Problems 116

4IdealCyclesforForced-InductionReciprocatingEngines 119

4.1TurbochargedCycles 119

4.2SuperchargedCycles 126

4.3ForcedInductionCycleswithIntercooling 129

4.4ComparisonofBoostedCycles 138 Problems 140

5Fuel-AirCyclesforReciprocatingEngines 143

5.1Fuel-AirCycleAssumptions 143

5.2CompressionProcess 144

5.3CombustionProcess 145

5.4ExpansionProcess 148

5.5MeanEffectivePressure 148

5.6CycleComparison 150 Problems 151

6PracticalCyclesforReciprocatingEngines 153

6.1Four-StrokeEngine 153

6.2Two-StrokeEngine 157

6.3PracticalCyclesforFour-StrokeEngines 160

6.4CycleComparison 172

6.5CyclesBasedonCombustionModelling(WiebeFunction) 173

6.6ExampleofWiebeFunctionApplication 182

6.7DoubleWiebeModels 184

6.8Computer-AidedEngineSimulation 186 Problems 188

7Work-TransferSysteminReciprocatingEngines 189

7.1KinematicsofthePiston-CrankMechanism 189

7.2DynamicsoftheReciprocatingMechanism 193

7.3Multi-CylinderEngines 206

7.4EngineBalancing 215 Problems 224

8ReciprocatingEnginePerformanceCharacteristics 228

8.1IndicatorDiagrams 228

8.2IndicatedParameters 231

8.3BrakeParameters 233

8.4EngineDesignPointandPerformance 235

8.5Off-DesignPerformance 239 Problems 247

PartIIIGasTurbineInternalCombustionEngines 251 IntroductionIII:HistoryandClassificationofGasTurbines 252

9Air-StandardGasTurbineCycles 254

9.1Joule-BraytonIdealCycle 254

9.2CyclewithHeatExchange(Regeneration) 258

9.3CyclewithReheat 260

9.4CyclewithIntercooling 263

9.5CyclewithHeatExchangeandReheat 265

9.6CyclewithHeatExchangeandIntercooling 267

9.7CyclewithHeatExchange,Reheat,andIntercooling 268

9.8CycleComparison 270 Problems 272

10IrreversibleAir-StandardGasTurbineCycles 274

10.1ComponentEfficiencies 275

10.2SimpleIrreversibleCycle 280

10.3IrreversibleCyclewithHeatExchange(RegenerativeIrreversibleCycle) 284

10.4IrreversibleCyclewithReheat 287

10.5IrreversibleCyclewithIntercooling 288

10.6IrreversibleCyclewithHeatExchangeandReheat 290

10.7IrreversibleCyclewithHeatExchangeandIntercooling 292

10.8IrreversibleCyclewithHeatExchange,Reheat,andIntercooling 294

10.9ComparisonofIrreversibleCycles 295 Problems 297

11PracticalGasTurbineCycles 299

11.1SimpleSingle-ShaftGasTurbine 299

11.2ThermodynamicPropertiesofAir 300

11.3CompressionProcessintheCompressor 301

11.4CombustionProcess 302

11.5ExpansionProcessintheTurbine 314 Problems 316

12Design-PointCalculationsofAviationGasTurbines 317

12.1PropertiesofAir 317

12.2SimpleTurbojetEngine 322

12.3PerformanceofTurbojetEngine–CaseStudy 328

12.4Two-SpoolUnmixed-FlowTurbofanEngine 337

12.5PerformanceofTwo-SpoolUnmixed-FlowTurbofanEngine–CaseStudy 350

12.6Two-SpoolMixed-FlowTurbofanEngine 357

12.7PerformanceofTwo-SpoolMixed-FlowTurbofanEngine–CaseStudy 369 Problems 373

13Design-PointCalculationsofIndustrialGasTurbines 376

13.1Single-ShaftGasTurbineEngine 376

13.2PerformanceofSingle-ShaftGasTurbineEngine–CaseStudy 379

13.3Two-ShaftGasTurbineEngine 387

13.4PerformanceofTwo-ShaftGasTurbineEngine–CaseStudy 390 Problems 394

14Work-TransferSysteminGasTurbines 398

14.1Axial-FlowCompressors 398

14.2Radial-FlowCompressors 404

14.3Axial-FlowTurbines 407

14.4Radial-FlowTurbines 422 Problems 427

15Off-DesignPerformanceofGasTurbines 429

15.1Component-MatchingMethod 429

15.2Thermo-Gas-DynamicMatchingMethod 446 Problems 464

Bibliography 466

AppendixAThermodynamicTables 469

AppendixBDynamicsoftheReciprocatingMechanism 485

AppendixCDesignPointCalculations–ReciprocatingEngines 492 C.1EngineProcesses 492

AppendixDEquationsfortheThermalEfficiencyandSpecificWorkofTheoreticalGas TurbineCycles 497 Nomenclature 498

Index 499

SeriesPreface

TheWiley-ASMEPressSeriesinMechanicalEngineeringbringstogethertwoestablished leadersinmechanicalengineeringpublishingtodeliverhigh-quality,peer-reviewedbooks coveringtopicsofcurrentinteresttoengineersandresearchersworldwide.

Theseriespublishesacrossthebreadthofmechanicalengineering,comprisingresearch, designanddevelopment,andmanufacturing.Itincludesmonographs,referencesand coursetexts.

ProspectivetopicsincludeemergingandadvancedtechnologiesinEngineeringDesign; Computer-AidedDesign;EnergyConversion&Resources;HeatTransfer;Manufacturing &Processing;Systems&Devices;RenewableEnergy;Robotics;andBiotechnology.

Preface

Thereciprocatingpistonengineandthegasturbineenginearetwoofthemostvitaland widelyusedinternalcombustionheatengineseverinvented.Pistonenginesarestilldominantintheareasoflandandmarinetransportation,mining,andagriculturalindustries. Theyalsoplayasignificantroleinlightaircraftandstand-bypower-generationapplications.Powerthatcanbegeneratedbypistonenginesrangesfromafractionofakilowattto morethan80 MW ,withthermalefficienciesapproaching50%.Gasturbinesaredominant incivilandmilitaryaviationandplayamajorroleinbase,midrange,andpeakloadelectric powergenerationrangingfromsmallstand-byunitsupto300 MW perenginewiththermal efficienciesapproaching40%attheupperrangeand500 MW incombinedcycleconfigurationswiththermalefficienciesapproaching60%.Gasturbinesarealsoidealaspowerplants operatinginconjunctionwithlargerenewablepowerplantstoeliminateintermittency. Demandforpowerandmobilityinitsdifferentformswillcontinuetoincreaseinthe twenty-firstcenturyashundredsofmillionsofpeopleinthedevelopingworldbecome moreaffluent,andthecheapestandmostefficientmeansofsatisfyingthisdemandwill continuetobetheheatengine.Asaconsequence,theheatenginewillmostlikelyremain anactiveareaofresearchanddevelopmentandengineeringeducationfortheforeseeable future.Traditionally,thepistonenginehasbeenanidealtoolforteachingmechanical engineering,asitfeaturesfundamentalprinciplesoftheengineeringsciencessuchas thermodynamics,engineeringmechanics,fluidmechanics,chemistry(morespecifically, thermochemistry),etc.Inthisbook,gasturbineenginetheory,whichisbasedonthesame engineeringprinciples,iscombinedwithpistonenginetheorytoformasinglecomprehensivetoolforteachingmechanical,aerospace,andautomotiveengineeringinentry-and advanced-levelundergraduatecoursesandentry-levelenergy-relatedpostgraduatecourses. Practicingengineersinindustrymayalsofindsomeofthematerialinthebookbeneficial. Thebookcomprises3parts,15chapters,and4appendices.ThefirstchapterinPartIis areviewofsomeprinciplesofengineeringscience,andthesecondchaptercoversawide rangeofthermochemistrytopics.Thecontributionofengineeringsciencetoheatengine theoryisfundamentalandismanifestedovertheentireenergy-conversionchain,asthis figureshows.

MechanicalWorkRotaryPower

ThermochemistryFluidMechanics

Thermodynamics

Thermochemistry

EngineeringMechanics

PartIIcoverstheoreticalaspectsofthereciprocatingpistonenginestartingwithsimple air-standardcycles,followedbytheoreticalcyclesofforcedinductionenginesandending withmorerealisticcyclesthatcanbeusedtopredictengineperformanceasafirstapproximation.PartIIIongasturbinesalsocoverscycleswithgraduallyincreasingcomplexity, endingwithrealisticenginedesign-pointandoff-designcalculationmethods.

Representativeproblemsaregivenattheendofeachchapter,andadetailedexample ofpiston-enginedesign-pointcalculationsisgiveninAppendixC.Also,casestudiesof design-pointcalculationsofgasturbineenginesareprovidedinChapters12and13.

Thebookcanbeadoptedformechanical,aerospace,andautomotiveengineering coursesatdifferentlevelsusingselectedmaterialfromdifferentchaptersatthediscretion ofinstructors.

JamilGhojel

Glossary

Symbols

A Area,air,Helmholtzfunction

a Acceleration,speedofsound,correlationcoefficient

B Bulkmodulus,correlationcoefficient,bypassratio

C Gasvelocity,molarspecificheat

c Massspecificheat,speedofsound

D Diameter,degreeofreactioninreactionturbines

E Totalenergy,utilizationfactorinreactionturbines,modulusofelasticity

F Force,thrust,fuel

f Specificthrust

G Gibbsfreeenergy

g Gravitationalacceleration

H Enthalpy,heatingvalueoffuel

h Specificenthalpy,bladeheight

I Momentofinertia

i Numberofcylinders

j Numberofstrokes

K DegreesKelvin,equilibriumconstant,force,moleratioofhydrogentocarbon monoxide

L Length

l Length,bladelength

M Quantityinmoles,Machnumber,momentofforce

m Mass

m Massflowrate

N Rotationalspeedinrevolutionperminute,force

n Polytropicindex(exponent),numberofmoles

p Pressure,cylindergaspressure

Q Heattransfer,force

q Specificheattransfer

Q Rateofheattransfer

R Radius,gasconstant,crankradius

R Universalgasconstant

xiv Glossary

r Pressureratio

S Entropy,stroke

s Specificentropy

T Absolutetemperature,torque,fundamentaldimensionoftime

t Time,temperature

U Internalenergy,bladespeed

u Specificinternalenergy

V Volume,velocity,relativevelocity

v Specificvolume,pistonspeed

W Work

W Power

w Specificwork,bladerowwidth,rateofheatrelease

x Distance,massfraction,numberofcarbonatomsinafuel,cumulativeheatrelease

x Linearvelocity

x Linearacceleration

yNumberofhydrogenatomsinafuel

zNumberofoxygenatomsinafuel,heightabovedatum

GreekSymbols

�� Angle,pressureratioinconstant-volumecombustion,angularacceleration

�� Angle,volumeratioinconstant-pressurecombustion

�� Ratioofspecificheats,V-angle(enginecrank)

Δ Symbolfordifference

�� Expansionratioinanenginecylinder

�� Compressionratio(volumeratio)

�� Heat-exchangereffectiveness

�� Efficiency

�� Angle,crankangle

�� Angularvelocity

�� Angularacceleration

�� Compressibility

�� Relativeair-fuelratio

�� Dynamicviscosity,coefficientofmolecularchange

�� Kinematicviscosity

Π Non-dimensionalgroup

�� Density,volumeratioduringheatrejectionatconstantvolume(generalized air-standardcycle)

�� Stress,rounding-offcoefficientinpistonenginecycles

�� Ratioofcrankradiustoconnectingrodlength

�� Flowcoefficient,crankangle(Wiebefunction),equivalenceratio

�� Angle(Wiebefunction),heatutilizationcoefficient

�� Loadingcoefficient,coefficientofmolarchange

�� Angularvelocity,degreeofcooling

Subscripts

a Air,actual,totalvolume

b Brake

C Carbonmassfractioninliquidorsolidfuel

c Compressor,clearance(volume),crank

com Compressor(volumeratio)

cp Crankpin

cr Critical

ct Compressorturbine

cw Crankweb

e exit

f Fuel,frictional,formation

g Gas,gravimetric

H Hydrogenmassfractioninliquidorsolidfuel

h Higher

i Inlet,intake,indicated,species,inertia

l Liquid,lower

m Mean

N Nitrogenmolefractioningaseousfuel

n Nozzle

O Massfractionofoxygeninliquidorsolidfuel

P Productofcombustion

p Piston,propulsive

pc Compressorpolytropicefficiency

pp Pistonpin

pt Turbinepolytropicefficiency,powerturbine

R Reactants(airplusfuel)

r Rod(connectingrod)

S Sulfurmassfractioninliquidorsolidfuel

s Isentropic,stoichiometric,swept(volume)

t Turbine,total(stagnation)condition

w Whirl(velocity)

Superscripts

g Gravimetric

0 Referencestate(pressure)

v Volumetric

Glossary

Abbreviations

A/FAir-fuelratio

AFTAdiabaticflametemperature

BDCBottomdeadcentre

caCrankangle

CICompressionignition

F/AFuel-airratio

bmepBrakemeaneffectivepressure

GTGasturbine

bsfcBrakespecificfuelconsumption

imepIndicatedmeaneffectivepressure

ICEInternalcombustionengine

isfcIndicatedspecificfuelconsumption

mepMeaneffectivepressure

NINatural-induction(engine)

ReReynoldsnumber

rpmRevolutionsperminute

SISparkignition

TDCTopdeadcentre

TETTurbineentrytemperature

AbouttheCompanionWebsite

Thecompanionwebsiteforthisbookisat

www.wiley.com/go/JamilGhojel_FundamentalsofHeatEngines

Thewebsiteincludes:

● Solutionmanualforinstructors

● PPTs

ScanthisQRcodetovisitthecompanionwebsite.

IntroductionI:RoleofEngineeringScience

Forthelast200yearsorso,humanshavebeenlivingintheepochofpowerinwhichtheheat enginehasbeenthedominantdeviceforconvertingheattoworkandpower.Thedevelopmentoftheheatenginewasformostofthattimeslowandchaoticandcarriedoutmainly bypoorlyqualifiedpractitionerswhohadnoknowledgeofbasictheoriesofenergyand energyconversiontomechanicalwork.Inthefieldofengineeringmechanics,drawings ofearlysteamenginesdepictvarious,attimesstrange,inefficientmechanismstoconvert steampowertomechanicalpower,suchasthewalkingbeamandsunandplanetgearsystems.Thepiston-crankmechanismwasfirstusedinasteamenginein1802byOliverEvans (Sandfort1964)despiteadesignbeingproposedasearlyas1589forconvertingtherotary motionofananimal-drivenmachinetoreciprocatingmotioninapump.Thefirstinternalcombustionengine(ICE)tobemadeavailablecommerciallywasLenoir’sgasenginein 1860.Thisenginewasalsothefirsttoemployapiston-crankmechanismtoconvertreciprocatingmotionofthepistontorotarymotion,whichhasbecome,despiteitsshortcomings, afixedfeatureandhighlyefficientmechanisminmodernreciprocatingengines.However, enginedesignerswereneverfullysatisfiedwiththismechanismduetotheneedtobalancenumerousparasiticforcesgeneratedduringoperationandwereconstantlylooking foralternativewaysofobtainingdirectrotarymotion.Thisissaidtohavebeenoneofthe stimulitodevelopsteamandgasturbinesinwhichafluid,flowingthroughblades,causes theshafttorotate,thuseliminatingtheneedforacrankshaft.Theresultsaresmoother operation,lowerlevelsofvibration,andlow-costsupportstructures.Allofthesedevelopmentsoccurredoveraverylongperiodoftimewithadvancesinthescienceofengineering mechanics(morespecifically,engineeringdynamics),togetherwithotherengineeringsciencebranchessuchasfluidmechanicsandthermodynamics.

ExamplesoftheprinciplesoffluidmechanicsofrelevancetothetopicsofPartsIandII inthebookincludethemomentumequationusedtocalculatethrustinaircraftgasturbineengines,Bernoulli’sequationtocalculateflowintheinductionmanifoldofpiston engines,anddimensionalanalysistodeterminethecharacteristicsofturbomachineryfor gasturbines.

Thegreatscientificbreakthroughsinthedevelopmentofheat-enginetheorycamewith thedevelopmentofthescienceofthermodynamics,startingwiththepioneeringworkof NicolasSadiCarnot(1796–1832)andfollowedbythemonumentalcontributionsofRudolf Clausius(1822–1888)andWilliamThomson(LordKelvin,1824–1907).Eversince,knowledgeofthermodynamicshasbecomeessentialtoimprovingexistingheatenginedesigns FundamentalsofHeatEngines:ReciprocatingandGasTurbineInternalCombustionEngines, FirstEdition.JamilGhojel. ©2020JohnWiley&SonsLtd.ThisWorkisaco-publicationbetweenJohnWiley&SonsLtdandASMEPress. Companionwebsite:www.wiley.com/go/JamilGhojel_FundamentalsofHeatEngines

anddevelopingnewtypesofengineprocessesforsuperioreconomyandreducedemissions.Atthesametime,theheatengine,particularlythereciprocatingICE,hasbecomean idealtoolforteachingmechanicalandautomotiveengineering,asitfeatures,inaddition tothermodynamics,fundamentalprinciplesofengineeringmechanicsandfluidmechanics asdiscussedearlier.

Achapteronthermochemistry(Chapter2)isincludedinPartI,dealingwithfuelpropertiesandthechemistryofcombustionreactionsandtheeffectofcontrolofthecombustion temperaturethroughcontrolofair-fuelratiosinordertopreservethemechanicalintegrity ofenginecomponents.Extensivenumericaldataongaspropertiesandadiabaticflame temperaturecalculationsareincluded,whichcanbeusedforpreliminarydesign-point calculationsofpracticalpistonandgasturbineenginecycles.

ReviewofBasicPrinciples

1.1EngineeringMechanics

Mechanics dealswiththeresponseofbodiestotheactionofforcesingeneral,and dynamics isabranchofmechanicsthatstudiesbodiesinmotion.Theprinciplesofdynamicscan beused,forexample,tosolvepracticalproblemsinaerospace,mechanical,andautomotiveengineering.Theseprinciplesarebasictotheanalysisanddesignofland,sea,andair transportationvehiclesandmachineryofalltypes(pumps,compressors,andreciprocating andgas-turbineinternalcombustionengines).Areviewofsomeprinciplesrelevanttoheat enginesispresentedhere.

1.1.1Definitions

Particle.Aconceptualbodyofmatterthathasmassbutnegligiblesizeandshape.Anyfinite physicalbody(car,plane,rocket,ship,etc.)canberegardedasaparticleanditsmotion modelledbythemotionofitscentreofmass,providedthebodyisnotrotating.Themotion ofaparticlecanbefullydescribedbyitslocationatanyinstantintime.

Rigidbody.Anassemblyofalargenumberofparticlesthatremainataconstantdistance fromeachotheratalltimesirrespectiveoftheloadsapplied.Tofullydescribethemotion ofarigidbody,knowledgeofboththelocationandorientationofthebodyatanyinstantis required.Gasturbineshaftsarerigidbodiesthatarerotatingathighspeeds.Thereciprocatingpiston-crankmechanisminpistonenginesisacomplexsystemcomprisingrotating crankshaftandslidingpistonconnectedthrougharigidroddescribingcomplexirregular motion.

Kinematics.Studyofmotionwithoutreferencetotheforcescausingthemotionandallowingthedeterminationofdisplacement,velocity,andaccelerationofthebody.

Kinetics.Studyoftherelationshipbetweenmotionandtheforcescausingthemotion, basedonNewton’sthreelawsofmotion.

1.1.2Newton’sLawsofMotion

Accordingtothe firstlaw,themomentumofabodykeepsitmovinginastraightlineata constantspeedunlessaforceisappliedtochangeitsdirectionorspeed.

FundamentalsofHeatEngines:ReciprocatingandGasTurbineInternalCombustionEngines, FirstEdition.JamilGhojel. ©2020JohnWiley&SonsLtd.ThisWorkisaco-publicationbetweenJohnWiley&SonsLtdandASMEPress. Companionwebsite:www.wiley.com/go/JamilGhojel_FundamentalsofHeatEngines

Thesecondlaw definestheforcethatcanchangethemomentumofthebodyasavector quantitywhosemagnitudeistheproductofmassandacceleration:

Anotherformofthislawthatisparticularlypertinenttogasturbinepracticestatesthat forceisequaltotherateofchangeofmomentumormassflowrate m multipliedbyvelocity change dv (theletter v willbeusedforvelocityexclusivelyinthemechanicssectionofthis chapter):

Foranaircraftengine,theairflowintotheenginediffuserisequaltotheforwardflight speed v1 ,andengineexhaustgasesacceleratetovelocity v2 intheenginenozzle.Foramass flowrate m ofthegases,thethrustistherefore F = m(v2 v1 ) N .

Inheatengines,itisoftennecessarytousevectoralgebratoresolvetheactingforcesto determinetheforcesofinterestthatcanproducework.Forexample,thepressureforceof thecombustinggasesinthepistonengine,whichisthesourceofcyclework,doesnotact directlyonthecrank,asaresultofwhichparasiticforcesaregenerated,causingundesirable phenomenasuchaspistonslap.Resolvingtheforcesatthepistonpindeterminestheforce transmittedthroughtheconnectingrodtothecrank,generatingatorque.Inagasturbine, thegasforcegeneratedduringflowthroughthebladeshasacomponentactingparallelto theturbineaxisthatcausesbearingsoverloadandneedstobebalancedtopreventaxial displacementoftherotor.

The thirdlaw simplystatesthat‘foreveryforcethereisanequalandoppositereaction force’.Inanaircraftjetengine,thechangeinmomentumofalargeflowrateofgases betweentheinletandoutletoftheenginegeneratesabackwardforceknownas thrust, whichhasanequalreactionthatpropelstheaircraftforward.

1.1.3RectilinearWorkandEnergy

Aforce F doesworkonaparticlewhentheparticleundergoesdisplacementinthedirection oftheforce:

Work = Force × Displacement (in N m or Joule)

Iftheforceisvariableandmovingalongastraightline,

W1 2 = ∫ s2 s1 Fds

Newton’SecondLawforaparticlecanbewrittenas

F = ma = m ( dv dt ) ; hence, theequationfor W1 2 canbewrittenas W1 2 = ∫ s2 s1 m ( dv dt ) ds

Foranincrementalchangeindistance, ds = vdt;hence

F

Finally,

Theworkdonebyaforceisequaltothechangeinkineticenergy.Thisequationisthe simplestformoftheconservationofenergyequation.

1.1.4CircularMotion

Rotarymotionisthemostconvenientmeansfortransferringmechanicalpowerinalmost alldrivinganddrivenmachinery.Thisisparticularlysoinheatenginepracticewherethermalenergyisconvertedtomechanicalwork,whichisthentransferredviarotatingshaftto adrivenmachinery(electricalgenerator,propeller,wheelsofavehicle,pump,etc.).Considerthenon-uniformcircularmotionshowninFigure1.1,inwhichparticle P atangular position �� haslineartangentialvelocity v andangularvelocity ��.

Thecomponents x and y ofvelocity v (= ��r )inthe x and y directionsare:

Theaccelerationsinthesamedirectionsare

where

̈ x1 and ̈ x2 arethefirst-andsecond-orderaccelerationcomponentsinthe x direction (Figure1.1b,c).

̈ y = dy dt = r ( �� sin �� d�� dt + �� cos �� )

̈ y1 and ̈ y2 arethefirst-andsecond-orderaccelerationcomponentsinthe y direction.

Figure1.1 Non-uniformcircularmotioninCartesiancoordinates:(a)initialpositionandvelocity; (b)first-ordercomponentsofresultantacceleration;(c)second-ordercomponentsofresultant acceleration.

Thefirst-ordercomponentsoftheresultantaccelerationintheradialdirection towards0is

Since �� = v/r ,

Radialacceleration ar isdirectedoppositeto OP inFigure1.1b

Thesecond-ordercomponentsoftheresultantaccelerationinthetangentialdirectionis

Sincetheangularacceleration

Tangentialacceleration at isdirectedperpendicularto OP inFigure1.1c.

Theresultantaccelerationis

1.1.4.1UniformCircularMotionofaParticle

Intheuniformcircularmotion, r = const

Equations1.4a,1.7b,and1.8forvelocityandaccelerationbecome:

Theseequationsapplytoanypointontheoutersurfaceofamachineryshaftrotatingat constantangularvelocity,suchasreciprocatingandgasturbinesengines.

1.1.5RotatingRigid-BodyKinetics

Themotionofaparticlecanbefullydescribedbyitslocationatanyinstant.Forarigid body,ontheotherhand,knowledgeofboththelocationandorientationofthebodyatany instantisrequiredforfulldescriptionofitsmotion.

Themotionofthebodyaboutafixedaxiscanbedeterminedfromthemotionofaline inaplaneofmotionthatisperpendiculartotheaxisofrotation(Figure1.2).Theangular position,displacement,velocity,andaccelerationare,respectively, �� , d�� ,

Thetangentialandradialcomponentsoftheaccelerationat P andtheresultantaccelerationare,respectively,

Figure1.2 Rigid-bodyrotationalmotion.

ReferringtoFigure1.2,theforcerequiredtoacceleratemass dm at P is dF = at dm and themomentrequiredtoacceleratethesamemassis dM = rat dm. Theresultantmomentneededtoacceleratethetotalmassoftherotatingrigidbodyis

M = ∫ dM = ∫ rat dm = ∫ r 2 �� dm

Foraconstantangularacceleration, M = �� ∫ r 2 dm = I �� (1.11)

where I = ∫ r 2 dm isthemomentofinertiaofthewholemassoftherigidbodyrotating aboutanaxispassingthrough0.Equation(1.11)indicatesthatifthebodyhasrotational motionandisbeingacteduponbymoment M ,itsmomentofinertia I isameasureofthe resistanceofthebodytoangularacceleration �� .Inlinearmotion,themass m isameasure oftheresistanceofthebodytolinearacceleration a whenacteduponbyforce F . Inplanarkinetics,theaxischosenforanalysispassesthroughthecentreofmass G ofthe bodyandisalwaysperpendiculartotheplaneofmotion.Themomentofinertiaaboutthis axisis I G .Themomentofinertiaaboutanaxisthatisparalleltotheaxispassingthrough thecentreofmassisdeterminedusingtheparallelaxistheorem

I = IG + md2 (1.12) where d istheperpendiculardistancebetweentheparallelaxes. Forarigidbodyofcomplexshape,themomentofinertiacanbedefinedintermsofthe mass m andradiusofgyration k suchthat I = mk2 ,fromwhich k = √I ∕m.If I isinunitsof kg. m2 , k willbeinmetres.Theradiusofgyration k canberegardedasthedistancefromthe axistoapointintheplaneofmotionwherethetotalmassmustbeconcentratedtoproduce thesamemomentofinertiaasdoestheactualdistributedmassofthebody,i.e.

k = √ 1 m ∫ r 2 dm (1.13)

1.1.6Moment,Couple,andTorque

Themomentofforce F aboutapoint0istheproductoftheforceandtheperpendicular distance L ofitslineofactionfrom0(Figure1.3a):

Figure1.3 Definitionsofmoment,couple,andtorque.

A couple isapairofplanarforcesthatareequalinmagnitude,oppositeindirection,and paralleltoeachother(Figure1.3b).Sincetheresultantforceiszero,thecouplecanonly generaterotationalmotion.Themomentofthecoupleisgivenby

TorqueisalsoamomentandisgivenbyEq.(1.14),butisusedmainlytodescribea momenttendingtoturnortwistashaftofreciprocatingandgasturbineengines,motors, andotherrotatingmachinery.Inmachinerysuchasengines,force F willbeappliedtothe arm L atarightangle(�� = 0).Intheseapplications,thepowerisoftenexpressedinterms ofthetorque(seeEqs.1.21and1.22inSection1.1.9).

1.1.7AcceleratedandDeceleratedShafts

Considerashaftcarryingagasturbinerotororpistonengineflywheelwiththemoments andtorquesactingasshowninFigure1.4.Aheatengineisusuallystartedbymeansof anexternaldriversuchasstartingmotorbyacceleratingthedrivingshaftfromresttothe requiredspeed.Thedrivingtorquerequiredtoacceleratetheshaft T d isbalancedbythe inertiacouple M i = I�� (�� isangularacceleration)andresistancecouple M R ,whichismainly duetofrictioninthebearings,asshowninFigure1.4a.Thegoverningequationis

= Mi + Mr = I �� + Mr (1.16)

Figure1.4 Kineticsofrotatingshaft: (a)acceleratingshaft;(b)decelerating shaft.

Tostopanengine,abrakingtorque T b isapplied,whichisassistedbytheresistance moment M r todeceleratetheshaftfromtheratedspeedtorest,asshowninFigure1.4b

Thegoverningequationis

Theenginecanbebroughttorestwithoutapplyingabrakingtorquebycuttingoffthefuel supplyandallowingtheresistancecoupletodeceleratetheshafttorest.Notethatwhenthe shaftisdecelerating,theangularaccelerationvectoriscountertothedirectionofrotation oftheshaft.

1.1.8AngularMomentum(MomentofMomentum)

Theangularmomentumofbodyaboutanaxisisthemomentofitslinearmomentumabout theaxis.Figure1.5showsabodyrotatingwithangularvelocity �� aboutanaxispassing through0(perpendiculartotheplaneofthepage):

Linearmomentumofparticleofmass dm = dm ��l

Momentofmomentumofparticleabout0 = dm ��l2

Totalmomentum H 0 ofthebodyabout0forconstantangularvelocity

IfGisthecentreofgravityofthebody,

andtheangularmomentumofthebodycanbewrittenas

Theangularmomentumofarigidbodyaboutanyaxisremainsconstant,unlessanexternaltorqueaboutthesameaxisisapplied.Thisisknownasthe lawofconservationofangular momentum

1.1.9RotationalWork,Power,andKineticEnergy

Ifarigidbodyrotatesthroughincrementalangle d�� undertheactionofconstanttorque T , theincrementalrotationalworkwillbe

dW = Td��

Figure1.5 Angularmomentumofarigidbody.

Table1.1 Equationsofmotionforlinearand rotationalmotions.

LinearRotational s

Andtherotationalpoweris

Powerproducedbyheatenginesisalwaysrotational;hence,subscript r willbedropped henceforward.Iftheangularvelocityoftheengineshaftisexpressedintermsofrotational speed N inrevolutionsperminute(rpm),Eq.(1.21)canberewrittenas

TheSIunitofpoweristhe watt (W ),buttheoldunitof horsepower (HP)isstillwidely used,where1 HP ≡ 0.746 kW

Thekineticenergyofaparticleofmass dm (Figure1.5)is1/2dm(��l)2 ,andthetotalkinetic energy(KE)forthewholerigidbodyhavingaconstantangularvelocityis

MakinguseofEq.(1.19),wecanwrite

Table1.1summarisestheequationsofmotionofuniformlyacceleratingbodiesinlinear androtationalmotion.Thefollowingnotationisusedintheequations:

s, v,and a:lineardisplacement,velocity,andacceleration �� , ��,and �� :angulardisplacement,velocity,andacceleration. Subscripts i and f denote initial and final,respectively.

1.2FluidMechanics

Fluidmechanicsdealswiththebehaviourofafluid–liquid,gas,orvapour–inquiescent stateandinastateofmotion.Fluidsaresubstancesthatcannotpreserveashapeoftheir own.Inheatengineprocesses,thefluidsusedarepredominantlyingasformandinclude airatvariousdegreesofcompressionandproductsofcombustionatelevatedpressuresand temperatures.Understandingtheprinciplesoffluidmechanicswillhelpstudentstobetter handletheprocessesinthereciprocatingandgasturbineengines.

1.2.1FluidProperties

1.2.1.1MassandWeight

Mass isameasureofinertiaandquantityofthebodyofmatter(fluid), m (kg).

Weight istheforcewithwhichabodyofthefluidisattractedtowardstheearthbygravity:

w = mgN

Density istheamountofmassperunitvolume:

�� = m V kg∕m3

Specificweight istheweightofaunitvolumeofasubstance:

�� = w V = ��gN ∕m3

Specificgravity is

sg = ��f ��w @4∘ C = ��f ��w @4∘ C

wheresubscripts f and w arefor fluid and water, respectively.

��w @4∘ C = 9.81 kN ∕m3

��w @4∘ C = 1000 kg∕m3

1.2.1.2Pressure

Pressure istheforceexertedbyafluidonaunitareaofitssurroundings:

p = F A N ∕m2 or Pa

Pressureactsperpendiculartothewallsofthecontainersurroundingthefluid.Acolumn offluidofheight hm havingacrosssectionalareaof Am2 anddensity �� kg/m3 willexerta pressureof

p = hA��g A = h��g = �� hkPa

1.2.1.3Compressibility

Compressibility isthechangeinvolumeofasubstancewhensubjectedtoachangein pressureexertedonit.Theusualparameterusedtomeasurecompressibilityofliquidsis thebulkmodulusofelasticity E:

E = −Δp (ΔV )∕V N ∕m2

Thecompressibilityofagasatconstanttemperatureisdefinedas

�� =− 1 v ( ���� �� p )T

Foraperfectgas:

�� = 1 p m2 ∕N

1.2.1.4Viscosity

Generally,theshearingstress �� developedinamovingfluidbetweenastationarysurface andamovingfluidbodyisproportionaltothevelocitygradient Δv/Δy,andtheconstantof proportionalityisthedynamicviscosity �� :

Fluidssuchaswater,oil,gasoline,alcohol,kerosene,benzene,andglycerinebehave inaccordancewiththisequationandareknownas Newtonian fluids.Fluidsthatbehave otherwise(viscositychangeswithstress)areknownas non-Newtonian fluids.

Thepreviousequationcanberewrittenintermsoftheviscosityas

Theunitsof μ canbedevelopedasfollows:

Theratioofdynamicviscositytodensityofthefluidisthekinematicviscosity �� :

Viscosityofliquidsdecreaseswithincreasingtemperature,andthatofgasesincreases withincreasingtemperature.

1.2.2FluidFlow

Ifafluidbodywithcross-sectionalarea A isflowingatvelocity C,itsvolumetricflowrate Q isgivenby

ConsidernowtheflowofthisfluidthroughthecontrolvolumeshowninFigure1.6. Themassflowequationsatinlet1andexit2aregivenby

Thecontinuityequationorequationofconservationofmassforthisflowisobtainedby equatingthemassflowratesatsections1and2, m

,or

Thetotalenergy(inunitsof N m)foranelementoffluidofmass m atsections1and2 ofthecontrolvolumeshowninFigure1.6isgivenby

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Get Fundamentals of heat engines 1st edition jamil ghojel free all chapters by Education Libraries - Issuu