Coal geology 3rd edition larry thomas download pdf

Page 1


Coal

Visit to download the full and correct content document: https://ebookmass.com/product/coal-geology-3rd-edition-larry-thomas/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

(eTextbook PDF) for Geology: Earth in Perspective 3rd Edition

https://ebookmass.com/product/etextbook-pdf-for-geology-earth-inperspective-3rd-edition/

SOCCER FOR DUMMIES 3rd Edition Thomas Dunmore

https://ebookmass.com/product/soccer-for-dummies-3rd-editionthomas-dunmore/

Process chemistry of coal utilization : impacts of coal quality and operating conditions Stephen Niksa

https://ebookmass.com/product/process-chemistry-of-coalutilization-impacts-of-coal-quality-and-operating-conditionsstephen-niksa/

Fundamentals of Computational Neuroscience 3rd Edition

Thomas Trappenberg

https://ebookmass.com/product/fundamentals-of-computationalneuroscience-3rd-edition-thomas-trappenberg/

Environmental Geology 10th Edition, (Ebook PDF)

https://ebookmass.com/product/environmental-geology-10th-editionebook-pdf/

Exploring Geology 6th Edition Stephen Reynolds

https://ebookmass.com/product/exploring-geology-6th-editionstephen-reynolds/

Physical Geology, 17e Plummer

https://ebookmass.com/product/physical-geology-17e-plummer/

Environmental Geology 12th Edition Carla W. Montgomery

https://ebookmass.com/product/environmental-geology-12th-editioncarla-w-montgomery/

Physical Geology, 15th Edition Charles C. Plummer

https://ebookmass.com/product/physical-geology-15th-editioncharles-c-plummer/

CoalGeology

CoalGeology

ThirdEdition

LarryThomas

RadcliffeHouse 51,MonmouthRoad

Abergavenny

UK,NP75HP

ThisThirdeditionfirstpublished2020 ©2020JohnWiley&SonsLtd.

Wiley-Blackwell;2edition(November5,2012)9781119990444

WileyIndia,FirstEdition9788126533008

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw. Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/ permissions.

TherightofLarryThomastobeidentifiedastheauthorofthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffice(s)

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappears instandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsor warrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimall warranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityorfitnessforaparticular purpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsorpromotional statementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitation and/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsethe informationorservicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.This workissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.Theadvice andstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhere appropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappeared betweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforany lossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,or otherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Thomas,Larry(LarryP.),author.

Title:Coalgeology/LarryThomas.

Description:Thirdedition.|Hoboken,NJ:Wiley,2020.|Includesindex.

Identifiers:LCCN2020001898(print)|LCCN2020001899(ebook)|ISBN 9781119424130(hardback)|ISBN9781119424123(adobepdf)|ISBN 9781119424260(epub)

Subjects:LCSH:Coal–Geology.

Classification:LCCTN802.T472020(print)|LCCTN802(ebook)|DDC 553.2/4–dc23

LCrecordavailableathttps://lccn.loc.gov/2020001898

LCebookrecordavailableathttps://lccn.loc.gov/2020001899

CoverDesign:Wiley

CoverImage:©EvgenyMiroshnichenko/iStock.com

Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Chennai,India

PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY 10987654321

Contents

PrefacetoThirdEdition xv

PrefacetoSecondEdition xvii

PrefacetoFirstEdition xix

ListofAcronyms xxi

1Preview 1

1.1Scope 1

1.2CoalGeology 1

1.3CoalUse 2

1.4Background 2

2OriginofCoal 5

2.1Introduction 5

2.2SedimentationofCoalandCoal-BearingSequences 5

2.2.1DepositionalModels 5

2.2.2TheTraditionalModel 6

2.2.2.1ProdeltaandDeltaFrontFacies 8

2.2.2.2LowerDeltaPlainFacies 8

2.2.2.3UpperDeltaPlainFacies 11

2.2.2.4FluvialFacies 11

2.2.3ModernPeatAnalogues 11

2.2.3.1PalaeobotanicalCompositionofAncientMires 19

2.2.3.2CaseStudies 24

2.2.4SequenceStratigraphy 25

2.2.5FaciesCorrelation 27

2.2.6FaciesMaps 29

2.2.6.1SeamSplitting 31

2.2.6.2Washouts 34

2.2.6.3FloorRolls 34

2.2.6.4CoalSeamThicknessVariations 35

2.2.6.5Interburden/OverburdenThickness 37

2.2.6.6CoalSeamQualityVariations 38

2.3StructuralEffectsonCoal 40

2.3.1SyndepositionalEffects 40

2.3.1.1MicrostructuralEffects 40

2.3.1.2MacrostructuralEffects 41

2.3.2Post-DepositionalEffects 44

2.3.2.1Jointing/CleatsinCoal 44

2.3.2.2Faulting 45

2.3.2.3Folding 50

2.3.2.4IgneousAssociations 52

2.3.2.5MineralPrecipitates 53

3AgeandOccurrenceofCoal 57

3.1Introduction 57

3.2PlateTectonics 57

3.3Stratigraphy 61

3.4AgeandGeographicalDistributionofCoal 64

3.4.1UnitedStatesofAmerica 67

3.4.2Canada 74

3.4.3Europe 75

3.4.3.1Albania 75

3.4.3.2Austria 75

3.4.3.3Belgium 75

3.4.3.4Bosnia 75

3.4.3.5Bulgaria 75

3.4.3.6CzechRepublic 75

3.4.3.7Denmark 76

3.4.3.8France 76

3.4.3.9Germany 76

3.4.3.10Georgia 76

3.4.3.11Greece 77

3.4.3.12Greenland 77

3.4.3.13Holland 77

3.4.3.14Hungary 77

3.4.3.15Ireland 77

3.4.3.16Italy 77

3.4.3.17Kosovo 77

3.4.3.18Montenegro 78

3.4.3.19Poland 78

3.4.3.20Portugal 78

3.4.3.21Romania 78

3.4.3.22Serbia 78

3.4.3.23Spain 79

3.4.3.24Spitzbergen 79

3.4.3.25Sweden 79

3.4.3.26Turkey 79

3.4.3.27UnitedKingdom 79

3.4.4Africa 80

3.4.4.1Angola 80

3.4.4.2Botswana 80

3.4.4.3Cameroon 81

3.4.4.4Egypt 81

3.4.4.5Ethiopia 81

3.4.4.6MalagasyRepublic 81

3.4.4.7Malawi 81

3.4.4.8Mali 81

3.4.4.9Morocco 81

3.4.4.10Mozambique 82

3.4.4.11Namibia 82

3.4.4.12Niger 82

3.4.4.13Nigeria 82

3.4.4.14SouthAfrica 82

3.4.4.15Swaziland 83

3.4.4.16Tanzania 83

3.4.4.17Zaire 83

3.4.4.18Zambia 83

3.4.4.19Zimbabwe 83

3.4.5TheIndianSubcontinent 84

3.4.5.1Afghanistan 84

3.4.5.2Bangladesh 84

3.4.5.3India 84

3.4.5.4Iran 85

3.4.5.5Pakistan 85

3.4.6CentralandSouthAmerica 85

3.4.6.1Argentina 85

3.4.6.2Bolivia 86

3.4.6.3Brazil 86

3.4.6.4Chile 86

3.4.6.5Colombia 87

3.4.6.6CostaRica 87

3.4.6.7Ecuador 87

3.4.6.8Mexico 87

3.4.6.9Peru 87

3.4.6.10Uruguay 88

3.4.6.11Venezuela 88

3.4.7CommonwealthofIndependentStates 88

3.4.7.1Kazakhstan 88

3.4.7.2RussianFederation 88

3.4.7.3Tajikistan 89

3.4.7.4Ukraine 89

3.4.7.5Uzbekistan 89

3.4.8FarEast 89

3.4.8.1Brunei 89

3.4.8.2DemocraticRepublicof(North)Korea 90

3.4.8.3Indonesia 90

3.4.8.4Japan 91

3.4.8.5Laos 91

3.4.8.6Malaysia 91

3.4.8.7Mongolia 91

3.4.8.8Myanmar(Burma) 92

3.4.8.9People’sRepublicofChina 92

3.4.8.10People’sRepublicofVietnam 93

3.4.8.11Philippines 93

3.4.8.12Republicof(South)Korea 94

3.4.8.13Taiwan 94

3.4.8.14Thailand 94

3.4.9Australasia 95

3.4.9.1Australia 95

3.4.9.2NewZealand 96

3.4.9.3Antarctica 96

4CoalasaSubstance 97

4.1PhysicalDescriptionofCoal 97

4.1.1MacroscopicDescriptionofCoal 97

4.1.1.1HumicCoals 97

4.1.1.2SapropelicCoals 101

4.1.2MicroscopicDescriptionofCoal 102

4.1.3MineralContentofCoals 106

4.1.4CoalPetrography 113

4.2Coalification(Rank) 116

4.2.1Coalification 116

4.2.2CausesofCoalification 118

4.2.2.1Temperature 120

4.2.2.2Time 120

4.2.2.3Pressure 120

4.2.2.4Radioactivity 121

4.3CoalQuality 121

4.3.1ChemicalPropertiesofCoal 122

4.3.1.1BasisofAnalyticalData 122

4.3.1.2ProximateAnalysis 123

4.3.1.3UltimateAnalysis 125

4.3.1.4OtherAnalysis 126

4.3.2CombustionPropertiesofCoal 127

4.3.2.1CalorificValue 127

4.3.2.2AshFusionTemperatures 128

4.3.2.3CakingTests 128

4.3.2.4CokingTests 129

4.3.3PhysicalPropertiesofCoal 131

4.3.3.1MechanicalStrength 131

4.3.3.2Density 132

4.3.3.3HardnessandGrindability 132

4.3.3.4AbrasionIndex 133

4.3.3.5ParticleSizeDistribution 133

4.3.3.6Float–SinkTests 133

4.3.4CoalOxidation 135

4.4ClassificationofCoals 136

4.4.1NorthAmerica 136

4.4.2UnitedKingdom 136

4.4.3Europe 137

4.4.4Australia 146

4.4.5SouthAfrica 146

4.4.6UnitedNations 146

4.4.7Russia 148

4.4.8People’sRepublicofChina 149

5CoalSamplingandAnalysis 151

5.1CoalSampling 151

5.1.1In-SituCoalSampling 151

5.1.1.1GrabSamples 151

5.1.1.2ChannelSamples 151

5.1.1.3PillarSamples 154

5.1.1.4CoreSamples 154

5.1.1.5CuttingsSamples 155

5.1.1.6SpecimenSamples 155

5.1.1.7BulkSamples 156

5.1.1.8SampleStorage 156

5.1.2Ex-SituSampling 157

5.2CoalAnalysis 162

5.2.1Outcrop/CoreSamples 162

5.2.2BulkSamples 162

5.2.3Ex-SituSamples 162

6CoalExplorationandDataCollection 169

6.1Introduction 169

6.2FieldTechniques 169

6.2.1OutcropMapping 172

6.2.2GlobalPositioningSystem 179

6.2.3PortablePersonalComputers 179

6.2.4RemoteSensing 180

6.2.4.1SatelliteImagery 180

6.2.4.2AirborneImagery 181

6.3Drilling 183

6.3.1OpenholeDrilling 184

6.3.2CoreDrilling 188

6.3.3PortableDrilling 189

6.3.4CoreandOpenholeLogging 190

6.3.4.1CoreLogging 190

6.3.4.2OpenholeLogging 193

6.4GeotechnicalProperties 194

6.4.1Strength 195

6.4.2Weathering 196

6.4.3TextureandStructure 196

6.4.4Colour 196

6.4.5GrainSize 198

x Contents

6.4.6TotalCoreRecovery 198

6.4.7SolidCoreRecovery 198

6.4.8RockQualityDesignation 198

6.4.9FractureSpacingIndex 198

6.4.10FractureLogging 199

6.4.11RockMassRating 201

6.5ComputerApplications 201

7CoalResourcesandReserves 207

7.1Introduction 207

7.2CoalResourcesandReservesClassification 208

7.2.1Australia 209

7.2.1.1CoalResources 209

7.2.1.2CoalReserves 211

7.2.2Canada 211

7.2.3Europe(IncludingtheUK) 212

7.2.4SouthAfrica 213

7.2.5UnitedNations 213

7.2.6UnitedStatesofAmerica 216

7.2.7RussianFederation 219

7.2.8People’sRepublicofChina 222

7.2.9India 222

7.2.10OtherCountries 224

7.3ReportingofResources/Reserves 225

7.3.1CoalResourcesandReserves 225

7.3.2CoalResourcesandReservesMaps 226

7.3.3CalculationofCoalResources 227

7.3.3.1In-SituTonnageCalculations 227

7.3.3.2GeostatisticsandComputerModelling 229

7.3.3.3OpencastCoalMining 232

7.3.3.4GeologicalLosses 233

7.3.3.5ReservesReporting 235

7.3.3.6ReserveEconomics 235

7.4WorldCoalReservesandProduction 235

7.4.1WorldCoalReserves 235

7.4.2WorldCoalProduction 237

7.4.2.1CoalProductionStatistics 237

7.4.2.2RegionalProductionandConsumption 241

7.4.2.3Reserves/ProductionRatio 242

8GeophysicsofCoal 243

8.1Introduction 243

8.2PhysicalPropertiesofCoal-BearingSequences 244

8.2.1Density 244

8.2.2SeismicVelocity 244

8.2.3SeismicReflectionCoefficients 245

8.2.4MagneticSusceptibility 245

8.2.5ElectricalConductivity 245

8.2.6RadiometricProperties 245

8.3SurfaceGeophysicalMethods 246

8.3.1SeismicSurveys 246

8.3.1.1SeismicReflectionSurveys 246

8.3.1.2SeismicRefractionSurveys 256

8.3.1.3PassiveSeismicSurveys 257

8.3.2GravitySurveys 257

8.3.3MagneticSurveys 259

8.3.4ElectricalMethods 262

8.3.4.1ElectricalResistivityMethods 262

8.3.4.2Ground-PenetratingRadarMethods 262

8.3.4.3ElectromagneticSurveys 263

8.3.5RadioactiveMethods 264

8.4UndergroundGeophysicalMethods 264

8.4.1In-SeamSeismicSurveys 264

8.4.2UndergroundGravitySurveys 269

8.4.3Ground-PenetratingRadarTechniques 269

8.5GeophysicalBoreholeLogging 269

8.5.1RadiationLogs 271

8.5.1.1Gamma-RayLog 271

8.5.1.2DensityLog 273

8.5.1.3NeutronLog 274

8.5.1.4GammaSpectrometry 276

8.5.2CalliperLog 276

8.5.3ElectricLogs 277

8.5.4DipmeterLog 277

8.5.5SonicLog 278

8.5.6AcousticScanningTools 279

8.5.7TemperatureLog 280

8.5.8AdvancedInterpretation 282

9HydrogeologyofCoal 289

9.1Introduction 289

9.2TheNatureofGroundwaterandSurfaceFlow 289

9.2.1SurfaceWater 289

9.2.2Groundwater 290

9.3HydrogeologicalCharacteristicsofCoalsandCoal-BearingSequences 292

9.4CollectionandHandlingofHydrogeologicalData 295

9.4.1SurfaceWater 295

9.4.2Groundwater 295

9.5GroundwaterInflowsinMines 298

9.5.1DewateringofOpen-pitMines 299

9.5.2DewateringofUndergroundMines 306

9.5.3WaterQuality 307

9.6GroundwaterRebound 307

10GeologyandCoalMining 311

10.1Introduction 311

10.2UndergroundMining 312

10.2.1GeologicalFactors 313

10.2.2MiningMethods 314

10.2.2.1LongwallMining 314

10.2.2.2Room-and-PillarMining 316

10.2.2.3StressFields 318

10.2.2.4CoalBursts 326

10.2.2.5StrataandAirTemperatures 327

10.2.2.6SpontaneousCombustion 328

10.3SurfaceMining 328

10.3.1GeologicalFactors 328

10.3.2MiningEquipment 330

10.3.2.1Dragline 330

10.3.2.2PoweredShovels 331

10.3.2.3BucketwheelExcavators 334

10.3.3SurfaceMiningMethods 335

10.3.3.1StripMining 335

10.3.3.2OpencastorOpen-pitMining 335

10.3.3.3HighwallMining 338

10.4CoalProduction 339

10.4.1UndergroundCoalProduction 340

10.4.2SurfaceCoalProduction 340

11CoalasanAlternativeEnergySource 343

11.1Introduction 343

11.2GasinCoal 343

11.2.1Coal-bedMethane 345

11.2.1.1Coal-bedMethaneGeneration 345

11.2.1.2Coal-bedMethaneRetention 346

11.2.1.3Coal-bedMethaneProduction 349

11.3UndergroundCoalGasification 365

11.3.1UndergroundCoalGasification:TheCaseForandAgainst 365

11.3.2UndergroundCoalGasificationTechnology 366

11.3.2.1CoalGasificationReactions 366

11.3.3GlobalDevelopmentofUndergroundCoalGasification 373

11.4CoalasaLiquidFuel 375

11.4.1PetroleumPotentialofCoal 375

11.4.2CoalPropertiesasanOil-SourceRock 375

11.4.3CoalLiquefactionTechnology 378

11.4.4FutureDevelopmentofCoalLiquefaction 379

11.4.5Coal-SourcedOilandGasOccurrences 381

12CoalUseandtheEnvironment 385

12.1Introduction 385

12.2Coalmining 386

12.2.1EffectsonWaterSupply 387

12.2.1.1SurfaceWater 387

12.2.1.2UndergroundWater 387

12.2.2ContaminationofMineWaters 387

12.2.3OtherWaterPollution 391

12.2.4Run-off,Erosion,andSedimentation 391

12.2.5SpoilDumping 392

12.2.6SpontaneousCombustion 396

12.2.7DustSuppression 397

12.2.8Subsidence 398

12.3CoalUse 401

12.3.1ElectricityGeneration 404

12.3.1.1Emissions 405

12.3.1.2FlueGasDesulfurisation 409

12.3.1.3OtherEmissionControls 410

12.3.1.4Fluidised-BedCombustion 411

12.3.2OtherMajorUsers 413

12.3.2.1IronandSteelProduction 413

12.3.2.2IndustrialUse 414

12.3.2.3DomesticUse 415

12.3.3CoalTransportation 415

12.4Health 415

12.5CarbonCaptureandStorage 416

12.6EnvironmentalRegulations 418

12.6.1Introduction 418

12.6.2UnitedNationsEconomicCommissionforEuropeConventions 419

12.6.3EuropeanUnion 420

12.6.4WorldBank 420

12.6.5KyotoProtocol 420

12.6.6CopenhagenAccord 421

12.6.7DurbanPlatformforEnhancedAction 421

12.6.8ParisAgreement 421

12.7FutureImplications 422

13CoalMarketing 423

13.1Introduction 423

13.2CoalQuality 423

13.3Transportation 425

13.3.1LandTransportation 425

13.3.1.1Conveyors 426

13.3.1.2Road 426

13.3.1.3Rail 427

13.3.2WaterTransportation 428

13.3.2.1Barges 428

13.3.2.2BulkCarriers 429

13.4CoalMarkets 430

13.5CoalContracts 431

13.5.1SpotPurchases 431

13.5.2TermContracts 431

13.5.3IndexedContracts 432

13.6CoalPriceandIndexing 433

AppendixAListofInternationalandNationalStandardsUsedinCoalandCoke AnalysisandEvaluation 435

A.1BritishStandardsInstitution(BS) 435

A.2InternationalOrganizationforStandardization(ISO) 438

A.3ASTMInternational,FormerlyKnownasAmericanSocietyforTestingandMaterials (ASTM) 441

A.4StandardsAssociationofAustralia(AS) 444

A.5NationalStandardsofPeople’sRepublicofChina 446

A.6BureauofIndianStandards 449

A.7StateStandardsofRussia–GOST(GOST = GosudarstvennyyStandart) 451

AppendixBTablesofTrueandApparentDip,SlopeAngles,Gradients,and PercentageSlope 455

AppendixCCalorificValuesExpressedinDifferentUnits 457

AppendixDCoalStatistics 463

AppendixEMethaneUnitsConverter 465

Glossary 467 Bibliography 475 Index 497

PrefacetoThirdEdition

Thefirstandsecondeditionsof CoalGeology haveprovidedthecoalgeologistandthose associatedwiththecoalindustrywiththebackgroundtotheoriginsandcharacteristicsofcoal togetherwithexplorationtechniques,includinggeophysicsandhydrogeology.Detailsof coalminingtechniques,resourcecalculations, alternativeusesofcoal,andenvironmental issueswerealsodescribed.

Althoughbroadlyfollowingthelayoutof thepreviousedition,additionalinformation hasbeenaddedtocoalorigins,geographical distributionofcoal,andcoalexploration. Thechapteroncoalresourcesandreserves hasbeenupdatedwithcurrentresource classifications,togetherwithrecentworld reserves/productionfigures.

Thechapteronthealternativeusesofcoal, particularlycoal-bedandcoalminemethane extraction,havebeenexpandedtoreflectthe increaseinactivityintheseareas.Developmentsinenvironmentalrequirementsand regulationshavealsobeenupdated.

Again,numeroussourcesofinformation havebeenconsulted,themajorityofwhichare

listedinthebibliographysection.International standardsrelatingtocoal,listedinAppendix A,havebeenupdatedandexpandedtoinclude thePeople’sRepublicofChina,India,and Russia,andalistofacronymshasbeenadded toassistthereader.

Iwouldliketothankallthosecolleagues andfriendswhohavehelpedandencouragedmewiththethirdedition.Inparticular, specialthanksareduetoSteveFrankland ofDargoAssociatesLtd,DrGarethGeorge forhisexpertiseonsedimentarysequences, RobEvansforhishelpwithcoalgeophysics, andtothefollowingfortheircontributions andsupport:ProfessorVladimirPavlovic,Dr DavePearsonofPearsonCoalPetrographyand ArgusMediaLtd,aswellasthestaffatJohn Wiley&SonsLtd.

Ialsothankthoseauthorsandorganisations whogavepermissiontoreproducetheirwork, whichisgratefullyacknowledged.

Finally,IwouldliketothankmywifeSuefor hercontinuedsupport,forbearance,andassistancewiththemanuscript.

PrefacetoSecondEdition

Thefirsteditionof CoalGeology hasprovided thecoalgeologistandthoseassociatedwiththe coalindustrywiththebackgroundtotheoriginsandcharacteristicsofcoaltogetherwith explorationtechniquesincludinggeophysics andhydrogeology.Detailsofcoalminingtechniques,resourcecalculations,alternativeuses ofcoalandenvironmentalissueswerealso described.

Althoughbroadlyfollowingthelayoutofthe firstedition,additionalinformationhasbeen addedtocoalorigins,geographicaldistribution ofcoalandcoalexploration.Thechapteron coalresourcesandreserveshasbeenbrought uptodatewithcurrentresourceclassificationstogetherwithrecentworldreserves/ productionfigures.

Thechapterongeophysicsofcoalhasbeen enlargedandthealternativeusesofcoal,in particular,methaneextractionandundergroundcoalgasificationhavebeenexpanded toreflecttheincreaseinactivityintheseareas. Developmentsinenvironmentalrequirements havealsobeenupdated.

Again,numeroussourcesofinformation havebeenconsulted,themajorityofwhichare

listedinthebibliographysection.International Standardsrelatingtocoal,listedinAppendix1, havebeenupdatedandexpandedtoinclude PRChina,IndiaandRussia.

Iwouldliketothankallthosecolleaguesand friendswhohavehelpedandencouragedme withthesecondedition.Inparticular,special thanksareduetoSteveFranklandofDargo AssociatesLtd,RobEvansforhisinvaluable helpwithcoalgeophysics,PaulAhnerinthe U.S.A.forprovidingdataonunderground coalgasification,andtothefollowingfortheir contributionsandsupport,ProfessorVladimir PavlovicofBelgradeUniversity,MikeCoultas, DavePearsonofPearsonCoalPetrography, OracleCoalfieldsplcandRobertsonGeologging,aswellasthestaffatJohnWiley& SonsLtd.

Ialsothankthoseauthorsandorganisations whosepermissiontoreproducetheirworkis gratefullyacknowledged.

FinallyIwouldliketothankmywifeSuefor hersupport,forbearanceandassistancewith themanuscript.

PrefacetoFirstEdition

TheHandbookofPracticalCoalGeology (Thomas1992)wasintendedasabasicguide forcoalgeologiststouseintheireveryday duties,whetheronsite,intheofficeorinstructingothers.Itwasnotintendedasadefinitive workonalloranyparticularaspectofcoal geology,ratherasahandbooktouseasaprecursorto,orinconjunctionwithmorespecific anddetailedworks.

Thisnewvolumeisdesignedtogiveboth thecoalgeologistandothersassociatedwith thecoalindustrybackgroundinformation regardingthechemicalandphysicalproperties ofcoal,itslikelyorigins,itsclassificationand currentterminology.InadditionIhavehighlightedthecurrentlyknowngeographicaldistributionofcoaldepositstogetherwithrecent estimatesofworldresourcesandproduction.

Ihavealsooutlinedtheexplorationtechniques employedinthesearchfor,anddevelopment ofthesecoaldepositsandthegeophysicaland hydrogeologicalcharacteristicsofcoal-bearing sequences,togetherwiththecalculationand categorisationofresources/reserves.

Chaptersaredevotedtotheminingofcoal,to themeansofextractingenergyfromcoalother thanbyconventionalminingtechniques,and totheenvironmentalconcernsassociatedwith theminingandutilisationofcoal.

Alsocoveredisthedevelopmentofcomputer technologyinthegeologicalandminingfields, andthefinalchapterisacondensedaccountof themarketingofcoal,itsuses,transportation andprice.

Manysourcesofinformationhavebeenconsulted,themajorityofwhicharelistedinthe referencesection.Asetofappendicescontains informationofusetothereader.

Iwouldliketothankallthosecolleaguesand friendswhohavehelpedandencouragedme withthebookfromconceptiontocompletion. InparticularspecialthanksareduetoSteve andGhislaineFranklandofDargoAssociates Ltd,AlanOakes,RobEvans,DrKeithBall,ProfessorBrianWilliams,MikeCoultas,Reeves OilfieldServices,IMCGeophysicsLtdand PalladianPublications,aswellasthestaffat JohnWiley&SonsLtd.

Ishouldalsoliketothankthoseauthorsand organisationswhosepermissiontoreproduce theirworkisgratefullyacknowledged.

FinallyIwouldliketothankmyfamilyfor theirsupport,encouragementandassistance withthemanuscript.

ListofAcronyms

AMDAcidminedrainage

AMMAbandoned-minemethane

ASTMAmericanSocietyforTesting andMaterials

BAPBaliActionPlan

BFBCBubblingfluidised-bed combustion

BOFBasicoxygenfurnace

CBMCoal-bedmethane

CCSCarboncaptureandstorage

CDMCleandevelopmentmechanism

CFBCCirculatingfluidised-bed combustion

CFRCodeofFederalRegulations

CHPCombinedheatandpower

CIMCanadianInstituteforMining, MetallurgyandPetroleum

CMMCoalminemethane

CMMICouncilofMining& MetallurgicalInstitutions

CRIRSCOCommitteeforMineralReserves InternationalReporting Standards

CSGCoalseamgas

EAFElectricarcfurnace

EFGEuropeanFederationof Geologists

EISAEnvironmentalImpactand SocialAssessment

EPAEnvironmentalProtection Agency

FBCFluidised-bedcombustion

FCCCFrameworkConventionon

ClimateChange

FGDFluegasdesulfurisation

GHGGreenhousegas

IGCCIntegratedgasificationcombined cycle

ISPIndianStandardProcedure

JORCJointOreReservesCommittee

LRTAPLong-rangetrans-boundaryair pollution

NAENRussianCodeforPublic ReportingofExploration Results,MineralResources& Reserves

NDCNationallydetermined contribution

NRONationalReportingOrganisation

PCDDsPolychlorinated dibenzo-para-dioxins

PCDFsPolychlorinateddibenzofurans

PERCPan-EuropeanReservesand ResourcesReportingCommittee

PMParticulatematter

PRCPeople’sRepublicofChina

R/PReserves/productionratio

SAMRECSouthAfricanCodefor ReportingofExploration Results,MineralResourcesand Reserves

SAMVALSouthAfricanCodefor ReportingofMineralAsset Valuation

SCRSelectivecatalyticreduction

SECUnitedStatesSecuritiesand ExchangeCommission

SMESocietyforMining,Metallurgy andExploration(USA)

TDSTotaldissolvedsolids

TEOTechnical–economic justification

TERITheEnergyResearchInstitute (India)

UCGUndergroundcoalgasification

UNECEUnitedNationsEconomic CommissionforEurope

UNEPUnitedNationsEnvironment Programme

UNFCUnitedNationsFramework ClassificationforFossilEnergy andMineralResources

UNFCCCUnitedNationsConventionon ClimateChange

USGSUnitedStatesGeologicalSurvey

VALMINAustralianCodeforthePublic ReportingofTechnical AssessmentsandValuationsof MineralAssets

VAMVentilationairmethane

WCAWorldCoalAssociation

WECWorldEnergyCouncil

1.1Scope

Theobjectofthisbookremainsunchanged. Itistoprovidegeologistsandthoseassociated withthecoalindustry,aswellasteachersof coursesoncoalaboutitsgeologyanduses, withabackgroundofthenatureofcoalandits varyingproperties,togetherwiththepractice andtechniquesrequiredinordertocompile geologicaldatathatwillenableacoalsequence underinvestigationtobeultimatelyevaluated intermsofmineabilityandsaleability.Inaddition,thealternativeusesofcoalasasource ofenergytogetherwiththeenvironmental implicationsofcoalusagearealsoaddressed.

Eachofthesesubjectsisamajortopicin itself,andthebookonlycoversabriefreview ofeach,highlightingtherelationshipbetween geologyandthedevelopmentandcommercial exploitationofcoal.

1.2CoalGeology

Coalisauniquerocktypeinthegeological column.Ithasawiderangeofchemicaland physicalproperties,andithasbeenstudied overalongperiodoftime.Thisvolumeis intendedtobeabasicguidetounderstanding thevariationincoalsandtheirmodesoforigin andofthetechniquesrequiredtoevaluatecoal occurrences.

Theepisodesofcoaldevelopmentinthe geologicalcolumnaregiventogetherwiththe principalcoaloccurrencesworldwide.Itis

acceptedthatthisisnottotallyexhaustive,as coaldoesoccurinsmallareasnotindicatedin thefiguresortables.

Thereportingofcoalresources/reservesisan importantaspectofcoalgeology,andinternationalstandardsandguidelinesareinplaceto ensurethecorrectreportingprocedurestobe undertaken.Mostnationalstandardsarenow beingreconciledwiththese,andtheprincipal resources/reservesclassificationsaregiven. Currentestimatesofglobalresourcesand reservesofcoal,togetherwithcoalproduction figures,arelisted.Althoughtheseobviously becomedated,theydoservetoindicatewhere themajordepositsandminingactivitiesare currentlyconcentrated.

Inrelationtotheextractionofcoal,the understandingofthegeophysicalandhydrogeologicalpropertiesofcoalsisanintegralpart ofanycoalminedevelopment,andtheseare reviewedtogetherwiththeprincipalmethods ofminingcoal.Theincreasinguseofcomputer technologyhashadaprofoundimpactongeologicalandminingstudies.Someoftheapplicationsofcomputerstothesearediscussed.

Animportantdevelopmentinrecentyears hasbeentheattemptstousecoalasanalternativeenergysourcebyeitherremovingmethane (CH4 )gasfromthein-situcoalandcoalmines, orbyliquefyingthecoalasadirectfuelsource, orbygasificationofcoalinsituunderground. Thesetechnologiestogetherareparticularlysignificantinareaswhereconventional coalmininghasceasedorwherecoaldeposits aresituatedeitheratdepthsuneconomicto

mineorinareaswhereminingisconsidered environmentallyundesirable.

1.3CoalUse

Theprincipalusesoftradedcoalsworldwide areforelectricitygenerationandsteelmanufacture,withotherindustrialusersanddomesticconsumptionmakinguptheremainder.

Lackofenvironmentalcontrolsintheuse ofcoalinthepasthasledtobothlandand airpollution,aswellasdestructionofhabitat. Modernenvironmentalguidelinesandlegislationarebothrepairingthedamageofthe pastandpreventingareoccurrenceofsuch phenomena.Anoutlineisgivenofthetypes ofenvironmentalconcernsthatexistwhere coalisutilised,togetherwiththecurrentpositionontheimprovementsintechnologyin miningtechniques,industrialprocesses,and electricitygenerationemissions.

Themarketingofcoalisoutlined,together withthecontractualandpricingmechanisms commonlyemployedinthecoalproducer/coal usersituation.

1.4Background

Inmostindustrialcountries,coalhashistoricallybeenakeysourceofenergyandamajor contributortoeconomicgrowth.Intoday’s choiceofalternativesourcesofenergy,industrialisedeconomieshaveseenachangeinthe roleforcoal.

Originally,coalwasusedasasourceofheat andpowerinhomesandindustry.During the1950sand1960scheapoilcurtailedthe growthofcoaluse,buttheuncertaintiesofoil supplyinthe1970sledtoaresumptionincoal consumptionandarapidgrowthininternationalcoaltrade.This,inturn,wasfollowed byanincreasinglyunfavourableimagefor coalasacontributortogreenhousegas(GHG) emissionsandhadbeencloselyidentified withglobalwarming.Thecoalindustryhas

respondedpositivelytothisaccusation,and modernindustrialplantshavemuchlower emissionslevelsthaninpreviousyears.Currentfiguresshowthatcoalaccountsfor45%of allcarbondioxide(CO2 )emissions.

Theworldconsumptionoffossilfuels, andthusemissionsofCO2 ,willcontinueto increase,andfossilfuelsstillmeetaround 86%ofprimaryenergyrequirements.The objectiveoftheUnitedNationsFramework ConventiononClimateChange(UNFCCC) signedatthe1992EarthSummitinRiode Janeiroisto‘stabiliseGHGconcentrationsin theatmosphereatalevelthatwouldprevent dangerousanthropogenicinterferencewith theclimatesystem’.Nosetlevelswereidentified,butemissionsindevelopedcountries wereexpectedtobereducedto1990levels.A seriesofannualmeetingsbytheinternational bodyundertheUNFCCC,theConferenceof theParties(COP),havetakenplace,notably COP-3inKyoto,Japan,in1997,atwhichthe KyotoProtocolwasdrawnup,settingemissionstargetsforallthecountriesattending. However,governmentministersatCOP-6in TheHagueinNovember2000failedtoagree onthewayforwardtomeettheKyotoProtocol targets.ThisplacedthewholeoftheKyoto Protocol’sambitiousandoptimisticplanfora globalagreementonGHGemissionsreduction inanuncertainposition.Thiscouldbeanindicationofoverambitiousgoalsratherthanany failureinthenegotiations,anditisuptothe partiesconcernedtoestablisharealisticsetof targetsforemissionsreductionsinthefuture. TheCopenhagenAccordin2009reinforced theneedforemissionsreductions,together withprovidingfinancialassistancetohelp developingcountriescutcarbonemissions. In2015,attheParisAgreement,partiesto theUNFCCCreachedagreementtocombat climatechangeandtoaccelerateandintensify theactionsandinvestmentsforasustainable low-carbonfuture.Thiswasthefirstlegally bindingglobalclimatedeal.

Itremainsafactthatmanyeconomiesstill dependoncoalforasignificantportionof

theirenergyneeds.Coalcurrentlyaccounts for28%oftheworld’sconsumptionofprimaryenergy,and,importantly,coalprovides fuelforthegenerationofaround39%of thetotaloftheworld’selectricity.In2018, internationallytradedcoalwas1169Mt,the bulkofwhichwassteamorthermalcoal. Globally,5.6Gtofcoalwasconsumedin2016 (BPplc2017).

Coalreservesarecurrentlyestimatedtobe around900Gt,andtheworldcoalreserves toproductionratioisnearlysixtimesthat foroilandfourtimesthatfornaturalgas.

This,togetherwiththegloballydemocratic distributionandsecurenatureofcoaldeposits, willensurethatcoalwillcontinuetobea majorenergyresourceforsomeconsiderable timetocome.

Withthisscenarioinmind,thisvolume isintendedtoassistthoseassociatedwith thecoalindustry,aswellaseducationalists andthoserequiredtomakeeconomicand legislativedecisionsaboutcoal.

Thephilosophyandviewsexpressedin thisbookarethoseoftheauthorandnotthe publisher.

OriginofCoal

2.1Introduction

Sedimentarysequencescontainingcoalorpeat bedsarefoundthroughouttheworldandrange inagefrommiddlePalaeozoictoRecent.

Coalsaretheresultoftheaccumulation ofvegetabledebrisinaspecialisedenvironmentofdeposition.Suchaccumulations havebeenaffectedbysynsedimentaryand post-sedimentaryinfluencestoproducecoals ofdifferingrankanddifferingdegreesof structuralcomplexity,thetwobeingclosely interlinked.Theplanttypesthatmakeupcoals haveevolvedovergeologicaltime,providinga varietyoflithotypesincoalsofdifferingages.

Remarkablesimilaritiesexistincoal-bearing sequences,dueforthegreaterparttothe particularsedimentaryassociationsrequired togenerateandpreservecoals.Sequencesof vastlydifferentagesfromareasgeographically separatehaveasimilarlithologicalframework andcanreactinsimilarfashionsstructurally.

Itisafact,however,thattheoriginofcoalhas beenstudiedforoveracenturyandthatnoone modelhasbeenidentifiedthatcanpredictthe occurrence,development,andtypeofcoal.A varietyofmodelsexistthatattempttoidentify theenvironmentofdeposition,butnosingle onecanadequatelygiveasatisfactoryexplanationforthecyclicnatureofcoalsequences, thelateralcontinuityofcoalbeds,andthe physicalandchemicalcharacteristicsofcoals. However,theadventofsequencestratigraphy

hasrecognisedthepatternofgeologicalevents leadingtothedifferentphasesofdeposition anderosionwithincoal-bearingsequences.

2.2SedimentationofCoal andCoal-BearingSequences

Duringthelast90years,interesthasgrown rapidlyinthestudyofsedimentologicalprocesses,particularlythosecharacteristicof fluviatileanddeltaicenvironments.Itisthese, inparticular,thathavebeencloselyidentified withcoal-bearingsequences.

Itisimportanttogiveconsiderationbothto therecognitionoftheprincipalenvironments ofdepositionandtotherecentchangesin emphasisregardingthosephysicalprocesses required,inordertoproducecoalsofeconomic value.Inaddition,theunderstandingofthe shape,morphology,andqualityofcoalseams isoffundamentalsignificanceforthefuture planningandminingofcoals.Althoughthe genesisofcoalhasbeenthesubjectofnumerousstudies,modelsthatareusedtodetermine theoccurrence,distribution,andqualityof coalareoftenstilltooimprecisetoallowsuch accuratepredictions.

2.2.1DepositionalModels

Therecognitionofdepositionalmodelsto explaintheoriginofcoal-bearingsequences

andtheirrelationshiptosurroundingsedimentshasbeenachievedbyacomparison oftheenvironmentsunderwhichmodern peatsareformedandancientsequences containingcoals.

Ceciletal.(1993)suggestedthatthecurrentmodelsoftenconcentrateonthephysical descriptionofthesedimentsassociatedwith coalratherthanconcentratingonthegeologicalfactorsthatcontrolthegenesisofcoalbeds. Theyalsosuggestthatmodelsthatcombine sedimentationandtectonicswitheustasyand chemicalchangehavenotyetbeenfullydeveloped.Suchintegratedmodelswouldgivean improvedexplanationofphysicalandchemical processesofsedimentation.Itshouldbenoted thattheuseofsequencestratigraphyinfacies modellingisbasedonphysicalprocessesand doesnottakeintoaccountchemicalstratigraphy.Thiswillproveadeficiencywhenpredictingtheoccurrenceandcharacterofcoalbeds.

Thetraditionaldepositionalmodelused bynumerousworkerswasbasedonthe ‘cyclothem’,aseriesoflithotypesoccurringin repeated‘cycles’.Weller(1930)andWanless andWeller(1932)remarkedonthesimilarity ofstratigraphicsectionsassociatedwithevery coalbed;i.e.marinesedimentsconsistedof blacksheetyshalewithlargeconcretions, limestonewithmarinefossilsandshalewith ironstonenodulesandbands,whereascontinentalsequencescomprisedsandstonelying unconformablyonlowerbeds,sandyshale, limestonewithoutmarinefossils,rootletbed orseatearth,andthencoal.Althoughallofthe membersofeachcyclothemvaryinthickness andlithologyfromplacetoplace,thecharacterofsomebedsisremarkablysimilarat localitiesgreatdistancesapart.Theirstudies showedthattheentirePennsylvanian(upper Carboniferous)systemintheEasternInterior andnorthernAppalachianBasinsandthe LowerPennsylvanianstratainthenorthern partoftheWesternInteriorBasinconsistof similarsuccessionsofcyclothems.Individual cyclothemsarepersistent,andcorrelationof cyclothemsatwidelyseparatedlocalitiesis

possible.Thisconcepthasbeenmodifiedtoa modelthatrelateslateralandverticalsequentialchangestodepositionalsettingsthathave beenrecognisedinmodernfluvial,deltaic,and coastalbarriersystems.Furtherstudiesonthe traditionalmodelarebasedonworkcarriedout intheUSAbyHorne(1979),Horneetal.(1978, 1979),Ferm(1979),Fermetal.(1979),Ferm andStaub(1984),andStaubandCohen(1979). Thesequences,orlithofacies,arecharacterised bythesedimentaryfeatureslistedinTable2.1. OtherworkersincludeThornton(1979)and JonesandHutton(1984)oncoalsequencesin Australia,GallowayandHobday(1996),and Guionetal.(1995)andGeorge(2014)inthe UK.Morerecentstudieshavecomparedsuch establisheddepositionalmodelswithmodern coastalplainsedimentation,e.g.inequatorial South-EastAsia,andhaveconcentratedinparticularonmoderntropicalpeatdeposits(Cecil etal.1993;Clymo1987;Gastaldoetal.1993; McCabeandParrish1992).StudiesbyHobday (1987),Diessel(1992),Lawrence(1992), Jerzykiewicz(1992),Dreesenetal.(1995), CohenandSpackman(1972,1980),Flintetal. (1995),andMcCabe(1984,1987,1991)haveall furtherdevelopedthemodelforcoaldepositsof differingages,usingthetraditionalmodelbut relatingittomodernsedimentaryprocesses. GallowayandHobday(1996),intheirtextbook,giveadetailedanalysisofcoal-bearing environmentswithworldwideexamples.

Inparallelwiththiswork,detailedstudies ofpeatmireshavebothraisedandanswered questionsonthedevelopmentofcoalgeometry,i.e.thicknessandlateralextent,together withtheresultantcoalchemistry.

Thetraditionalmodelisstillabasisfor moderncoalstudies,butlinkedtodetailed interpretationofsedimentarysequencesanda betterunderstandingofpeatdevelopmentand preservation.

2.2.2TheTraditionalModel

Theinterrelationshipoffluvialandmarine processesresultsinsignificantvariationin

2.2SedimentationofCoalandCoal-BearingSequences

Table2.1 Sedimentaryfeaturesusedtoidentifydepositionalenvironments.

Recognitioncharacteristics

ICoarseningupwards

AShaleandsiltstone sequences 2–3212–13–2

(i) >50ft43–42–12–13–2 (ii)5–25ft2–32–12–12–13–2

BSandstonesequences3–43–22–122–1

(i) >50ft442–132–1 (ii)5–25ft33–22–122

IIChanneldeposits

AFine-grainedabandonedfill32–31–223–2 (i)Clayandsilt32–31–223–2 (ii)Organicdebris32–31–22–33

BActivesandstonefill122–32–32 (i)Finegrained222–32–32 (ii)Medium-and coarse-grained 12–3332–3 (iii)Pebblelags1122–33–2 (iv)Coalspars1122–33–2

IIIContacts

AAbrupt(scour)11222–1 BGradational2–322–122

IVBedding

ACrossbeds1111–21–2 (i)Ripples22–1111 (ii)Rippledrift2–122–33–23–2 (iii)Troughcrossbeds11–22–122–1 (iv)Gradedbeds332–13–23–2 (v)Pointbaraccretion123–43–43–4 (vi)Irregularbedding123–23–23–2

VLeveedeposits

AIrregularlyinterbedded sandstonesandshales,rooted 11–23–234

VIMineralogyofsandstones

ALithicgreywacke111–233

BOrthoquartzite444–31–21

VIIFossils

AMarine43–22–11–21–2

BBrackish3222–32–3

CFresh2–33–23–444

DBurrow32111

a)1,abundant;2,common;3,rare;4,notpresent. Source: FromHorneetal.(1979).

thegeometry,thickness,quality,andcontinuityofcoalseams.Theresultantdistribution andcompositionofthefaciescharacterising marinedeltasarecontrolledbyanumberof variables,suchasclimate,sedimentavailability,salinity,anddepthoftidalinfluences, togetherwithsea-levelchangesrelatingto eustatic,tectonic,orcompactionalprocesses.

2.2.2.1ProdeltaandDeltaFrontFacies

Thecoastalorprodeltaendofthedepositionalmodelischaracterisedbycleanbarrier sandstones.Thesebecomefinergrainedin aseawarddirectionandintercalatewithred andgreencalcareousshalesandcarbonate rocks,withthelattercontainingmarinefaunas.Towardsthedeltafront,theback-barrier faciesarecharacterisedbyagradationinto darkgreylagoonalshaleswithbrackishwater faunasandintomarginalswampareason whichvegetationwasestablished.Thebarrier sandstoneshavebeenconstantlyreworked and,therefore,aremorequartzosethanthose sandstonesinsurroundingenvironmentswith thesamesourcearea.Waveandtidalreworkingatthedeltafrontproducesbarriersandbars paralleltotheshore,whereastidalreworking generatesbarsparalleltotheebbandflow currents(George2014).

Barriersandbarsexhibitavarietyofbedding styles:first,extensivesheetsofplane-bedded sandstoneswithrippledandburrowedupper surfaces,interpretedasstormwashoversands; second,wedge-shapedbodiesthatextend landward,whichcanattainthicknessesofup to6mandcontainlandward-dippingplanar andtroughcross-beds,interpretedasfloodtide deltadeposits;andthird,channel-fillsandstones,whichmayscourtodepthsofover10m intotheunderlyingsediments,interpretedas tidalchanneldeposits.

Adepositionalreconstructionisshownin Figure2.1abasedonstudiesbyHorneetal. (1979).

Thelagoonalback-barrierenvironment ischaracterisedbyupwards-coarsening, organic-richgreyshalesandsiltstonesoverlain

bythinanddiscontinuouscoals.Thissequence exhibitsextensivebioturbationzones,together withbandsandconcretionsofchemicallyprecipitatedironcarbonate(sideriticironstone). Theextentofsuchsequencesisconsidered tobeintheorderof20–30minthickness and5–25kminwidth.Atypicalvertical sequenceofback-barrierdepositionisshown inFigure2.1b.

2.2.2.2LowerDeltaPlainFacies

Lowerdeltaplaindepositsaredominated bycoarsening-upwardssequencesofmudstoneandsiltstone,rangingfrom15to55m inthicknessand8–110kminlateralextent. Thelowerpartofthesesequencesischaracterisedbydarkgreytoblackmudstoneswith irregularlydistributedlimestonesandsiderite (Figure2.2a).

Intheupperpart,sandstonesarecommon,reflectingtheincreasingenergyofthe shallowwaterasthebayfillswithsediment. Wherethebayshavefilledsufficientlyto allowplantgrowth,coalshaveformed.Where thebaysdidnotfillcompletely,bioturbated, siderite-cementedsandstonesandsiltstones haveformed.

Thisupwards-coarseningpatternisinterruptedinmanyareasbycrevasse-splays (Figure2.2b).InthePennsylvanianofthe USA,crevasse-splaydepositscanbe >10min thicknessand30mto8kmwide.

Overlyingandlaterallyequivalenttothe bay-fillsequencesarethicklithicsandstones upto25minthicknessandupto5kmin width.Theseareinterpretedasdistributary mouthbardeposits;theyarewidestatthe baseandhavegradationalcontacts.They coarsenupwardsandtowardsthemiddleof thesandbody.Insomeplaces,fining-upwards sequencesaredevelopedonthetopofthe distributarymouthbarandbay-filldeposits.

Thesedistributarychannel-filldepositshave anirregularsharpbasalcontact,producedby scouringoftheunderlyingsediments.Atthe base,pebbleandcoal-fragmentlagdepositsare common.

Figure2.1 (a)Barrierandback-barrierenvironmentsincludingtidalchannelsandflood–tidaldeltas,based onexposuresinKentucky,USA. Source: FromHorneetal.(1979).(b)Generalisedverticalsectionthrough back-barrierdepositsintheCarboniferousofeasternKentucky,USA. Source: FromHorneetal.(1979).

Figure2.2 GeneralisedverticalsequencesthroughlowerdeltaplaindepositsineasternKentucky,USA. (a)Typicalcoarsening-upwardsequence.(b)Samesequenceinterruptedbycrevasse-splaydeposits. Source: FromHorneetal.(1979).

Becauseoftherapidabandonmentofdistributaries,fine-grainedmudstonefillsare commoninlowerdeltaplaindeposits.They representsiltandorganicdebristhathas settledfromsuspensionintheabandoned distributary.Insomeareas,thickorganicaccumulationsfilledthesechannels,resultingin theformationoflenticularcoals.Apartfrom thoseformedintheabandonedchannels,coals ofthelowerdeltaplainaregenerallyrelatively thinandwidespread.Suchcoalsareoriented paralleltothedistributarypatterns.

2.2.2.3UpperDeltaPlainFacies

Betweentheupperandlowerdeltaplains thereisatransitionzonethatexhibitscharacteristicsofbothsequences.Thiszoneconsists ofawidespreadplatformonwhichpeatmires wereformed.Thisplatformwascutbynumerouschannelsandthesequencedisruptedby crevasse-splaydeposits.Thecoalsformedon theplatformarethickerandmorewidespread thanthecoalsofthelowerdeltaplain;sucha sequenceisshowninFigure2.3b.

Upperdeltaplaindepositsaredominated bylinear,lenticularsandstonebodiesupto 25mthickandupto11kmwide.Thesesandstoneshavescouredbasesandpasslaterally intheupperpartintogreyshales,siltstones, andcoals.Thesandstonesfineupwardswith abundantpebbleconglomerates,andthereare coalclastsinthelowerpart.Thesandstones arecharacterisedbymassivebeddingandare overlainbysiltstones.

Thesesandstonebodieswidenupwardsin cross-sectionandareconsideredtohavebeen depositedinthechannelsandontheflanksof streamsthatmigratedacrosstheupperdelta plain;seeFigure2.4a.Laterally,mudsandsilts withvegetationandinvertebrateactivityare characteristic.Theseareasarecolonisedby plants,andextensivemiresmaydevelopas thechannelsystembecomesinfilledwithan increaseinavailablesediment.

Coalseamsintheupperdeltaplainfacies maybe >10minthicknessbutareoflimitedlateralextent.Figure2.4billustratesa

2.2SedimentationofCoalandCoal-BearingSequences

verticalsequenceofupperdeltaplainfacies fromeasternKentuckyandsouthernWest Virginia,USA.

2.2.2.4FluvialFacies

Meanderingriversaredevelopedonfloodplainsclosetobaselevel,wheretheytransport suspendedsedimentwithinsinuouschannels. Downcuttingisminimal,withriverenergy beingexpendedlaterally.Theevolutionand extensivecolonisationofalluvialterrainsby plants–whosebeginningslieintheLate SiluriantoDevonianandwhichincreaseddramaticallyduringtheCarboniferous–resulted inrootedplantshavingtheabilitytoformsoils andstabiliserivermarginsandtoproduce adecreaseinsurfacerun-off.Assuch,coals commonlyoverlieupwards-finingsequences accumulatingonriverbanksandinbackswampsadjacenttomigratingchannels.The thickestcoaldevelopmentoccursbetweenthe channels,withsplittingandthinningatthe channelmargins.Detailedstudiesoftheinfluenceofvegetationontheevolutionoffluvial systemshavebeendocumentedbyDaviesand Gibling(2010)andGiblingetal.(2014).

Anastomosedriverscomprisetwoormore interconnectedchannelsseparatedbyareasof floodplaindepositsonwhichlacustrineand coaldepositsaccumulate.Theirmorphology anddevelopmentaredescribedindetailby Makaske(2001)inhiscomprehensivereview oftheclassification,origin,andcharacteristic sedimentationofanastomosingrivers.Toillustratethecomplexdepositionalrelationships,a depositionalmodelofananastomosedriveris showninFigure2.5(George2014).

Thesesequencescharacterisedbymeanderingandanastomosedriversareconsidered tobevirtuallyabsentpriortotheevolution andextensivecolonisationofalluvialterrains (George2014;Giblingetal.2014).

2.2.3ModernPeatAnalogues

Theprincipalcharacteristicsofacoalareits thickness,lateralcontinuity,rank,maceral

Figure2.3 (a)ReconstructionoftransitionallowerdeltaplainenvironmentsinKentucky,USA. Source: From Horneetal.(1979).(b)Generalisedverticalsequencethroughtransitionallowerdeltaplaindepositsof easternKentuckyandsouthernWestVirginia,USA. Source: FromHorneetal.(1979).

Figure2.4 (a)Reconstructionofupperdeltaplain–fluvialenvironmentsinKentucky,USA. Source: From Horneetal.(1979).(b)Generalisedverticalsequencethroughupperdeltaplain–fluvialdepositsofeastern KentuckyandsouthernWestVirginia,USA. Source: FromHorneetal.(1979).

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Coal geology 3rd edition larry thomas download pdf by Education Libraries - Issuu