Molecular beam epitaxy: materials and device applications asahi all chapter instant download

Page 1


MOLECULAR BEAM EPITAXY: materials

and device applications Asahi

Visit to download the full and correct content document: https://ebookmass.com/product/molecular-beam-epitaxy-materials-and-device-applica tions-asahi/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Ferroic materials for smart systems from fundamentals to device applications Dai

https://ebookmass.com/product/ferroic-materials-for-smartsystems-from-fundamentals-to-device-applications-dai/

Biodegradable Materials and Their Applications

Inamuddin https://ebookmass.com/product/biodegradable-materials-and-theirapplications-inamuddin/

Spintronic 2D Materials: Fundamentals and Applications (Materials Today) Wenqing Liu (Editor)

https://ebookmass.com/product/spintronic-2d-materialsfundamentals-and-applications-materials-today-wenqing-liu-editor/

Optical Materials and Applications: Volume 1 Novel

Optical Materials Francesco Simoni

https://ebookmass.com/product/optical-materials-and-applicationsvolume-1-novel-optical-materials-francesco-simoni/

Quantum Materials, Devices, and Applications Mohamed

Henini

https://ebookmass.com/product/quantum-materials-devices-andapplications-mohamed-henini/

External Beam Therapy Peter Hoskin

https://ebookmass.com/product/external-beam-therapy-peter-hoskin/

Self-Healing Smart Materials and Allied Applications

Inamuddin

https://ebookmass.com/product/self-healing-smart-materials-andallied-applications-inamuddin/

Nanocellulose Materials: Fabrication and Industrial Applications Ramesh Oraon

https://ebookmass.com/product/nanocellulose-materialsfabrication-and-industrial-applications-ramesh-oraon/

Heterogeneous Catalysis: Materials and Applications

Moises Romolos Cesario

https://ebookmass.com/product/heterogeneous-catalysis-materialsand-applications-moises-romolos-cesario/

MolecularBeamEpitaxy

WileySeriesinMaterialsforElectronic&OptoelectronicApplications www.wiley.com/go/meoa

SeriesEditors

ProfessorArthurWilloughby, UniversityofSouthampton,Southampton,UK

DrPeterCapper, SELEXGalileoInfraredLtd,Southampton,UK

ProfessorSafaKasap, UniversityofSaskatchewan,Saskatoon,Canada

PublishedTitles

BulkCrystalGrowthofElectronic,OpticalandOptoelectronicMaterials,EditedbyP.Capper PropertiesofGroup-IV,III–VandII–VISemiconductors,S.Adachi ChargeTransportinDisorderedSolidswithApplicationsinElectronics,EditedbyS.Baranovski OpticalPropertiesofCondensedMatterandApplications,EditedbyJ.Singh

ThinFilmSolarCells:Fabrication,Characterization,andApplications,EditedbyJ.Poortmansand V.Arkhipov

DielectricFilmsforAdvancedMicroelectronics,EditedbyM.R.Baklanov,M.Green,andK.Maex LiquidPhaseEpitaxyofElectronic,OpticalandOptoelectronicMaterials,EditedbyP.Capperand M.Mauk

MolecularElectronics:FromPrinciplestoPractice,M.Petty CVDDiamondforElectronicDevicesandSensors,EditedbyR.S.Sussmann PropertiesofSemiconductorAlloys:Group-IV,III–V,andII–VISemiconductors,S.Adachi MercuryCadmiumTelluride,EditedbyP.CapperandJ.Garland ZincOxideMaterialsforElectronicandOptoelectronicDeviceApplications,EditedbyC.Litton, D.C.Reynolds,andT.C.Collins

Lead-FreeSolders:MaterialsReliabilityforElectronics,EditedbyK.N.Subramanian SiliconPhotonics:FundamentalsandDevices,M.JamalDeenandP.K.Basu

NanostructuredandSubwavelengthWaveguides:FundamentalsandApplications,M.Skorobogatiy PhotovoltaicMaterials:FromCrystallineSilicontoThird-GenerationApproaches,Editedby G.ConibeerandA.Willoughby

GlancingAngleDepositionofThinFilms:EngineeringtheNanoscale,MatthewM.Hawkeye, MichaelT.Taschuk,andMichaelJ.Brett

PhysicalPropertiesofHigh-TemperatureSuperconductors,R.Wesche

SpintronicsforNextGenerationInnovativeDevices,EditedbyKatsuakiSato,EijiSaitoh InorganicGlassesforPhotonics:Fundamentals,EngineeringandApplications,AnimeshJha AmorphousSemiconductors:Structural,OpticalandElectronicProperties,KazuoMorigaki, SandorKugler,KoichiShimakawa

MicrowaveMaterialsandApplications2Volset,EditedbyMailadilT.Sebastian,RickUbic, HeliJantunen

MolecularBeam Epitaxy

MaterialsandApplicationsforElectronics andOptoelectronics

ISIR,OsakaUniversity,Japan

YOSHIJIHORIKOSHI WasedaUniversity,Tokyo,Japan

Thiseditionfirstpublished2019 ©2019JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorby anymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowtoobtain permissiontoreusematerialfromthistitleisavailableat http://www.wiley.com/go/permissions

TherightofHajimeAsahiandYoshijiHorikoshitobeidentifiedastheauthorsoftheeditorialmaterialinthisworkhasbeen assertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsinstandard printversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowof informationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatethe informationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment,reagent,ordevicefor,among otherthings,anychangesintheinstructionsorindicationofusageandforaddedwarningsandprecautions.Whilethepublisher andauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties,includingwithoutlimitationany impliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,or productisreferredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisher andauthorsendorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendationsitmay make.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadvice andstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate. Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwas writtenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Asahi,Hajime,1948-editor.|Horikoshi,Yoshiji,1943-editor.

Title:Molecularbeamepitaxy:materialsandapplicationsforelectronics andoptoelectronics/editedbyHajimeAsahi(ISIR,OsakaUniversity, Japan),YoshijiHorikoshi(WasedaUniversity,Tokyo,Japan).

Description:Firstedition.|Hoboken,NJ:Wiley,2019.|Series:Wiley seriesinmaterialsforelectronic&optoelectronicapplications| Includesbibliographicalreferencesandindex.|

Identifiers:LCCN2018044564(print)|LCCN2018059153(ebook)|ISBN 9781119355007(AdobePDF)|ISBN9781119355021(ePub)|ISBN9781119355014 (hardcover)

Subjects:LCSH:Molecularbeamepitaxy.|Epitaxy.|Crystalgrowth.| Electronics–Materials.|Optoelectronics–Materials.

Classification:LCCQC611.6.M64(ebook)|LCCQC611.6.M64M64552019(print) |DDC621.3815/2–dc23

LCrecordavailableathttps://lccn.loc.gov/2018044564

CoverDesign:DanJubb

CoverImages:CourtesyofYoshijiHorikoshi

Setin10/12ptTimesLTStdbySPiGlobal,Chennai,India 10987654321

ListofContributors xv

SeriesPreface xix

Preface xxi

PARTIFundamentalsofMBE1

1.HistoryofMBE3 TomFoxon

1.1Introduction3 1.2TheMBEProcess4

1.3ControllednandpDoping10

1.4ModifiedGrowthProcedures10

1.5Gas-SourceMBE11

1.6Low-DimensionalStructures11

1.7III–VNitrides,Phosphides,AntimonidesandBismidesand OtherMaterials13

1.7.1III-Nitrides14

1.7.2III-Phosphides15

1.7.3III-Antimonides15

1.7.4III-Bismides15

1.7.5HighlyMismatchedAlloys16

1.7.6II–VIs16

1.7.7IV–VIs17

1.7.8SiGe17

1.7.92DMaterials18

1.8EarlyMBE-GrownDevices18

1.9Summary18 Acknowledgments18 References19

2.GeneralDescriptionofMBE23 YoshijiHorikoshi

2.1Introduction23 2.2High-VacuumChamberSystem24

2.3AtomicandMolecularBeamSources25

2.4MeasurementofMBEGrowthParameters28

2.4.1MeasurementofBackgroundAtmosphericConditions29

2.4.2MeasurementofSubstrateTemperature29

2.4.3MeasurementofAtomic/MolecularBeamIntensity30

2.5SurfaceCharacterizationToolsforMBEGrowth31

2.5.1ReflectionHigh-EnergyElectronDiffraction33

2.5.2OpticalDiagnosticMethods35

2.6Summary37 Acknowledgments37 References38

3.Migration-EnhancedEpitaxyanditsApplication41

3.1Introduction41

3.2TowardAtomicallyFlatSurfacesinMBE42

3.3PrincipleofMEE44

3.4GrowthofGaAsbyMEE48

3.5IncommensurateDepositionandMigrationofGaAtoms49

3.6ApplicationofMEEDepositionSequencetoSurfaceResearch50

3.7ApplicationofMEEtoSelectiveAreaEpitaxy51

3.8Summary54 Acknowledgments54 References55

4.NanostructureFormationProcessofMBE57

4.1Introduction57

4.2GrowthofQuantumWells58

4.3GrowthofQuantumWiresandNanowires60

4.4GrowthofQuantumDots64

4.5Conclusion71 References72

5.AmmoniaMolecularBeamEpitaxyofIII-Nitrides73 MichaN.FiremanandJamesS.Speck

5.1Introduction73

5.2III-NitrideFundamentals74

5.3AmmoniaMolecularBeamEpitaxy77

5.4TernaryNitrideAlloysandDoping82 5.5Conclusions86 References86

6.MechanismofSelectiveAreaGrowthbyMBE91 KatsumiKishino

6.1Background91

6.2GrowthParametersforTiMaskSAG92

6.3InitialGrowthofNanocolumns94

6.4NitrogenFlowRateDependenceofSAG95

6.5DiffusionLengthofGaAdatoms96

6.6FineControlofNanocolumnArraysbySAG98

6.7ControlledColumnarCrystalsfromMicrometertoNanometerSize100

6.8NanotemplateSAGofAlGaNNanocolumns101

6.9ConclusionsandOutlook103 References104

PARTIIMBETechnologyforElectronicDevicesApplication107

7.MBEofIII-NitrideSemiconductorsforElectronicDevices109 RolfJ.Aidam,O.Ambacher,E.Diwo,B.-J.Godejohann,L.Kirste,T.Lim, R.Quay,andP.Waltereit

7.1Introduction109

7.2MBEGrowthTechniques110

7.2.1Plasma-AssistedMBEPAMBE110

7.2.2AmmoniaMBE114

7.2.3Doping117

7.3AlGaN/GaNHighElectronMobilityTransistorsonSiCSubstrate118

7.3.1PAMBE118

7.3.2AmmoniaMBE121

7.4AlGaN/GaNHighElectronMobilityTransistorsonSiSubstrate123

7.4.1PAMBE123

7.4.2AmmoniaMBE124

7.5HEMTswithThinBarrierLayersforHigh-FrequencyApplications125

7.5.1AlN/GaNHeterostructures126

7.5.2Lattice-MatchedAlInNandAlGaInNBarrierLayers127

7.6VerticalDevices130

7.6.1p–nJunction130

7.6.2CurrentApertureVerticalElectronTransistors131 References132

8.MolecularBeamEpitaxyforSteepSwitchingTunnelFETs135 SalimElKazzi

8.1Introduction135

8.2TFETWorkingPrinciple136

8.3III–VHeterostructureforTFETs136 8.4MBEforBeyondCMOSTechnologies138 8.5Doping139

8.6TunnelingInterfaceEngineering142

8.7MBEforIII–VTFETIntegration143 8.8ConclusionsandPerspectives146 Acknowledgments146 References147

PARTIIIMBEforOptoelectronicDevices149

9.ApplicationsofIII–VSemiconductorQuantumDotsinOptoelectronic Devices151

9.1Introduction:Self-assembledQuantumDots151 9.2LasersBasedonInAsQuantumDotsGrownonGaAsSubstrates152

9.2.1S–KGrowthModeofInAsIslandsonGaAs152

9.2.2EmissionWavelengthControlbytheBuriedStrainRelaxation Layer155

9.2.3InAsQuantum-DotLasers157

9.3InAsQDOpticalDeviceOperatingatTelecomBand(1.55 μm)158

9.4RecentProgressinQDLasers164 9.5Summary165 References165

10.ApplicationsofIII–VSemiconductorsforMid-infraredLasers169 YuichiKawamura

10.1Introduction169 10.2GaSb-BasedLasers170

10.3InP-BasedLasers170

10.4InAs-BasedLasers173 10.5Conclusion174 References174

11.MolecularBeamEpitaxialGrowthofTerahertzQuantumCascadeLasers175 HarveyE.BeereandDavidA.Ritchie

11.1Introduction175

11.2EpitaxialChallenges179

11.2.1GrowthRateCalibration179

11.2.2GrowthRateStability184

11.2.3GrowthRateUniformity186

11.2.4DopingAccuracy187 References189

12.MBEofIII-NitrideHeterostructuresforOptoelectronicDevices191 C.Skierbiszewski,G.Muziol,H.Turski,M.Siekacz, K.Nowakowski-Szkudlarek,A.Feduniewicz-Zmuda,P.Wolny,andM.Sawicka

12.1Introduction191

12.2Low-TemperatureGrowthofNitridesbyPAMBE192

12.3ApplicationsofPAMBEinGrowthofNitrideLaserDiodes196

12.3.1EnhancementofOpticalConfinementFactorbyInGaN Waveguide197

12.3.2EliminationofLightLeakagetoGaNSubstrateUsingaThick InGaNWaveguide200

12.3.3Long-WavelengthLaserDiodesbyPAMBE202

12.3.4High-PowerBlueLaserDiodesbyPAMBE203

12.3.5LifetimeofPAMBELaserDiodes203

12.4NewConceptsofLDswithTunnelJunctions205

12.5Summary206 Acknowledgments207 References207

13.III-NitrideQuantumDotsforOptoelectronicDevices211 PallabBhattacharya,ThomasFrost,ShafatJahangir,SaniyaDeshpande, andArnabHazari

13.1Introduction211

13.2MolecularBeamEpitaxyofInGaN/GaNSelf-organizedQuantumDots212

13.2.1OpticalProperties217

13.3QuantumDotWavelengthConverterWhiteLight-EmittingDiode220

13.4QuantumDotLasers223

13.4.1EpitaxyofInAlNandQDLaserHeterostructure223

13.4.2Steady-StateLaserCharacteristics225

13.4.3Small-SignalModulationCharacteristics227

13.5SummaryandFutureProspects229 References230

14.Molecular-BeamEpitaxyofAntimonidesforOptoelectronicDevices233 EricTournie

14.1Introduction233

14.2EpitaxyofAntimonides:ABriefHistoricalSurvey235

14.3Molecular-BeamEpitaxyofAntimonide236

14.3.1SubstratePreparation236

14.3.2DopingofIII–SbCompounds237

14.3.3ControlofAlloyCompositions239

14.3.4No-Common-AtomInterfaces241

14.3.5GrowthofIII–SbsonHighlyMismatchedSubstrates241

14.4Outlook243 Acknowledgments244 References244

15.III–VSemiconductorsforInfraredDetectors247 P.C.Klipstein

15.1Introduction247

15.2InAsSbXBn Detectors251 15.3T2SLXBp Detectors255

15.4Conclusion262 Acknowledgments262 References262

16.MBEofIII–VSemiconductorsforSolarCells265 TakeyoshiSugaya

16.1Introduction265

16.2InGaPSolarCells266

16.3InGaAsPSolarCellsLattice-MatchedtoGaAs268

16.4InGaAsPSolarCellsLattice-MatchedtoInP271

16.5GrowthofTunnelJunctionsforMulti-JunctionSolarCells272 16.6Summary277 References277

PARTIVMagneticSemiconductorsandSpintronicsDevices279

17.III–V-BasedMagneticSemiconductorsandSpintronicsDevices281 HiroMunekata

17.1Introduction281

17.2Hole-MediatedFerromagnetism282

17.3MolecularBeamEpitaxyandMaterialsCharacterization285 17.4StudiesinViewofSpintronicsApplications293 17.5ConclusionsandProspects296 Acknowledgments296 References296

18.III-NitrideDiluteMagneticSemiconductors299 Yi-KaiZhouandHajimeAsahi

18.1Introduction299

18.2Transition-Metal-DopedGaN300 18.2.1GaMnN300 18.2.2GaCrN301

18.3Rare-Earth-DopedIII-Nitrides303

18.3.1GaGdNandInGaGdN303 18.3.2GaDyN308

18.3.3OtherRE-DopedIII-Nitrides308 18.4DeviceApplications309

18.4.1TMRinGaCrN-BasedTrilayerStructures309

18.4.2InterlayerInteractionBetweenGaDyNLayers310 18.4.3CP-LDandOtherSpintronicDeviceApplications310 18.5Summary312 References312

19.MBEGrowth,MagneticandMagneto-opticalPropertiesofII–VIDMSs315 ShinjiKuroda

19.1II–VIDMSsDopedwithMn315

19.2II–VIDMSsDopedwithCrandFe319

19.3ZnO-BasedDMSs323 References325

20.Ferromagnet/SemiconductorHeterostructuresandNanostructures GrownbyMolecularBeamEpitaxy329 MasaakiTanaka

20.1Introduction329

20.2MnAsonGaAs(001)andSi(001)Substrates330

20.2.1FerromagneticMnAsThinFilmsGrownonGaAs(001) Substrates330

20.2.2FerromagneticMnAsThinFilmsGrownonSi(001)Substrates334 20.3GaAs:MnAsGranularMaterials:MagnetoresistiveEffectsandRelated Devices337

20.3.1GrowthandStructureofMnAsNanoparticlesEmbeddedin GaAs337

20.3.2MnAsNanoparticlesasaSpinInjectorandSpinDetector338

20.3.3AlAsTunnelBarrierThicknessDependenceofTMRProperties342 20.4Summary345 Acknowledgments345 References346

21.MBEGrowthofGe-BasedDilutedMagneticSemiconductors349 TianxiaoNie,JianshiTang,andKangL.Wang

21.1Introduction349

21.2MBEGrowthofMnx Ge1 x ThinFilmandNanostructures351

21.2.1GrowthofMnx Ge1 x ThinFilmandQDs351

21.2.2GrowthofMnx Ge1 x NanodisksandNanomeshes353

21.3MagneticPropertiesofMnx Ge1 x ThinFilmsandNanostructures355

21.3.1MagneticPropertiesofMnx Ge1 x ThinFilmsandQDs355

21.3.2MagneticPropertyofMnx Ge1 x NanodisksandNanomeshes357

21.4Electric-Field-ControlledFerromagnetismandMagnetoresistance359 21.5Conclusion362 Acknowledgments362 References363

PARTVChallengeofMBEtoNewMaterialsand NewResearches365

22.MolecularBeamEpitaxialGrowthofTopologicalInsulators367 XiaoFeng,KeHe,XucunMa,andQi-KunXue

22.1Introduction367

22.2MBEGrowthofBi2 Se3 FamilyThree-DimensionalTopological Insulators368

22.3DefectsinMBE-GrownBi2 Se3 FamilyTIFilms371 22.3.1Dislocations371

22.3.2PointDefects372

22.3.3DomainWalls372

22.4BandStructureEngineeringinTernaryBi2 Se3 FamilyTIs373

22.5MagneticallyDopedBi2 Se3 FamilyTIs373

22.6MBEGrowthof2DTIMaterials375 22.7Summary377 References377

23.ApplicationsofBismuth-ContainingIII–VSemiconductorsinDevices381 MasahiroYoshimoto

23.1Introduction381

23.2GrowthofGaAsBi382 23.3PropertiesofGaAsBi384

23.4ApplicationsofGaAsBi385 23.4.1LEDs385 23.4.2LDs386

23.4.3SolarCells390

23.4.4TerahertzDetectors390

23.5ApplicationsofOtherBi-ContainingSemiconductors390 23.5.1GaSbBiLDs390 23.5.2Mid-InfraredPhotodetectors391 23.6Summary391 References392

24.MBEGrowthofGraphene395 J.MarceloJ.Lopes

24.1Introduction395

24.2MBEofGrapheneonMetals398

24.3MBEofGrapheneonSemiconductors399 24.4MBEofGrapheneonOxidesandOtherDielectrics403 24.5Conclusions407 Acknowledgments408 References408

25.MBEGrowthandDeviceApplicationsofGa2 O3 411

25.1Introduction411

25.2PhysicalPropertiesofGa2 O3 411

25.2.1Polymorphs411

25.2.2MaterialPropertiesof β-Ga2 O3 412

25.3Ga2 O3 ElectronicDeviceApplications414

25.4Melt-GrownBulkSingleCrystals414

25.5Ga2 O3 MBEGrowth414

25.5.1MBESystemandGrowthCondition414

25.5.2ComparisonsBetweenOzone-andRF-PlasmaMBETechniques415

25.5.3MBEGrowthKineticsofGa2 O3 415

25.5.4HomoepitaxialGrowthofGa2 O3 ThinFilmsonGa2 O3 Native Substrates416

25.5.5 n-TypeDoping416

25.5.6Heterostructures418 25.6TransistorApplications419

26.6.1MESFETs419

25.6.2Depletion-ModeGa2 O3 MOSFETs419

25.6.3Field-PlatedMOSFETs420 25.7Summary421 References421

26.MolecularBeamEpitaxyforOxideElectronics423 AbhinavPrakashandBharatJalan

26.1Introduction423

26.2Structure–PropertyRelationshipinPerovskiteOxides423

26.2.1LatticeDegreesofFreedom424

26.2.2InterfacialPhysics427

26.2.3Thin-FilmGrowthApproaches428

26.3OxideMolecularBeamEpitaxy430

26.3.1HistoricalPerspective430

26.3.2DesignofOxideMBE431

26.3.3ChallengeswithOxideMBE433

26.4RecentDevelopmentsinOxideMBE435

26.4.1Adsorption-ControlledGrowth435

26.4.2HybridMolecularBeamEpitaxy437

26.4.3Radical-BasedMolecularBeamEpitaxy440

26.5Outlook443

26.6Summary447 Acknowledgments447 References447

27. In-situ STMStudyofMBEGrowthProcess453 ShiroTsukamoto

27.1Introduction453

27.2TheAdvantagesof In-situ STMObservationforUnderstandingGrowth Mechanisms454

27.3 In-situ STMObservationofInAsGrowthonGaAs(001)by STMBESystem454

27.4 In-situ STMObservationofVariousGrowthsandTreatmentsonGaAs SurfacesbySTMBESystem456

27.5Conclusion460 References460

28.HeterovalentSemiconductorStructuresandtheirDeviceApplications463 Yong-HangZhang

28.1Introduction463

28.2MBEGrowthofHeterovalentStructures465

28.3ZnTeandGaSb/ZnTeHeterovalentDistributedBraggReflector StructuresGrownonGaSb466

28.4CdTe/MgCdTeStructureandHeterovalentDevicesGrownonInSb Substrates468

28.5Single-CrystalCdTe/Mgx Cd1 x TeSolarCells474

28.6CdTe/InSbTwo-ColorPhotodetectors477 Acknowledgments479 References480

ListofContributors

RolfJ.Aidam, FraunhoferInstituteforAppliedSolidStatePhysics,Germany

KouichiAkahane, NationalInstituteofInformationandCommunicationTechnology, Japan

O.Ambacher, FraunhoferInstituteforAppliedSolidStatePhysics,Germany

HajimeAsahi, TheInstituteofScientificandIndustrialResearch,OsakaUniversity,Japan

HarveyE.Beere, DepartmentofPhysics,CavendishLaboratory,UniversityofCambridge, UK

PallabBhattacharya, DepartmentofElectricalEngineeringandComputerScience, UniversityofMichigan,USA

SaniyaDeshpande, DepartmentofElectricalEngineeringandComputerScience, UniversityofMichigan,USA

E.Diwo, FraunhoferInstituteforAppliedSolidStatePhysics,Germany

A.Feduniewicż Zmuda, InstituteofHighPressurePhysics,PolishAcademyofSciences, Poland

XiaoFeng, TsinghuaUniversity,Beijing,China

MichaN.Fireman, UniversityofCarifornia,SantaBarbara,USA

TomFoxon, NottinghamUniversity,UK

ThomasFrost, DepartmentofElectricalEngineeringandComputerScience,University ofMichigan,USA

B.-J.Godejohann, FraunhoferInstituteforAppliedSolidStatePhysics,Germany

ArnabHazari, DepartmentofElectricalEngineeringandComputerScience,University ofMichigan,USA

KeHe, TsinghuaUniversity,Beijing,China

MasatakaHigashiwaki, NationalInstituteofInformationandCommunications Technology,Tokyo,Japan

YoshijiHorikoshi, WasedaUniversity,Tokyo,Japan

ShafatJahangir, DepartmentofElectricalEngineeringandComputerScience,University ofMichigan,USA

BharatJalan, UniversityofMinnesota,USA

YuichiKawamura, OsakaPrefectureUniversity,Japan

SalimElKazzi, InteruniversityMicroelectronicsCenter,Belgium

L.Kirste, FraunhoferInstituteforAppliedSolidStatePhysics,Germany

KatsumiKishino, SophiaUniversity,Tokyo,Japan

PhilipC.Klipstein, SemiConductorDevices,Israel

ShinjiKuroda, InstituteofMaterialsScience,UniversityofTsukuba,Japan

T.Lim, FraunhoferInstituteforAppliedSolidStatePhysics,Germany

J.MarceloJ.Lopes, Paul-Drude-InstitutfürFestkörperelektronik,Berlin,Germany

XucunMa, TsinghuaUniversity,Beijing,China

HiroMunekata, TokyoInstituteofTechnology,Japan

G.Muziol, InstituteofHighPressurePhysics,PolishAcademyofSciences,Poland

YoshiakiNakata, NationalInstituteofInformationandCommunicationTechnology, Japan

TianxiaoNie, FertBeijingInstitute,BDBC,andSchoolofElectronicandInformation Engineering,BeihangUniversity,ChinaandDeviceResearchLaboratory,Departmentof ElectricalEngineering,UniversityofCalifornia,USA

K.Nowakowski-Szkudlarek, InstituteofHighPressurePhysics,PolishAcademyof Sciences,Poland

AbhinavPrakash, UniversityofMinnesota,USA

R.Quay, FraunhoferInstituteforAppliedSolidStatePhysics,Germany

David.A.Ritchie, DepartmentofPhysics,CavendishLaboratory,UniversityofCambridge,UK

MartaSawicka, InstituteofHighPressurePhysics,PolishAcademyofSciences,Poland andTopGaNLtd.,Poland

M.Siekacz, InstituteofHighPressurePhysics,PolishAcademyofSciences,Poland

CzeslawSkierbiszewski, InstituteofHighPressurePhysics,PolishAcademyofSciences, PolandandTopGaNLtd.,Poland

JamesS.Speck, UniversityofCalifornia,SantaBarbara,USA

TakeyoshiSugaya, NationalInstituteofAdvancedIndustrialScienceandTechnology, Japan

MasaakiTanaka, CenterforSpintronicsResearchNetwork,andDepartmentofElectrical Engineering&InformationSystems,andInstituteforNanoQuantumInformationElectronics,UniversityofTokyo,Japan

JianshiTang, IBMThomasJ.WatsonResearchCenter,USA

EricTournie, IES,UniversitédeMontpellier,France

ShiroTsukamoto, NationalInstituteofTechnology,AnanCollege,Japan

H.Turski, InstituteofHighPressurePhysics,PolishAcademyofSciences,Poland

P.Waltereit, FraunhoferInstituteforAppliedSolidStatePhysics,Germany

KangL.Wang, DeviceResearchLaboratory,DepartmentofElectricalEngineering, UniversityofCalifornia,USA

P.Wolny, InstituteofHighPressurePhysics,PolishAcademyofSciences,Poland

Qi-KunXue, TsinghuaUniversity,Beijing,China

KoichiYamaguchi, TheUniversityofElectro-Communications,Tokyo,Japan

MasahiroYoshimoto, KyotoInstituteofTechnology,Kyoto,Japan

Yong-HangZhang, ArizonaStateUniversity,Arizona,USA

Yi-KaiZhou, TheInstituteofScientificandIndustrialResearch,OsakaUniversity,Japan andKeyLaboratoryofOptoelectronicMaterialandDevice,Mathematics&Science College,ShanghaiNormalUniversity,China

SeriesPreface

WileySeriesinMaterialsforElectronicandOptoelectronicApplications

Thisbookseriesisdevotedtotherapidlydevelopingclassofmaterialsusedforelectronic andoptoelectronicapplications.Itisdesignedtoprovidemuch-neededinformationonthe fundamentalscientificprinciplesofthesematerials,togetherwithhowtheseareemployed intechnologicalapplications.Thebooksareaimedat(postgraduate)students,researchers andtechnologists,engagedinresearch,developmentandthestudyofmaterialsinelectronicsandphotonics,andindustrialscientistsdevelopingnewmaterials,devicesandcircuits fortheelectronic,optoelectronicandcommunicationsindustries.

Thedevelopmentofnewelectronicandoptoelectronicmaterialsdependsnotonlyon materialsengineeringatapracticallevel,butalsoonaclearunderstandingoftheproperties ofmaterials,andthefundamentalsciencebehindtheseproperties.Itisthepropertiesofa materialthateventuallydetermineitsusefulnessinanapplication.Theseriesthereforealso includessuchtitlesaselectricalconductioninsolids,opticalproperties,thermalproperties, andsoon,allwithapplicationsandexamplesofmaterialsinelectronicsandoptoelectronics.Thecharacterizationofmaterialsisalsocoveredwithintheseriesinasmuchasit isimpossibletodevelopnewmaterialswithoutthepropercharacterizationoftheirstructureandproperties.Structure-propertyrelationshipshavealwaysbeenfundamentallyand intrinsicallyimportanttomaterialsscienceandengineering.

Materialsscienceiswellknownforbeingoneofthemostinterdisciplinarysciences.Itis theinterdisciplinaryaspectofmaterialssciencethathasledtomanyexcitingdiscoveries, newmaterialsandnewapplications.Itisnotunusualtofindscientistswithachemical engineeringbackgroundworkingonmaterialsprojectswithapplicationsinelectronics.In selectingtitlesfortheseries,wehavetriedtomaintaintheinterdisciplinaryaspectofthe field,andhenceitsexcitementtoresearchersinthisfield.

Preface

Morethan50yearshavepassedsincethefirstepitaxialgrowthofsemiconductors wasrecognizedbymolecularbeamepitaxy(MBE).Duringthesedecades,tremendous improvementshavebeenmadeintheMBEapparatusitselfandin-situevaluation methods.Theseimprovementsaredirectlyconnectedtothequalityofgrownmaterials anddevicescreatedfromthem.Indeed,manybrilliantresultshavebeenachieved,suchas quantumwelllasers,quantumcascadelasers,highelectronmobilitymaterialsexceeding 107 cm2 V 1 s 1 ,tonamebutafew.Evennow,theseeffortsareongoing,andMBE thereforestillattractsmanyresearchersforinvestigationsonnewmaterialsandnewdevice applications.

Inthelastfewdecades,manybookshavebeenpublishedonMBErelatedtopics.Our bookisdistinguishedfromthesebydiscussionnotonlyofthefundamentalsandstateofthe artofMBEtechnology,butalsobydiscussionofnewchallengingresearch.Wehopethat thisbookwillencourageyoungresearchersandstudentstoexplorenewfieldsofresearch andapplications.

ThisbookcoversthefundamentalsofMBEtechnologyandscience,andstate-of-the-art MBEtechnologyforelectronicandoptoelectronicdeviceapplications.MBEresearch onmagneticsemiconductormaterialsisalsoincludedforfuturemagneticandspintronic deviceapplications.Thebookconsistsofthefollowingfiveparts:I,Fundamentalsof MBE;II,MBETechnologyforElectronicDevicesApplication;III,MBEforOptoelectronicDevices;IV,MagneticSemiconductorsandSpintronicsDevices;V,Challengeof MBEtoNewMaterialsandNewResearches.Therearetwenty-eightchaptersdivided betweenthefiveparts,allwrittenbyresearchersworkingactivelyinthefrontline.

PartIstartswithanoverviewofthehistoryofMBE,fromtheearlystagesofMBE technologytomodernadvancedMBEtechnology,andtheprinciplesofMBEandfundamentalmechanismsofMBEgrowtharedescribed.Italsoincludesmigration-enhanced epitaxy(MEE),whichhelpsinunderstandingtheatomicprocessesofMBE.Quantumdot formationthroughself-assemblyprocessesandlow-dimensionalstructuresbyselective areaepitaxyarealsodiscussed.InPartII,MBEofIII-nitridesemiconductorsforelectronicdevicesandapplicationofMBEtoelectronicdevicesusingthetunnelingeffectare described.PartIIIcoversMBEforthelightemittersofvarioussemiconductors(III–V andIII-nitrides)withemissionwavelengthsintherangefromterahertztoultraviolet. MBEgrowthofthematerialsformid-infraredphotodetectorsandsolarcellsisalso described.PartIVcoversMBEgrowthfordilutemagneticsemiconductormaterialsand

theirapplicationtospintronicdevicesbasedonIII–V,III-nitrides,II–VI,andIV.MBE growthofferromagnet/semiconductorheterostructuresisalsodescribedforspintronic applications.RecentnewchallengesinMBEresearcharecollectedinPartV.MBEisa versatilegrowthtechniqueforcreatinghigh-qualitymaterialsanddevices,andhasgreat potentialinopeningupnewmaterialandfundamentalresearches.

PartI FundamentalsofMBE

HistoryofMBE

1.1Introduction

JohnOrtonandIhaverecentlypublishedabookentitled MolecularBeamEpitaxy–A ShortHistory [1].Inthatbookwewerenotabletocoverallaspectsofthistopic,somany significantcontributionshadtobeomitted.Inthisshortchapter,evenmoreworkofimportancewillbemissingandwhatfollowsismypersonalviewofhowmolecularbeamepitaxy (MBE)evolved.Beforestartingtodescribehowitoccurred,wehaveofcoursetodecide whatwemeanbyMBE.AsfarasIcandiscover,thetermwasfirstusedinthe Proceedings oftheThirdInternationalSymposiumonGaAsandRelatedCompounds byChoetal.[2] inordertodistinguishMBEfromtheearliergrowthmethods,namelyliquidphaseepitaxy(LPE)andvapourphaseepitaxy(VPE).So,whatisMBE?Onemayconsideritto bearefinedformofvacuumevaporation,butitisclearlysignificantlydifferentfromsimpleevaporationinmanyways.Itusuallyinvolvesmultiplesourcesanddepositionontoa heatedsubstrate.Itusuallytakesplaceinultra-highvacuum(UHV)equipment,inorder toreducethearrivalrateofunwantedspecies.Ingeneral,collision-freemolecularbeams areusedtosupplytherequiredspeciestothesubstrate.Itdiffersfrommanyothergrowth methodsinhavingmanydifferentin-situmeasurements(e.g.electrondiffractionormass spectrometry),whichenablestheprocesstobecontrolledatanatomiclevel.Mypersonal viewisthatthereareatleasttwoMBEtopicsofequalimportance,thereisthestudyof theMBEprocessitselfandtheapplicationofMBEtoprovidesamplesanddevicesofthe highestpossiblequality.InmycareerIhavebeeninvolvedinbothaspectsforavarietyof materialsystemsandregardthemasequallysignificant.InthischapterIwilltrytosummarisewhatwentintoourbookandwillbeginbydiscussingthedevelopmentoftheMBE processbeforeturningtoitsapplication.Beforestartingonthistask,Irecommendtothe MolecularBeamEpitaxy:MaterialsandApplicationsforElectronicsandOptoelectronics,FirstEdition. EditedbyHajimeAsahiandYoshijiHorikoshi.

4MolecularBeamEpitaxy

readertworeviewarticlespublishedbythreeofthepioneersofMBEin1974[3]and1975 [4],respectively.Thefirstdealswithepitaxyingeneral,whilsttheseconddealsexclusively withMBEandgivesacomprehensiveaccountofthestateoftheartatthattime(1975). InwhatfollowsIwilltrytoavoidtoomuchoverlapwiththefollowingchapters,so commentsondevices,magneticsemiconductorsandnewmaterialswillbeverybrief.

1.2TheMBEProcess

AsfarasIamaware,thefirststudiesofgrowth,bywhatwenowcallMBE,wereperformedatPlesseyLabsinCaswellbyBruceJoyceandco-workers.TheygrewSifilms frommolecularbeamsofsilaneonaheatedSisubstrateunderUHVconditionsandthe resultingsampleswerestudiedbyRogerBookeratCambridgeUniversityusingtransmissionelectronmicroscopy(TEM).Thisstudywasconcernedwiththenucleationprocess itselfandverylowgrowthrateswereusedinordertoseparatereactionsonthesurface fromthoseinthegasphase,hencetheneedforcollision-freemolecularbeams.Thiswork waspublishedinaseriesofpapersfrom1966onwards[5–7]andwassummarisedina reviewarticlebyBruceJoycein1968[8].Theequipmentusedforthisstudyhadmanyof theattributesofamodernMBEsystem(havingcollimated,collision-free,molecularbeams ofsilaneimpingingonaheatedSisubstrate)andtookplaceunderUHVconditions;the pressureduringgrowthinthereactionchamberwas ∼3 × 10 9 Torr.Thegrowthrateswere smallcomparedtomodernpractiseandnoin-situcharacterisationwasinvolved,butinall otherrespectsthiscouldbeconsideredtobethefirststudyoftheMBEgrowthprocess.A resultfromthisstudyisshowninFigure1.1,whereitisclearthatSigrowsepitaxiallyon

Figure1.1 MBEdepositionofSifromsilaneonaheatedSisubstrateunderUHV conditions[8].

theheatedSisubstratebydecompositionfromthemolecularbeamofsilane[8],inother wordsbyMBE.

FollowingthisinitialworkonSi,whatfollowedwastheuseofMBEtogrowcompound semiconductors,mainlyIII–VsandtoalesserextentII–VIs,motivatedinpartbythe desiretoproducesemiconductorlasers.Theinitialworkonlaserswascarriedoutusing LPE(forthoseinterestedinthedevelopmentofsolid-statelasers,seetheexcellentbook onthestoryofsemiconductors[9]),butitsoonbecameapparentthatMBEcouldproduce equivalentorbetterresults.WhatfollowedwasthedevelopmentofMBEformany practicaldeviceapplications,includinglasers,transistors,andsoon.

ShortlyaftertheworkatPlesseycamethepioneeringworkatBellLabsbyJohnArthur andco-workers,whostudiedtheinteractionofmolecularbeamsofgalliumandarsenicon aheatedGaAssubstrateusingin-situmassspectrometry[10].Thiswasfollowedbyastudy ofthegrowthofGaAs,GaPandGaAsPbywhathetermedmolecularbeamdeposition[11]. Inhissystemthesourcesweresurroundedbyaliquidnitrogen-cooledshroudandin-situ massspectrometry,Augerelectronspectroscopy(AES)andlow-energyelectrondiffraction(LEED)wereusedforin-situanalysis.Thesystemalsohadprovisionforcleaningthe substratepriortogrowthusinganargoniongun.Themassspectrometercouldberotatedto enableittomeasureeitherthebeamsfromtheKnudsencellsorthespeciesdesorbingfrom thesurface.FromthisstudyitbecameclearthatforIII–Vsthegrowthrateiscontrolledby thearrivalrateofthegroupIIIspecies,providingthereisanexcessofthegroupVspecies. ItalsoshowedthattherelativestickingcoefficientsforAsandPareverydifferent.

ShortlyafterArthur’sworkatBellLabs,AlChojoinedMortonB.Panish’sgroupand embarkedonhispioneeringstudyofMBE.Aseveryoneknows,hemadeoutstanding contributionstobothunderstandingtheMBEprocessanditspracticalapplicationfor devices.Hissystemhadareflectionhigh-energyelectrondiffraction(RHEED)system forsurfaceanalysis,anargoniongunforsurfacecleaning,acylindricalmirroranalysis Augersystemforsurfacecompositionandagainthecellsweremountedwithinaliquid nitrogen-cooledshroud.ThechangefromLEEDtoRHEEDwascrucialandenabled real-timesurfaceanalysis,whichhasbecomethede-factostandardinallmodernMBE systems.IwilldiscussAlCho’smanycontributionstothegrowthofstructuresfor low-dimensionalstructuresanddevicesbelow,buthereIwishtopointoutsomeofhis criticalcontributionstounderstandingtheMBEprocess.Oneofhismostimportant contributionswastoshow,usingRHEED,thatforboththe(111)[12]and(001)[13] surfacesaclearcorrelationexistsbetweenthesurfacestructureweobserveandboththe III–Vratioandsubstratetemperature.Thesecondpaper[13]establishedthefactthat underAs-richconditionsonthe(001)surfaceweseeac(2 × 8)RHEEDpattern,which becomesac(8 × 2)patternunderGa-richconditions;inbetweenwealsoseeother6× patterns.Thiscrucialobservationenabledotherstofollowtheprocessandestablishthe optimumIII–Vratioandsubstratetemperatureforgrowth.In1971healsopublished apapershowinghowtheRHEEDpatterndevelopsduringgrowthfromdiffusespots tostreaksandatthesametimethesurfacegoesfromroughtosmooth[14].Thiswork wasdonelongbeforeatomicresolutionofthesurfacebyatomicforcemicroscopy (AFM)becameavailableandsothemythdevelopedthatstreakyRHEEDpatterns correspondtoatomicallyflatsurfaces;thishasbecomesoingrainedintheliterature thatitisstillstatedasgospeltoday!AlChoneversaidthatandweknowfromfirst principlesthatRHEEDstreakscomefromdisorderonthesurfaceandthatanatomically

smoothsurfacesuchastheSi(7 × 7)reconstructionwillshowsharpspotsintheRHEED pattern[15].

InparallelwiththeworkatBellLabs,theIBMgroupalsostudiedthegrowthofGaAs byMBEusingRHEED.Theyshowedhowthevarioussurfacereconstructionsrelatedto theAs2 :Garatioandsubstratetemperature[16].Inthatpapertheymakethestatementthat ‘ThestreakedRHEEDpatternindicatessmoothnessonanatomicscale’,whichisperhaps theoriginofthemythsurroundingRHEEDstreaks.Thispaperalsomentionstheuseof acomputertocontroltheMBEprocess,usingdatafromthein-situmassspectrometer measurements.

ShortlyafterthepioneeringworkatPlessey,BruceJoyceandJimNeavemovedto Mullards(laterPhilips)ResearchLaboratoriesatRedhilltoworkontheSi–SiO2 interface.Ijoinedthemin1969todoelectronmicroscopy,butthisprovedimpossibledueto lackofequipment.AtthesametimethereweredifficultieswiththeVPEprocessandso collectivelywesetouttostudythegrowthofGaAsbywhatbecameknownasmodulatedbeammassspectrometry(MBMS)(seeFigure1.2).Oursystemwassimilartothat atBell,buthadthemassspectrometermountedinaliquidnitrogen-cooledcryopanelto improvethesignal-to-noiseratio.WealsousedperiodicmodulationandFouriertransform techniquestoextracttheinformation,whichincludedmeasurementsofsurfacelifetime [17].WefirstusedthisequipmenttostudytheevaporationofGaAsunderequilibriumand non-equilibriumconditionsaspartofaPhDprogramme[18].Theresultswereessentially identicaltothosepreviouslyreportedbyJohnArthur[19],whichgaveusconfidencein ournewapproach.InaseriesofpaperswethenstudiedthegrowthofGaAsusingAs4 [20]andAs2 [21],beforestudyingalloyswithmixedgroupIII[22]andmixedgroupV

Figure1.2 ThesystemusedatMullards/Philipsformodulatedbeammassspectrometry measurements.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.