Where can buy Introduction to flat panel displays 2nd edition jiun-haw lee ebook with cheap price

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/introduction-to-flat-panel-displays-2nd-edition-jiun-ha w-lee/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Introduction to Health Care 5th Edition Lee Haroun

https://ebookmass.com/product/introduction-to-health-care-5thedition-lee-haroun/

Companion To J.r.r. Tolkien 2nd Edition Stuart D. Lee

https://ebookmass.com/product/companion-to-j-r-r-tolkien-2ndedition-stuart-d-lee/

Introduction to Modern Analysis, 2nd Edition Kantorovitz

https://ebookmass.com/product/introduction-to-modernanalysis-2nd-edition-kantorovitz/

Introduction to Microfluidics 2nd Edition Patrick

Tabeling

https://ebookmass.com/product/introduction-to-microfluidics-2ndedition-patrick-tabeling/

Confessions in B-Flat Donna Hill

https://ebookmass.com/product/confessions-in-b-flat-donna-hill/

Introduction to Nuclear Science 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/introduction-to-nuclearscience-2nd-edition-ebook-pdf/

Introduction to Private Security 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/introduction-to-privatesecurity-2nd-edition-ebook-pdf/

The NeuroICU Book 2nd Edition Kiwon Lee

https://ebookmass.com/product/the-neuroicu-book-2nd-editionkiwon-lee/

E-Paper Displays Bo Ru Yang

https://ebookmass.com/product/e-paper-displays-bo-ru-yang/

IntroductiontoFlatPanelDisplays

Wiley–SIDSeriesinDisplayTechnology

SeriesEditor: Dr.IanSage AdvisoryBoard:MichaelBecker,PaulDrzaic,Ioannis(John)Kymissis,TakatoshiTsujimura, MichaelWittek,Qun(Frank)Yan

DisplaySystems:DesignandApplications LindsayW.MacDonaldandAnthonyC.Lowe(Eds.)

ReflectiveLiquidCrystalDisplays Shin-TsonWuandDeng-KeYang

ColourEngineering:AchievingDeviceIndependentColour PhilGreenandLindsayMacDonald(Eds.)

DisplayInterfaces:FundamentalsandStandards RobertL.Myers

DigitalImageDisplay:AlgorithmsandImplementation GheorgheBerbecel

FlexibleFlatPanelDisplays GregoryCrawford(Ed.)

PolarizationEngineeringforLCDProjection MichaelG.Robinson,JianminChen,andGaryD.Sharp

FundamentalsofLiquidCrystalDevices Deng-KeYangandShin-TsonWu

IntroductiontoMicrodisplays

DavidArmitage,IanUnderwood,andShin-TsonWu

MobileDisplays:TechnologyandApplications AchintyaK.Bhowmik,ZiliLi,andPhilipBos(Eds.)

PhotoalignmentofLiquidCrystallineMaterials:PhysicsandApplications VladimirG.Chigrinov,VladimirM.Kozenkov,andHoi-SingKwok

ProjectionDisplays,SecondEdition MathewS.BrennesholtzandEdwardH.Stupp

IntroductiontoFlatPanelDisplays Jiun-HawLee,DavidN.Liu,andShin-TsonWu

LCDBacklights ShunsukeKobayashi,ShigeoMikoshiba,andSungkyooLim(Eds.)

LiquidCrystalDisplays:AddressingSchemesandElectro-OpticalEffects,SecondEdition ErnstLueder

TransflectiveLiquidCrystalDisplays

ZhibingGeandShin-TsonWu

LiquidCrystalDisplays:FundamentalPhysicsandTechnology

RobertH.Chen

OLEDDisplays:FundamentalsandApplications

TakatoshiTsujimura

InteractiveDisplays

AchintyaK.Bhowmik

Illumination,ColorandImaging:EvaluationandOptimizationofVisualDisplays P.Bodrogi,T.Q.Khan

3DDisplays ErnstLueder

AddressingTechniquesofLiquidCrystalDisplays TemkarN.Ruckmongathan

FlatPanelDisplayManufacturing JunSouk,ShinjiMorozumi,Fang-ChenLuo,andIonBita

ModelingandOptimizationofLCDOpticalPerformance

DmitryA.Yakovlev,VladimirG.Chigrinov,andHoi-SingKwok

PhysicsandTechnologyofCrystallineOxideSemiconductorCAAC-IGZO:Fundamentals NoboruKimizuka,ShunpeiYamazaki

PhysicsandTechnologyofCrystallineOxideSemiconductorCAAC-IGZO:ApplicationtoLSI ShunpeiYamazaki,MasahiroFujita

PhysicsandTechnologyofCrystallineOxideSemiconductorCAAC-IGZO:ApplicationtoDisplays ShunpeiYamazaki,TetsuoTsutsui

IntroductiontoFlatPanelDisplays

Jiun-HawLee NationalTaiwanUniversity TaipeiCity,Taiwan

I-ChunCheng NationalTaiwanUniversity TaipeiCity,Taiwan

HongHua UniversityofArizona Arizona,USA

Shin-TsonWu UniversityofCentralFlorida Florida,USA

SecondEdition

Thiseditionfirstpublished2020

©2020JohnWiley&SonsLtd

EditionHistory: 1eWiley,2008

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyany means,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermission toreusematerialfromthistitleisavailableathttp://www.wiley.com/go/permissions.

TherightofJiun-HawLee,I-ChunCheng,HongHuaandShin-TsonWutobeidentifiedastheauthorsofthisworkhavebeenasserted inaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsinstandardprint versionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowofinformation relatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatetheinformation providedinthepackageinsertorinstructionsforeachchemical,pieceofequipment,reagent,ordevicefor,amongotherthings,any changesintheinstructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisherandauthorshaveused theirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthe contentsofthisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityor fitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotional statementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitationand/orpotential sourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservicestheorganization, website,orproductmayprovideorrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnot engagedinrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.You shouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechanged ordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossof profitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Lee,Jiun-Haw,author.|Cheng,I-Chun,1974-author.|Hua,Hong, 1973-author.|Wu,Shin-Tson,author.

Title:Introductiontoflatpaneldisplays/Jiun-HawLee,NationalTaiwan University,TaipeiCity,Taiwan,I-ChunCheng,NationalTaiwanUniversity, TaipeiCity,Taiwan,HongHua,UniversityofArizona,Arizona,USA, Shin-TsonWu,UniversityofCentralFlorida,Florida,USA.

Description:Secondedition.|Hoboken,NJ:JohnWiley&Sons,Inc., [2020]|Series:Wiley-SIDseriesindisplaytechnology|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2020004365(print)|LCCN2020004366(ebook)|ISBN 9781119282273(cloth)|ISBN9781119282198(adobepdf)|ISBN 9781119282228(epub)

Subjects:LCSH:Flatpaneldisplays.

Classification:LCCTK7882.I6L4362020(print)|LCCTK7882.I6(ebook)| DDC621.3815/422—dc23

LCrecordavailableathttps://lccn.loc.gov/2020004365

LCebookrecordavailableathttps://lccn.loc.gov/2020004366

CoverDesign:Wiley

CoverImage:YuichiroChino/GettyImages

Setin10/12ptWarnockProbySPiGlobal,Chennai,India

Contents

SeriesEditor’sForeword xiii

1FlatPanelDisplays 1

1.1Introduction 1

1.2Emissiveandnon-emissiveDisplays 4

1.3DisplaySpecifications 4

1.3.1PhysicalParameters 5

1.3.2BrightnessandColor 7

1.3.3ContrastRatio 8

1.3.4SpatialandTemporalCharacteristics 8

1.3.5EfficiencyandPowerConsumption 9

1.3.6FlexibleDisplays 9

1.4ApplicationsofFlatPanelDisplays 9

1.4.1LiquidCrystalDisplays 10

1.4.2Light-EmittingDiodes 10

1.4.3OrganicLight-EmittingDevices 11

1.4.4ReflectiveDisplays 11

1.4.5Head-MountedDisplays 12

1.4.6TouchPanelTechnologies 12 References 13

2ColorScienceandEngineering 15

2.1Introduction 15

2.2Photometry 16

2.3TheEye 18

2.4Colorimetry 22

2.4.1TrichromaticSpace 22

2.4.2CIE1931ColormetricObserver 24

2.4.3CIE1976UniformColorSystem 27

2.4.4CIECAM02ColorAppearanceModel 30

2.4.5ColorGamut 31

2.4.6LightSources 32

2.4.6.1SunlightandBlackbodyRadiators 32

2.4.6.2LightSourcesforTransmissive,Reflective,andProjectionDisplays 33

2.4.6.3ColorRenderingIndex 34

2.5ProductionandReproductionofColors 34

2.6DisplayMeasurements 35 HomeworkProblems 36 References 36

3ThinFilmTransistors 39

3.1Introduction 39

3.2BasicConceptsofCrystallineSemiconductorMaterials 39

3.2.1BandStructureofCrystallineSemiconductors 40

3.2.2IntrinsicandExtrinsicSemiconductors 43

3.3ClassificationofSiliconMaterials 46

3.4HydrogenatedAmorphousSilicon(a-Si:H) 46

3.4.1ElectronicStructureofa:Si-H 47

3.4.2CarrierTransportina-Si:H 48

3.4.3Fabricationofa-Si:H 48

3.5PolycrystallineSilicon 49

3.5.1CarrierTransportinPolycrystallineSilicon 49

3.5.2FabricationofPolycrystalline-Silicon 50

3.6Thin-FilmTransistors 52

3.6.1FundamentalsofTFTs 52

3.6.2a-Si:HTFTs 55

3.6.3Poly-SiTFTs 55

3.6.4OrganicTFTs 56

3.6.5OxideSemiconductorTFTs 57

3.6.6FlexibleTFTTechnology 59

3.7PMandAMDrivingSchemes 61 HomeworkProblems 67 References 67

4LiquidCrystalDisplays 71

4.1Introduction 71

4.2TransmissiveLCDs 72

4.3LiquidCrystalMaterials 74

4.3.1PhaseTransitionTemperatures 75

4.3.2EutecticMixtures 75

4.3.3DielectricConstants 77

4.3.4ElasticConstants 78

4.3.5RotationalViscosity 79

4.3.6OpticalProperties 80

4.3.7RefractiveIndices 80

4.3.7.1WavelengthEffect 80

4.3.7.2TemperatureEffect 82

4.4LiquidCrystalAlignment 83

4.5HomogeneousCell 84

4.5.1PhaseRetardationEffect 85

4.5.2VoltageDependentTransmittance 86

4.6TwistedNematic(TN) 87

4.6.1OpticalTransmittance 87

4.6.2ViewingAngle 89

4.6.3Film-CompensatedTN 90

4.7In-PlaneSwitching(IPS) 91

4.7.1DeviceStructure 92

4.7.2Voltage-DependentTransmittance 92

4.7.3ViewingAngle 92

4.7.4PhaseCompensationFilms 93

4.8FringeFieldSwitching(FFS) 95

4.8.1DeviceConfigurations 95

4.8.2n-FFSversusp-FFS 96

4.9VerticalAlignment(VA) 98

4.9.1Voltage-DependentTransmittance 98

4.9.2ResponseTime 99

4.9.3OverdriveandUndershootAddressing 101

4.9.4Multi-domainVerticalAlignment(MVA) 102

4.10AmbientContrastRatio 103

4.10.1ModelingofAmbientContrastRatio 103

4.10.2AmbientContrastRatioofLCD 103

4.10.3AmbientContrastRatioofOLED 104

4.10.4SimulatedACRforMobileDisplays 105

4.10.5SimulatedACRforTVs 105

4.10.6SimulatedAmbientIsocontrastContour 106

4.10.6.1MobileDisplays 106

4.10.6.2Large-SizedTVs 108

4.10.7ImprovingLCD’sACR 109

4.10.8ImprovingOLED’sACR 110

4.11MotionPictureResponseTime(MPRT) 112

4.12WideColorGamut 114

4.12.1MaterialSynthesisandCharacterizations 115

4.12.2DeviceConfigurations 116

4.13HighDynamicRange 118

4.13.1Mini-LEDBacklitLCDs 118

4.13.2Dual-PanelLCDs 120

4.14FutureDirections 121 HomeworkProblems 123 References 124

5Light-EmittingDiodes 135

5.1Introduction 135

5.2MaterialSystems 138

5.2.1AlGaAsandAlGaInPMaterialSystemsforRedandYellowLEDs 140

5.2.2GaN-BasedSystemsforGreen,Blue,UVandUVLEDs 141

5.2.3WhiteLEDs 143

5.3DiodeCharacteristics 146

5.3.1p-andn-Layer 147

5.3.2DepletionRegion 148

5.3.3J–VCharacteristics 150

5.3.4HeterojunctionStructures 152

5.3.5Quantum-Well,-Wire,and-DotStructures 152

5.4Light-EmittingCharacteristics 154

x Contents

5.4.1RecombinationModel 154

5.4.2L-JCharacteristics 155

5.4.3SpectralCharacteristics 156

5.4.4EfficiencyDroop 159

5.5DeviceFabrication 160

5.5.1Epitaxy 161

5.5.2ProcessFlowandDeviceStructureDesign 165

5.5.3ExtractionEfficiencyImprovement 166

5.5.4Packaging 168

5.6Applications 169

5.6.1TrafficSignals,ElectronicSignageandHugeDisplays 169

5.6.2LCDBacklight 170

5.6.3GeneralLighting 172

5.6.4Micro-LEDs 173 HomeworkProblems 175 References 175

6OrganicLight-EmittingDevices 179

6.1Introduction 179

6.2EnergyStatesinOrganicMaterials 180

6.3PhotophysicalProcesses 182

6.3.1Franck–CondonPrinciple 182

6.3.2FluorescenceandPhosphorescence 183

6.3.3JablonskiDiagram 185

6.3.4IntermolecularProcesses 186

6.3.4.1EnergyTransferProcesses 186

6.3.4.2ExcimerandExciplexFormation 188

6.3.4.3QuenchingProcesses 188

6.3.5QuantumYieldCalculation 189

6.4CarrierInjection,Transport,andRecombination 191

6.4.1Richardson–SchottkyThermionicEmission 192

6.4.2SCLC,TCLC,andP–FMobility 193

6.4.3ChargeRecombination 195

6.4.4ElectromagneticWaveRadiation 195

6.5Structure,FabricationandCharacterization 197

6.5.1DeviceStructureofOrganicLight-EmittingDevice 198

6.5.1.1Two-LayerOrganicLight-EmittingDevice 198

6.5.1.2MatrixDopingintheEML 200

6.5.1.3HIL,EIL,andp-i-nStructure 202

6.5.1.4Top-EmissionandTransparentOLEDs 204

6.5.2PolymerOLED 205

6.5.3DeviceFabrication 206

6.5.3.1Thin-filmFormation 207

6.5.3.2EncapsulationandPassivation 210

6.5.3.3DeviceStructuresforAMDriving 211

6.5.4ElectricalandOpticalCharacteristics 212

6.5.5DegradationMechanisms 214

6.6TripletExcitonUtilization 219

6.6.1PhosphorescentOLEDs 219

6.6.2Triplet-TripletAnnihilationOLED 221

6.6.3ThermallyActivatedDelayedFluorescence 222

6.6.4Exciplex-BasedOLED 223

6.7TandemStructure 224

6.8ImprovementofExtractionEfficiency 226

6.9WhiteOLEDs 229

6.10Quantum-DotLight-EmittingDiode 231

6.11Applications 233

6.11.1MobileOLEDDisplay 233

6.11.2OLEDTV 234

6.11.3OLEDLighting 235

6.11.4FlexibleOLEDs 235

6.11.5NovelDisplays 236 HomeworkProblems 236 References 237

7ReflectiveDisplays 245

7.1Introduction 245

7.2ElectrophoreticDisplays 245

7.3ReflectiveLiquidCrystalDisplays 249

7.4ReflectiveDisplayBasedonOpticalInterference(MirasolDisplay) 253

7.5ElectrowettingDisplay 254

7.6ComparisonofDifferentReflectiveDisplayTechnologies 256 HomeworkProblems 256 References 257

8FundamentalsofHead-MountedDisplaysforVirtualandAugmentedReality 259

8.1Introduction 259

8.2HumanVisualSystem 262

8.3FundamentalsofHead-mountedDisplays 265

8.3.1ParaxialOpticalSpecifications 265

8.3.2MicrodisplaySources 272

8.3.3HMDOpticsPrinciplesandArchitectures 275

8.3.4OpticalCombiner 280

8.4HMDOpticalDesignsandPerformanceSpecifications 286

8.4.1HMDOpticalDesigns 286

8.4.2HMDOpticalPerformanceSpecifications 290

8.5AdvancedHMDTechnologies 298

8.5.1EyetrackedandFovea-ContingentHMDs 299

8.5.2DynamicRangeEnhancement 302

8.5.3AddressableFocusCuesinHMDs 305

8.5.3.1ExtendedDepthofFieldDisplays 307

8.5.3.2Vari-FocalPlane(VFP)Displays 308

8.5.3.3Multi-FocalPlane(MFP)Displays 309

8.5.3.4Head-MountedLightField(LF)Displays 315

8.5.4Head-MountedLightFieldDisplays 316

8.5.4.1InI-BasedHead-MountedLightFieldDisplays 317

8.5.4.2ComputationalMulti-LayerHead-MountedLightFieldDisplays 321

8.5.5MutualOcclusionCapability 323

References 328

9TouchPanelTechnology 337

9.1Introduction 337

9.2ResistiveTouchPanel 338

9.3CapacitiveTouchPanel 339

9.4On-CellandIn-CellTouchPanel 344

9.5OpticalSensingforLargePanels 347 HomeworkProblems 348

References 348

Index 351

SeriesEditor’sForeword

Thefirsteditionof IntroductiontoFlatPanelDisplays hasprovedtobeapopularandvaluedresource,which hasbeenwidelyusedbothasatextbookandforreference.However,itwaspublishedoveradecadeagoin 2008,andestablishedreadersoftheSIDbookserieswillnotneedremindinghowfundamentallythesubject matterhaschangedinthattime.Itisworthrecallingthat2008isalsoreportedtobethefirstyearinwhich worldwidesalesofLCDtelevisionsexceededthoseofCRTsets.

Continuingdemandforthefirsteditiondemonstratesthatthereisstillaneedforabroad-basedintroductorybutauthoritativeaccountofflatpaneldisplays,anditfollowedthattheeditorsofthepresentbookshould considerwritinganewandrevisededition.Itsoonbecameclearthough,thatasimplerevisionwouldnotbe sufficient,andthevolumeyouareholdingrepresentsacomprehensivelyupdatedandrewrittenbookwhich reflectsthepresentstateandlatestdevelopmentsinflatpaneldisplaytechnologiesandapplications.Inorder toprovidethereaderwithabookwhichisareasonablesizeandproperlyfocusedoncontemporarytopics, chaptersinthefirsteditionwhichdescribeddisplaytechnologiesoflessercurrentimportance–plasmaand fieldemissiondevices–havebeendropped.Importantnewchaptershavebeenaddedontopicswhichare nowcentraltoflatpanelapplications:near-eyedisplays,reflective/e-paperdisplaysandtouchpaneldevices. Thechaptersdescribingthewell-established,dominantdisplaytechnologiessuchasLCDs,OLEDs,andLEDs havebeencomprehensivelyrevisedandupdatedtoreflectthefullrangeoftechnologiesusedincommercial displaysandtodescribethemostrecentimportantadvancesinthesedevices.ChaptersdescribingAMbackplanedevicesandstructures,andthekeyprinciplesofvisionandcolorsciencehavelikewisebeenthoroughly updatedtoreflecttheirevolutionandimportance.Eachchapterhasbeenauthoredbyanexpertindisplay science,andtheenthusiasmofthewritersfortheirsubjectsisevidentintheirwork.Theauthors’workin preparingthisneweditionhasbeenvirtuallythesameaswritinganewbookfromthebeginning,andIam gratefultoallofthemfortheirpersistenceanddedicationtothetask.

Flatpaneldisplaytechnologyhasrevolutionizedthewaysinwhichweinteractwithelectronicsystemsand throughthat,shapesthewayweleadourlives.Thepaceofinnovationshowsnosignsofslowingandthenew cohortsofscientistsandengineerswhotakethesubjectforwardwillneedarangeoftrainingandreference works.ProvidingtheseresourcesisakeyobjectiveoftheSIDbookseries,andIbelievethatthepresentvolume willmakeanimportantcontributiontothisaim.

FlatPanelDisplays

1.1INTRODUCTION

Displaysprovideaman–machineinterfacethroughwhichinformationcanbepassedtothehumanvisual system.Theinformationmayincludepictures,animations,andmovies,aswellastext.Onecansaythatthe mostbasicfunctionsofadisplayaretoproduce,orre-produce,colorsandimages.Theuseofinktowrite,draw, orprintonapaperasinapaintingorabookmightberegardedasthelongestestablisheddisplaymedium. However,thecontentofsuchatraditionalmediumisstaticandistypicallydifficultorimpossibletomodify orupdate.Also,anaturalorartificialsourceoflight,isneededforreadingabookorviewingapicture.In contrast,therearenowmanyelectronicdisplaytechnologies,whichuseanelectronicsignaltocreateimages onapanelandstimulatetheeyes.Inthischapter,wefirstintroduceflatpaneldisplay(FPD)classifications intermsofemissiveandnon-emissivedisplays,wherenon-emissivedisplaysincludebothtransmissiveand reflectivedisplays.Then,specificationsofFPDswillbeoutlined.Finally,theFPDtechnologiesdescribedin thelaterchaptersofthisbookwillbebrieflyintroduced.

Displayscanbesubdividedintoemissiveandnon-emissivetechnologies.Emissivedisplaysemitlightfrom eachpixelwhichformsapartoftheimageonthepanel.Ontheotherhand,non-emissivedisplaysmodulatelightbymeansofabsorption,reflection,refraction,andscattering,todisplaycolorsandimages.Fora non-emissivedisplay,alightsourceisneeded.Suchnon-emissivedisplayscanthenbefurtherclassifiedinto transmissiveandreflectivetypes.Inhistoricalterms,oneofthemostsuccessfultechnologiesforhomeentertainmenthasbeenthecathoderaytube(CRT),whichenabledthewidespreadadoptionoftelevision(TV).It exhibitstheadvantagesofbeingself-emissiveandofferingwideviewingangle,fastresponse,goodcolorsaturation,longlifetime,andgoodimagequality.However,oneofitsmajordisadvantagesisitssizeandbulk.The depthofaCRTisroughlyequaltothelengthorwidthofthepanel.Forexample,fora19in.(38.6cm × 30.0cm) CRTwithaspectratioof4:3thedepthofamonitorisabout40cm.Hence,itishardlyportable;itsbulkysize andheavyweightlimititsapplications.

Inthisbook,weintroducevarioustypesofFPDs.Asthenameimplies,thesedisplayshavearelativelythin profile,severalcentimetersorless,whichislargelyindependentofthescreendiagonal.Specifyingadisplay orthedesignandoptimizationofadisplay-basedproductrequireselectionofanappropriatetechnology, andarestronglydependentontheapplicationandintendedconditionsofuse.Theseissues,togetherwith theintensepaceofFPDdevelopment,whichhasmadeavailablemanyoptionsandvariationsofthedifferent displaytypes,havemadeathoroughunderstandingofdisplaysessentialforproductengineers.Theoptions canbeillustratedbysometypicalexamples.Forinstance,theliquidcrystaldisplay(LCD)ispresentlythe dominantFPDtechnologyandisavailablewithdiagonalsizesrangingfromlessthan1in.(microdisplay)to over100in.Suchadisplayisusuallydrivenbythin-film-transistors(TFTs).Theliquidcrystalcellactsasalight modulatorwhichdoesnotitselfemitlight.Hence,abacklightmoduleisusuallyusedbehindatransmissive LCDpaneltoformacompletedisplaymodule.InmostLCDs,twocrossedpolarizersareemployedwhich canprovideahighcontrastratio.However,theuseofpolarizerslimitsthemaximumopticaltransmittance toabout35–40%,unlessapolarizationconversionschemeisimplemented.Moreover,atobliqueanglesthe

IntroductiontoFlatPanelDisplay, SecondEdition.Jiun-HawLee,I-ChunCheng,HongHua,andShin-TsonWu. ©2020JohnWiley&SonsLtd.Published2020byJohnWiley&SonsLtd.

opticalperformanceoftheassemblyisdegradedbytwoimportanteffects.Firstlytheprojectionsofopticaxes oftwocrossedpolarizersontotheEvectorofthelightarenolongerperpendiculartoeachotherwhenlight isincidentatanobliqueangle,soitisdifficulttomaintainagooddarkstateinthedisplayoverawideviewing cone.Secondly,theliquidcrystal(LC)isabirefringentmedium,whichmeansthatelectro-opticeffectsbased onswitchinganLCaredependentontherelativedirectionsoftheincidentlightandtheLCalignmentinthe cell.Hence,achievingawideviewingangleanduniformcolorrenderinginanLCDrequiresspecialcare.To achievewide-view,multi-domainarchitecturesandphasecompensationfilms(eitheruniaxialorbiaxial)are commonlyused;oneforcompensatingthelightleakageofcrossedpolarizeratlargeanglesandanotherfor compensatingthebirefringentLClayer.Usingthisphasecompensationtechnique,transmissivemulti-domain LCDsexhibitahighcontrastratio,highresolution,crispimage,vividcolors(whenusingquantumdotsor narrow-bandlightemittingdiodes),andawideviewingangle.Itisstillpossibleforthedisplayedimagesto bewashedoutunderdirectsunlight.Forexample,ifweuseasmartphoneornotebookcomputerinthehigh ambientlightconditionsfoundoutdoorsinclearweather,theimagesmaynotbereadable.Thisisbecause thereflectedsunlightfromtheLCDsurfaceismuchbrighterthanthattransmittedfromthebacklight,sothe ambientcontrastratioisgreatlyreduced.Abroadbandanti-reflectioncoatingandadaptivebrightnesscontrol helpimprovethesunlightreadability.

AnotherapproachtoimprovesunlightreadabilityistousereflectiveLCDs[1].AreflectiveLCDusesambientlighttoilluminatethedisplayedimages.Itdoesnotneedabacklight,soitsweight,thickness,andpower consumptionarereduced.Awristwatchissuchanexample.MostreflectiveLCDshaveinferiorperformance comparedtotransmissiveonesintermsofcontrastratio,colorsaturation,andviewingangle.Moreover,in fullydarkconditionsareflectiveLCDisnotreadableatall.Asaresult,itsapplicationisratherlimited. Toovercomethesunlightreadabilityissuewhilemaintaininghighimagequality,ahybriddisplaytermeda transflectiveliquidcrystaldisplay(TR-LCD)hasbeendeveloped[2].InaTR-LCD,eachpixelissubdivided intotwosub-pixelswhichprovide,respectively,transmissive(T)andreflective(R)functions.Thearearatio betweenTandRcanbeadjusteddependingontheapplications.Forexample,ifthedisplayismostlyusedout ofdoors,thenadesignwhichhas80%reflectiveareaand20%transmissiveareamightbeused.Incontrast,if thedisplayismostlyusedindoors,thenwecanuse80%transmissiveareaand20%reflectivearea.Withinthis TR-LCDfamily,therearevariousdesigns:doublecellgapversussinglecellgap,anddoubleTFTsversussingle TFT.Theseapproachesattempttosolvetheopticalpath-lengthdisparitybetweentheTandRsub-pixels.In thetransmissivemode,thelightfromthebacklightunitpassesthroughtheLClayeronce,butinthereflective modetheambientlighttraversestheLCmediumtwice.Tobalancetheopticalpath-length,wecanmake thecellgapoftheTsub-pixelstwiceasthickasthatoftheRsub-pixels.Thisisthedualcellgapapproach. Thesinglecellgapapproach,however,hasauniformcellgapthroughouttheTandRregions.Tobalancethe differentopticalpath-lengths,severalapproacheshavebeendeveloped,e.g.dualTFTs,dualfields(providinga strongerfieldfortheTregionandaweakerfieldintheRregion),anddualalignments.AlthoughTR-LCDscan improvesunlightreadability,thefabricationprocessismuchmorecomplicatedandtheperformanceinferior totransmissivedevices.Therefore,TR-LCDhasnotbeenwidelyadoptedinproducts.

Light-emittingdiodes(LEDs)consistofasemiconductorp–njunction,fabricatedonacrystallinesubstrate. Underaforwardbias,electronsandholesareinjectedintothedevicewheretheyrecombineandemitlight.The emissionwavelengthoftheLEDisdeterminedbythebandgapofthesemiconductor.Forlongerwavelength (suchasredandyellow)emission,anAlGaInP-basedsemiconductorisneeded.ThreegroupIII(Al,Ga,and In)andonegroupIV(P)atomsareneededtoallowtuningoftheemissionwavelengthandlattice-matchingto thesubstrate(e.g.GaAs).However,forshorterwavelength(greenandblue)emission,itwasnoteasytofind alattice-matchedsubstrate.Besides,therewereothertechnologicaldifficultiesinfabricatingnitride-based LEDssuchasp-typedopingandInGaNgrowth.Inrecognitionoftheirsuccessfuldemonstrationofthe InGaN-basedblueLED,ProfessorIsamuAkasaki,ProfessorHiroshiAmano,andProfessorShujiNakamura wereawardedtheNobelPrizeinPhysicsin2014.BycombiningtheblueLEDwithphosphors,whiteemissionispossiblefromasinglechip.LEDshavebeenusedformanydisplayandlightingapplications,suchas trafficlights,verylargediagonal(over100in.)signage,backlightsofLCD,andgenerallighting,duetotheir

longlifetimeandhighefficiency.AdetaileddescriptionofLEDsfromtheviewpointsofmaterials,devices, fabrication,andapplicationswillbepresentedinChapter5.

InChapter6,organiclight-emittingdevices(OLEDs)willbeintroduced.TheoperatingprincipleofOLEDs isquitesimilartothatoftheLED.Itisalsoanelectroluminescence(EL)device,butfabricatedfromorganic materialsratherthanasemiconductor.IncontrasttoLEDs,itisnotnecessarytofabricateOLEDsona crystallinesubstrate.Fromthemanufacturingviewpoint,theOLEDissimilartoanLCDbecauseitcanbe fabricatedonaverylargeglasssubstrate.Apartfromtheusualglasssubstrate,OLEDscanbealsofabricated onaflexiblesubstrateifsuitableprocessesareused.ThedevicestructureoftheOLEDisquitesimple,comprisingastackofthinorganiclayers(∼200nm)sandwichedbyanodeandcathodeelectrodes.Whentransparent conductorsareusedforboththeanodeandcathode,atransparentdisplaycanbefabricated,whileametallic cathodelayercanprovideamirror-likeappearance.WhentheOLEDisnotactivatedthepanelappearshighly reflective,whileinformationdisplayedontheOLEDissuperimposedonthemirror-likebackground.Inadditiontodisplays,OLEDscanprovideaflat,large-area,anddiffuselightsourceforgeneralillumination.Thisis quitedifferentfromLEDlightingwhichprovidesapointsourceandhighlydirectionalemissionoflight.

InChapter7,thebasicworkingprinciplesofseveralreflectivedisplaytechnologies,includingelectrophoreticdisplays,reflectiveliquidcrystaldisplays,interferometricmodulatordisplaysandelectrowetting displays,willbereviewed.Thesereflectivedisplaysdonotrequireaninternallightsource.Theypossess someattractivefeatures,providingloweyestrain,lowpowerconsumption,andexcellentopticalcontrast underhighambientlightlevels,andarefavoredforportablereadingapplicationsandforoutdooruse.Some reflectivedisplaysrequiretheimagebeingdisplayedtobeconstantlyrefreshed,whilesomearebistableand retaintheimagewithoutpower.Inbistabledisplays,energyisonlyconsumedduringswitchingoperations. Inaddition,somehaveavideo-rateswitchingcapability,whileothersaremoresuitablefordisplayingstill images.Todaymostmonochromereflectivedisplaytechnologiesmatchthetypicalcontrastratiostandardof 10:1forprintedimagesonpaper,butthereflectanceoftheirbrightstatesarestilllessthanthetypicalvalue of80%forwhitepaper.Manycolorreflectivedisplaysrelyoncolorfiltersorside-by-sidepixelsubdivision. However,toachievecolorimageswithgoodbrightnessandsaturation,multiplecolorswithinthesamepixel areaisdesirable.

Byfabricatingadisplayonaflexiblesubstrateratherthanrigidglass,flexibledisplays(usingtechnologies includingLCD,OLED,andelectrophoreticeffects)canbefabricatedwiththeadvantagesofbeingthin,robust, andlightweight.

MostFPDshavebeendevelopedtoprovideaformatfordirect-viewapplications,suchasTVs,computer monitors,laptopscreens,tablets,andsmartphones.However,severalFPDtechnologiesincludingLCDsand OLEDs,canreadilybemadeintomicrodisplayswithpanelsizeslessthan1in.andpixelsizesoftensofmicrons orless.Suchmicrodisplaysarenotsuitablefordirect-viewing,buttheyhavefoundapplicationsinanemerging classofhead-mounteddisplays(HMDs)whicharekeyenablersforvirtualrealityandaugmentedrealitysystems.InChapter8,theworkingprinciplesandrecentdevelopmentofhead-mounteddisplayswillbereviewed. Unlikeadirect-viewdisplay,anHMDsystemrequiresanopticalsystemtocollectlightfromamicrodisplay sourceandcoupleitintotheviewer’seye.Thesystemmayuseasinglemicrodisplayandopticalsystemto displayatwo-dimensionalimagetooneeye,yieldingamonocularinformationdisplay.Alternatively,itmay beconfiguredwithamicrodisplayandviewingopticsforeacheye,yieldingabinocularsystemwiththecapabilityofrenderingstereoscopicviews.InsomeofthemostadvancedHMDsystems,eachsetofopticsmaybe capableofrenderinglightfieldswhichreplicatetheconfigurationoflightraysoriginatingfromarealscene, enablingatrue3Dviewingexperience.TheproximityofanHMDsystemtotheeyeallowsittobeconfigured intooneoftwodifferenttypes–eitheranimmersiveorasee-throughdisplay.AnimmersiveHMDblocksa user’sviewoftherealworldandplacestheuserinapurelycomputer-renderedvirtualenvironment,creating theimmersivevisualexperienceknownasvirtualreality.Asee-throughHMD,ontheotherhand,blendsviews oftherealworldandacomputer-rendereddigitalenvironment,creatinganexperiencevariouslyknownas augmentedreality,mixedrealityorincreasinglyasspatialcomputing.Chapter8willstartwithabriefintroductiontotheopticalprinciplesofHMDsystemsandanoverviewofhistoricaldevelopments,thenfollow

withabriefreviewofthehumanvisualsystemparameterscriticaltothedesignofanHMDsystem.Itwill thenreviewparaxialopticalspecifications,commonminiaturedisplaysources,opticalprinciplesandarchitectures,summarizeopticaldesignmethodsandopticalperformancespecificationscriticaltoHMDsystem design,andthechapterconcludeswithareviewofseveralemergingHMDtechnologieswithadvancedcapabilities,suchaseyetracking,addressablefocuscues,occlusioncapability,highdynamicrange,andlightfield rendering.

Atouchpanel(TP)isnota“flatpaneldisplay.”However,itprovidesanintuitiveinterfacewhichprovides inputtothemachine,andprovidesanenhancementtomanydisplayswhichiscriticaltotheirapplication. Insomecases,asingletouchsensingfunctionisenough,suchasinanautomatictellermachine(ATM).On theotherhand,amulti-touchfunctionisneededforcontrollingmanymobiledevices(suchasmobilephones andtabletcomputers).Usually,electricalparameters(suchasresistanceorcapacitancevalues)oftheTPare changedbytouchandthex–ypositionsatwhichthesechangesoccurprovidetheinputfunction.So,aTP mustbetransparenttoallowmountingontopofthedisplay,andaseparateTPincreasesthethicknessofthe displaymodule.IntegrationoftheTPandthedisplaycanreducethemodulethickness.TPtechnologieswill beintroducedinChapter9.

1.2EMISSIVEANDNON-EMISSIVEDISPLAYS

Bothemissiveandnon-emissiveFPDshavebeendeveloped.Inemissivedisplays,eachpixelemitslightwith adifferentintensityandcolorwhichstimulatethehumaneyesdirectly.CRTs,LEDpanels,andOLEDsare emissivedisplays.Whentheluminanceofthepanelviewedfromdifferentdirectionsisconstant,thedeviceis calledaLambertianemitterandthisrepresentsanidealperformanceforanemissivedisplaybecauseitresults inawideviewingangleperformance.Duetotheself-emissivecharacteristics,itcanbeusedinconditionsof verylowambientlight.Whensuchdisplaysareturnedoff,theyarecompletelydark(ignoringanyambient reflections).Hence,thedisplaycontrastratio(seealsoSection1.3.3)underlowambientlightcanbeveryhigh. Ontheotherhand,displayswhichdonotemitlightthemselvesarecallednon-emissivedisplays.AnLCDisa non-emissivedisplayinwhichtheliquidcrystalmoleculesineachpixelworkasalightswitch,independently oftheotherpixels.AnexternalvoltagereorientstheLCdirectorwhichcontrolsanopticalphaseretardation. Asaresult,lightincidentfromthebacklightunitorfromtheambientismodulated.Mosthigh-contrastLCDs usetwocrossedpolarizers.Theappliedvoltagecontrolsthetransmittanceofthelightthroughthepolarizers. Ifthelightsourceisbehindthedisplaypanel,thedisplayistermeda transmissive display.Ontheotherhand,it isalsopossibletousetheambientlightastheilluminationsource,imitatingtheprincipleoftraditionalmedia, suchasreadingabook,andthedeviceisthencalleda reflective display.Differenttechnologiesforreflective displayssuchaselectrophoretic,interferometricmodulators,andelectrowettingdisplaysaswellasLCDswill beintroducedinChapter7.Sincenoextralightsourceisneededinareflectivedisplay,itspowerconsumption isrelativelylow.Underhighambientlightconditions,imagesonemissivedisplaysandtransmissiveLCDs canbewashedout.Incontrast,reflectivedisplaysexhibitahigherluminanceastheambientlightincreases. However,theycannotbeusedindarkconditions.Hence,transflectiveLCDshavebeendeveloped,whichwill bedescribedinChapter4.

1.3DISPLAYSPECIFICATIONS

Inthissection,weintroducesomespecificationswhicharegenerallyusedtodescribeandevaluateFPDsin termsoftheirmechanical,electrical,andopticalcharacteristics.FPDscanbesmallerthan1in.forprojection displays,2–6in.forcellphones,7–9in.forcarnavigation, ∼8–20in.fortabletsandnotebooks, ∼10–25in. fordesktopcomputers,and ∼30–110in.fordirect-viewTVs.FordifferentFPDs,theirrequirementsforpixel resolutionalsodiffer.Luminanceandcoloraretwoimportantcharacteristicswhichdirectlyaffectthedisplay

performances.Dependenciesofthesetwoparametersonviewingangleaswellasimageuniformity,device lifetime,andresponsetimeshouldbeaddressedwhendescribingtheperformancesofaFPD.Contrastratio isanotherimportantparameter,whichstronglydependsontheambientenvironment.

1.3.1PhysicalParameters

ThebasicphysicalparametersofaFPDincludethedisplaysize,aspectratio,resolution,andpixelformat.The sizeofadisplayistypicallyspecifiedbythediagonallength,inunitsofinches.Forexample,a15in.display indicatesthatthediagonaloftheviewableareais38.1cm.Displayformats,includelandscape,square,and portraittypes,correspondingtodisplaywidthslargerthan,equalto,andsmallerthantheheight,respectively. MostmonitorsandTVsusealandscapeformatwiththewidth-to-heightratio,alsocalledthe“aspectratio,” of4:3,16:9,or16:10,typically.

FPDstypicallyprovidearectangular“dotmatrix”ofaddressablepixelswhichcandisplayimagesandcharacters.Toincreaseimagequality,onemayusemorepixelsinadisplay.Table1.1listssomestandardresolutions ofFPDs.Forexample,videographicsarray(VGA)indicatesadisplay640pixelsinwidthand480inheight. Theaspectratiois4:3.Higherresolutiontypically(butnotnecessarily)providesbetterimagequality.TheHD seriesincludesseveralwidescreenstandardswithanaspectratioof16:9.FHDhasaresolutionof1920 × 1080, whichmaybeabbreviatedas2K1K.Doublingthepixelscountincolumnsandrowsresultsin4× theresolution,whichistermedUHD,4K2K,or4K.Similarly,an8Kstandardisproposedwithstillhigherresolution. Oncetheresolution,displaysize,andaspectratioareknown,onemayobtainthepitchofpixels.Forexample, a5.5in.displaywithaspectratioof16:9andFHDresolutionhasapitchof ∼63 μm.Or,wecanusepixelper inch(ppi)todescribethepixeldensityofthedisplay.Theaboveexamplecorrespondsto ∼401ppi.

InthecaseofanHMDsystemforVRorARapplications,amicrodisplaysourceisused.Althoughthe pixelresolutionofthemicrodisplayisacriticalcontributortothesystemperformance,theimageresolution perceivedbythevieweralsodependsontheopticalmagnificationoftheviewingoptics.Forinstanceinan HMDsystem,aVGAresolutionmicrodisplaycanproduceanimagewithanapparentangularresolution equivalenttoorbetterthananimageprovidedviaaFHDmicrodisplayiftheopticalmagnificationtothe VGApanelissubstantiallylowerthanthattotheFHDpanel,thisangularresolutionbeingtradedoffagainst thefieldofviewoftheimage.MoredetaileddiscussionontheresolutionmetricsofHMDsystemscanbe foundinChapter8.

Notethatnotallofthepanelareacontributestothedisplayedimage;theactiveareaofeachpixelisnormally surroundedbyasmallinactiveareaoccupiedbyinter-electrodegapsandpossiblyotherstructuressuchas straylightbarriers.Onecandefinethe“fillfactor”or“apertureratio”astheratiooftheactivedisplayareain apixeloverthewholepixelsize,withitsmaximumvalueof100%.Also,forafull-colordisplay,atleastthree primarycolorsareneededtocomposeacolorpixel.Hence,eachcolorpixelisdividedintothreesubpixels, red,green,andblue(RGB)whichsharethetotalpixelarea.Forexample,ifweassumethatacolorpixelhas

Table1.1 ResolutionofFPDs.

× 600

× 768 HDHighdefinition1280 × 720

FHDFullhighdefinition1920 × 1080

UHD(4K)Ultra-highdefinition3840 × 2160

8K7680 × 4320

Figure1.1 SubpixellayoutofaFPD:(a)stripe,(b)mosaic,and(c)deltaconfigurations.

(a)(b)(c)

Figure1.2 (a)White(red + green + blue)pixelslit-onattheedgeoftheslope,and(b)withsubpixelrenderinginastripe configuration.(c)“m”initalic(2)withoutand(3)withsubpixelrenderingonadisplay[3].

asizeof63 μm × 63 μm,thenthedimensionofeachsubpixelwillbe21 μm × 63 μm.Iftheareaofeachactive, switchablesub-pixelwhichcontributestolightemissionortransmissionis18 μm × 60 μm,thenthefillfactor willbe ∼82%.

DifferentlayoutsofRGBsubpixelsarepossible,asshowninFigure1.1.Astripeconfiguration,isstraightforwardandmakesfabricationanddrivingcircuitdesignrelativelyeasy.However,foragivendisplayareaand resolutionitprovidesapoorcolormixingperformance.Bothmosaicanddeltaconfigurationsmakethefabricationprocessand/orthedrivingcircuitsmorecomplicated,buttheresultingimagequalityishigherbecause oftheirbettercolormixingcapabilities.

Whendisplayinganobliqueblack-on-whitepatternonadisplaywithastripesubpixelconfigurationas showninFigure1.2,aclearsawtoothcanbeseenattheedge.However,becauseeachpixelisformedofthree subpixels,thesecanbeswitchedoninacontrolledsequencefromthetoptothebottomsuchthatedgeofthe patternappearssmoother–atechniquecalled“subpixelrendering.”[3]Obviously,thecolorsattheedgesof somerowsarenolongerwhite.Forthefirstandthefourthrows,theredsubpixelisswitchedonattheedge whileforthesecondandthefifthrows,redandgreenemissionresultsinayellowcolorattheedge.Thisis calleda“colorfringingartifact.”Figure1.3showstheletter“m”initalic,withoutandwithsubpixelrendering. Asmootheredgecanbeclearlyseenwhensubpixelrenderingisused.Advancedsub-pixelrenderingalgorithmsnotonlyswitchdifferentsub-pixelsonoroffatanobliqueedge,butalsoadjusttheirluminancevalues tooptimizethevisualqualityoftheimage.

Figure1.3 (a)stripe,(b)PenTileTM RGRB,and(c)PenTileRGBWconfigurations[3].

Therearethreekindsofphotoreceptorcellsinhumaneyes,whichrespondtolong,medium,andshort wavelengthregionsofthevisiblespectrum.Thatisthemajorreasonweusered,green,andblueasthree primariesforthedisplayandwillbediscussedfurtherinChapter2.Thearrangementofthephotoreceptor cellsdoesnotcorrespondtoastripeconfiguration.Besidesthis,thenumbersfordifferenttypesofcellarenot thesame.ThePenTileTM configurationhasbeenproposedtomimicthelayoutofdifferentphotoreceptorsin theeyetoachievebettercolormixing[4].Here,“Pen”isacontractionoftheGreekprefix“penta”meaningfive andindicatesthatfivesubpixelsformapixel.Therearemanypossibleformats;Figure1.3bshowsoneofthem whichiscalledtheRGBGformat.Combinedwiththesubpixelrenderingtechnique,ahighdisplayresolution canbeobtainedwithalargersubpixelsize.Figure1.3a,bshowthestripeandPenTilelayoutswiththesame resolution.OnecanseethatPenTileconfigurationallowslargerredandbluesubpixels.Thisisimportantfor somedisplays,suchasOLEDs,becauseitisnoteasytoreducethesubpixelsizeduringfabrication.Hence, thePenTilearrangementcanrelaxthedesignrulesrequiredinmanufactureofdisplaysforagivenresolution. AlsoforOLEDdisplays,thelifetimeofthebluesub-pixelisanissueandbyenlargingtheblueemittingregion itscurrentdensitycanbereducedanditslifetimeextended.AnothertypeofPenTilepatternistheRGBW arrangement,showninFigure1.3c.Here,awhitesubpixelisaddedalongsidethethreeprimarycolors.In somedisplayssuchasLCD,wheredifferentcolorsareobtainedbyfilteringunwantedcolorsfromawhite backlight,theblockedlightisresponsibleforamajorlossinefficiency.Withtheintroductionofthewhite subpixel,theefficiencycanberaised.

Adeviceinwhichthepixeldensityisincreasedtothepointwherethehumaneyecannotresolvetheindividualpixels,iscalleda“retinadisplay.”Thisimpliesaveryhighresolutionsothatwhenprojectedontothe retinaoftheeye,thepixeldensityishigherthanthatofthephotoreceptorsintheretina.Evidently,ahigher ppiisrequiredfordisplayssuchasphoneswhichareusedclosertotheeye,inordertosatisfytherequirement foraretinadisplay.Typically, ∼300ppiisrequiredforaphonewithatypicalviewingdistanceof ∼30cm.With largerviewingdistancessuchasthosenormalwhenwatchingaTV,alargerpixelisacceptableinaretina display.AdetailedillustrationofretinadisplayswillbepresentedinChapter2.

1.3.2BrightnessandColor

LuminanceandcolorgamutaretwoofthemostimportantopticalcharacteristicsofaFPD.Adisplaywith highluminancelooksdazzlingunderdarkconditions.Ontheotherhand,adisplaywithinsufficientbrightness appearswashedoutunderhighambientlightlevels.Typically,theluminanceofaFPDshouldbeasbright as(oralittlebrighterthan)realobjectsundertheambientlightinwhichthedisplayisused.Inanordinary indoorenvironment,amonitorhasaluminanceof200–300cdm 2 .ForalargescreenTV,ahigherluminance (500–1000cdm 2 )maybeneeded.AFPDisusedtoproduceorreproducecolors,hence,thenumberofcolors aFPDcandisplay,andhowcloselythecolordisplayedonaFPDmatchesthatoftherealobject(colorfidelity)

8 1FlatPanelDisplays

aretwoimportantcharacteristicstojudgedisplayperformance.SincethecoloronaFPDisproducedby mixingtogether(atleast)threeprimarycolors,i.e.RGB,more“pure”(narrow-band)primariesresultina broaderrangeofcolorswhichcanbedisplayed,whichiscalledthe“colorgamut”(seeSection2.4.5).Aswell astheusualthreeprimaries(red,green,andblue),moreprimaries(suchasyellowandcyan)canbeaddedinto thesubpixelsandcanfurtherbroadenthecolorgamut.Besides,withsuitabledesignofthedrivingmethod, thepowerconsumptionofthedisplaycanbereducedsimultaneously[5,6].Theperceivedrangeofbrightness fromdarktobrightcanbedividedintoequalstepsdefinedbynumberswith2,4,8,ormorebits,whichare called“graylevels”orcollectivelya“grayscale”(seeSection2.4.3).Forexample,aFPDcandisplay16million colors(28 × 28 × 28 ∼16.8M)wheneachRGBsubpixelcanshow256(8bit)graylevels.

1.3.3ContrastRatio

Thedevicecontrastratio(CR)ofaFPDisdefinedas: CR = Lw ∕Lb CR = Lw ∕Lb ,

where Lw and Lb aretheluminancesofthewhiteandblackstates,respectively.AhigherCRrequiresahigher on/offratioandhencepotentiallybetterimagequalityandhighercolorsaturation.WhenCRisequaltoor below1,theinformationcontentofaFPDislostorinverted.Formostemissivedisplays,theoff-stateluminanceiszero.Hence,thecontrastratioisinfiniteunderperfectlydarkviewingconditions.However,under ambientlightconditions,surfacereflectionsfromthedisplaymeanthatEq.(1.1)shouldbemodifiedto:

=(Lw + Lar )∕(Lb + Lar ), (1.2)

whereCRA standsfortheambientcontrastratio,and Lar istheluminancefromambientreflection.From Eq.(1.2),astheambientreflectionincreases,CRA decreasessharply.Tomaintainahighambientcontrast underincreasingambientlightlevels,onecan:(i)increasetheon-stateluminance,and(ii)reducethe reflectanceofthedisplaysurface.However,underaveryhighambientsuchasoutdoorsunlight,luminance fromthedirectsunis4ordersofmagnitudehigherthanaFPD,whichseverelywashesouttheinformation contentofanyemissiveortransmissiveFPD.Sunlightreadabilityisanimportantissueespeciallyformobile displays.Ontheotherhand,anadequateambientlightisrequiredforviewingconventionalmediasuchasa bookornewspaper.Asimilarconsiderationappliestoreflectivedisplays,suchasreflectiveLCDs.

1.3.4SpatialandTemporalCharacteristics

UniformityofaFPDreferstoanyunwantedchangeintheluminanceandcoloroveradisplayarea.Human eyesaresensitivetoluminanceandcolordifferences.Forexample,a5%luminancedifferenceisnoticeable betweentwoadjacentpixels.Inthecaseofagradualchange,humaneyescantolerateupto20%luminance changeoverthewholedisplay.

Opticalcharacteristics(luminanceandcolor)mayalsochangeatdifferentviewingangles.ForLambertian emitters,suchasCRTs,theviewingangleperformanceisquitegood.TheemissionprofileofLEDsandOLEDs canbeengineeredbypackagingandoptimizingtheirlayerstructure,respectively.However,theviewingangle ofLCDsrequirescarefulattentionbecauseLCmaterialsarebirefringentandcrossedpolarizersarenolonger crossedwhenviewedatobliqueangles.ThereareseveralwaystoquantifytheviewingangleofaFPD.For example,onemaymasuretheviewingconewith:(i)aluminancethreshold,(ii)aminimumcontrastratio,say 10:1,or(iii)aspecifiedmaximumvalueofcolorshift.Insomecasesthecontrastratioviewedatobliqueangle canbesmallerthan1,resultingin“graylevelinversion.”

Responsetimeisanotherimportantmetric.IfaFPDhasaslowresponsetime,onemayseeblurredimages offastmovingobjects.Byswitchingthepixelfrom“off”to“on”andfrom“on”to“off,”onecanobtainrise andfalltimes,respectivelywhicharetypicallyspecifiedbetween10%and90%luminancelevels,.Onemay

alsodefinetheresponsetimefromonetoanothergraylevel–theso-called“gray-to-gray”(GTG)response time.Mostdisplayedscenescontainextensiveareasofdifferentluminancepixels,sotheGTGresponsetime ismoremeaningful.ForLCDs,thisGTGresponsetimemaybemuchlongerthantheblack-whiteriseandfall time[7].TheTFTmatrixusedtoaddressmanyFPDsprovidesavoltageset-and-holdfunction.Thisisquite differentfromtheCRT’simpulsetyperesponse,andrequiresadifferentmetrictocharacterizeit.Therefore,a motionpictureresponsetime(MPRT)[8]iscommonlyusedtodefinetheresponsetimeofaTFTLCD,which willbefurtherdiscussedinChapters2and4.

Afteralongperiodofoperation,theluminanceofaFPD(especiallyforemissivedisplay)maydecay.Ifafixed patternisdisplayedonanemissivepanelforalongperiodoftime,thenallthepixelsareturnedontodisplaya blankwhitescreen,onecanseea“ghostimage”ofthefixedpatterndisplayedwithalowerbrightness,whichis calleda“residualimage”or“burn-in.”Asmentionedbefore,humaneyecandetectlessthan5%nonuniformity betweentwoadjacentpixels.HencethelifetimeofaFPDiscrucialforstaticimages.Analternativesolution istouseonlymovingpictures,ratherthanstaticimagesforinformationdisplay.Thentheluminancesofall thepixelsdecayuniformly,sincetheaverageontimeforallpixelsisthesame.

1.3.5EfficiencyandPowerConsumption

Powerconsumptionisakeyparameter,especiallyformobiledisplays,asitaffectsthebatterylife.Fordisplays withwall-plugelectricalinput,lowerpowerconsumptionimpliesalowerheatgeneration,whichmeansheat dissipationiseasierand“green”environmenttargetscanbemetmoreeasily.Typically,oneusestheunitlm/W todescribepowerefficacyofaFPD(seeSection2.2).Aportabledisplaywithlowerpowerconsumptionleads toalongerbatterylife.FornotebooksandTVs,ahighopticalefficiencyalsotranslatesintolessheatdissipation andalowerelectricitybill.Thermalmanagementinasmallchassisdeviceisanimportantissue.EnergyStar isaprogramwhichdefinesthe“powerconsumption”forelectronicproducts,suchasdisplays(https://www .energystar.gov).Forexample,inEnergyStarDisplaySpecification7.1(releasedinApril2017),themaximum powerconsumptionofthedisplayunderon-stateoperationisdefined,whichisrelatedtothescreenareaand themaximumluminanceofthedisplay.Forexample,themaximumpowerconsumptionofa60in.TVwith aspectratio4:3andmaximumluminance500cd/m2 shouldbelessthan144W.

1.3.6FlexibleDisplays

AFPDisusuallyfabricatedonthinglassplateswhichprovidearatherrigidsubstrate.Ontheotherhand,conventionalmediaareprintedonpaper,whichisflexible.Animportantcurrentresearchanddevelopmenttheme isfabricationofFPDsonaflexiblesubstrate,toprovideaconformableor“paper-like”display[9].Compared toglass-basedFPDs,flexibledisplaysarethinandlightweight.Inaddition,flexibledisplayscanpotentially befabricatedbyaroll-to-rollprocessatlowcost.PotentialsubstratesforflexibleFPDsincludeultra-thin glass,plastic,andstainlesssteel.Abendableultra-thinglasssubstrateispossible,butthecostishigh.Plastic substratesaresuitableforflexibledisplays,butthehighesttemperaturewhichcanbetoleratedinthemanufacturingprocessistypicallylowerthan200 ∘ C.Astainlesssteelsubstrateisbendable,andresistanttohigh temperatures,however,itisopaqueandthereforenotsuitablefortransmissivedisplays.TherearemanytechnicalbottlenecksforflexibleFPDs,suchasmaterialselection,fabricationprocesses,deviceconfigurations, displaypackagingandmeasurement.

1.4APPLICATIONSOFFLATPANELDISPLAYS

Thefollowingsectionsbrieflyoutlinetheapplicationsofeachtechnology.Detailswillbedescribedinthe relatedchapters.

1.4.1LiquidCrystalDisplays

AlthoughLCmaterialswerediscoveredmorethanacenturyago[10,11],theirusefulelectro-opticeffects andstablematerialsaredevelopedonlyinlate1960sand1970s.Intheearlystage,passivematrixLCDswere adoptedinelectroniccalculatorsandwristwatches[12].Withtheadvanceofthinfilmtransistors[13],color filters[14],andlowvoltageLCeffects[15],activematrixLCDsgraduallypenetratedintothemarketofnotebookcomputers,desktopmonitors,andtelevisions.Today,LCDshavefoundwidespreadusesinoureveryday life,includingsmartphones,tablets,virtualrealityandaugmentedrealitydisplays,automotivedisplays,navigationsystems,notebookcomputers,desktopmonitors,andlargescreenTVs[16].

Tosatisfythiswiderangeofapplications,threetypesofLCDshavebeendeveloped:transmissive,reflective, andtransflective.TransmissiveLCDscanbefurtherseparatedintoprojectionanddirect-viewdevices.Ina high-resolutionsmartphonedisplay,thepixelsizeisaround30–40 μm.Thus,theTFTapertureratiobecomes particularlyimportantbecauseitlimitsthelightthroughput[17].Toenlargetheapertureratio,poly-silicon (p-Si)TFTsarecommonlyusedbecausetheirelectronmobilityisabouttwoordersofmagnitudehigherthan thatofamorphous(a-Si)silicon.HighmobilityallowsasmallerTFTtobeusedwhich,inturn,enlargesthe apertureratio.ForadetailedstructureofaTFTLCD,pleaseseeFigure4.1.

Foralarge-sizedLCDTV,say65in.diagonal,16:9aspectratio,and3840 × 2160resolution,thepixelsize isabout350 μmby350 μm,whichismuchlargerthanthatofamicrodisplay.Thus,a-Sisiliconisadequate althoughitselectronmobilityisrelativelylow.Amorphoussiliconiseasytofabricateandhasgooduniformity. Thus,a-SiTFTdominateslargescreenLCDpanelmarket.

Similarly,reflectiveLCDscanalsobedividedintoprojectionanddirect-viewdisplays.Inprojectiondisplays usingLiquid-Crystal-on-Silicon(LCoS)[18],thepixelsizecanbeassmallas4 μmbecauseofthehighelectronmobilityofcrystallinesilicon(c-Si).InanLCoSpanel,theelectronicdrivingcircuitsarehiddenbeneath themetallic(aluminum)reflector.Therefore,theapertureratiocanreach >90%andthedisplayedpictureis quitesmooth.Ontheotherhand,mostreflectivedirect-viewLCDsusea-SiTFTsandacircularpolarizer.Its sunlightreadabilityisexcellent,butitisnotreadableinadarkambient.Therefore,athinfrontlightisneeded forreflectivedirect-viewLCDs.

Toobtainahighqualitytransmissivedisplayandgoodsunlightreadability,ahybridTR-LCDhasbeendeveloped.InaTR-LCD,eachpixelisdividedintotwosub-pixels:onefortransmissiveandanotherforreflective display[19].Inadarktonormalambient,thebacklightisturnedonandtheTR-LCDworksasatransmissive display.Underdirectsunlight,TR-LCDworksinthereflectivemode.Therefore,itsdynamicrangeiswideand itsfunctionalitydoesnotdependontheambientlightingcondition.TR-LCDcanovercomesunlightreadabilityissues,butitsfabricationismuchmorecomplicatedandthecostishigherthanitstransmissivecounterpart. Asaresult,itsapplicationislimited.ForadetaileddiscussionofTR-LCDs,pleaserefertoChapter4.

1.4.2Light-EmittingDiodes

TheLEDisanelectroluminescent(EL)devicebasedoncrystallinesemiconductors[20].Toconvertelectrical toopticalpower,onehastoinjectcarriersintotheLEDthroughelectrodes,whichthenrecombinetogive light.Theemissionwavelengthismainlydeterminedbythesemiconductormaterial,andcanbefine-tuned bydevicedesign.

Sinceitisdifficulttogrowlargesizesinglecrystals,thewaferdiameterofLEDsislimitedtoabout8in. Afterdeviceprocessing,LEDsaredicedfromthewaferfollowedbyapackagingprocess.ThesizeofasinglepackagedLEDistypicallyseveralmillimeters,whichmeansthatthepixelsizeofanLEDpanelislarge, andsuitableforuseinhugeareadisplays.Duetotheirself-emissivecharacteristic,LEDsarecommonly usedforlargedisplays,suchasoutdoorsignage(monocolor,multi-color,andfullcolor),trafficsignals,and generallightingtoreplacelightbulbs.Comparedtoconventionaldevicesusinglightbulbs,LEDdisplays exhibittheadvantagesoflowerpowerconsumption,greaterrobustness,longerlifetime,andlowerdriving

1.4ApplicationsofFlatPanelDisplays 11 voltage(sosafer).Therearealsomanyoutdoorscreenswithdiagonalsover100in.whichconsistofmillionsof LEDpixels.

Ratherthanprovidingadisplayitself,anLEDcanbealsousedasthelightsource,suchasinabacklight moduleforanLCD,andforgenerallighting.Comparedtotheconventionalcoldcathodefluorescentlamp (CCFL),whichresemblesathinfluorescenttube,LEDexhibitsabettercolorperformance,longerlifetime,and fasterresponse.AnotherimportantmotivationtouseLEDsinLCDbacklightingisthatthemercuryinCCFLs isharmfultotheenvironment.WhenusingLEDsforgenerallightingapplications,abroademissionspectrum ispreferredtosimulatenaturallight,suchassunlight,andobtainafaithfulcolorrenderingofthereflective objects(Section2.4.6).ThisisquitedifferentfromtherequirementsforLEDdisplaysandLCDbacklights, whichusuallyneedanarrowspectrum.

1.4.3OrganicLight-EmittingDevices

TheOLEDisalsoanELdevice,liketheLED,exceptitsmaterialsareorganicthinfilmswithamorphousstructures[21].Amorphousorganicmaterialshaveamuchlowercarriermobility(typicallyfiveorderofmagnitude lower)thancrystallinesemiconductors,whichresultsinahigherdrivingvoltageforOLEDs.Besides,theoperationallifetimeofOLEDsisoneorderofmagnitudeshorterthansemiconductorLEDs.However,duetoits amorphouscharacteristics,fabricationoflargesizepanels(e.g.55in.)ispossible.

Sincetheconductivityofamorphousorganicmaterialsisverylow,verythinorganicfilms(100–200nmin total)arerequiredtoreducethedrivingvoltagetoareasonablevalue(i.e. <10V).Itisquiteachallengein thinfilmformation,especiallyforlargesizesubstrates.Severalfabricationtechnologieshavebeenproposed, suchasphysicalvapordeposition,spin-coating,ink-jetprinting,andlaser-assistedpatterning.OLEDsare widelyusedindisplayapplications(suchasTVsandmobilephones).Besides,OLEDscanbeusedinlighting applications[22,23].TwoadvantagesofOLEDsare:(i)lowprocesstemperature,and(ii)compatibilitywith differentsubstratematerials,whichmakesthemsuitableforflexibledisplays.OneofthestrategiesforOLED developmentistoimprovethedeviceperformance(especiallydrivingvoltageandlifetime)tomatch(orat leastapproach)thoseofLEDs.Duetotheirlargesizefabricationcapability,thepotentialmanufacturingcost ofOLEDsislowerthanLEDs.BecauseOLEDshavesomeadvantagesinperformanceandfabricationcost overLEDs,ithasachancetoreplaceLEDsinsomeapplicationssincetheyarebothELdeviceswithsimilar operationalprinciples.

1.4.4ReflectiveDisplays

Awidevarietyofreflectivedisplaytechnologiesareavailabletoday.Theyarequitedifferentinworkingprinciplesandperformance.Someofthem,suchasinterferometricmodulatordisplays,electrowettingdisplaysand guest-hostpolymerdispersedliquidcrystaldisplaysexhibitfastresponseandarecapableofvideoframerate operation.However,mostofthemarestillsomewayfromcommercialsuccessbecauseoftheirpoorcolor gamutandrelativelyhighpowerconsumptionforvideorateoperation.Ontheotherhand,bistablereflectivedisplaytechnologieswithsufficientlygoodreflectivityandcontrastratio,suchaselectrophoreticdisplays andcholestericliquidcrystaldisplays,areattractivefordisplaying(quasi)staticimageswherealowswitching speedisnotamajorconcern.Withtheadvantagesoflowpowerconsumptionandgoodoutdoorreadability,thesereflectivedisplaysaresuitableforportablereadingdevices,wearableormobiledevicesandsignage applications.Forinstance,electrophoretictechnologieshavebeenadoptedinmanye-bookreadersandelectronicpaperdisplays.Becausemanyofthereflectivedisplaytechnologiescanbemadethinandflexible,they aresuitedtobillboards,signageandshelf-edgelabels.Intheapplicationofwearableormobiledevices,these low-powerpaper-likereflectivedisplaytechnologieshavebeenincorporatedintoanelectronicpaperwatch, electronicwristband,andsimilardevices.Fordetaileddiscussionsoftheabove-mentionedreflectivedisplays, pleaserefertoChapter7.

1.4.5Head-MountedDisplays

Head-mounteddisplays(HMDs),alsoknownashead-wornornear-eyedisplays,aretypicallyattachedin closeproximitytoauser’seyeandrequireanopticalsystemtocouplethelightfromamicrodisplaysource intotheuser’seye.ThebasicprinciplesofanHMDsystemcanbedatedbackto1830swhenSirCharles Wheatstoneproposedtheconceptofthestereoscopeforviewingapairofstaticphotographswithslightdisparities.Throughoveracenturyoftechnicaldevelopment,thestereoscopehasevolvedintoanewclassof displaytechnologyenablinganewparadigmofapplications.Insteadofstaticphotographsandsimplemirrors,modernHMDsystemsenjoyawiderangeofchoicesofelectronicdisplaysastheimagesources,awide rangeofadvancedopticstechnologiesintheopticalviewer,andawiderangeofsensing,computing,and communicationcapabilities.

AmodernHMDsystemcanbeassimpleasamicrodisplaysourceplusasinglemagnifier-likeeyepiece, providingamonoculardisplayforinformationaccessandnavigation.Itcanalsobeconfiguredintoavery sophisticatedsystemintegratingnotonlyadvancedmicrodisplaysandopticsbutalsoasuiteofadvanced sensorsandcomputinghardwareandsoftware,yieldingacomputingplatformforadvancedmissionsand visualexperiences.SomeadvancedHMDsystemsgobeyondthetraditionalrouteofdisplayinga2Dimageor renderinga3Dperceptionofdepthviabinocularviewing,andcreateatrue3Dviewingexperiencevialight fieldrendering.

Overmanydecadesofdevelopment,HMDtechnologyhasbecomeakeyenablerforvirtualrealityand augmentedrealityapplications.TosatisfytheneedsofVRandARapplications,twotypesofHMDshavebeen developed:immersiveandsee-through.ImmersiveHMDs,primarilyusedforVRsystems,blockauser’sview oftherealworldandimmersehimorherinapurelycomputer-renderedvirtualenvironment.See-through HMDs,mainlyusedforARsystems,blendviewsoftherealworldandacomputer-rendereddigitalworld digitallyoroptically.BothtypesofHMDtechnologysharemostofthesamefundamentalopticalprinciples andrequirements,butsee-throughHMDs,especiallythoseprovidingopticalsee-through,confrontmany uniqueopticalchallenges.Forinstance,anopticalcombinerwhichcombinesthelightpathsofthereal-world andvirtualworldviews,playsacriticalroleinthearchitectureofopticalsee-throughHMDs.Itcanbeas simpleasabeamsplitterorassophisticatedasaholographicwaveguide.

TherapidlygrowinginterestinVRandARapplications,theever-increasedbandwidthandaccessibilityof wirelessnetworks,theminiaturizationofelectronics,andtheever-growingpowerofcomputershavecollectivelyboostedtherapiddevelopmentofHMDtechnologiesinrecentyears.PleaserefertoChapter8fora detaileddiscussionofthehistoricdevelopment,basicworkingprinciples,opticaldesignfundamentals,and recentadvancesinhead-mounteddisplays.

1.4.6TouchPanelTechnologies

WhenaTPistouched,anelectrical,optical,ormagneticparameterischangedandthepointoftouchcanbe identified.Aselectricalsignals,typicallywecanusechangesofresistanceorcapacitance.AresistiveTPconsistsoftwosubstrates.Theinnersidesofthesubstratesarecoatedwithtransparentresistivelayers,separated byanairgap.Theoutersubstrateisdeformable.WhentheresistiveTPistouched,contactismadebetween theupperandlowerconductivelayers.Thecontactpositionaffectstheresistancevaluereadoutfromthe drivingcircuit.However,theairgapbetweenthetwosubstratesresultsinalowopticaltransmittance,which reducestheluminancefromthedisplaypanel.AnimportantusecaseiswhentheobjectwhichtouchestheTP isafinger.Thiscanberegardedasequivalenttoacapacitorconnectedtothegroundwhichthereforechanges thecapacitancemeasuredattheTP.ThatisthebasicideaofthecapacitiveTP.Withsuitabledesignofvertical andhorizontalelectrodesonthesubstrate,self-andmutual-capacitanceTPscanbeobtained,respectively. NotethataconductiveobjectsuchasafingerisneededtoactivatethetouchfunctiononacapacitiveTP. WhenaTPisphysicallystackedontopofthedisplay,itiscalledan“out-cell”configuration.Toreducethe thicknessoftheTP-displaymoduleandsimplifythefabricationprocess,on-cellandin-cellTPshavebeen

introduced.TakingtheLCDasanexample,itconsistsoftwoglasssubstrates.ByfabricatingtheTPontothe outersubstrate,anon-cellconfigurationiscreated.NotethatthereisadensearrayofTFTsandconductors onthebottomsubstrateoftheTFTpanel.Withasuitablelayoutanddrivingscheme,aTPcanbeintegrated insidethedisplay,whichiscalledthe“in-cell”configuration.

References

1 Wu,S.T.andYang,D.K.(2001). ReflectiveLiquidCrystalDisplays.Wiley.

2 M.Okamoto,H.Hiraki,andS.Mitsui,U.S.Patent6,281,952,Aug.28(2001).

3 Fang,L.,Au,O.C.,Tang,K.,andWen,X.(2013).Increasingimageresolutiononportabledisplaysby subpixelrendering–asystematicoverview. APSIPATrans.SignalInform.Process. 1:1.

4 BrownElliott,C.H.,Credelle,T.L.,Han,S.etal.(2003).DevelopmentofthePenTileMatrixTM color AMLCDsubpixelarchitectureandrenderingalgorithms. J.SID 11(/1):89.

5 Cheng,H.C.,Ben-David,I.,andWu,S.T.(2010).Five-primary-colorLCDs. J.Disp.Technol. 6:3.

6 Luo,Z.andWu,S.T.(2014).Aspatiotemporalfour-primarycolorLCDwithquantumdots. J.Disp. Technol. 10:367.

7 Wang,H.,Wu,T.X.,Zhu,X.,andWu,S.T.(2004).Correlationsbetweenliquidcrystaldirector reorientationandopticalresponsetimeofahomeotropiccell. J.Appl.Phys. 95:5502.

8 Song,W.,Li,X.,Zhang,Y.etal.(2008).Motion-blurcharacterizationonliquid-crystaldisplays. J.SID 16:587.

9 Crawford,G.P.(2005). FlexibleFlatPanelDisplays.Wiley.

10 Reinitzer,F.(1888).Beiträgezurkenntnissdescholesterins. Monatsh.Chem. 9:421.

11 Lehmann,O.(1889).ÜberfliessendeKrystalle. Z.Phys.Chem. 4:462.

12 Ishii,Y.(2007).TheworldofliquidcrystaldisplayTVs-Past,PresentandFuture. J.Disp.Technol. 3:351.

13 Lechner,B.J.,Marlowe,F.J.,Nester,E.O.,andTults,J.(1971).Liquidcrystalmatrixdisplays. Prof.IEEE 59:1566.

14 Fischer,A.G.,Brody,T.P.,andEscott,W.S.(1972).DesignofaliquidcrystalcolorTVpanel.In: Proc. IEEEConf.onDisplayDevices,NewYork,NY,64.

15 Schadt,M.andHelfrich,W.(1971).Voltage-dependentopticalactivityofatwistednematicliquidcrystal. Appl.Phys.Lett. 18:127.

16 Liu,C.T.(2007).RevolutionoftheTFTLCDtechnology. J.Disp.Technol. 3:342.

17 Stupp,E.H.andBrennesholtz,M.(1998). ProjectionDisplays.NewYork:Wiley.

18 Armitage,D.,Underwood,I.,andWu,S.T.(2006). IntroductiontoMicrodisplays.Wiley.

19 Zhu,X.,Ge,Z.,Wu,T.X.,andWu,S.T.(2005). J.Disp.Technol. 1:15.

20 Round,H.J.(1907).Anoteoncarborundum. Electr.World 19:309.

21 Tang,C.W.andVanslyke,S.A.(1987).Organicelectroluminescentdiodes. Appl.Phys.Lett. 51:913.

22 Iino,S.andMiyashita,S.(2006).PrintableOLEDspromiseforfutureTVmarket. SIDSymp.Dig. 37:1463.

23 Hirano,T.,Matsuo,K.,Kohinata,K.etal.(2007).Novellasertransfertechnologyformanufacturing large-sizedOLEDdisplays. SIDSymp.Dig. 38:1592.

ColorScienceandEngineering

2.1INTRODUCTION

Displaysystemsareusedtoproduceandreproducecolorimageswhichmakesthetopic“colorscienceand engineering”veryimportantforevaluatingtheirperformance.Typically,theperceptionofcolorscanbe treatedasafour-stageprocess:(i)existenceofalightsource–eithermanmadeornatural,(ii)light-object interaction–suchasreflection,absorption,andtransmission,(iii)stimulationoftheeyes,and(iv)recognitionbythebrain.Figure2.1a,illustratesthehumaneyeseeingthecolorofanobjectundersunlight,whichisa “white”lightsourcebecauseitsspectralbandwidthcoverstheentirevisiblerange.Iftherewasnolightsource, therewouldbenophotonstostimulatethehumaneyeand,therefore,nocolorcouldbeformed.Underillumination,theobject(e.g.,paperinFigure2.1a)absorbsaportionoftheincidentphotonsandreflectstherest. AsshowninFigure2.1b,thereareyellowandgreeninksonthewhitepaper.Whenincidentwhitelightilluminatestheyellowink,the“blue”componentofthewhitelightismoststronglyabsorbed.Thereflectedlight containsahigherproportionofredandgreenwavelengths,resultinginaperceptionofyellow.Similarly,the greeninkabsorbs“red”and“blue”light.Wherethereisnoink,thewhitepaperreflectsallcomponentsofthe whitelightalmostequally,soitappearswhite.Itfollowsfromtheabovediscussion,thatthecolorofanobject isalsodependentonthespectralcontentoftheincidentlight.Forexample,ifthelightsourceisred,then theyellowinkwillhavethesameappearanceasthewhitepaper.Afterthelight–objectinteraction,reflected photonsarereceivedbythedetector;hereitisahumaneye.Toproperlydescribealightwave,therearefour basicparameters:intensity,wavelength,phase,andpolarization.Photonswithdifferentemissionwavelengths inthevisibleregion(∼380–780nm)stimulatethephotosensitivecells(coneandrodcells,asdiscussedlater) oftheeyewhichgeneratetheperceptionofdifferentcolors,suchasviolet,blue,green,yellow,orange,and red.Thelightintensitygivestheobserveraperceptionofbrightanddark.However,thehumaneyecannot resolvethepolarizationstateandphaseofthelight.

Inhumaneyes,inindividualswith“normal”colorvision,therearethreedifferenttypesofconecellswith differentspectralsensitivities.Thismakesitpossibletousethreeprimarycolors(red,green,andblue)to generatedifferent(butnotall)thecolorsandtodescribethecolorsquantitatively[1]:thisiscalled“trichromaticspace.”In1931,theCommissionInternationaledel’Eclairage(CIE)suggestedthe(X,Y,Z)colorimetric system,whichcanspecifyallthecolorsbytheirdistinctcoordinates,andalsoindicatesthebrightnessofthe targetobject[2].Itisaconvenientsystemfordescribingcolors.However,theCIE1931systemisnotsuitable fordiscussingthemagnitudeoftheperceiveddifferencebetweentwocolors.Besides,the1931systemisset uptoquantifythecolorsofself-luminousobjectswithoutanyambientreference–whichisnotunrealistic forsomedisplayapplications.Tosolvethisproblem,theuniformcolorspacesareproposed(e.g.,CIE1976 (L*u*v*)-and(L*a*b*)-spaces).Inthesesystems,anumerical“colordifference”canbespecifiedfortwocolors. IndifferentareasoftheCIE1976colordiagrams(forexample,fortwosimilargreenishcolorsorfortworeddishcolors),just-distinguishablecolordifferenceisnearlyidenticalinmagnitude.Sincethetrichromaticspace canbequantitativelydescribedbyCIEcolorimetricsystems,differentcolorscanbeproducedorreproduced inadisplaydevicebymixingthreeprimaryemitters.Althoughthereflectionspectrumofa“real”objectis IntroductiontoFlatPanelDisplay, SecondEdition.Jiun-HawLee,I-ChunCheng,HongHua,andShin-TsonWu. ©2020JohnWiley&SonsLtd.Published2020byJohnWiley&SonsLtd.

Figure2.1 Formationofcolors.

differentfromtheoneappearingonthedisplay,theyappearthesamecolortothehumanvisualsystem.This abilityofdifferentspectralpowerdistributionstoproduceidenticalperceivedcolors,iscalled“metamerism.”

Inthischapter,wefirstdescribephotometry,thenthestructureofthehumaneyeanditsfunctionalities,followedbytheformulationofcolorimetrywhichincludestheCIEstandards,lightsources,andfinally metamerism.

2.2PHOTOMETRY

Duetothespectralsensitivityofthehumaneye,weperceivebrighterordimmerilluminationfromlight sourceswiththesameopticaloutputpower(intermsofWatts)emittingatdifferentwavelengths.Here,the photometricunit,lumen(lm),isdefinedas:theluminousflux(F )fromamonochromaticlightat555nmemittingtheopticalpowerof1/683W.Thespectralsensitivityofthehumaneyecanberepresentedas V(��) under thephotopicregionandreachesitshighestsensitivityat555nm,whichwillbeillustratedinSection2.3. Forexample, V(��) is0.1at650nm,whichmeansthesensitivityis10× lessthanat555nm.So,1/68.3Wis neededformonochromaticlightat650nmtoobtain1lm.Actually,theprimaryphotometricunitisnot“lm,” butcandela(cd),whichisdefinedasonelumenperunitsolidangle(lm/sr)andiscalledluminousintensity(I ).Theinitialdefinitionof1cdwastheluminousintensityofastandardizedplumber’scandle.Asshown inFigure2.2,thecandleemitslightinalldirections,henceweuse“lm”todescribetheradiantflux.When

Figure2.2 Illustrationsofphotometricunits.

Table2.1 Definitionsofphotometricunits.

PhotometrictermsSymbolUnitsDefinition

Luminousflux F lmlm

Luminousintensity I cdlm/sr

Illuminance M luxlm/m2

Luminousexitance E luxlm/m2

Luminance L nitcd/m2

humaneyesviewthecandle,theyonlyadmitlightwithinalimitedsolidangle,sowereceivetheluminous intensityintermsof“cd.”Thecandlecanbeusedasalightsourcetoilluminateanobject.Then,wecan definethe“illuminance”(E )ofthelightsourceinunitsoflux,orlm/m2 .Afterlight–objectinteraction,the lightismodulated(reflected,transmitted,scattered,orabsorbed)bytheobjectandcanberegardedasbeing re-emittedfromtheobject,whereapparentemissionisreferredtoastheluminousexitance(M )whichagain hasunitsoflux.Whenpeopleseetheobjectilluminatedbythelightsource,thehumaneyesreceivelightonly withinacertainangularrange,sotheluminance(L)oftheobjectcanbedefinedascd/m2 ,ornits.Definitions ofphotometricunitsarealsoshowninTable2.1.

Example2.1 Aperfectdiffusesurfacemeansitsluminanceobservedfromdifferentviewinganglesisconstant,whichisalsocalleda“Lambertiansurface.”Forexample,roughpaperapproximatesaLambertian surface.ForaLambertiansurface(withasize A)illuminatedbyalightsourcewithilluminance E ,whatis theluminance(L)ofthissurface?Assumethissurfacecanperfectlyreflectallthelight,i.e.luminousfluxof theincidentbeamonthesurfaceisequaltothatoftheexitinglight.

Answer

FromTable2.1,luminance(L,intermsofcd/m2 )canbealsoregardedastheluminousintensity(I ;interms oflm/sr)perunitarea(A):

L =

whenviewingfromalargerangle,thearealookssmallerascomparedtothatatnormaldirectionwithacos�� relation. �� istheanglebetweentheviewingdirectionandthesurfacenormal.Thatis

where A0 istheareaviewingfromnormaldirection.BecauseluminanceofaLambertianisthesameforany viewingdirection,onecanobtaintheluminousintensityas: I = I0 cos ��

where I 0 istheluminousintensityatnormaldirectionofthesurface.IncidentfluxtotheLambertiansurface canberepresentedas: Fin = EA

Thetotalluminousfluxwhichradiatesfromthesurfaceis:

Sincetheluminousfluxoftheincidentbeamonthesurfaceisequaltothatoftheexitinglight(F in = F out ), onecanobtain:

Typically,powerefficiency(intermsoflm/W)isusedtodescribetheefficiencyofadisplaysystem.For example,ifthetotalinputelectricalpower(wall-plugpower)ofthedisplayis10Wandthetotalradiatedflux is20lm,thepowerefficiencyofthedisplayis2lm/W.Thepowerefficiencydescribeshowmuchopticalpower emittedfromadisplay(lm)whichisproducedbyanelectricalpowerinput(W).Forelectroluminescence(EL) devicessuchasLED,currentefficiencyisalsodefinedintermsofcd/A.Thedenominatoriscurrent,which quantifiesthenumberofelectron–holepairsprovidedtothedisplayinunittime.Theelectron–holepairs recombineandgeneratephotonswhicharereceivedbyhumaneyes(cd).Forexample,consideraLambertian emittingELdisplaywhich,asabove,emitsatotalluminousfluxof20lmwiththecurrent = 300mA.Thenthe currentefficiencyofthedisplayis21.22cd/A.

2.3THEEYE

Figure2.3ashowsaschematicdiagramofahumaneye[3].Theincominglightpassingthroughthecornea, theaqueoushumor,eyelens,andvitreousbody,isreceivedbytheretina.Primaryrefractionandapproximate focusingoflightisachievedattheair/corneainterface.Theeyelens,withahigherrefractiveindex(n = 1.42) thanthecornea,theaqueoushumor,andvitreousbody(n = 1.33–1.37),functionstofocusaclearimageto theretina,asshowninFigure2.3b,c[4].Theshapeoftheeyelenscanbeadjustedbytheciliarymusclearound it.SuchasystemcanbeapproximatelydescribedbytheGaussianLensformula[5]:

where d 1 isthedistancefromtheobjecttotheeyelens, d 2 isthedistancefromtheeyelenstotheretina(which is17mmtypically),and f isthefocallength.Theimageontheretinaistotallyreversed(upside-downand right–left).However,afterinterpretationbythebrainwecanrecognizetheimagesintheirnormalorientation inrealspace.Whentheobjectviewedismoredistant,theeyelensbecomesflatter,asshowninFigure2.3b.On theotherhand,theciliarymusclewillcontracttheeyelenstoincreaseitscurvatureinordertofocusnearby subjects,Figure2.3c.

Theretinareceivestheincomingphotonsandtransfersthemintobio-potentialsignals.Aftersomeprocessingwithintheeye,thosesignalsarethentransmittedthroughtheopticnervetothebrainandinterpreted

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.