Get Fundamentals of heat engines 1st edition jamil ghojel free all chapters

Page 1


Fundamentals of Heat Engines 1st Edition Jamil Ghojel

Visit to download the full and correct content document: https://ebookmass.com/product/fundamentals-of-heat-engines-1st-edition-jamil-ghojel /

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Fundamentals of Medium/Heavy Duty Diesel Engines –Ebook PDF Version

https://ebookmass.com/product/fundamentals-of-medium-heavy-dutydiesel-engines-ebook-pdf-version/

Fundamentals of Momentum, Heat, and Mass Transfer

Revised 6th Edition

https://ebookmass.com/product/fundamentals-of-momentum-heat-andmass-transfer-revised-6th-edition/

Fundamentals of Heat and Mass Transfer, Seventh Edition 7th Edition eBook

https://ebookmass.com/product/fundamentals-of-heat-and-masstransfer-seventh-edition-7th-edition-ebook/

Heat and mass transfer : fundamentals and applications

6th Edition Yunus A Çengel

https://ebookmass.com/product/heat-and-mass-transferfundamentals-and-applications-6th-edition-yunus-a-cengel/

Heat And Mass Transfer: Fundamentals And Applications

5th Edition – Ebook PDF Version

https://ebookmass.com/product/heat-and-mass-transferfundamentals-and-applications-5th-edition-ebook-pdf-version/

Search Engines: Information Retrieval in Practice 1st Edition Croft

https://ebookmass.com/product/search-engines-informationretrieval-in-practice-1st-edition-croft/

Cowboy Firefighter Heat Kim Redford

https://ebookmass.com/product/cowboy-firefighter-heat-kimredford-2/

Nanofluids for Heat and Mass Transfer Fundamentals, Sustainable Manufacturing and Applications Bharat Bhanvase

https://ebookmass.com/product/nanofluids-for-heat-and-masstransfer-fundamentals-sustainable-manufacturing-and-applicationsbharat-bhanvase/

Artificial Intelligence and Data Driven Optimization of Internal Combustion Engines 1st Edition Jihad Badra (Editor)

https://ebookmass.com/product/artificial-intelligence-and-datadriven-optimization-of-internal-combustion-engines-1st-editionjihad-badra-editor/

FundamentalsofHeatEngines

Wiley-ASMEPressSeries

CorrosionandMaterialsinHydrocarbonProduction:ACompendiumofOperationaland EngineeringAspects

BijanKermani,DonHarrop

DesignandAnalysisofCentrifugalCompressors

ReneVandenBraembussche

CaseStudiesinFluidMechanicswithSensitivitiestoGoverningVariables

M.KemalAtesmen

TheMonteCarloRay-TraceMethodinRadiationHeatTransferandAppliedOptics

J.RobertMahan

DynamicsofParticlesandRigidBodies:ASelf-LearningApproach

MohammedF.Daqaq

PrimeronEngineeringStandards,ExpandedTextbookEdition

MaanH.Jawad,OwenR.Greulich

EngineeringOptimization:Applications,Methods,andAnalysis

R.RussellRhinehart

CompactHeatExchangers:Analysis,DesignandOptimizationUsingFEMandCFD Approach

C.Ranganayakulu,KankanhalliN.Seetharamu

RobustAdaptiveControlforFractional-OrderSystemswithDisturbanceandSaturation MouChen,ShuyiShao,PengShi

RobotManipulatorRedundancyResolution

YunongZhang,LongJin

StressinASMEPressureVessels,Boilers,andNuclearComponents

MaanH.Jawad

CombinedCooling,Heating,andPowerSystems:Modeling,Optimization,andOperation YangShi,MingxiLiu,FangFang

ApplicationsofMathematicalHeatTransferandFluidFlowModelsinEngineeringand Medicine

AbramS.Dorfman

BioprocessingPipingandEquipmentDesign:ACompanionGuidefortheASMEBPE Standard

WilliamM.(Bill)Huitt

NonlinearRegressionModelingforEngineeringApplications:Modeling,Model Validation,andEnablingDesignofExperiments

R.RussellRhinehart

GeothermalHeatPumpandHeatEngineSystems:TheoryandPractice

AndrewD.Chiasson

FundamentalsofMechanicalVibrations

Liang-WuCai

IntroductiontoDynamicsandControlinMechanicalEngineeringSystems

ChoW.S.To

FundamentalsofHeatEngines

JamilGhojel(PhD)

ThisWorkisaco-publicationbetweenJohnWiley&SonsLtdandASMEPress

Thiseditionfirstpublished2020 ©2020JohnWiley&SonsLtd

ThisWorkisaco-publicationbetweenJohnWiley&SonsLtdandASMEPress Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions.

TherightofJamilGhojeltobeidentifiedastheauthorofthisworkhasbeenassertedinaccordance withlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andthe constantflowofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,the readerisurgedtoreviewandevaluatetheinformationprovidedinthepackageinsertorinstructionsfor eachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,anychangesinthe instructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisherand authorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswith respecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties, includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose. Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotional statementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasa citationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthors endorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendations itmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrendering professionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation. Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsites listedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitis read.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Ghojel,Jamil,author.

Title:Fundamentalsofheatengines:reciprocatingandgasturbineinternalcombustionengines/ JamilGhojel.

Description:Firstedition.|Hoboken,NJ,USA:JohnWiley&Sons,Inc., 2020.|Series:Wiley-ASMEpressseries|Includesbibliographical referencesandindex.

Identifiers:LCCN2019047568(print)|LCCN2019047569(ebook)|ISBN 9781119548768(hardback)|ISBN9781119548782(adobepdf)|ISBN 9781119548799(epub)

Subjects:LCSH:Heat-engines.

Classification:LCCTJ255.G452020(print)|LCCTJ255(ebook)|DDC 621.402/5–dc23

LCrecordavailableathttps://lccn.loc.gov/2019047568

LCebookrecordavailableathttps://lccn.loc.gov/2019047569

CoverDesign:Wiley

CoverImages:TurbineBlades©serts/GettyImages,Radsportscarsilhouette©Arand/GettyImages

Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Chennai,India PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY 10987654321

Contents

SeriesPreface ix

Preface xi

Glossary xiii

AbouttheCompanionWebsite xvii

PartIFundamentalsofEngineeringScience 1

IntroductionI:RoleofEngineeringScience 2

1ReviewofBasicPrinciples 4

1.1EngineeringMechanics 4

1.2FluidMechanics 11

1.3Thermodynamics 19 Problems 39

2ThermodynamicsofReactiveMixtures 45

2.1Fuels 45

2.2Stoichiometry 45

2.3ChemicalReactions 47

2.4ThermodynamicPropertiesoftheCombustionProducts 56

2.5FirstLawAnalysisofReactingMixtures 59

2.6AdiabaticFlameTemperature 67

2.7EntropyChangeinReactingMixtures 73

2.8SecondLawAnalysisofReactingMixtures 74

2.9ChemicalandPhaseEquilibrium 75

2.10Multi-SpeciesEquilibriumCompositionofCombustionProducts 81 Problems 90

PartIIReciprocatingInternalCombustionEngines 95

IntroductionII:HistoryandClassificationofReciprocatingInternalCombustion Engines 96

3IdealCyclesforNatural-InductionReciprocatingEngines 99

3.1GeneralisedCycle 99

3.2Constant-VolumeCycle(OttoCycle) 104

3.3ConstantPressure(Diesel)Cycle 106

3.4DualCycle(Pressure-LimitedCycle) 108

3.5CycleComparison 114 Problems 116

4IdealCyclesforForced-InductionReciprocatingEngines 119

4.1TurbochargedCycles 119

4.2SuperchargedCycles 126

4.3ForcedInductionCycleswithIntercooling 129

4.4ComparisonofBoostedCycles 138 Problems 140

5Fuel-AirCyclesforReciprocatingEngines 143

5.1Fuel-AirCycleAssumptions 143

5.2CompressionProcess 144

5.3CombustionProcess 145

5.4ExpansionProcess 148

5.5MeanEffectivePressure 148

5.6CycleComparison 150 Problems 151

6PracticalCyclesforReciprocatingEngines 153

6.1Four-StrokeEngine 153

6.2Two-StrokeEngine 157

6.3PracticalCyclesforFour-StrokeEngines 160

6.4CycleComparison 172

6.5CyclesBasedonCombustionModelling(WiebeFunction) 173

6.6ExampleofWiebeFunctionApplication 182

6.7DoubleWiebeModels 184

6.8Computer-AidedEngineSimulation 186 Problems 188

7Work-TransferSysteminReciprocatingEngines 189

7.1KinematicsofthePiston-CrankMechanism 189

7.2DynamicsoftheReciprocatingMechanism 193

7.3Multi-CylinderEngines 206

7.4EngineBalancing 215 Problems 224

8ReciprocatingEnginePerformanceCharacteristics 228

8.1IndicatorDiagrams 228

8.2IndicatedParameters 231

8.3BrakeParameters 233

8.4EngineDesignPointandPerformance 235

8.5Off-DesignPerformance 239 Problems 247

PartIIIGasTurbineInternalCombustionEngines 251 IntroductionIII:HistoryandClassificationofGasTurbines 252

9Air-StandardGasTurbineCycles 254

9.1Joule-BraytonIdealCycle 254

9.2CyclewithHeatExchange(Regeneration) 258

9.3CyclewithReheat 260

9.4CyclewithIntercooling 263

9.5CyclewithHeatExchangeandReheat 265

9.6CyclewithHeatExchangeandIntercooling 267

9.7CyclewithHeatExchange,Reheat,andIntercooling 268

9.8CycleComparison 270 Problems 272

10IrreversibleAir-StandardGasTurbineCycles 274

10.1ComponentEfficiencies 275

10.2SimpleIrreversibleCycle 280

10.3IrreversibleCyclewithHeatExchange(RegenerativeIrreversibleCycle) 284

10.4IrreversibleCyclewithReheat 287

10.5IrreversibleCyclewithIntercooling 288

10.6IrreversibleCyclewithHeatExchangeandReheat 290

10.7IrreversibleCyclewithHeatExchangeandIntercooling 292

10.8IrreversibleCyclewithHeatExchange,Reheat,andIntercooling 294

10.9ComparisonofIrreversibleCycles 295 Problems 297

11PracticalGasTurbineCycles 299

11.1SimpleSingle-ShaftGasTurbine 299

11.2ThermodynamicPropertiesofAir 300

11.3CompressionProcessintheCompressor 301

11.4CombustionProcess 302

11.5ExpansionProcessintheTurbine 314 Problems 316

12Design-PointCalculationsofAviationGasTurbines 317

12.1PropertiesofAir 317

12.2SimpleTurbojetEngine 322

12.3PerformanceofTurbojetEngine–CaseStudy 328

12.4Two-SpoolUnmixed-FlowTurbofanEngine 337

12.5PerformanceofTwo-SpoolUnmixed-FlowTurbofanEngine–CaseStudy 350

12.6Two-SpoolMixed-FlowTurbofanEngine 357

12.7PerformanceofTwo-SpoolMixed-FlowTurbofanEngine–CaseStudy 369 Problems 373

13Design-PointCalculationsofIndustrialGasTurbines 376

13.1Single-ShaftGasTurbineEngine 376

13.2PerformanceofSingle-ShaftGasTurbineEngine–CaseStudy 379

13.3Two-ShaftGasTurbineEngine 387

13.4PerformanceofTwo-ShaftGasTurbineEngine–CaseStudy 390 Problems 394

14Work-TransferSysteminGasTurbines 398

14.1Axial-FlowCompressors 398

14.2Radial-FlowCompressors 404

14.3Axial-FlowTurbines 407

14.4Radial-FlowTurbines 422 Problems 427

15Off-DesignPerformanceofGasTurbines 429

15.1Component-MatchingMethod 429

15.2Thermo-Gas-DynamicMatchingMethod 446 Problems 464

Bibliography 466

AppendixAThermodynamicTables 469

AppendixBDynamicsoftheReciprocatingMechanism 485

AppendixCDesignPointCalculations–ReciprocatingEngines 492 C.1EngineProcesses 492

AppendixDEquationsfortheThermalEfficiencyandSpecificWorkofTheoreticalGas TurbineCycles 497 Nomenclature 498

Index 499

SeriesPreface

TheWiley-ASMEPressSeriesinMechanicalEngineeringbringstogethertwoestablished leadersinmechanicalengineeringpublishingtodeliverhigh-quality,peer-reviewedbooks coveringtopicsofcurrentinteresttoengineersandresearchersworldwide.

Theseriespublishesacrossthebreadthofmechanicalengineering,comprisingresearch, designanddevelopment,andmanufacturing.Itincludesmonographs,referencesand coursetexts.

ProspectivetopicsincludeemergingandadvancedtechnologiesinEngineeringDesign; Computer-AidedDesign;EnergyConversion&Resources;HeatTransfer;Manufacturing &Processing;Systems&Devices;RenewableEnergy;Robotics;andBiotechnology.

Preface

Thereciprocatingpistonengineandthegasturbineenginearetwoofthemostvitaland widelyusedinternalcombustionheatengineseverinvented.Pistonenginesarestilldominantintheareasoflandandmarinetransportation,mining,andagriculturalindustries. Theyalsoplayasignificantroleinlightaircraftandstand-bypower-generationapplications.Powerthatcanbegeneratedbypistonenginesrangesfromafractionofakilowattto morethan80 MW ,withthermalefficienciesapproaching50%.Gasturbinesaredominant incivilandmilitaryaviationandplayamajorroleinbase,midrange,andpeakloadelectric powergenerationrangingfromsmallstand-byunitsupto300 MW perenginewiththermal efficienciesapproaching40%attheupperrangeand500 MW incombinedcycleconfigurationswiththermalefficienciesapproaching60%.Gasturbinesarealsoidealaspowerplants operatinginconjunctionwithlargerenewablepowerplantstoeliminateintermittency. Demandforpowerandmobilityinitsdifferentformswillcontinuetoincreaseinthe twenty-firstcenturyashundredsofmillionsofpeopleinthedevelopingworldbecome moreaffluent,andthecheapestandmostefficientmeansofsatisfyingthisdemandwill continuetobetheheatengine.Asaconsequence,theheatenginewillmostlikelyremain anactiveareaofresearchanddevelopmentandengineeringeducationfortheforeseeable future.Traditionally,thepistonenginehasbeenanidealtoolforteachingmechanical engineering,asitfeaturesfundamentalprinciplesoftheengineeringsciencessuchas thermodynamics,engineeringmechanics,fluidmechanics,chemistry(morespecifically, thermochemistry),etc.Inthisbook,gasturbineenginetheory,whichisbasedonthesame engineeringprinciples,iscombinedwithpistonenginetheorytoformasinglecomprehensivetoolforteachingmechanical,aerospace,andautomotiveengineeringinentry-and advanced-levelundergraduatecoursesandentry-levelenergy-relatedpostgraduatecourses. Practicingengineersinindustrymayalsofindsomeofthematerialinthebookbeneficial. Thebookcomprises3parts,15chapters,and4appendices.ThefirstchapterinPartIis areviewofsomeprinciplesofengineeringscience,andthesecondchaptercoversawide rangeofthermochemistrytopics.Thecontributionofengineeringsciencetoheatengine theoryisfundamentalandismanifestedovertheentireenergy-conversionchain,asthis figureshows.

MechanicalWorkRotaryPower

ThermochemistryFluidMechanics

Thermodynamics

Thermochemistry

EngineeringMechanics

PartIIcoverstheoreticalaspectsofthereciprocatingpistonenginestartingwithsimple air-standardcycles,followedbytheoreticalcyclesofforcedinductionenginesandending withmorerealisticcyclesthatcanbeusedtopredictengineperformanceasafirstapproximation.PartIIIongasturbinesalsocoverscycleswithgraduallyincreasingcomplexity, endingwithrealisticenginedesign-pointandoff-designcalculationmethods.

Representativeproblemsaregivenattheendofeachchapter,andadetailedexample ofpiston-enginedesign-pointcalculationsisgiveninAppendixC.Also,casestudiesof design-pointcalculationsofgasturbineenginesareprovidedinChapters12and13.

Thebookcanbeadoptedformechanical,aerospace,andautomotiveengineering coursesatdifferentlevelsusingselectedmaterialfromdifferentchaptersatthediscretion ofinstructors.

JamilGhojel

Glossary

Symbols

A Area,air,Helmholtzfunction

a Acceleration,speedofsound,correlationcoefficient

B Bulkmodulus,correlationcoefficient,bypassratio

C Gasvelocity,molarspecificheat

c Massspecificheat,speedofsound

D Diameter,degreeofreactioninreactionturbines

E Totalenergy,utilizationfactorinreactionturbines,modulusofelasticity

F Force,thrust,fuel

f Specificthrust

G Gibbsfreeenergy

g Gravitationalacceleration

H Enthalpy,heatingvalueoffuel

h Specificenthalpy,bladeheight

I Momentofinertia

i Numberofcylinders

j Numberofstrokes

K DegreesKelvin,equilibriumconstant,force,moleratioofhydrogentocarbon monoxide

L Length

l Length,bladelength

M Quantityinmoles,Machnumber,momentofforce

m Mass

m Massflowrate

N Rotationalspeedinrevolutionperminute,force

n Polytropicindex(exponent),numberofmoles

p Pressure,cylindergaspressure

Q Heattransfer,force

q Specificheattransfer

Q Rateofheattransfer

R Radius,gasconstant,crankradius

R Universalgasconstant

xiv Glossary

r Pressureratio

S Entropy,stroke

s Specificentropy

T Absolutetemperature,torque,fundamentaldimensionoftime

t Time,temperature

U Internalenergy,bladespeed

u Specificinternalenergy

V Volume,velocity,relativevelocity

v Specificvolume,pistonspeed

W Work

W Power

w Specificwork,bladerowwidth,rateofheatrelease

x Distance,massfraction,numberofcarbonatomsinafuel,cumulativeheatrelease

x Linearvelocity

x Linearacceleration

yNumberofhydrogenatomsinafuel

zNumberofoxygenatomsinafuel,heightabovedatum

GreekSymbols

�� Angle,pressureratioinconstant-volumecombustion,angularacceleration

�� Angle,volumeratioinconstant-pressurecombustion

�� Ratioofspecificheats,V-angle(enginecrank)

Δ Symbolfordifference

�� Expansionratioinanenginecylinder

�� Compressionratio(volumeratio)

�� Heat-exchangereffectiveness

�� Efficiency

�� Angle,crankangle

�� Angularvelocity

�� Angularacceleration

�� Compressibility

�� Relativeair-fuelratio

�� Dynamicviscosity,coefficientofmolecularchange

�� Kinematicviscosity

Π Non-dimensionalgroup

�� Density,volumeratioduringheatrejectionatconstantvolume(generalized air-standardcycle)

�� Stress,rounding-offcoefficientinpistonenginecycles

�� Ratioofcrankradiustoconnectingrodlength

�� Flowcoefficient,crankangle(Wiebefunction),equivalenceratio

�� Angle(Wiebefunction),heatutilizationcoefficient

�� Loadingcoefficient,coefficientofmolarchange

�� Angularvelocity,degreeofcooling

Subscripts

a Air,actual,totalvolume

b Brake

C Carbonmassfractioninliquidorsolidfuel

c Compressor,clearance(volume),crank

com Compressor(volumeratio)

cp Crankpin

cr Critical

ct Compressorturbine

cw Crankweb

e exit

f Fuel,frictional,formation

g Gas,gravimetric

H Hydrogenmassfractioninliquidorsolidfuel

h Higher

i Inlet,intake,indicated,species,inertia

l Liquid,lower

m Mean

N Nitrogenmolefractioningaseousfuel

n Nozzle

O Massfractionofoxygeninliquidorsolidfuel

P Productofcombustion

p Piston,propulsive

pc Compressorpolytropicefficiency

pp Pistonpin

pt Turbinepolytropicefficiency,powerturbine

R Reactants(airplusfuel)

r Rod(connectingrod)

S Sulfurmassfractioninliquidorsolidfuel

s Isentropic,stoichiometric,swept(volume)

t Turbine,total(stagnation)condition

w Whirl(velocity)

Superscripts

g Gravimetric

0 Referencestate(pressure)

v Volumetric

Glossary

Abbreviations

A/FAir-fuelratio

AFTAdiabaticflametemperature

BDCBottomdeadcentre

caCrankangle

CICompressionignition

F/AFuel-airratio

bmepBrakemeaneffectivepressure

GTGasturbine

bsfcBrakespecificfuelconsumption

imepIndicatedmeaneffectivepressure

ICEInternalcombustionengine

isfcIndicatedspecificfuelconsumption

mepMeaneffectivepressure

NINatural-induction(engine)

ReReynoldsnumber

rpmRevolutionsperminute

SISparkignition

TDCTopdeadcentre

TETTurbineentrytemperature

AbouttheCompanionWebsite

Thecompanionwebsiteforthisbookisat

www.wiley.com/go/JamilGhojel_FundamentalsofHeatEngines

Thewebsiteincludes:

● Solutionmanualforinstructors

● PPTs

ScanthisQRcodetovisitthecompanionwebsite.

IntroductionI:RoleofEngineeringScience

Forthelast200yearsorso,humanshavebeenlivingintheepochofpowerinwhichtheheat enginehasbeenthedominantdeviceforconvertingheattoworkandpower.Thedevelopmentoftheheatenginewasformostofthattimeslowandchaoticandcarriedoutmainly bypoorlyqualifiedpractitionerswhohadnoknowledgeofbasictheoriesofenergyand energyconversiontomechanicalwork.Inthefieldofengineeringmechanics,drawings ofearlysteamenginesdepictvarious,attimesstrange,inefficientmechanismstoconvert steampowertomechanicalpower,suchasthewalkingbeamandsunandplanetgearsystems.Thepiston-crankmechanismwasfirstusedinasteamenginein1802byOliverEvans (Sandfort1964)despiteadesignbeingproposedasearlyas1589forconvertingtherotary motionofananimal-drivenmachinetoreciprocatingmotioninapump.Thefirstinternalcombustionengine(ICE)tobemadeavailablecommerciallywasLenoir’sgasenginein 1860.Thisenginewasalsothefirsttoemployapiston-crankmechanismtoconvertreciprocatingmotionofthepistontorotarymotion,whichhasbecome,despiteitsshortcomings, afixedfeatureandhighlyefficientmechanisminmodernreciprocatingengines.However, enginedesignerswereneverfullysatisfiedwiththismechanismduetotheneedtobalancenumerousparasiticforcesgeneratedduringoperationandwereconstantlylooking foralternativewaysofobtainingdirectrotarymotion.Thisissaidtohavebeenoneofthe stimulitodevelopsteamandgasturbinesinwhichafluid,flowingthroughblades,causes theshafttorotate,thuseliminatingtheneedforacrankshaft.Theresultsaresmoother operation,lowerlevelsofvibration,andlow-costsupportstructures.Allofthesedevelopmentsoccurredoveraverylongperiodoftimewithadvancesinthescienceofengineering mechanics(morespecifically,engineeringdynamics),togetherwithotherengineeringsciencebranchessuchasfluidmechanicsandthermodynamics.

ExamplesoftheprinciplesoffluidmechanicsofrelevancetothetopicsofPartsIandII inthebookincludethemomentumequationusedtocalculatethrustinaircraftgasturbineengines,Bernoulli’sequationtocalculateflowintheinductionmanifoldofpiston engines,anddimensionalanalysistodeterminethecharacteristicsofturbomachineryfor gasturbines.

Thegreatscientificbreakthroughsinthedevelopmentofheat-enginetheorycamewith thedevelopmentofthescienceofthermodynamics,startingwiththepioneeringworkof NicolasSadiCarnot(1796–1832)andfollowedbythemonumentalcontributionsofRudolf Clausius(1822–1888)andWilliamThomson(LordKelvin,1824–1907).Eversince,knowledgeofthermodynamicshasbecomeessentialtoimprovingexistingheatenginedesigns FundamentalsofHeatEngines:ReciprocatingandGasTurbineInternalCombustionEngines, FirstEdition.JamilGhojel. ©2020JohnWiley&SonsLtd.ThisWorkisaco-publicationbetweenJohnWiley&SonsLtdandASMEPress. Companionwebsite:www.wiley.com/go/JamilGhojel_FundamentalsofHeatEngines

anddevelopingnewtypesofengineprocessesforsuperioreconomyandreducedemissions.Atthesametime,theheatengine,particularlythereciprocatingICE,hasbecomean idealtoolforteachingmechanicalandautomotiveengineering,asitfeatures,inaddition tothermodynamics,fundamentalprinciplesofengineeringmechanicsandfluidmechanics asdiscussedearlier.

Achapteronthermochemistry(Chapter2)isincludedinPartI,dealingwithfuelpropertiesandthechemistryofcombustionreactionsandtheeffectofcontrolofthecombustion temperaturethroughcontrolofair-fuelratiosinordertopreservethemechanicalintegrity ofenginecomponents.Extensivenumericaldataongaspropertiesandadiabaticflame temperaturecalculationsareincluded,whichcanbeusedforpreliminarydesign-point calculationsofpracticalpistonandgasturbineenginecycles.

ReviewofBasicPrinciples

1.1EngineeringMechanics

Mechanics dealswiththeresponseofbodiestotheactionofforcesingeneral,and dynamics isabranchofmechanicsthatstudiesbodiesinmotion.Theprinciplesofdynamicscan beused,forexample,tosolvepracticalproblemsinaerospace,mechanical,andautomotiveengineering.Theseprinciplesarebasictotheanalysisanddesignofland,sea,andair transportationvehiclesandmachineryofalltypes(pumps,compressors,andreciprocating andgas-turbineinternalcombustionengines).Areviewofsomeprinciplesrelevanttoheat enginesispresentedhere.

1.1.1Definitions

Particle.Aconceptualbodyofmatterthathasmassbutnegligiblesizeandshape.Anyfinite physicalbody(car,plane,rocket,ship,etc.)canberegardedasaparticleanditsmotion modelledbythemotionofitscentreofmass,providedthebodyisnotrotating.Themotion ofaparticlecanbefullydescribedbyitslocationatanyinstantintime.

Rigidbody.Anassemblyofalargenumberofparticlesthatremainataconstantdistance fromeachotheratalltimesirrespectiveoftheloadsapplied.Tofullydescribethemotion ofarigidbody,knowledgeofboththelocationandorientationofthebodyatanyinstantis required.Gasturbineshaftsarerigidbodiesthatarerotatingathighspeeds.Thereciprocatingpiston-crankmechanisminpistonenginesisacomplexsystemcomprisingrotating crankshaftandslidingpistonconnectedthrougharigidroddescribingcomplexirregular motion.

Kinematics.Studyofmotionwithoutreferencetotheforcescausingthemotionandallowingthedeterminationofdisplacement,velocity,andaccelerationofthebody.

Kinetics.Studyoftherelationshipbetweenmotionandtheforcescausingthemotion, basedonNewton’sthreelawsofmotion.

1.1.2Newton’sLawsofMotion

Accordingtothe firstlaw,themomentumofabodykeepsitmovinginastraightlineata constantspeedunlessaforceisappliedtochangeitsdirectionorspeed.

FundamentalsofHeatEngines:ReciprocatingandGasTurbineInternalCombustionEngines, FirstEdition.JamilGhojel. ©2020JohnWiley&SonsLtd.ThisWorkisaco-publicationbetweenJohnWiley&SonsLtdandASMEPress. Companionwebsite:www.wiley.com/go/JamilGhojel_FundamentalsofHeatEngines

Thesecondlaw definestheforcethatcanchangethemomentumofthebodyasavector quantitywhosemagnitudeistheproductofmassandacceleration:

Anotherformofthislawthatisparticularlypertinenttogasturbinepracticestatesthat forceisequaltotherateofchangeofmomentumormassflowrate m multipliedbyvelocity change dv (theletter v willbeusedforvelocityexclusivelyinthemechanicssectionofthis chapter):

Foranaircraftengine,theairflowintotheenginediffuserisequaltotheforwardflight speed v1 ,andengineexhaustgasesacceleratetovelocity v2 intheenginenozzle.Foramass flowrate m ofthegases,thethrustistherefore F = m(v2 v1 ) N .

Inheatengines,itisoftennecessarytousevectoralgebratoresolvetheactingforcesto determinetheforcesofinterestthatcanproducework.Forexample,thepressureforceof thecombustinggasesinthepistonengine,whichisthesourceofcyclework,doesnotact directlyonthecrank,asaresultofwhichparasiticforcesaregenerated,causingundesirable phenomenasuchaspistonslap.Resolvingtheforcesatthepistonpindeterminestheforce transmittedthroughtheconnectingrodtothecrank,generatingatorque.Inagasturbine, thegasforcegeneratedduringflowthroughthebladeshasacomponentactingparallelto theturbineaxisthatcausesbearingsoverloadandneedstobebalancedtopreventaxial displacementoftherotor.

The thirdlaw simplystatesthat‘foreveryforcethereisanequalandoppositereaction force’.Inanaircraftjetengine,thechangeinmomentumofalargeflowrateofgases betweentheinletandoutletoftheenginegeneratesabackwardforceknownas thrust, whichhasanequalreactionthatpropelstheaircraftforward.

1.1.3RectilinearWorkandEnergy

Aforce F doesworkonaparticlewhentheparticleundergoesdisplacementinthedirection oftheforce:

Work = Force × Displacement (in N m or Joule)

Iftheforceisvariableandmovingalongastraightline,

W1 2 = ∫ s2 s1 Fds

Newton’SecondLawforaparticlecanbewrittenas

F = ma = m ( dv dt ) ; hence, theequationfor W1 2 canbewrittenas W1 2 = ∫ s2 s1 m ( dv dt ) ds

Foranincrementalchangeindistance, ds = vdt;hence

F

Finally,

Theworkdonebyaforceisequaltothechangeinkineticenergy.Thisequationisthe simplestformoftheconservationofenergyequation.

1.1.4CircularMotion

Rotarymotionisthemostconvenientmeansfortransferringmechanicalpowerinalmost alldrivinganddrivenmachinery.Thisisparticularlysoinheatenginepracticewherethermalenergyisconvertedtomechanicalwork,whichisthentransferredviarotatingshaftto adrivenmachinery(electricalgenerator,propeller,wheelsofavehicle,pump,etc.).Considerthenon-uniformcircularmotionshowninFigure1.1,inwhichparticle P atangular position �� haslineartangentialvelocity v andangularvelocity ��.

Thecomponents x and y ofvelocity v (= ��r )inthe x and y directionsare:

Theaccelerationsinthesamedirectionsare

where

̈ x1 and ̈ x2 arethefirst-andsecond-orderaccelerationcomponentsinthe x direction (Figure1.1b,c).

̈ y = dy dt = r ( �� sin �� d�� dt + �� cos �� )

̈ y1 and ̈ y2 arethefirst-andsecond-orderaccelerationcomponentsinthe y direction.

Figure1.1 Non-uniformcircularmotioninCartesiancoordinates:(a)initialpositionandvelocity; (b)first-ordercomponentsofresultantacceleration;(c)second-ordercomponentsofresultant acceleration.

Thefirst-ordercomponentsoftheresultantaccelerationintheradialdirection towards0is

Since �� = v/r ,

Radialacceleration ar isdirectedoppositeto OP inFigure1.1b

Thesecond-ordercomponentsoftheresultantaccelerationinthetangentialdirectionis

Sincetheangularacceleration

Tangentialacceleration at isdirectedperpendicularto OP inFigure1.1c.

Theresultantaccelerationis

1.1.4.1UniformCircularMotionofaParticle

Intheuniformcircularmotion, r = const

Equations1.4a,1.7b,and1.8forvelocityandaccelerationbecome:

Theseequationsapplytoanypointontheoutersurfaceofamachineryshaftrotatingat constantangularvelocity,suchasreciprocatingandgasturbinesengines.

1.1.5RotatingRigid-BodyKinetics

Themotionofaparticlecanbefullydescribedbyitslocationatanyinstant.Forarigid body,ontheotherhand,knowledgeofboththelocationandorientationofthebodyatany instantisrequiredforfulldescriptionofitsmotion.

Themotionofthebodyaboutafixedaxiscanbedeterminedfromthemotionofaline inaplaneofmotionthatisperpendiculartotheaxisofrotation(Figure1.2).Theangular position,displacement,velocity,andaccelerationare,respectively, �� , d�� ,

Thetangentialandradialcomponentsoftheaccelerationat P andtheresultantaccelerationare,respectively,

Figure1.2 Rigid-bodyrotationalmotion.

ReferringtoFigure1.2,theforcerequiredtoacceleratemass dm at P is dF = at dm and themomentrequiredtoacceleratethesamemassis dM = rat dm. Theresultantmomentneededtoacceleratethetotalmassoftherotatingrigidbodyis

M = ∫ dM = ∫ rat dm = ∫ r 2 �� dm

Foraconstantangularacceleration, M = �� ∫ r 2 dm = I �� (1.11)

where I = ∫ r 2 dm isthemomentofinertiaofthewholemassoftherigidbodyrotating aboutanaxispassingthrough0.Equation(1.11)indicatesthatifthebodyhasrotational motionandisbeingacteduponbymoment M ,itsmomentofinertia I isameasureofthe resistanceofthebodytoangularacceleration �� .Inlinearmotion,themass m isameasure oftheresistanceofthebodytolinearacceleration a whenacteduponbyforce F . Inplanarkinetics,theaxischosenforanalysispassesthroughthecentreofmass G ofthe bodyandisalwaysperpendiculartotheplaneofmotion.Themomentofinertiaaboutthis axisis I G .Themomentofinertiaaboutanaxisthatisparalleltotheaxispassingthrough thecentreofmassisdeterminedusingtheparallelaxistheorem

I = IG + md2 (1.12) where d istheperpendiculardistancebetweentheparallelaxes. Forarigidbodyofcomplexshape,themomentofinertiacanbedefinedintermsofthe mass m andradiusofgyration k suchthat I = mk2 ,fromwhich k = √I ∕m.If I isinunitsof kg. m2 , k willbeinmetres.Theradiusofgyration k canberegardedasthedistancefromthe axistoapointintheplaneofmotionwherethetotalmassmustbeconcentratedtoproduce thesamemomentofinertiaasdoestheactualdistributedmassofthebody,i.e.

k = √ 1 m ∫ r 2 dm (1.13)

1.1.6Moment,Couple,andTorque

Themomentofforce F aboutapoint0istheproductoftheforceandtheperpendicular distance L ofitslineofactionfrom0(Figure1.3a):

Figure1.3 Definitionsofmoment,couple,andtorque.

A couple isapairofplanarforcesthatareequalinmagnitude,oppositeindirection,and paralleltoeachother(Figure1.3b).Sincetheresultantforceiszero,thecouplecanonly generaterotationalmotion.Themomentofthecoupleisgivenby

TorqueisalsoamomentandisgivenbyEq.(1.14),butisusedmainlytodescribea momenttendingtoturnortwistashaftofreciprocatingandgasturbineengines,motors, andotherrotatingmachinery.Inmachinerysuchasengines,force F willbeappliedtothe arm L atarightangle(�� = 0).Intheseapplications,thepowerisoftenexpressedinterms ofthetorque(seeEqs.1.21and1.22inSection1.1.9).

1.1.7AcceleratedandDeceleratedShafts

Considerashaftcarryingagasturbinerotororpistonengineflywheelwiththemoments andtorquesactingasshowninFigure1.4.Aheatengineisusuallystartedbymeansof anexternaldriversuchasstartingmotorbyacceleratingthedrivingshaftfromresttothe requiredspeed.Thedrivingtorquerequiredtoacceleratetheshaft T d isbalancedbythe inertiacouple M i = I�� (�� isangularacceleration)andresistancecouple M R ,whichismainly duetofrictioninthebearings,asshowninFigure1.4a.Thegoverningequationis

= Mi + Mr = I �� + Mr (1.16)

Figure1.4 Kineticsofrotatingshaft: (a)acceleratingshaft;(b)decelerating shaft.

Tostopanengine,abrakingtorque T b isapplied,whichisassistedbytheresistance moment M r todeceleratetheshaftfromtheratedspeedtorest,asshowninFigure1.4b

Thegoverningequationis

Theenginecanbebroughttorestwithoutapplyingabrakingtorquebycuttingoffthefuel supplyandallowingtheresistancecoupletodeceleratetheshafttorest.Notethatwhenthe shaftisdecelerating,theangularaccelerationvectoriscountertothedirectionofrotation oftheshaft.

1.1.8AngularMomentum(MomentofMomentum)

Theangularmomentumofbodyaboutanaxisisthemomentofitslinearmomentumabout theaxis.Figure1.5showsabodyrotatingwithangularvelocity �� aboutanaxispassing through0(perpendiculartotheplaneofthepage):

Linearmomentumofparticleofmass dm = dm ��l

Momentofmomentumofparticleabout0 = dm ��l2

Totalmomentum H 0 ofthebodyabout0forconstantangularvelocity

IfGisthecentreofgravityofthebody,

andtheangularmomentumofthebodycanbewrittenas

Theangularmomentumofarigidbodyaboutanyaxisremainsconstant,unlessanexternaltorqueaboutthesameaxisisapplied.Thisisknownasthe lawofconservationofangular momentum

1.1.9RotationalWork,Power,andKineticEnergy

Ifarigidbodyrotatesthroughincrementalangle d�� undertheactionofconstanttorque T , theincrementalrotationalworkwillbe

dW = Td��

Figure1.5 Angularmomentumofarigidbody.

Table1.1 Equationsofmotionforlinearand rotationalmotions.

LinearRotational s

Andtherotationalpoweris

Powerproducedbyheatenginesisalwaysrotational;hence,subscript r willbedropped henceforward.Iftheangularvelocityoftheengineshaftisexpressedintermsofrotational speed N inrevolutionsperminute(rpm),Eq.(1.21)canberewrittenas

TheSIunitofpoweristhe watt (W ),buttheoldunitof horsepower (HP)isstillwidely used,where1 HP ≡ 0.746 kW

Thekineticenergyofaparticleofmass dm (Figure1.5)is1/2dm(��l)2 ,andthetotalkinetic energy(KE)forthewholerigidbodyhavingaconstantangularvelocityis

MakinguseofEq.(1.19),wecanwrite

Table1.1summarisestheequationsofmotionofuniformlyacceleratingbodiesinlinear androtationalmotion.Thefollowingnotationisusedintheequations:

s, v,and a:lineardisplacement,velocity,andacceleration �� , ��,and �� :angulardisplacement,velocity,andacceleration. Subscripts i and f denote initial and final,respectively.

1.2FluidMechanics

Fluidmechanicsdealswiththebehaviourofafluid–liquid,gas,orvapour–inquiescent stateandinastateofmotion.Fluidsaresubstancesthatcannotpreserveashapeoftheir own.Inheatengineprocesses,thefluidsusedarepredominantlyingasformandinclude airatvariousdegreesofcompressionandproductsofcombustionatelevatedpressuresand temperatures.Understandingtheprinciplesoffluidmechanicswillhelpstudentstobetter handletheprocessesinthereciprocatingandgasturbineengines.

1.2.1FluidProperties

1.2.1.1MassandWeight

Mass isameasureofinertiaandquantityofthebodyofmatter(fluid), m (kg).

Weight istheforcewithwhichabodyofthefluidisattractedtowardstheearthbygravity:

w = mgN

Density istheamountofmassperunitvolume:

�� = m V kg∕m3

Specificweight istheweightofaunitvolumeofasubstance:

�� = w V = ��gN ∕m3

Specificgravity is

sg = ��f ��w @4∘ C = ��f ��w @4∘ C

wheresubscripts f and w arefor fluid and water, respectively.

��w @4∘ C = 9.81 kN ∕m3

��w @4∘ C = 1000 kg∕m3

1.2.1.2Pressure

Pressure istheforceexertedbyafluidonaunitareaofitssurroundings:

p = F A N ∕m2 or Pa

Pressureactsperpendiculartothewallsofthecontainersurroundingthefluid.Acolumn offluidofheight hm havingacrosssectionalareaof Am2 anddensity �� kg/m3 willexerta pressureof

p = hA��g A = h��g = �� hkPa

1.2.1.3Compressibility

Compressibility isthechangeinvolumeofasubstancewhensubjectedtoachangein pressureexertedonit.Theusualparameterusedtomeasurecompressibilityofliquidsis thebulkmodulusofelasticity E:

E = −Δp (ΔV )∕V N ∕m2

Thecompressibilityofagasatconstanttemperatureisdefinedas

�� =− 1 v ( ���� �� p )T

Foraperfectgas:

�� = 1 p m2 ∕N

1.2.1.4Viscosity

Generally,theshearingstress �� developedinamovingfluidbetweenastationarysurface andamovingfluidbodyisproportionaltothevelocitygradient Δv/Δy,andtheconstantof proportionalityisthedynamicviscosity �� :

Fluidssuchaswater,oil,gasoline,alcohol,kerosene,benzene,andglycerinebehave inaccordancewiththisequationandareknownas Newtonian fluids.Fluidsthatbehave otherwise(viscositychangeswithstress)areknownas non-Newtonian fluids.

Thepreviousequationcanberewrittenintermsoftheviscosityas

Theunitsof μ canbedevelopedasfollows:

Theratioofdynamicviscositytodensityofthefluidisthekinematicviscosity �� :

Viscosityofliquidsdecreaseswithincreasingtemperature,andthatofgasesincreases withincreasingtemperature.

1.2.2FluidFlow

Ifafluidbodywithcross-sectionalarea A isflowingatvelocity C,itsvolumetricflowrate Q isgivenby

ConsidernowtheflowofthisfluidthroughthecontrolvolumeshowninFigure1.6. Themassflowequationsatinlet1andexit2aregivenby

Thecontinuityequationorequationofconservationofmassforthisflowisobtainedby equatingthemassflowratesatsections1and2, m

,or

Thetotalenergy(inunitsof N m)foranelementoffluidofmass m atsections1and2 ofthecontrolvolumeshowninFigure1.6isgivenby

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.