Pesticides in crop production: physiological and biochemical action prabhat kumar srivastava (editor

Page 1


Pesticides

Physiological and Biochemical Action

Prabhat Kumar Srivastava

(Editor)

Visit to download the full and correct content document: https://ebookmass.com/product/pesticides-in-crop-production-physiological-and-bioch emical-action-prabhat-kumar-srivastava-editor/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Phenotyping crop plants for physiological and biochemical traits 1st Edition Latha

https://ebookmass.com/product/phenotyping-crop-plants-forphysiological-and-biochemical-traits-1st-edition-latha/ (eTextbook PDF) for Biochemical, Physiological, and Molecular Aspects of Human Nutrition 4th Edition

https://ebookmass.com/product/etextbook-pdf-for-biochemicalphysiological-and-molecular-aspects-of-human-nutrition-4thedition/

Heat stress tolerance in plants: physiological, molecular and genetic perspectives Kumar

https://ebookmass.com/product/heat-stress-tolerance-in-plantsphysiological-molecular-and-genetic-perspectives-kumar/

Biochemical, Physiological, and Molecular Aspects of Human Nutrition E Book 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/biochemical-physiological-andmolecular-aspects-of-human-nutrition-e-book-3rd-edition-ebookpdf/

Fruit Crops: Diagnosis and Management of Nutrient Constraints 1st Edition Anoop Kumar Srivastava (Editor)

https://ebookmass.com/product/fruit-crops-diagnosis-andmanagement-of-nutrient-constraints-1st-edition-anoop-kumarsrivastava-editor/

Fruit Crops: Diagnosis and Management of Nutrient Constraints Anoop Kumar Srivastava

https://ebookmass.com/product/fruit-crops-diagnosis-andmanagement-of-nutrient-constraints-anoop-kumar-srivastava/

Copper in N-Heterocyclic Chemistry 1st Edition Ananya Srivastava

https://ebookmass.com/product/copper-in-n-heterocyclicchemistry-1st-edition-ananya-srivastava/

New and Future Developments in Microbial Biotechnology and Bioengineering: From Cellulose to Cellulase: Strategies to Improve Biofuel Production Neha Srivastava (Editor)

https://ebookmass.com/product/new-and-future-developments-inmicrobial-biotechnology-and-bioengineering-from-cellulose-tocellulase-strategies-to-improve-biofuel-production-nehasrivastava-editor/

Sociology in Action 1st Edition, (Ebook PDF)

https://ebookmass.com/product/sociology-in-action-1st-editionebook-pdf/

PesticidesinCropProduction

PesticidesinCropProduction

PhysiologicalandBiochemicalAction

Editedby

PrabhatKumarSrivastava

DepartmentofBotany,KSSaketPGCollege Ayodhya UttarPradesh,INDIA

VijayPratapSingh

DepartmentofBotany,C.M.P.DegreeCollege AConstituentPostGraduateCollegeofUniversityofAllahabad Prayagraj UttarPradesh,INDIA

AnitaSingh

CentreofAdvancedStudiesinBotany,BanarasHinduUniversity Varanasi UttarPradesh,INDIA

DurgeshKumarTripathi

AmityInstituteofOrganicAgriculture AmityUniversity,UttarPradesh,Noida UttarPradesh,INDIA

SamikshaSingh

RanjanPlantPhysiologyandBiochemistryLaboratory DepartmentofBotany,UniversityofAllahabad,Prayagraj UttarPradesh,INDIA

SheoMohanPrasad

RanjanPlantPhysiologyandBiochemistryLaboratory DepartmentofBotany,UniversityofAllahabad,Prayagraj UttarPradesh,INDIA

DevendraKumarChauhan

D.D.PantInterdisciplinaryLaboratory DepartmentofBotany,UniversityofAllahabad,Prayagraj UttarPradesh,INDIA

Thiseditionfirstpublished2020 ©2020JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise, exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailable athttp://www.wiley.com/go/permissions.

TherightofPrabhatKumarSrivastava,VijayPratapSingh,AnitaSingh,DurgeshKumarTripathi,Samiksha Singh,SheoMohanPrasadandDevendraKumarChauhantobeidentifiedastheauthorsoftheeditorial materialinthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffice(s)

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproducts visitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkand specificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityor fitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,written salesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductis referredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthe publisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmayprovide orrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengaged inrenderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyour situation.Youshouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethat websiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhen itisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercial damages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Name:Srivastava,PrabhatKumar,1983–editor.

Title:Pesticidesincropproduction:physiologicalandbiochemicalaction /editedbyPrabhatKumarSrivastava,DepartmentofBotany,KSSaketPG College,Ayodhya,Faizabad[and6others].

Description:Firstedition.|Hoboken,NJ:JohnWiley&Sons,Inc.,2020. |Includesbibliographicalreferencesandindex.

Identifiers:LCCN2019047699(print)|LCCN2019047700(ebook)|ISBN 9781119432197(hardback)|ISBN9781119432203(adobepdf)|ISBN 9781119432234(epub)

Subjects:LCSH:Pesticides–Analysis.|Pesticides–Environmentalaspects. |Pesticides–Toxicology.|Agriculturalpests–Control.

Classification:LCCSB951.P444252020(print)|LCCSB951(ebook)|DDC 363.17/92–dc23

LCrecordavailableathttps://lccn.loc.gov/2019047699

LCebookrecordavailableathttps://lccn.loc.gov/2019047700

CoverDesign:Wiley

CoverImage:Farmersprayingpesticide©venusvi/Shutterstock, Bluesky©Jong-WonHeo/GettyImages

Setin10/12ptWarnockProbySPiGlobal,Chennai,India

PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY

Contents

ListofContributors xiii

Preface xix

1DevelopmentofPesticideResistanceinPests:AKeyChallengetothe CropProtectionandEnvironmentalSafety 1

SubramaniPandianandManikandanRamesh

1.1Resistance:TheIntroduction 1

1.2PesticideResistance:AGlobalAnalysis 2

1.3MolecularGeneticsandBiochemicalBasisofPesticideResistance 2

1.4ChangesinPesticideBindingSites 2

1.5NicotinicAcetylcholineReceptors 3

1.6GABAReceptorsandOtherLigand-gatedChlorideChannels 4

1.7Voltage-DependentSodiumChannels 4

1.8InsecticidalMicrobialToxins 5

1.9Biotransformation 6

1.10Acetylcholinesterase 6

1.11Esterases 7

1.12Carboxylesterases(B-Esterases) 7

1.13CytochromeP450Monooxygenases 8

1.14GlutathioneS-Transferases 8

1.15OtherResistanceMechanisms 9 References 9

2FungicideToxicitytoLegumesandItsMicrobialRemediation: ACurrentPerspective 15

MohammadShahid,MohammadSaghirKhanandAlmasZaidi

2.1Introduction 15

2.2NutritionalImportanceofLegumes 16

2.3FungalDiseasesofLegumes:AGeneralPerspective 17

2.4TypesofFungicidesandTheirModeofAction 17

2.5FungicidesUptake,MetabolismandTheirPersistence 20

2.6PhytotoxicityofFungicidestoLegumes:AGeneralPerspective 21

2.7ImpactofFungicidesonPlantGrowth 21

2.8EffectonSymbiosisandYield 23

2.9EffectonChlorophyllContentandPhotosyntheticRates 24

2.10FungicideToxicitytoLegumeRhizobiumSymbiosis 25

2.10.1EffectonNodulation 25

2.10.2EffectofFungicidesonNitrogenaseandLeghaemoglobin 25

2.10.3EffectonDryBiomass 26

2.11MicrobialRemediationofFungicideToxicity 26

2.12ConcludingRemarks 28 References 28

3PesticideMetabolisminPlants,Insects,SoilMicrobesandFishes: AnOverview 35

AnketSharma,VinodKumar,SukhmeenKaurKohli,RavdeepKaur,TajinderKaur, SarojArora,AshwaniKumarThukralandRenuBhardwaj

3.1Introduction 35

3.2MetabolismofPesticidesinPlants 36

3.3MetabolismofPesticidesinInsects 39

3.4MetabolismofPesticidesinSoilMicrobes 41

3.5MetabolismofPesticidesinFishes 43

3.6Conclusion 45 References 45

4BioaccumulationofPesticidesandItsImpactonBiological Systems 55 ShubhraGuptaandKapilGupta

4.1Introduction 55

4.2DispersionofPesticidesintotheEnvironment 56

4.3BehaviorofPesticidesinSoil 57

4.4BioaccumulationandBiomagnificationsofPesticide 58

4.4.1BioaccumulationofPesticidesinPlants 59

4.4.2BioaccumulationofPesticidesinAnimals 60

4.4.3BioaccumulationofPesticidesinHumanandToxicity 61

4.5RegulatoryActivity 62

4.6ConclusionandFuturePerspectives 62 References 63

5ImpactofPesticideExposureandAssociatedHealthEffects 69

JyotiUpadhayay,MahendraRana,VijayJuyal,SatpalSinghBishtandRohitJoshi

5.1Introduction 69

5.2HistoryofEvolutionofPesticides 70

5.3PesticidesRegulations 70

5.4ImpactonEnvironment 71

5.5ImpactonHumanHealth 72

5.5.1PesticideExposure 72

5.5.1.1PesticideExposureRoutesinHumans 72

5.5.1.2AcuteToxicityofPesticides 72

5.5.1.3NeurobehavioralEffectsAfterAcuteToxicity 74

5.5.1.4ChronicToxicityofPesticides 74

5.5.1.5DisruptionofEndocrineSystem 74

5.5.2Carcinogenicity 76

5.5.2.1NeurologicalandNeuro-developmentalEffects 78

5.5.2.2Parkinson’sDisease(PD) 78

5.5.2.3ImmunologicEffects 78

5.5.2.4ReproductiveEffects 78

5.5.2.5EstrogenicEffectsofPesticidesonHumanEstrogen-SensitiveCells 79

5.5.2.6DiethylStilbestrol(DES)Syndrome(ModelforEstrogenicChemicals ExposureintheEnvironment) 79

5.5.2.7DevelopmentalEffects 79

5.6OtherHealthProblems 80

5.6.1EyeProblems 80

5.6.2RespiratoryProblems 80

5.6.3DeterminationofPollutionPotentialofPesticides 80

5.7Conclusion 81 References 82

6MicrobiomeasSensitiveMarkersforRiskAssessmentof Pesticides 89 UpmaSingh,VarshaAshokWalvekarandShilpiSharma

6.1Introduction 89

6.2TheRhizosphere 90

6.3EffectofChemicalPesticidesonSoilMicrobialCommunities 91

6.4EffectofPesticidesonPlantGrowthParametersasaResultofImpacton Microbiome 95

6.5ImpactofSaferAlternatives,BiologicalPesticides 96

6.6ConclusionandFuturePerspectives 102 Acknowledgment 102 References 102

7ArmsRacebetweenInsecticideandInsecticideResistanceand EvolutionofInsectManagementStrategies 109 PritamChattopadhyayandGoutamBanerjee

7.1Introduction 109

7.2DifferentTypesofInsecticide 110

7.3DifferentTypesofInsecticideResistance 116

7.3.1CrossInsecticideResistance 116

7.3.2MultipleInsecticideResistance 116

7.3.3StableInsecticideResistance 116

7.3.4UnstableInsecticideResistance 116

7.4ReasonsforInsecticideResistance 117

7.5MechanismsofInsecticideResistance 118

7.5.1AlterationsinInsecticideDetoxificationCapacity 118

7.5.2AlterationofToxin-ReceptorInteractions 118

7.5.3AlterationsinDetoxificationMetabolism 119

7.5.4AlterationsinInsecticidePenetration 119

7.5.5OtherPotentialMechanismsofResistance 119

7.5.5.1InducedResistance 119

7.5.5.2BehavioralResistance 119

7.6FactorsInfluencingInsecticideResistance 119

7.6.1BiologicalandEcologicalFactors 120

7.6.2GeneticFactors 121

7.6.3OperationalFactors 122

7.7ManagingPesticideResistance 122

7.7.1InsecticideResistanceDatabase 122

7.7.2ChemicalUseStrategiesforResistanceManagement 122

7.7.2.1ManagementbyModeration 122

7.7.2.2ManagementbyMultipleAttacks 123

7.7.2.3ManagementbySaturation 123

7.7.3ReactiveResistanceManagement 123

7.7.4ProactiveResistanceManagement 123

7.7.5ResistanceManagementasaComponentofIPM 123

7.8TechnicalStrategiestoCombatInsecticideResistance 123

7.8.1SearchingandCharacterizingNewandNovelInsecticide 123

7.8.2AmendingBiocontrol 124

7.8.3ExploringNovelInsectPestResistantVarieties 124

7.8.3.1PlantImmunityandInsectResistance 124

7.8.4CombiningKnownInsecticidesinAppropriateProportion 124

7.8.5ModifyingKnownInsecticidalToxins 125

7.9FuturePerspective 125 Acknowledgments 125 ConflictofInterest 125 References 126

8AgriculturalHerbicidesandFungiinSoilExposedtoHerbicides 131 BarberisCarla,MagnoliCarina,CarranzaCecilia,BenitoNicolásandAluffiMelisa

8.1Introduction 131

8.2GeneralAspectsofMainHerbicides 132

8.2.1ClodinafopPropargyl 132

8.2.2ToxicityofCF 132

8.2.32,4-DichlorophenoxyaceticAcid 133

8.2.3.1Toxicityof2,4-D 133

8.2.4Glyphosate 133

8.2.4.1ToxicityofGP 133

8.2.5Atrazine 134

8.2.5.1ToxicityofAtrazine 134

8.2.6Metolachlor 135

8.2.6.1ToxicityofMetolachlor 135

8.2.7Diuron 136

8.2.7.1ToxicityofDiuron 136

8.2.8Imazapyr 137

8.2.8.1ToxicityofImazapyr 137

8.2.9Pendimethalin 137

8.2.9.1ToxicityofPendimethalin 138

8.2.10Paraquat 138

8.2.10.1ToxicityofPQ 138

8.3BiodegradationofMost-UsedHerbicidesbyFungi 138

8.3.12,4-DDegradation 139

8.3.2AtrazineDegradation 140

8.3.3MetolachlorDegradation 140

8.4EffectofHerbicidesonFungi 141

8.4.1Glyphosate 141

8.4.22,4-DichlorophenoxyAceticAcidandOthersHerbicides 142

8.5EffectofHerbicidesonToxicogenicFungiandMycotoxinsProduction 144

8.6EffectofHerbicidesonPhytopathogenFungi 145

8.7Conclusions 146 References 146

9PesticidesUsage,UptakeandModeofActioninPlantswithSpecial EmphasisonPhotosyntheticCharacteristics 159 NiveditaChaudhary,KrishnaKumarChoudhary,S.B.AgarwalandMadhoolika Agrawal

9.1Introduction 159

9.1.1UsageandRequirementofPesticidesonPlants 160

9.1.1.1IntegratedPestManagement(IPM) 161

9.1.1.2CulturalControl 161

9.1.1.3MechanicalControl 162

9.1.1.4BiologicalControl 162

9.1.1.5GeneticControl 162

9.1.1.6ChemicalControl 162

9.1.2GeneralizedModeofActionandUptakeofPesticidesinPlants 162

9.2EffectsofPesticidesonthePhysiologicalCharacteristicsofthePlants 166

9.2.1ChlorophyllFluorescenceAffectedbythePesticides 168

9.2.2PesticidesAffectChlorophyllContentinthePlants 171

9.2.3EffectofPesticidesonPhotosynthesis 171

9.2.4EffectsofPesticidesonStomatalConductance,TranspirationandDark Respiration 173

9.3BeneficialandDetrimentalEffectsofPesticides 173

9.3.1BeneficialEffects 174

9.3.2DetrimentalEffects 174

9.4Conclusions 175 Acknowledgments 175 References 175

10BotanicalPesticidesforEco-FriendlyPestManagement:Drawbacks andLimitations 181 ChristosA.DamalasandSpyridonD.Koutroubas

10.1Introduction 181

10.2OverviewofBotanicalPesticides 182

10.3DrawbacksandLimitations 184

10.4QualityofRawMaterial 184

10.5ProductStandardization 185

x Contents

10.6RapidDegradation 186

10.7ShortShelf-Life 186

10.8RawMaterialAvailability 187

10.9SafetyofBotanicalPesticides 187

10.10RegulatoryApproval 188

10.11FuturePerspectives 188

10.12Conclusions 189 References 190

11PesticideInteractionswithFoodstuffs:CaseStudyofApple 195 GéraldineGiacinti,ChristineRaynaudandValérieSimon

11.1Introduction 195

11.2AppleBiology 196

11.2.1GeneralBotanicalPresentation 196

11.2.2PlantStructuralBiochemistry 196

11.2.3ChemicalCompositionoftheTissuesoftheFruitof Malusdomestica Borkh 197

11.3PesticideInputs 198

11.3.1ChemicalCompositionofPesticides 199

11.3.1.1ActiveMolecules 199

11.3.1.2Surfactants 199

11.3.1.3OtherAdditives 199

11.3.2IdentificationofPesticidesCurrentlyUsedinFrenchAppleOrchards 200

11.4Pesticide-FruitInteractions 200

11.4.1EpidermisStructureandFunctioninApple 201

11.4.2TwoDiffusionPathwaysintheCuticle 202

11.4.3StudyoftheInteractionsBetweenPesticidesandCuticle 204

11.4.3.1MembraneTransportMechanismfortheActiveMoleculesof Pesticides 205

11.4.3.2CuticularMembranePermeability 205

11.4.3.3IdentificationoftheChemicalCompoundsoftheCuticleInteractingwith Pesticides 206

11.4.4IdentificationofFactorsLikelytoInfluencePesticide-Cuticule Interactions 209

11.4.4.1PesticideFormulations 209

11.4.4.2EnvironmentalConditions 211

11.4.4.3PesticideMoleculeDegradationinPlants:NewInteractions 212

11.5ConclusionandFutureProspects 213 References 214

12MultiresiduePesticideAnalysisinCabbageandCauliflowerUsingGas ChromatographyTandemMassSpectrometry(GC-MS/MS) 221 MahadevC.Khetagoudar,MahadevB.Chetti,A.V.RaghuandDineshC.Bilehal

12.1Introduction 221

12.2ExperimentalDetails 222

12.2.1Apparatus 222

12.2.2Reagents 223

12.2.3PreparationofReferenceStandardSolutions 223

12.2.4PreparationofSample 224

12.2.5GC-MS/MSAnalysis 224

12.2.6ValidationStudy 224

12.3ResultsandDiscussion 224

12.3.1OptimizationofGCOvenProgramming 224

12.3.2OptimizationofMS/MS 226

12.3.3QuEChERSProcedureforExtraction 226

12.3.4RecoveryExperimentsofSpikedSamples 227

12.3.5MethodPerformance 227

12.4ApplicabilityoftheDevelopedMethod 229

12.4.1Sampling 229

12.5Conclusion 230 Acknowledgments 230

References 230

13PesticideToxicityAmeliorationinPlantsbyPlantHormones 233 PalakBakshi,ShagunBali,ParminderKaur,AnjaliKhajuria,KanikaKhanna,Bilal AhmadMir,PujaOhriandRenuBhardwaj

13.1Introduction 233

13.2Physico-ChemicalMethods 237

13.2.1ChemicalDetoxificationandDisposalMethods 237

13.2.2PhysicalDetoxificationandDisposalMethods 238

13.3EnzymaticMethods 239

13.3.1Oxidoreductases 240

13.3.2Hydrolases 240

13.3.3Lyases 241

13.4PlantGrowthRegulators 241

13.4.1Auxins 241

13.4.2AbscisicAcid 243

13.4.3Brassinosteroids 244

13.4.4SalicylicAcid 246

13.4.5JasmonicAcid 247

13.4.6Polyphenols 248

13.5Conclusion 249

References 249

14TransgenicStrategiestoDevelopResistantPlantAgainstthe PathogenandPest 259

NeerajKumarDubey,KapilGupta,PawanYadav,JogeswarPanigrahiandAditya KumarGupta

14.1Introduction 259

14.2TechniquesUsedforTransgenicPlantDevelopment 260

14.3TransgenicPlantsDevelopedAgainstPathogensandPests 263

14.3.1Virus 263

14.3.2Bacteria 266

14.3.3Fungi 266

14.3.4Nematodes 270

14.3.5Insects 272

14.3.6ParasiticWeeds 276

14.4RegulationofInsecticidalGeneExpression 278

14.5Advantages 279

14.6Disadvantages 279

14.7FutureStrategies 279 Acknowledgments 280 References 280

Index 291

ListofContributors

S.B.Agarwal DepartmentofBotany InstituteofScience

BanarasHinduUniversity Varanasi India

MadhoolikaAgrawal DepartmentofBotany InstituteofScience

BanarasHinduUniversity Varanasi

India

BilalAhmadMir DepartmentofBotany SchoolofLifeSciences SatelliteCampusKargil UniversityofKashmir JammuandKashmir

India

SarojArora PlantStressPhysiologyLab DepartmentofBotanicaland EnvironmentalSciences GuruNanakDevUniversity Amritsar

India

PalakBakshi

PlantStressPhysiologyLab DepartmentofBotanicaland EnvironmentalSciences GuruNanakDevUniversity Amritsar

India

ShagunBali

PlantStressPhysiologyLab DepartmentofBotanicaland EnvironmentalSciences GuruNanakDevUniversity Amritsar

India

GoutamBanerjee DepartmentofBiochemistry UniversityofCalcutta Kolkata,WestBengal

India

RenuBhardwaj

PlantStressPhysiologyLab DepartmentofBotanicaland EnvironmentalSciences GuruNanakDevUniversity Amritsar

India

xiv ListofContributors

DineshC.Bilehal

DepartmentofChemistry

RevaUniversity

RukminiKnowledgePark,Kattigenahalli Yalahanka,Bangalore,Karnataka

India

SatpalSinghBisht DepartmentofZoology

D.S.B.Campus,KumaunUniversity Nainital,Uttarakhand

India

MagnoliCarina

DepartamentodeMicrobiologíae Inmunología

FacultaddeCienciasExactasFísico QuímicasyNaturales

UniversidadNacionaldeRíoCuarto RíoCuarto,Córdoba

Argentina

BarberisCarla

DepartamentodeMicrobiologíae Inmunología

FacultaddeCienciasExactasFísico QuímicasyNaturales

UniversidadNacionaldeRíoCuarto RíoCuarto,Córdoba

Argentina

CarranzaCecilia

DepartamentodeMicrobiologíae Inmunología

FacultaddeCienciasExactasFísico QuímicasyNaturales

UniversidadNacionaldeRíoCuarto RíoCuarto,Córdoba

Argentina

PritamChattopadhyay DepartmentofBiotechnology GauhatiUniversity Guwahati,Assam

India

NiveditaChaudhary DepartmentofVegetableandFieldCrop Research AgriculturalResearchOrganization GilatResearchCenter

M.P.Negev Israel and DepartmentofBotany InstituteofScience

BanarasHinduUniversity Varanasi

India

MahadevB.Chetti IndianCouncilofAgriculturalResearch Pusa,NewDelhi

India

KrishnaKumarChoudhary DepartmentofBotany SchoolofBasicandAppliedSciences CentralUniversityofPunjab Bathinda

India

ChristosA.Damalas DepartmentofAgriculturalDevelopment DemocritusUniversityofThrace Orestiada

Greece

NeerajKumarDubey DepartmentofBiotechnology SchoolofLifeSciences CentralUniversityofRajasthan BandarSindri,Dist-Ajmer

India

GéraldineGiacinti

LaboratoiredeChimieAgro-Industrielle (LCA)

UniversitédeToulouseINRA,INPT, Toulouse

France and Centred’Applicationetde TraitementdesAgroRessources(CATAR) INPT,Toulouse

France

AdityaKumarGupta DepartmentofBiotechnology SchoolofLifeSciences CentralUniversityofRajasthan BandarSindri

Dist-Ajmer

India

KapilGupta DepartmentofBiotechnology SchoolofLifeSciences CentralUniversityofRajasthan BandarSindri

Dist-Ajmer

India

ShubhraGupta DepartmentofBiotechnology SchoolofLifeSciences CentralUniversityofRajasthan BandarSindri

Dist-Ajmer

India

RohitJoshi DivisionofBiotechnology CSIR-InstituteofHimalayanBioresource Technology Palampur HimachalPradesh

India

VijayJuyal DepartmentofPharmaceuticalSciences KumaunUniversity CampusBhimtal,Uttarakhand

India

ParminderKaur PlantStressPhysiologyLab DepartmentofBotanicaland EnvironmentalSciences GuruNanakDevUniversity Amritsar

India

RavdeepKaur PlantStressPhysiologyLab DepartmentofBotanicaland EnvironmentalSciences GuruNanakDevUniversity Amritsar

India

TajinderKaur PlantStressPhysiologyLab DepartmentofBotanicaland EnvironmentalSciences GuruNanakDevUniversity Amritsar

India

AnjaliKhajuria DepartmentofZoology GuruNanakDevUniversity Amritsar

India

KanikaKhanna PlantStressPhysiologyLab DepartmentofBotanicaland EnvironmentalSciences GuruNanakDevUniversity Amritsar

India

xvi ListofContributors

MohammadSaghirKhan DepartmentofAgriculturalMicrobiology FacultyofAgriculturalSciences AligarhMuslimUniversity Aligarh,UttarPradesh

India

MahadevC.Khetagoudar DepartmentofChemistry RevaUniversity RukminiKnowledgePark,Kattigenahalli Yalahanka,Bangalore,Karnataka

India

SukhmeenKaurKohli PlantStressPhysiologyLab DepartmentofBotanicaland EnvironmentalSciences GuruNanakDevUniversity Amritsar

India

SpyridonD.Koutroubas DepartmentofAgriculturalDevelopment DemocritusUniversityofThrace Orestiada

Greece

AluffiMelisa DepartamentodeMicrobiologíae Inmunología

FacultaddeCienciasExactasFísico QuímicasyNaturales UniversidadNacionaldeRíoCuarto RíoCuarto,Córdoba Argentina

BenitoNicolás DepartamentodeMicrobiologíae Inmunología FacultaddeCienciasExactasFísico QuímicasyNaturales UniversidadNacionaldeRíoCuarto RíoCuarto,Córdoba

Argentina

PujaOhri DepartmentofZoology GuruNanakDevUniversity Amritsar

India

SubramaniPandian DepartmentofBiotechnology ScienceCampus,AlagappaUniversity Karaikudi,TamilNadu

India

JogeswarPanigrahi DepartmentofBiotechnology SchoolofLifeSciences CentralUniversityofRajasthan BandarSindri Dist-Ajmer

India

V.Raghu DepartmentofFoodTechnology JainUniversity Kanakapura,Bangalore,Karnataka

India

ManikandanRamesh DepartmentofBiotechnology ScienceCampus,AlagappaUniversity Karaikudi,TamilNadu

India

MahendraRana DepartmentofPharmaceuticalSciences KumaunUniversity CampusBhimtal,Uttarakhand

India

MohammadShahid DepartmentofAgriculturalMicrobiology FacultyofAgriculturalSciences AligarhMuslimUniversity,Aligarh

India

AnketSharma PlantStressPhysiologyLab DepartmentofBotanicaland EnvironmentalSciences GuruNanakDevUniversity

Amritsar India and DepartmentofBotany DAVUniversity Sarmastpur,Jalandhar India and StateKeyLaboratoryofSubtropical Silviculture ZhejiangA&FUniversity Hangzhou China

ShilpiSharma DepartmentofBiochemicalEngineering andBiotechnology IndianInstituteofTechnologyDelhi HauzKhas,NewDelhi India

ValérieSimon LaboratoiredeChimieAgro-Industrielle (LCA) UniversitédeToulouseINRA,INPT, Toulouse France

UpmaSingh DepartmentofBiochemicalEngineering andBiotechnology IndianInstituteofTechnologyDelhi HauzKhas,NewDelhi India

AshwaniKumarThukral PlantStressPhysiologyLab DepartmentofBotanicaland EnvironmentalSciences GuruNanakDevUniversity Amritsar

India

JyotiUpadhayay DepartmentofPharmaceuticalSciences KumaunUniversityCampus Bhimtal,Uttarakhand

India and SchoolofHealthSciences UniversityofPetroleum&EnergyStudies DehradunUttarakhand

India

VarshaAshokWalvekar DepartmentofBiochemicalEngineering andBiotechnology IndianInstituteofTechnologyDelhi HauzKhas,NewDelhi

India

PawanYadav DepartmentofBiotechnology SchoolofLifeSciences CentralUniversityofRajasthan BandarSindri Dist-Ajmer

India

AlmasZaidi DepartmentofAgriculturalMicrobiology FacultyofAgriculturalSciences AligarhMuslimUniversity

Aligarh,UttarPradesh

India

Preface

Pesticideshavehadatremendousroleinenhancingproductivityandyieldofcrops prominentlyafterthesecondhalfofthetwentiethcentury.Mostofthecountriesacross theworldareobservingnewerheightsintotalaswellasspecificcropproduction despitethefactthattheagriculturalfieldsarebeingusedinnon-agrariantaskslike theconstructionofroads,railways,industriesandbuildingsforhumansettlements. Amassiveextentofcreditgoestouseofagrochemicalsingeneralandpesticidesin particular.Increasinghumanpopulationandconstrictingagriculturallandsdonot permitustogiveuptheuseofpesticidesandtoswitchovercompletelytowards organicfarming.Additionally,developmentinindustriesandagriculturearetakenasa generalcriterionfordevelopmentofanycountry.Thishasresultedintoimprudentand unlimitedusageofagrochemicalsinourfarmlandsleadingtodisturbanceinabioticas wellasbioticcomponentsofsoilandwaterecosystemandculminatingintoecological imbalance.

Pesticidesaretheonlytoxicchemicalsdeliberatelyreleasedintotheenvironmentin largeamounts.Someofthepesticides(organochlorines)arebiomagnifiedintheterrestrialecosystems,sotheywerebannedworldwide.Theorganophosphoruspesticides wereintroducedinthe1970sasreplacementsforthepersistentorganochlorines.The increaseduseoforganophosphoruspesticidesoriginallyseenaslesserthreattothe environmentbutbythetimeorganophosphoruspesticideshavebecomeaseriousenvironmentalconcernduetotheirhighacutetoxicitydespitetheirlowpersistence.Since mostofthepesticidesarenon-biodegradable,theyhavelongresidencetimeinwaterand soilandthusmayenterandmagnifyatvarioustrophiclevels.Excessiveandimprudent usageofpesticidesnotonlysaturatesthesoilbutalsointoxicatesthecropsbyharming theiroverallphysiologyandbiochemistry.Inadditiontothis,non-targetorganismsthat areimportantcomponentsofthesoilecosystemlikesoilmicrobes,bacteria,fungiand bluegreenalgae(privilegedtobeassociatedwithatmosphericnitrogenfixation,fertilityofthesoilandnutrientrecycling)maybeharmed,whichmayindirectlyaffectthe productivityandfoodsecurity.

Thisbooktitled‘PesticidesinCropProduction:PhysiologicalandBiochemicalAction’ isanimportantcontributiontowardsunderstandingmodeofpesticideactioninplants, pesticidemetabolisminsoilmicrobes,plantsandanimals,bioaccumulationofpesticides,sensitivenessofmicrobiometowardspesticidesandconsequentriskassessment, developmentofpesticideresistanceinpests,microbialremediationofpesticideintoxicatedlegumes,pesticidetoxicityameliorationinplantsbyplanthormones.Thisbook

xx Preface

alsoencompasseseco-friendlypestmanagement,transgenicstrategiestodevelopresistantplantagainstthepathogenandpestandimpactofpesticideonfoodstuffsand humanhealth.AnalysisofpesticidebyGC-MS/MS(GasChromatographytandemMass Spectrometry)isareliablemethodforthequantificationandconfirmationofmulticlass pesticideresiduesincabbageandcauliflowerascasestudieshaswellbeenincluded.

Writinganauthoritativebookthatremainsrelevantoverthecomingyearscannot easilybedonebyanindividual,butratherrequirestheconcertedeffortofateamof expertscientists.Thisbookisaconcertedtaskofanassemblageofscholarsworkingin differentpartsofIndiaandtheworldalongwithallthesixeditors.Alleditorsthankfully acknowledgetheircontributions.Alleditorsalsogratefullyacknowledgetheteamat JohnWiley&SonsLimitedwhichmadepossibletheproposedbookinitspresentform.

Editors

PrabhatKumarSrivastava

VijayPratapSingh

AnitaSingh

DurgeshKumarTripathi

SamikshaSingh

SheoMohanPrasad

DevendraKumarChauhan

DevelopmentofPesticideResistanceinPests:AKeyChallenge totheCropProtectionandEnvironmentalSafety

SubramaniPandianandManikandanRamesh

DepartmentofBiotechnology,ScienceCampus,AlagappaUniversity,Karaikudi,630003,TamilNadu,India

1.1Resistance:TheIntroduction

Resistanceisthemicro-evolutionarycourseofactionbywhichgeneticadaptation throughpesticideselectionhasresultedinincreasedarthropodpopulationsforwhich managementismoredifficult(WhalonandMcGaughey1998).Theoutcomeofresistanceisthemalfunctionofplantprotectiontools,strategiestolimiteconomicinjuryof pestpopulationswherefailureisduetoageneticadaptationinthepest.

Resistancetopesticidesisacomplicatedandsubstantialproblemincircumstances wherechemicalsareusedtoeradicatepestpopulations.Ontheotherhand,againstthe economic,communal,andecologicalcostslinkedwiththisproblem,resistantinsects areaphysiologicalmarvel.Certainpopulationshavebecomehighlyresistanttoaspecifiedinsecticide,whichcansurviveexposuretoalmostanydose.Morethan440speciesof pestwhichhavedevelopedresistancetooneormorepesticideshavebeendocumented. Oneofthemostamazingthingsinevolutionaryadaptationispesticideresistancedue toenvironmentalchanges,especiallywhenthishasoccurredrelativelyquicklyinterms ofevolutionarytime.Prevalentdistributionofresistanceincropsandlivestockpests isthemajorthreattotheagriculturalproductivityandmanyoftheseriousresistance problemsarealsodocumented.

Understandingthemolecularmechanismsandresistanceadaptationsinpestpopulationsisasignificantproblem.However,themolecularmechanismsofpesticideresistancehavecontinuedandtheunderstandingoftheseresistancemechanismsplaysan importantroleinimprovingtheintegratedmanagementandinidentifyingnewtargets forthevaccinedevelopmentwhichisusefulforeradicatingthepesticide-resistantpests onagricultureandforpublichealth.Knowledgeaboutresistancewillpavethewayfor thefundamentalperceptionsintoevolution,genetics,physiology,andecology.Resistancecanalsomakeasevereeconomiclosswithsocialdisruption.

Overthepast15years,theglobalareaallottedtotransgeniccropsismorethan69 millionhectaresforreducinginsecticidaltoxinsresultantofthebacterium Bacillus thuringiensis (Bt)whichhasemergedquickly(James2008).Amongthese,Btcotton andBtmaizewerethemostcultivatedplantsinthisarea(James2008).Effectivecontrol oftargetpests,diminisheduseofconventionalinsecticides,andreducedharmto

PesticidesinCropProduction:PhysiologicalandBiochemicalAction, FirstEdition. EditedbyPrabhatKumarSrivastava,VijayPratapSingh,AnitaSingh,DurgeshKumarTripathi, SamikshaSingh,SheoMohanPrasad,andDevendraKumarChauhan. ©2020JohnWiley&SonsLtd.Published2020byJohnWiley&SonsLtd.

1DevelopmentofPesticideresistanceinpests

non-targetorganismsaretheimportantbenefitsoftheuseofBtcrops(Huangetal. 2005;Cattaneoetal.2006;Marvieretal.2007;Hutchisonetal.2010).Anotherthemeis, givinggreaterimportancetofieldtrialsandassessmentofresistanceinfieldpopulations willimproveresistancemanagementfromconcepttopractice.Thefinalthemeisthe nextgenerationmethodologyofpestcontrolwhichmaygreatlydependonmicrobial toxins,mostlythroughtheexpressionof Bt toxingenesingeneticallyengineeredcrop plantsandmicroorganisms.Theremarkableusefulnessof B.thuringiensis inkilling somepestsbutwhicharenotapplicableforallthespeciesisoneofthedrawbacksof thistechnology.

1.2PesticideResistance:AGlobalAnalysis

Theevolutionofresistanceagainstpesticidesisafundamentalproblemofmodernagriculture(Takahashietal.2017).TheAnalysisofGlobalPesticideResistancearosebecause oftheexponentialincreaseinthecasesofresistanceworldwideduringthesecondhalf ofthetwentiethcenturyandalsotherecognitionbyindustriesofnewchemistriesended upwithnovelmodesofactionwhichareapreciousresourcethatshouldbeconserved. InternationalInsecticideResistanceActionCommittee(IRAC)mainlyworkedondifferentaspectsofresistancemanagement,suchasdetectionandmonitoringprograms,and evenmorehelpfulisIRAC’sutmostdevelopment,whichistheefforttodevelopresistancereportingbymodeofaction(MOA)classificationofpesticides.Basedonthat, theagrochemicalindustrieshaveoftenputtheefforttounderstand,define,monitor, andmanagepesticideresistance(www.irac-online.org).Thepesticideindustryformed IRACandotherresistanceactioncommitteesafterscientific,public,andnewregulatory pressures.

1.3MolecularGeneticsandBiochemicalBasisofPesticide Resistance

Forthelastthreedecades,incredibleadvancementshavebeenmadeinunderstanding resistanceofpesticidesinarthropods,initiallybiochemicalandphysiologicalmechanisms,andmorerecentlyatthelevelofmoleculargeneticsandgenomics.Thegreatest improvementinmoleculargeneticstudieshasexposedmanydetailsabouttheresistancemechanisms,bothatindividualandpopulationlevels.Thatimprovementhasprovidednewperceptionsonthemicroevolutionaryprocessesthathavebeenproducedby them;ithasalsorevealedunforeseencomplexitiesthatareverycomplicatedtounravel. Thereareseveralmechanismsavailableforpesticideresistancewhichhasbeendiscussedbelow(Figure1.1).

1.4ChangesinPesticideBindingSites

Everypotentpesticidehasoneormorespecificbindingsitesonmacromoleculeswithin theinsectexceptmitochondrialuncouplers.Themalfunctioningofthemacromolecularsiteofactionresultsinthebindingofinsecticide,thatinitiatesacascadeofevents

Mechanism of Pesticide Resistance

Molecular genetic basisBiochemical basis

Changes in pesticide Sites of Action

Insecticidal microbial toxins

Biotransformation

Nicotinic acetylcholine receptors

GABA receptors ligand-gated chloride channels

Voltage-dependent sodium channels

Acetylcholinesterase

Esterases

Carboxylesterases

Cytochrome P450 monooxygenases

Glutathione Stransferases

Figure1.1 Schematicdiagramforpesticideresistancemechanisms. whichleadstothedeathoftheparticularinsect.Changesininsecticidebindingtothe siteofaction,ortodisturbitsfunctionsafterbinding,mustleadtomajorchangesinthe overallimpactontheinsect.Thereisplentyofevidencethatchangesaretheinitialcause ofresistancetodifferenttypesofpesticides.Mostly,thepointmutationsleadtocritical changesinaminoacidresiduesinthereceptormoleculecomparedtochangesinthe expressionlevelofexistingreceptors.However,insomecasesitseemsthatafunctional targetsiteisnotdangerousfortheexistenceoftheinsecteventhoughitsinteraction withthepesticideleadstodeath.Significantchangesonsites,eitherthroughmutation ordecreasedexpression,arenotalwaysdisadvantageous,andsometimesthecomplete eliminationofthegeneproduct(nullmutation)isaviablepathwaytogreaterlevelsof resistance.Therehavebeenseveralresearcheswhichlike,Gahanetal.(2001)confirmed thelossofacadhedrin-bindingproteinfor B.thuringiensis toxinin Heliothisvirescens; thelossofthenicotinicacetylcholinereceptorsubunitthatbindsthespinosynsinresistantDrosophila(Orretal.2006);andthelossofabindingproteinforjuvenilehormone analogsinDrosophila(WilsonandAshok1998).

1.5NicotinicAcetylcholineReceptors

TherearetwodifferenttypesofneurotransmitterAChavailableininsects,including muscarinicreceptors,whichwerelinkedtoslowerG-proteinmediatedpostsynaptic actions,andanicotinicreceptorthatopenionchannelsthroughtheneuronalmembraneprominenttoarapidbuttransientshiftinmembranepolarization.Inresistant strainsof Drosophilamelanogaster formedbymutagenesis,resistanceisattributable

1DevelopmentofPesticideresistanceinpests

tonumerousdifferentmutationsinageneencodingtheD�� 6nAChRsubunit,which insomecasesleadstothecompletelossofthissiteofactionfortheinsecticide(Orr etal.2006).Resistancetoneonicotinoidsisincreasedwiththeirextensiveuseandhas beenreviewedbyNauenandDenholm(2005).Inafewcases,increaseddegradative metabolism,mainlybymonooxygenases,isinvolved.However,inothercases,evidence foranalterationinthesensitivityofthenervoussystemtotheeffectsoftheinsecticide hasbeenreported(Liuetal.2005;Mota-Sanchezetal.2006).Inthebrownplanthopper,resistancetoimidaclopridhasbeenattributedtoamutationinAChRsubunitsthat decreasesspecificbindingtonervoussystemmembranepreparations(Liuetal.2005). Theoccurrenceofasinglemutation(Tyr151Ser)inaconservedregionbelievedtobe involvedinAChbindingwasfoundintwosubunits,Nl�� 1andNl�� 3,andassociated wellwiththeexistenceofimidaclopridresistance.Whentheseinsects �� -subunitswere co-expressedinrat �� 2-subunitstoformchimericreceptors,avirtuallycompletelossof imidaclopridbindingwasobservedcomparedwiththesamesubunitsfromsusceptible insects.

1.6GABAReceptorsandOtherLigand-gatedChloride Channels

�� -Aminobutyricacid(GABA)isthemaininhibitorytransmitterintheinsectnervous system,withGABA-ergictransmissionoccurringbothwithinthecentralnervoussystemandattheneuromuscularjunction(Casida1993;HawkinsonandCasida1993; CasidaandPulman1994;OzoeandAkamatsu2001;Buckinghametal.2005;Ozoe etal.2009;Ozoe2013).Thesefast-actingGABAreceptors(GABARs)arelinkedtothe channelsthatgatechlorideionsandtheyleadtohyperpolarization.Anothergroupof GABARsininsects’gatecationsishavinganelectrifyingeffect,butverylessisknown abouttheirfunctionsandtheirinsecticideaction.TheirMOAisdistinctfromthatofthe GABARsgatingchloridechannels(Gisselmannetal.2004).Thestructures,functions, moleculargenetics,andinteractionsofinhibitoryGABARswithinsecticideshavebeen reviewedbyBuckinghamandSattelle(2005)andBuckinghametal.(2005).ThestructureofinhibitoryGABARsispentamerswiththesubunitsorganizedtoformacentral ion-conductingpore.Eachsubunithasfourtransmembranedomainsandthereceptorhasabundantdistinctbindingsitesforxenobiotics.Thereareseveralformsofthe subunitswhichexist invivo eventhoughsomewhatlittleisknownaboutthenumber, nature,specificfunctions,orlocalizationofthenativereceptors.Ionotropicreceptors thataregatechlorideionsoccurintheinsectnervoussystemhavingeitherglutamateor histamineastheiractivator.Particularly,glutamate-gatedchannels(glutamateHreceptor)(GluHR)haveavitalroleininsecticideaction.Forcertaincompounds,including theavermectins,whichactonbothGluHRandGABARarepossiblyinvolvedintheir completetoxicitytoinsects.

1.7Voltage-DependentSodiumChannels

Sodiumionsoftenmoveacrosstheaxonalmembraneisanimportantfactorin theenhancementofanerveactionpotential.Theopeningofvoltage-dependent

sodium-specificchannelsproducedasthewaveofdepolarizationinducedbyan approachingactionpotentialreachesacriticalvalue.Thesodiumchannelsarequickly inactivated,aftertheopening,whichswitchovertheinwardflowofsodiumcurrentand consequentlylimitsthedepolarization.Threedifferentgroupsofinsecticidesinfluence thisprocessbytheiractionsonvoltage-dependentsodiumchannels(VDSCs).Even thoughhavingdifferentstructures,itsrelativesandthepyrethroidshavetheirMOAasa commonfeature.Theyslowchanneldeactivationandtrapsodiumchannelsintheopen configuration,tomodifythesodiumchannels,resultinginelongatedchannelopening evidencedbyalargetailcurrentassociatedwithrepolarization(Vijverbergetal.1982; Narahashi1988).Thismayleadtotherepetitivedischargeofactionpotentials,or,if depolarizationisinanelevationstate,acompleteblockonaxonaltransmissionwill formed(Narahashi2002).Bothoftheactionshavegreatereffectsonthenervous system.IndoxacarbisanoxadiazineinsecticidethatactsonVDSCsbyadifferent mechanismofactions.IndoxacarbanditsN-decarbomethoxylatedmetaboliteblock thesodiumchannelsofvariousinsectsandmammalianneuronsbymaintainingVDSCs inaninactivatedform(Wingetal.2010).Thesestudiesproposedthattheactionsof indoxacarbandDCJW(N-decarbomethoxylatedmetabolite)sharesomesimilarities withthatoflocalanesthetics,whichimpedesodiumcurrentsbybindingselectivelyto theinactivatedstateofthesodiumchannel(Hille1977).Changesintargetsitemediated resistancetoindoxacarbhavenotyetbeenreported,however,mutationsintheVDSC areageneralcauseofresistancetoDichlorodiphenyltrichloroethanes(DDT)andthe pyrethroids(Soderlundetal.2002;SoderlundandKnipple2003;KhambayandJewess 2005;Soderlund2005;Dong2007).

1.8InsecticidalMicrobialToxins

Currentlydifferenttypesofproteinaceousbacterialtoxinswereutilizedfortheinsect control.Amongwhich, B.thuringiensis (Bt )and Bacillussphaericus (Bs)arethetwo majorsources. Bt strainsproducearraysofcrystalprotein �� -endotoxinswhichare availedeitherinprevalentspray-onapplicationsoraregeneticallyengineeredinto plants.Morethan200disparatetoxin-producing Cry geneshavebeenestablished.The collection,nomenclature,andusesof Bt toxinshavebeensummarizedbyBravoetal. (2005).Certaingroupsofendotoxinsareproducedwhichareintendedtobeprofoundly specificfordifferentordersofinsects,includinglepidopterans,coleopterans,and mosquitoes.Behindthesolubilizationandproteolyticactivationintotheinsectgut, itisconsideredthat Bt endotoxinsapplytheirtoxicitybybindingtoreceptorsonthe midgutepithelialcellsofsensitiveinsects.Thegroupofseveraltoxinmoleculesthen directstheirinsertionintotheluminalmembranetoformapore.Thiscomesupwith thelossofioniccontrolwhichleadstotheosmoticdisruptionofthemidgutcells causesswellingandlysis,whichislethal.Sometypesofreceptor,includingglycosyl phophatidylinositol-anchoredaminopeptidase-N (APN),adigestiveenzymeand cadherinsforthe Bt toxins,whicharetoxictolepidopteranshavebeenidentifiedonthe midgutepithelialcellsurface,knowntoactasintercellularadhesionmolecules.Various receptortypesarevisiblyinvolvedintheactionsofdifferent Bt toxins,whilebinding site-basedresistancetoCry1Atoxinsdoesnotdirecttocross-resistancetoCry1C toxins(FerréandVanRie2002).Thedifferentmechanismsofresistanceto Bt genes

1DevelopmentofPesticideresistanceinpests

whichhavebeendiscovereduntilnow,havebeenreviewedbyFerréandVanRie(2002), Bravo etal .(2005),andGriffittsandAroian(2005).Thediamond-backmoth(Plutella xylostella),istheonlyoneinsectspeciesknowntohaveresistanceto Bt toxinsduring fieldexposureandthecompletemechanismforthisresistanceisnotidentified.Yet,it ismonogenicandpartiallyrecessiveandischaracterizedbyaremarkabledecreasein thespecificbindingofradiolabelledCry1Atoxinstoencounterthebordermembrane vesiclesisolatedfromtheresistantmidguts(FerréandVanRie2002;Sayyedetal.2004, 2005).Theexposureofaprematurestopcodonintothecadherincodingsequencehas alsobeendirectlylinkedtoCry1Acresistancein Helicoverpaarmigera (Xuetal.2005). Inthisperspective,itisfascinatingthatthreedifferentrecessivecadherinmutations wererecognizedinthefield-identifiedpinkbollworms, Pectinopheragossypiella (Morin etal.2003).Respectivegeneticchangesleadtothedeletionofatleasteightaminoacids upstreamofthepresumedbindingzone.Eventhough,resistanceonlyarosefroma combinationofanytwoofthedeletion-bearingalleleswerecloselylinked.

1.9Biotransformation

Themetabolicchangesofaninsecticidewithinthetargetorganismareafrequent defensivemechanismthatdirectedtowardadecreaseintheperiodandintensityof theexposuretothetargetsite,whichminimizetheprobabilityoflethalcondition. Severalinsectshavedevelopedwideandrapidlyinducibledefensesagainstpivotal toxicxenobioticsthatareinitiallytakeninduringthediet;therefore,thesedefenses maybemodifiedtobehaveasthepathofresistance.Threekeymechanismsof metabolictransformationofinsecticidescausethehugenumberofexamplesof biotransformation-basedresistance:(i)oxidation;(ii)esterhydrolysis;and(iii)glutathioneconjugation.Although,theproductsofthesereactionsaremostfrequentlyless toxicthantheparent,therearenumerousexamplesofanincreaseintoxicityasaresult ofabiotransformationreaction,inwhichtheinsecticideisappliedasapro-pesticide. Apparently,anincreaseintherateofmetabolicconversioninthiscaseshouldresultin beingmoretoxictotheinsect,andadecreaseintherateofactivationisoneoftheroutes toresistance.Bycomparingtotheresistanceevolvingfromsite-of-actionchanges inwhichmutationsinthestructuralgenesaremostpredominateasafundamental mechanism,biotransformation-basedresistancefrequentlyinvolvestheoverexpression ofprevailingmetabolicenzymesbymodificationsintheirregulatorysystemsand bygeneduplication.Esterases,cytochromeP450monooxygenases,andglutathione transferasesarethemostsignificantfactorsinspecificcasesofresistance.Further conjugationreactions,includingglucoseandsulfateconjugationslikewiseappearto involvelittleroleinwell-knowncasesofresistance.

1.10Acetylcholinesterase

Acetylcholinesterase(AChE)playaprimaryroleintheremovalofexcitatoryneurotransmittersandtheacetylcholine(ACh)fromcholinergicsynapses,whichisthetargetregionforcarbamateandorganophosphateinhibitorsinbothinsectsandvertebrates(Giacobini2000).TheinhibitionofAChEthroughaccumulationofAChleads

tothecontinuousstimulationandthedesensitizationoftheAChreceptors(AChR), severeneurologicaldisruption,andeventuallytodeath.Themoleculararchitectureof thehomodimericAChEenzymeanditscatalyticsitewereinitiallydescribedbasedon crystallographicanalysisinTorpedo(Sussmanetal.1991)andtheparallelmajorityof structuralfeaturesintheDrosophilaenzymeweredescribedbyHareletal.(2000)and revisedbyOakeshottetal.(2005).Resistancetotheinsecticideslikeorganophosphorusandcarbamateinmostofthearthropodpestswereconferredbyaseriesofcommon/sharedpointmutationsinacetylcholinesterase(AChE).However,themutations linkedwiththeinsecticidesensitivityoftenresultsinreducedcatalyticefficiencyand leadstoafitnessdisadvantage(Leeetal.2015).

AChEhasdifferentallostericsitesthatmodifytheactivityoftheenzyme,buttheseare notusuallyconsideredastheprimarysiteofactionofpesticides.Dipterafamilyinsects haveonlyonegeneforAChEwhereasotherinsects,includingmitesandmosquitoes, havetwo,whilepossiblyonlyone(ACE-1)isexpressedin,andisactiveineradicating AChfromthecentralnervoussystem(Russelletal.2004).Interestingly,thisgeneisnot theorthologousoreventhesingleenzymeinthehigherDiptera,soitseemsthattwo somewhatdistinctgenesencodefortheneuronalAChEevenindifferentmembersof thesameorder,Diptera(Weilletal.2002).RecentlythethirdACEgenehasidentified byFournier(2005)andthefunctionsoftheotherACEgenesareunknown,buttheydo notappeartoberelatedtoresistance.

1.11Esterases

ThemajorityofEstersarethemostwidelyusedinsecticides.ThosearealmostallcarbamatesandOPs,maximumofpyrethroidsandothercompoundssuchasindoxacarb, methopreneandsimilarjuvenoids,fluacrypyrim,andbifenazate.Mostofthecases,the hydrolysisoftheestergroupleadtoasignificantreductionin,ortotalremovaloftoxicity.Onlyinafewcasesdoesesteroramidehydrolysisactasanactivationreaction;for example,indoxacarb,acequinocyl,ordinitrophenolesterssuchasdinocapareallinfluencedbyesterhydrolysisfortheirtoxicity.Subsequently,esteraseactivityfrequently playsanimportantroleindeterminingthecomparativeresponsesandresistanceto presentinsecticides.Ininsects,esteraseshydrolysetheestersofcarboxylicacidsso thereforetheyaretermedascarboxylesterases.Thenatureandconsequenceofesterases ininsecticidetoxicologyandresistancehavebeenreviewedbyOakeshottetal.(2005) andWheelocketal.(2005).Thedifferenttypesofstructuralfeaturesofthesubstrate alsochangestheratesofesterhydrolysis.

1.12Carboxylesterases(B-Esterases)

Morethanthirtygenesofinsectshavebeeninvolvedintheproductionofesterasesthat hydrolysethecarboxylicacidesters.Theyaremembersofthelargeandversatilefamily ofenzymesthatcontainthe �� /�� hydrolasefoldwithanucleophile–acid–histidine catalytictriad(Oakeshottetal.1999),andwhichwasdistributedintoseveralsubgroups (Oakeshottetal.2005;Wheelocketal.2005).Onesubgroupwhichisinhibited byOPsandmostimportantly,whichhydrolysesaliphaticsubstratesisgenerally

1DevelopmentofPesticideresistanceinpests

termedascarboxylesterases.Theseincludephosphotriesterases.Calcium-dependent phosphotriesterasespromptlyhydrolysemanyinsecticidalOps;tobeprecisethemore labilephosphateesters,mostlycleavingtheesteratthemostanhydridebonds(Vilanova andSogorb1999).Mostly,inmammals,itpresentspredominantlybutmuchlessin fish,birds,andseveralinsectsOPmetabolism(Dauterman1983;VilanovaandSogorb 1999).

1.13CytochromeP450Monooxygenases

ThecytochromeP450catalyzesthemultifunctionalmonoxygensases,whichencompassesthehighlyversatilesystemforthemetabolismofinsecticides.Theseenzymesplay amajorroleinthetoxicityofmanypesticidesandareakeyplayerinthedevelopment ofresistanceininsects.ThecytochromeP450-dependentmonooxygenasesmediated resistancehasbeenreviewedbyBergéetal.(1998),Scott(1999),andFeyereisen(1999, 2005).ThemonooxygenasewasregulatedbyNADPHthroughaflavoprotein,NADPH: cytochromeP450oxidoreductase.Cytochromeb5willpossiblyinvolveelectrontransferswithsomeformsofcytochromeP450.AhugenumberofthecytochromeP450 (CYP)superfamilygenesispresentininsects,withnearly100sofarcharacterizedin someinsectgenomes.Someofthegenespossessknownphysiologicalfunctionsinintermediarymetabolism,butothersplayaroleindefensesagainstthemanyxenobiotic chemicals.PreviouslyinseveralstudiesP450inhibitorshavebeenused,mainlypiperonylbutoxide(PBO),thatsynergizecompoundsdegradedbyP450.TheroleofP450 inresistancewasindicatedbyadeclineintheresistancelevelinsynergizedinsects. ThePBOisnotcompletelyspecificforoxygenasereactions;besidesitmaydecrease theproportionsofinsecticidepenetration(Sanchez-Arroyoetal.2001)andmayinhibit certainesterasesbysynergisticactivities(Youngetal.2005).Inordertoconcludethe resistantstrainshasgreaterlevelofP450catalyzedreactionscomparedtosusceptible strains;modelP450substratesareusedwidely.Thishasbeenproducedusefulinformationandcautionisnecessary,althoughmeanwhileseveralP450isoformsareavailable whichvariedextensivelyinsubstratespecifications.

1.14GlutathioneS-Transferases

TheGlutathioneS-transferases(GST)areahugegroupofenzymesthatenrichthereactionofthecysteinesulphydrylgroupofthetripeptideglutathione(GSH)withxenobiotics.Inxenobiotics,thesulphydrylgroupofGSHanucleophilewhichreactswith theelectrophilicsitesthatleadstotheGSHconjugateformation.Thelesstoxicconjugatesaremostfreelyevacuatedthantheparentalinsecticide.Theoverallpropertiesand toxicologicalsignificanceofGSTshavebeenreviewedbyEatonandBammler(1999), Sheehanetal.(2001),andHayesetal.(2005).EventhoughaclusterofmicrosomalGSTs existsininsects,thetransferasesofhightoxicologicalinterestissoluble,whicharerelativelysmall(50–55kDa)proteinswithadimericstructure.CertainGSTsareveryquickly induciblebyimprovedtranscriptionafterexposureoftheinsecttoxenobiotics,suchas pesticidesandphytochemicalshoweverGSTactivityinresistancesystemsisunknown (Yu1996).

1.15OtherResistanceMechanisms

Intotingwithchangesintargetsitesandbiotransformationmodeofresistancesystems, manyotherbiochemicalmechanismsmayalsoinvolveinresistancetotheinsecticides.

Eventhoughindividually,whichhasadequateinfluencesontoxicity,andinthesame insecthastheabilitytoplayaskeyrolesinresistancewhileaccommodatingwiththe majormechanisms.Theypossessthewiderangeofactivities,butmoderatelyslightconsiderationonlypaidinthesemechanismsandpoorlyunderstoodinmanycases.The evolutionofresistanceisapopulationgeneticsparadox,afflictedbymanifoldinteractionsamidpestbiologyandecology,assetsofthepesticideandpatternsofpesticideuse (GeorghiouandTaylor1977a,b;Carrièreetal.2015);inthespatiallycomplexmodel, assuggestedbyCaprio(2001)thatforsource–sinkdynamics,certaindegreeofisolationconcerningarefugeandatoxiccropinvolvedindelayingresistanceisconsiderably lessthanhavingrandommatingamongthedifferenthabitats.AccordingtoAlstadand Andow(1995),thesedynamicswillproducegreaterdamagetothesurroundingareas establishedtorefuges.Usingthespatiallycomplexmodels,Pecketal.(1999)andSistersonetal.(2005)establishedthatresistanceinitiallyevolvedfromtheplaceswitha highdensityoftransgenicfieldsandbeforeitspreadtowardtheoutside.Theselection processinthesesmallareasemphasesthehighresistanceallelefrequenciesinagreater frequencyofresistanthomozygotesandalsotherapidrateofresistanceevolution.When resistancedevelopedintheseregions,migrationspreadresistanceallelesacrossallthe areas.

References

Alstad,D.N.andAndow,D.A.(1995).Managingtheevolutionofinsectresistanceto transgenicplants. Science 268(5219):1894–1896.

Bergé,J.,Feyereisen,R.,andAmichot,M.(1998).CytochromeP450monooxygenasesand insecticideresistanceininsects. Philos.Trans.R.Soc.London,Ser.B 353(1376): 1701–1705.

Bravo,A.,Soberón,M.,andGill,S.S.(2005). Bacillusthuringiensis:mechanismsanduse. In: ComprehensiveInsectMolecularScience,vol.6(eds.L.I.Gilbert,K.IatrouandS.S. Gill),175–205.Oxford,UK:Elsevier.

Buckingham,S.D.,Biggin,P.C.,Sattelle,B.M.etal.(2005).InsectGABAreceptors:splicing, editing,andtargetingbyantiparasiticsandinsecticides. Mol.Pharmacol. 68:942–951.

Buckingham,S.D.,andSattelle,D.B..“GABAreceptorsofinsects..”(2005):107–142. Caprio,M.A.(2001).Source-sinkdynamicsbetweentransgenicandnon-transgenic habitatsandtheirroleintheevolutionofresistance. J.Econ.Entomol. 94(3):698–705. Carrière,Y.,Crickmore,N.,andTabashnik,B.E.(2015).Optimizingpyramidedtransgenic Btcropsforsustainablepestmanagement. Nat.Biotechnol. 33(2):161. Casida,J.E.(1993).InsecticideactionattheGABA-gatedchloridechannel:recognition, progress,andprospects. Arch.InsectBiochem.Physiol. 22:13–23. Casida,J.E.andPulman,D.A.(1994).Recentadvancesonheterocyclicinsecticidesacting asGABAantagonists. Spec.Publ.R.Soc.Chem. 147:36–51.

1DevelopmentofPesticideresistanceinpests

Cattaneo,M.G.,Yafuso,C.,Schmidt,C.etal.(2006).Farm-scaleevaluationoftheimpacts oftransgeniccottononbiodiversity,pesticideuse,andyield. Proc.Natl.Acad.Sci.U.S.A. 103:7571–7576.

Dauterman,W.C.(1983).Roleofhydrolasesandglutathione-S-transferasesininsecticide resistance.In: PestResistancetoPesticides:ChallengesandProspects (eds.G.P. GeorghiouandT.Saito),229–248.NewYork:Plenum.

Dong,K.(2007).Insectsodiumchannelsandinsecticideresistance. Invertebr.Neurosci. 7: 17–30.

Eaton,D.L.andBammler,T.K.(1999).Concisereviewofglutathione-Stransferasesand theirsignificancetotoxicology. Toxicol.Sci. 49:156–164.

Ferré,J.andVanRie,J.(2002).Biochemistryandgeneticsofinsectresistanceto Bacillus thuringiensis. Annu.Rev.Entomol. 47:501–533.

Feyereisen,R.(1999).InsectP450enzymes. Annu.Rev.Entomol. 44:507–533.https://doi .org/10.1146/annurev.ento.44.1.507.

Feyereisen,R.(2005).InsectP450.In: ComprehensiveMoleculeInsectScience (eds.L.I. Gilbert,K.LatrouandS.S.Gill).UK:Elsevier. Fournier,D.(2005).Mutationsofacetylcholinesterasewhichconferinsecticideresistance ininsectpopulations. Chem.Biol.Interact. 157/158:257–261.

Gahan,L.J.,Gould,F.,andHeckel,D.G.(2001).IdentificationofageneassociatedwithBt resistanceinHeliothisvirescens. Science 293:857–860.

Georghiou,G.P.andTaylor,C.E.(1977a).Geneticandbiologicalinfluencesintheevolution ofinsecticideresistance. J.Econ.Entomol. 70(3):319–323.

Georghiou,G.P.andTaylor,C.E.(1977b).Operationalinfluencesintheevolutionof insecticideresistance. J.Econ.Entomol. 70(3):653–658.

Giacobini,E.(2000). CholinesterasesandCholinesteraseInhibitors;BasicPreclinicaland ClinicalAspects.London:MartinDunitz.

Gisselmann,G.,Plonka,J.,Pusch,H.,andHatt,H.(2004). Drosophilamelanogaster GRD andLCCH3subunitsformheteromultimericGABA-gatedandcationchannels. Br.J. Pharmacol. 142:409–413.

Griffitts,J.S.andAroian,R.V.(2005).Manyroadstoresistance:howinvertebratesadaptto Bttoxins. BioEssays 27:614–624.

Harel,M.,Kryger,G.,Rosenberry,T.L.etal.(2000).Three-dimensionalstructuresof Drosophilamelanogaster acetylcholinesteraseandofitscomplexeswithtwopotent inhibitors. ProteinSci. 9:1063–1072.

Hawkinson,J.E.andCasida,J.E.(1993).Insecticidebindingsiteson �� -aminobutyricacid receptorsofinsectsandmammals.In: PestControlwithEnhancedEnvironmentalSafety, vol.524,ACSSymposiumSeries(eds.S.O.Duke,J.J.MennandJ.R.Plimmer),126–143. WashingtonDC:AmericanChemicalSociety.

Hayes,J.D.,Flanagan,J.U.,andJowsey,I.R.(2005).Glutathionetransferases. Annu.Rev. Pharmacol.Toxicol. 45:51–88.

Hille,B.(1977).Localanesthetics:hydrophilicandhydrophobicpathwaysforthe drug–receptorreaction. J.Gener.Physiol. 69:497–515.

Huang,J.,Hu,R.,Rozelle,S.,andPray,C.(2005).Insect-resistantGMriceinfarmers’fields: assessingproductivityandhealtheffectsinChina. Science 308:688–690.

Hutchison,W.D.,Burkness,E.C.,Mitchell,P.D.etal.(2010).Areawidesuppressionof EuropeancornborerwithBtmaizereapssavingstonon-Btmaizegrowers. Science 330: 222–225.

JamesC.(2008)GlobalStatusofCommercializedBiotech/GMCrops. ISAAABriefNo.37 . InternationalServicefortheAcquisitionofAgri-biotechApplications.Chicago.

Khambay,B.P.S.andJewess,P.J.(2005).Pyrethroids.In: ComprehensiveInsectMolecular Science,vol.6(eds.L.I.Gilbert,K.IatrouandS.S.Gill),1–29.Oxford,UK:Elsevier. Lee,S.H.,Kim,Y.H.,Kwon,D.H.etal.(2015).Mutationandduplicationofarthropod acetylcholinesterase:implicationsforpesticideresistanceandtolerance. Pestic.Biochem. Physiol. 120:118–124.

Liu,Z.,Williamson,M.S.,Lansdell,S.J.etal.(2005).Anicotinicacetylcholinereceptor mutationconferringtarget-siteresistancetoimidaclopridin Nilaparvatalugens (brown planthopper). Proc.Natl.Acad.Sci.U.S.A. 102:8420–8425.

Marvier,M.,McCreedy,C.,Regetz,J.,andKareiva,P.(2007).Ameta-analysisofeffectsof Btcottonandmaizeonnontargetinvertebrates. Science 316:1475–1477.

Morin,S.,Biggs,R.W.,Sisterson,M.S.etal.(2003).Threecadherinallelesassociatedwith resistanceto Bacillusthuringiensis inpinkbollworm. Proc.Natl.Acad.Sci.U.S.A. 100: 5004–5009.

Mota-Sanchez,D.,Hollingworth,R.M.,Grafius,E.J.,andMoyer,D.D.(2006).Resistance andcross-resistancetoneonicotinoidinsecticidesandspinosadintheColoradopotato beetle, Leptinotarsadecemlineata (Say)(Coleoptera:Chrysomelidae). PestManag.Sci. 62:30–37.

Narahashi,T.(1988).Molecularandcellularapproachestoneurotoxicology:past,present andfuture.In: Neurotox’88:MolecularBasisofDrug&PesticideAction (ed.G.G.Lunt), 563–582.NewYork:Elsevier.

Narahashi,Toshio.(2002).“Nervemembraneionchannelsasthetargetsiteof insecticides..”Minireviewsinmedicinalchemistry2,no.4419–432.

Nauen,R.andDenholm,I.(2005).Resistanceofinsectpeststoneonicotinoidinsecticides: currentstatusandfutureprospects. Arch.InsectBiochem.Physiol. 58:200–215.

Oakeshott,J.G.,Claudianos,C.,Russell,R.J.,andRobin,G.C.(1999).Carboxyl/ cholinesterases:acasestudyoftheevolutionofasuccessfulmultigenefamily. BioEssays 21:1031–1042.

Oakeshott,J.G.,Claudianos,C.,Campbell,P.M.etal.(2005).Biochemicalgeneticsand genomicsofinsectesterases.In: ComprehensiveInsectMolecularScience,vol.5(eds.L.I. Gilbert,K.IatrouandS.S.Gill),309–381.Oxford,UK:Elsevier.

OrrN.,WatsonG.B.,HaslerJ.M.etal.(2006)Moleculartargetsiteforspinosad: identificationandexpressionofthe Drosophilamelanogaster rsngene. Abstractsofthe 2006EntomologicalSocietyofAmericaAnnualMeeting, Indianapolis,Indiana,abstr. D0228.

Ozoe,Y.(2013). �� -Aminobutyrate-andglutamate-gatedchloridechannelsastargetsof insecticides. Adv.InsectPhysiol. 44:211–286.

Ozoe,Y.andAkamatsu,M.(2001).Non-competitiveGABAantagonists:probingthe mechanismsoftheirselectivityforinsectversusmammalianreceptors. PestManag.Sci. 57:923–931.

Ozoe,Y.,Takeda,M.,andMatsuda,K.(2009). �� -Aminobutyricacidreceptors:arationale fordevelopingselectiveinsectpestcontrolchemicals.In: BiorationalControlof ArthropodPests (eds.I.IshaayaandA.R.Horowitz),131–162.NewYork:Springer. Peck,S.L.,Gould,F.,andEllner,S.P.(1999).Spreadofresistanceinspatiallyextended regionsoftransgeniccotton:implicationsformanagementofHeliothisvirescens (Lepidoptera:Noctuidae). J.Econ.Entomol. 92(1):1–16.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.