Instant download Optical properties of materials and their applications second edition singh pdf all

Page 1


Optical properties of materials and their applications Second Edition Singh

Visit to download the full and correct content document: https://ebookmass.com/product/optical-properties-of-materials-and-their-applicationssecond-edition-singh/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Optical Materials and Applications: Volume 1 Novel

Optical Materials Francesco Simoni

https://ebookmass.com/product/optical-materials-and-applicationsvolume-1-novel-optical-materials-francesco-simoni/

Biodegradable Materials and Their Applications

Inamuddin https://ebookmass.com/product/biodegradable-materials-and-theirapplications-inamuddin/

Ternary Quantum Dots: Synthesis, Properties, and Applications (Woodhead Publishing Series in Electronic and Optical Materials) 1st Edition Oluwatobi Samuel Oluwafemi

https://ebookmass.com/product/ternary-quantum-dots-synthesisproperties-and-applications-woodhead-publishing-series-inelectronic-and-optical-materials-1st-edition-oluwatobi-samueloluwafemi/

Optical Holography: Materials, Theory and Applications

Pierre-Alexandre Blanche

https://ebookmass.com/product/optical-holography-materialstheory-and-applications-pierre-alexandre-blanche/

Optical Thin Films and Coatings 2e : From Materials to Applications. 2nd ed. Edition Flory

https://ebookmass.com/product/optical-thin-films-andcoatings-2e-from-materials-to-applications-2nd-ed-edition-flory/

Electrical Properties of Materials 10th Edition Solymar

https://ebookmass.com/product/electrical-properties-ofmaterials-10th-edition-solymar/

Calculations and Simulations of Low-Dimensional Materials : Tailoring Properties for Applications 1st Edition Ying Dai

https://ebookmass.com/product/calculations-and-simulations-oflow-dimensional-materials-tailoring-properties-forapplications-1st-edition-ying-dai/

Electrical Properties of Materials (10th Edition) L. Solymar

https://ebookmass.com/product/electrical-properties-ofmaterials-10th-edition-l-solymar/

Nonconventional and Vernacular Construction Materials■

Characterisation, Properties and Applications Kent A. Harries & Bhavna Sharma

https://ebookmass.com/product/nonconventional-and-vernacularconstruction-materials%ef%bc%9a-characterisation-properties-andapplications-kent-a-harries-bhavna-sharma/

OpticalPropertiesofMaterialsandTheirApplications

WileySeriesinMaterialsforElectronicand OptoelectronicApplications

www.wiley.com/go/meoa

SeriesEditors

ProfessorArthurWilloughby, UniversityofSouthampton,Southampton,UK

DrPeterCapper, Ex-LeonardoMWLtd,Southampton,UK

ProfessorSofaKasap, UniversityofSaskatchewan,Saskatoon,Canada

PublishedTitles

BulkCrystalGrowthofElectronic,OpticalandOptoelectronicMaterials,EditedbyP.Capper PropertiesofGroup-IV,III—VandII—VISemiconductors,S.Adachi ChargeTransportinDisorderedSolidswithApplicationsinElectronics,EditedbyS.Baranovski OpticalPropertiesofCondensedMatterandApplications,EditedbyJ.Singh ThinFilmSolarCells:Fabrication,Characterization,andApplications,EditedbyJ.PoortmansandV. Arkhipov

DielectricFilmsforAdvancedMicroelectronics,EditedbyM.R.Baklanov,M.Green,andK.Maex LiquidPhaseEpitaxyofElectronic,OpticalandOptoelectronicMaterials,EditedbyP.CapperandM.Mauk MolecularElectronics:FromPrinciplestoPractice,M.Petty LuminescentMaterialsandApplications,A.Kitai CVDDiamondforElectronicDevicesandSensors,EditedbyR.S.Sussmann PropertiesofSemiconductorAlloys:Group-IV,III—VandII—VISemiconductors,S.Adachi MercuryCadmiumTelluride,EditedbyP.CapperandJ.Garland ZincOxideMaterialsforElectronicandOptoelectronicDeviceApplications,EditedbyC.Litton,D.C. Reynolds,andT.C.Collins

Lead-FreeSolders:MaterialsReliabilityforElectronics,EditedbyK.N.Subramunian SiliconPhotonics:FundamentalsandDevices,M.JamalDeenandP.K.Basu NanostructuredandSubwavelengthWaveguides:FundamentalsandApplications,M.Skorobogatiy PhotovoltaicMaterials:FromCrystallineSilicontoThird-GenerationApproaches,EditedbyG.Conibeer andA.Willoughby GlancingAngleDepositionofThinFilms:EngineeringtheNanoscale,MatthewM.Hawkeye,MichaelT. Taschuk,andMichaelJ.Brett

PhysicalPropertiesofHigh-TemperatureSuperconductors,R.Wesche SpintronicsforNextGenerationInnovativeDevices,EditedbyKatsuakiSatoandEijiSaitoh InorganicGlassesforPhotonics:Fundamentals,EngineeringandApplications,AnimeshJha AmorphousSemiconductors:Structural,OpticalandElectronicProperties,KazuoMorigaki,SandorKugler, andKoichiShimakawa

MicrowaveMaterialsandApplications,Twovolumeset,EditedbyMailadilT.Sebastian,RickUbic,andHeli Jantunen

MolecularBeamEpitaxy:MaterialsandApplicationsforElectronicsandOptoelectronics,EditedbyHajime AsahiandYoshijiKorikoshi

MetalorganicVaporPhaseEpitaxy(MOVPE):Growth,MaterialsProperties,andApplications,Editedby StuartIrvineandPeterCapper

OpticalPropertiesofMaterialsandTheir Applications

CollegeofEngineering,ITandEnvironment

CharlesDarwinUniversity,Darwin,Australia

SecondEdition

Thiseditionfirstpublished2020

©2020JohnWiley&SonsLtd

EditionHistory

JohnWiley&SonsInc.(1e,2006)

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,in anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedby law.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/ permissions.

TherightofJaiSinghtobeidentifiedastheauthoroftheeditorialmaterialinthisworkhasbeenassertedin accordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflow ofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreview andevaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment, reagent,ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusageandforadded warningsandprecautions.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,they makenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthiswork andspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityor fitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensales materialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductisreferredto inthisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherand authorsendorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendations itmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessional services.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwith aspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechanged ordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbe liableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Singh,Jai,editor.

Title:Opticalpropertiesofmaterialsandtheirapplications/editedby JaiSingh(CollegeofEngineering,IT,andEnvironment,CharlesDarwin University,Darwin,Australia)

Othertitles:Opticalpropertiesofcondensedmatterandapplications.| Opticalpropertiesofcondensedmatterandapplications.

Description:Secondedition.|Hoboken,NJ:JohnWiley&Sons,2020.| Series:Wileyseriesinmaterialsforelectronicandoptoelectronic applications|Previousedition:Opticalpropertiesofcondensedmatter andapplications,2006.|Includesbibliographicalreferencesandindex. Identifiers:LCCN2019023895(print)|LCCN2019023896(ebook)|ISBN 9781119506317(cloth)|ISBN9781119506065(adobepdf)|ISBN 9781119506058(epub)

Subjects:LCSH:Condensedmatter–Opticalproperties.|Materials–Optical properties.|Electrooptics–Materials.

Classification:LCCQC173.458.O66O682020(print)|LCCQC173.458.O66 (ebook)|DDC530.4/12–dc23

LCrecordavailableathttps://lccn.loc.gov/2019023895

LCebookrecordavailableathttps://lccn.loc.gov/2019023896

CoverDesign:Wiley

CoverImages:©mitchFOTO/Shutterstock Setin10/12ptWarnockProbySPiGlobal,Chennai,India

10987654321

Contents

ListofContributors xv

SeriesPreface xvii

Preface xix

1FundamentalOpticalPropertiesofMaterialsI1

S.O.Kasap,W.C.Tan,JaiSingh,andAsimK.Ray

1.1Introduction1

1.2OpticalConstants n and K 2

1.2.1RefractiveIndexandExtinctionCoefficient2

1.2.2 n and K ,andKramers–KronigRelations5

1.3RefractiveIndexandDispersion7

1.3.1CauchyDispersionRelation7

1.3.2SellmeierEquation8

1.3.3RefractiveIndexofSemiconductors10

1.3.3.1RefractiveIndexofCrystallineSemiconductors10

1.3.3.2BandgapandTemperatureDependence11

1.3.4RefractiveIndexofGlasses11

1.3.5Wemple–DiDomenicoDispersionRelation14

1.3.6GroupIndex15

1.4TheSwanepoelTechnique:Measurementof n and �� forThinFilms onSubstrates16

1.4.1UniformThicknessFilms16

1.4.2ThinFilmswithNon-uniformThickness22

1.5TransmittanceandReflectanceofaPartiallyTransparentPlate25

1.6OpticalPropertiesandDiffuseReflection:Schuster–Kubelka–Munk Theory27

1.7Conclusions31 Acknowledgments31 References32

2FundamentalOpticalPropertiesofMaterialsII37

S.O.Kasap,K.Koughia,JaiSingh,HarryE.Ruda,andAsimK.Ray 2.1Introduction37

2.2LatticeorReststrahlenAbsorptionandInfraredReflection40 2.3FreeCarrierAbsorption(FCA)42

2.4Band-to-BandorFundamentalAbsorption(CrystallineSolids)45

2.5ImpurityAbsorptionandRare-EarthIons48

2.6EffectofExternalFields54

2.6.1Electro-OpticEffects54

2.6.2Electro-AbsorptionandFranz–KeldyshEffect55

2.6.3FaradayEffect56

2.7EffectiveMediumApproximations58 2.8Conclusions61 Acknowledgments61 References62

3OpticalPropertiesofDisorderedCondensedMatter67 KoichiShimakawa,JaiSingh,andS.K.O’Leary

3.1Introduction67

3.2FundamentalOpticalAbsorption(Experimental)69

3.2.1AmorphousChalcogenides69

3.2.2HydrogenatedNano-CrystallineSilicon(nc-Si:H)72

3.3AbsorptionCoefficient(Theory)74

3.4CompositionalVariationoftheOpticalBandgap79

3.4.1InAmorphousChalcogenides79 3.5Conclusions80 References80

4OpticalPropertiesofGlasses83 AndrewEdgar

4.1Introduction83

4.2TheRefractiveIndex84 4.3GlassInterfaces86 4.4Dispersion88

4.5SensitivityoftheRefractiveIndex90

4.5.1TemperatureDependence90

4.5.2StressDependence91

4.5.3MagneticFieldDependence—TheFaradayEffect92

4.5.4ChemicalPerturbations—MolarRefractivity94 4.6GlassColor95

4.6.1ColorationbyColloidalMetalsandSemiconductors95

4.6.2OpticalAbsorptioninRare-Earth-DopedGlass96

4.6.3Absorptionby3dMetalIons99

4.7FluorescenceinRare-Earth-DopedGlass102

4.8GlassesforFiberOptics104

4.9RefractiveIndexEngineering106

4.10GlassandGlass–FiberLasersandAmplifiers109

4.11ValenceChangeGlasses111

4.12TransparentGlassCeramics114

4.12.1Introduction114

4.12.2TheoreticalBasisforTransparency116

4.12.3Rare-Earth-DopedTransparentGlassCeramicsforActive Photonics120

4.12.4FerroelectricTransparentGlassCeramics121

4.12.5TransparentGlassCeramicsforX-rayStoragePhosphors121

4.13Conclusions124 References124

5ConceptofExcitons129

JaiSingh,HarryE.Ruda,M.R.Narayan,andD.Ompong

5.1Introduction129

5.2ExcitonsinCrystallineSolids130

5.2.1ExcitonicAbsorptioninCrystallineSolids133

5.3ExcitonsinAmorphousSemiconductors135

5.3.1ExcitonicAbsorptioninAmorphousSolids137

5.4ExcitonsinOrganicSemiconductors139

5.4.1PhotoexcitationandFormationofExcitons140

5.4.1.1PhotoexcitationofSingletExcitonsDueto Exciton–PhotonInteraction141

5.4.1.2ExcitationofTripletExcitons142

5.4.2ExcitonUp-Conversion147

5.4.3ExcitonDissociation148

5.4.3.1ConversionfromFrenkeltoCTExcitons151

5.4.3.2DissociationofCTExcitons152

5.5Conclusions153 References154

6Photoluminescence157

TakeshiAoki

6.1Introduction157

6.2FundamentalAspectsofPhotoluminescence(PL)inMaterials158

6.2.1IntrinsicPhotoluminescence159

6.2.2ExtrinsicPhotoluminescence160

6.2.3Up-ConversionPhotoluminescence(UCPL)162

6.2.4OtherRelatedOpticalTransitions163

6.3ExperimentalAspects164

6.3.1StaticPLSpectroscopy164

6.3.2PhotoluminescenceExcitationSpectroscopy(PLE)and PhotoluminescenceAbsorptionSpectroscopy(PLAS)167

6.3.3TimeResolvedSpectroscopy(TRS)168

6.3.4Time-CorrelatedSinglePhotonCounting(TCSPC)171

6.3.5Frequency-ResolvedSpectroscopy(FRS)172

6.3.6QuadratureFrequencyResolvedSpectroscopy(QFRS)173

6.4PhotoluminescenceLifetimeSpectroscopyofAmorphous SemiconductorsbyQFRSTechnique175

6.4.1Overview175

6.4.2Dual-PhaseDoubleLock-in(DPDL)QFRSTechnique176

6.4.3ExploringBroadPLLifetimeDistributionina-Si:Hby WidebandQFRS178

6.4.3.1EffectsofExcitationIntensity,Excitation,and EmissionEnergies179

6.4.3.2TemperatureDependence184

6.4.3.3EffectofElectricandMagneticFields185

6.4.4ResidualPLDecayofa-Si:H189

6.5QFRSonUp-ConversionPhotoluminescence(UCPL)ofRE-Doped Materials192

6.6Conclusions197 Acknowledgments198 References198

7Photoluminescence,PhotoinducedChanges,andElectroluminescencein NoncrystallineSemiconductors203 JaiSingh 7.1Introduction203

7.2Photoluminescence205

7.2.1RadiativeRecombinationOperatorandTransitionMatrix Element206

7.2.2RatesofSpontaneousEmission211

7.2.2.1AtNonthermalEquilibrium212

7.2.2.2AtThermalEquilibrium214

7.2.2.3Determining E 0 215

7.2.3ResultsofSpontaneousEmissionandRadiativeLifetime216

7.2.4TemperatureDependenceofPL222

7.2.5ExcitonicConcept223

7.3PhotoinducedChangesinAmorphousChalcogenides225

7.3.1EffectofPhoto-ExcitationandPhononInteraction226

7.3.2ExcitationofaSingleElectron–HolePair228

7.3.3PairingofLikeExcitedChargeCarriers229

7.4RadiativeRecombinationofExcitonsinOrganicSemiconductors232

7.4.1RateofFluorescence233

7.4.2RateofPhosphorescence233

7.4.3OrganicLightEmittingDiodes(OLEDs)234

7.4.3.1Second-andThird-GenerationOLEDs:TADF235

7.5Conclusions236 Acknowledgments236 References237

8PhotoinducedBondBreakingandVolumeChangeinChalcogenideGlasses241 SandorKugler,RozáliaLukács,andKoichiShimakawa

8.1Introduction241

8.2Atomic-ScaleComputerSimulationsofPhotoinducedVolume Changes243

8.3EffectofIllumination244

8.4KineticsofVolumeChange245

8.4.1a-Se245

8.4.2a-As2 Se3 246

8.5AdditionalRemarks248 8.6Conclusions249 References249

9PropertiesandApplicationsofPhotonicCrystals251 HarryE.RudaandNaomiMatsuura

9.1Introduction251

9.2PCOverview252

9.2.1IntroductiontoPCs252

9.2.2NanoengineeringofPCArchitectures253

9.2.3MaterialsSelectionforPCs255

9.3TunablePCs255

9.3.1TuningPCResponsebyChangingtheRefractiveIndexof ConstituentMaterials256

9.3.1.1PCRefractiveIndexTuningUsingLight256

9.3.1.2PCRefractiveIndexTuningUsinganApplied ElectricField256

9.3.1.3RefractiveIndexTuningofInfiltratedPCs257

9.3.1.4PCRefractiveIndexTuningbyAlteringthe ConcentrationofFreeCarriers(UsingElectric FieldorTemperature)inSemiconductor-BasedPCs257

9.3.2TuningPCResponsebyAlteringthePhysicalStructure ofthePC258

9.3.2.1TuningPCResponseUsingTemperature258

9.3.2.2TuningPCResponseUsingMagnetism258

9.3.2.3TuningPCResponseUsingStrain258

9.3.2.4TuningPCResponseUsingPiezoelectricEffects259

9.3.2.5TuningPCResponseUsingMEMSActuation260

9.4SelectedApplicationsofPC260

9.4.1WaveguideDevices261

9.4.2DispersiveDevices262

9.4.3Add/DropMultiplexingDevices262

9.4.4ApplicationsofPCsforLight-EmittingDiodes(LEDs)and Lasers263

9.5Conclusions265 Acknowledgments265 References265

10NonlinearOpticalPropertiesofPhotonicGlasses269 KeijiTanaka

10.1Introduction269 10.2PhotonicGlass271

10.3NonlinearAbsorptionandRefractivity272

10.3.1Fundamentals272

10.3.2Two-PhotonAbsorption275

x Contents

10.3.3NonlinearRefractivity278 10.4NonlinearExcitation-InducedStructuralChanges280 10.4.1Fundamentals280 10.4.2Oxides281

10.4.3Chalcogenides283 10.5Conclusions285

10.AAddendum:PerspectivesonOpticalDevices286 References288

11OpticalPropertiesofOrganicSemiconductors295

TakashiKobayashiandHiroyoshiNaito 11.1Introduction295

11.2MolecularStructureof π-ConjugatedPolymers296 11.3TheoreticalModels298

11.4AbsorptionSpectrum300 11.5Photoluminescence304 11.6Non-EmissiveExcitedStates306

11.7Electron–ElectronInteraction309 11.8InterchainInteraction314 11.9Conclusions320 References321

12OrganicSemiconductorsandApplications323 FurongZhu

12.1Introduction323

12.1.1DeviceArchitectureandOperationPrinciple324

12.1.2TechnicalChallengesandProcessIntegration325

12.2AnodeModificationforEnhancedOLEDPerformance327

12.2.1Low-TemperatureHigh-PerformanceITO327

12.2.1.1ExperimentalMethods328

12.2.1.2MorphologicalProperties329

12.2.1.3ElectricalProperties331

12.2.1.4OpticalProperties333

12.2.1.5CompositionalAnalysis336

12.2.2AnodeModification339

12.2.3ElectroluminescencePerformanceofOLEDs340

12.3FlexibleOLEDs345

12.3.1FlexibleOLEDsonUltrathinGlassSubstrate346

12.3.2FlexibleTop-EmittingOLEDsonPlasticFoils347

12.3.2.1Top-EmittingOLEDs348

12.3.2.2FlexibleTOLEDsonPlasticFoils350

12.4Solution-ProcessableHigh-PerformingOLEDs353

12.4.1PerformanceofOLEDswithaHybridMoO3 -PEDOT:PSS HoleInjectionLayer(HIL)353

12.4.2MorphologicalPropertiesoftheMoO3 -PEDOT:PSSHIL361

12.4.3SurfaceElectronicPropertiesofMoO3 -PEDOT:PSSHIL363 12.5Conclusions368 References369

13TransparentWhiteOLEDs373 ChoiWingHongandFurongZhu

13.1Introduction—ProgressinTransparentWOLEDs373 13.2PerformanceofWOLEDs374

13.2.1OptimizationofDichromaticWOLEDs374

13.2.2 J -L-V CharacteristicsofWOLEDs377

13.2.3Electron-HoleCurrentBalanceinTransparentWOLEDs384

13.3EmissionBehaviorofTransparentWOLEDs386

13.3.1Visible-LightTransparencyofWOLEDs386

13.3.2 L-J CharacteristicsofTransparentWOLEDs390

13.3.3Angular-DependentColorStabilityofTransparentWOLEDs395 13.4Conclusions400 References400

14OpticalPropertiesofThinFilms403

V.-V.Truong,S.Tanemura,A.Haché,andL.Miao

14.1Introduction403 14.2OpticsofThinFilms404

14.2.1AnIsotropicFilmonaSubstrate404

14.2.2MatrixMethodsforMulti-LayeredStructures406

14.2.3AnisotropicFilms407

14.3Reflection-TransmissionPhotoellipsometryforDeterminationof OpticalConstants408

14.3.1PhotoellipsometryofaThickoraThinFilm408

14.3.2PhotoellipsometryforaStackofThickandThinFilms410

14.3.3RemarksontheReflection-TransmissionPhotoellipsometry Method412

14.4ApplicationofThinFilmstoEnergyManagementand Renewable-EnergyTechnologies412

14.4.1ElectrochromicThinFilms413

14.4.2PureandMetal-DopedVO2 ThermochromicThinFilms414

14.4.3Temperature-StabilizedV1-x Wx O2 SkyRadiatorFilms417 14.4.4OpticalFunctionalTiO2 ThinFilmforEnvironmentally FriendlyTechnologies420

14.5ApplicationofTunableThinFilmstoPhaseandPolarization Modulation424 14.6Conclusions430 References430

15OpticalCharacterizationofMaterialsbySpectroscopicEllipsometry435 J.Mistrík 15.1Introduction435

15.2NotionsofLightPolarization436

15.3MeasureableQuantities438 15.4Instrumentation441

15.5SingleInterface442 15.6SingleLayer448 15.7Multilayer454

15.8LinearGrating458

15.9Conclusions462 Acknowledgments463 References463

16ExcitonicProcessesinQuantumWells465 JaiSinghandI.-K.Oh

16.1Introduction465

16.2Exciton–PhononInteraction466

16.3ExcitonFormationinQWsAssistedbyPhonons467 16.4NonradiativeRelaxationofFreeExcitons474

16.4.1IntrabandProcesses475

16.4.2InterbandProcesses479

16.5Quasi-2DFree-ExcitonLinewidth485 16.6LocalizationofFreeExcitons491 16.7Conclusions499 References500

17OptoelectronicPropertiesandApplicationsofQuantumDots503 JørnM.Hvam

17.1Introduction503

17.2EpitaxialGrowthandStructureofQuantumDots504

17.2.1Self-AssembledQuantumDots504

17.2.2Site-ControlledGrowthonPatternedSubstrates505

17.2.3NaturalorInterfaceQuantumDots506

17.2.4QuantumDotsinNanowires507

17.3ExcitonsinQuantumDots508

17.3.1Quantum-DotBandgap509

17.3.2OpticalTransitions510

17.4OpticalProperties513

17.4.1RadiativeLifetime,OscillatorStrength,andInternal QuantumEfficiency514

17.4.2Linewidth,Coherence,andDephasing516

17.4.3TransientFour-WaveMixing517

17.5QuantumDotApplications520

17.5.1QuantumDotLasersandOpticalAmplifiers520

17.5.1.1GainDynamics522

17.5.1.2HomogeneousBroadeningandDephasing524

17.5.1.3Long-WavelengthLasers526

17.5.1.4NanoLasers527

17.5.2Single-PhotonEmitters527

17.5.2.1MicropillarsandNanowires530

17.5.2.2PhotonicCrystalWaveguide531 17.6Conclusions533 Acknowledgments534 References534

18Perovskites–RevisitingtheVenerableABX3 FamilywithOrganic FlexibilityandNewApplications537 JunweiXu,D.L.Carroll,K.Biswas,F.Moretti,S.Gridin,andR.T.Williams 18.1Introduction537

18.1.1Review537

18.1.2TheStructures538 18.1.2.1SimpleCubicFrameworks538 18.1.2.2TheMultiplicityofHybrids539 18.1.2.3StructuralVariation540

18.2HybridPerovskitesinPhotovoltaics544 18.2.1Review544 18.2.2ThePhenomenaCharacterizedas“DefectTolerance”548 18.3Light-EmittingDiodesUsingSolution-ProcessedLeadHalide Perovskites549

18.3.1Review549 18.3.2ConstructionandCharacterizationofLEDsUtilizing CsPbBr3 Nano-InclusionsinCs4 PbBr6 asthe ElectroluminescentMedium553 18.4IonizingRadiationDetectorsUsingLeadHalidePerovskite Materials:Basics,Progress,andProspects562 18.5Conclusions582 Acknowledgments583 References583

19OpticalPropertiesandSpinDynamicsofDilutedMagneticSemiconductor Nanostructures589

AkihiroMurayamaandYasuoOka 19.1Introduction589 19.2QuantumWells591 19.2.1SpinInjection591 19.2.2StudyofSpinDynamicsbyPump-ProbeSpectroscopy594 19.3FabricationofNanostructuresbyElectron-BeamLithography596 19.4Self-AssembledQuantumDots599 19.5HybridNanostructureswithFerromagneticMaterials604 19.6Conclusions607 Acknowledgments608 References609

20KineticsofthePersistentPhotoconductivityinCrystallineIII-V Semiconductors611

RubenJeronimoFreitasandKoichiShimakawa

20.1Introduction611

20.2AReviewofPPCinIII-VSemiconductors613

20.3KeyPhysicalTermsRelatedtoPPC615

20.3.1DispersiveReaction615

20.3.2SEFandPowerLaw616

20.3.3WaitingTimeDistribution617

20.4KineticsofPPCinIII-VSemiconductors617

20.5Conclusions623 Acknowledgments623

20.AOntheReactionRateUndertheUniformDistribution623 References625 Index 627

ListofContributors

TakeshiAoki JointResearchCenterofHigh-technology,DepartmentofElectronicsand InformationTechnology,TokyoPolytechnicUniversity,Atsugi,Japan

K.Biswas DepartmentofChemistryandPhysics,ArkansasStateUniversity,Jonesboro, USA

D.L.Carroll DepartmentofPhysicsandNanotechnologyCenter,WakeForestUniversity, Winston-Salem,NorthCarolina,USA

AndrewEdgar SchoolofChemicalandPhysicalSciences,VictoriaUniversityof Wellington,NewZealand

RubenJeronimoFreitas DepartmentofElectricalandElectronicEngineering,National UniversityofTimorLorosae,Díli,EastTimor

S.Gridin DepartmentofPhysicsandNanotechnologyCenter,WakeForestUniversity, Winston-Salem,NorthCarolina,USA

A.Haché Départementdephysiqueetd’astronomie,UniversitédeMoncton,New Brunswick,Canada

JørnM.Hvam DepartmentofPhotonicsEngineering,TechnicalUniversityofDenmark, KongensLyngby,Denmark

S.O.Kasap DepartmentofElectricalandComputerEngineering,Universityof Saskatchewan,Saskatoon,Canada

TakashiKobayashi DepartmentofPhysicsandElectronics,OsakaPrefectureUniversity, Sakai,Japan

K.Koughia DepartmentofElectricalandComputerEngineering,Universityof Saskatchewan,Saskatoon,Canada

SandorKugler DepartmentofTheoreticalPhysics,BudapestUniversityofTechnology andEconomics,Hungary

RozáliaLukács NorwegianUniversityofLifeSciences,Ås,Akershus,Norway

NaomiMatsuura CentreforNanotechnology,UniversityofToronto,Canada

L.Miao GuilinUniversityofElectronicTechnology,Guangxi,P.R.China

xvi ListofContributors

J.Mistrík CenterofMaterialsandNanotechnologies,FacultyofChemicalTechnology, UniversityofPardubice,CzechRepublic

F.Moretti LawrenceBerkeleyNationalLaboratory,Berkeley,California,USA

AkihiroMurayama GraduateSchoolofInformationScienceandTechnology,Hokkaido University,Sapporo,Japan

HiroyoshiNaito TheResearchInstituteforMolecularElectronicDevices,Osaka PrefectureUniversity,Sakai,Japan

M.R.Narayan CollegeofEngineering,InformationTechnologyandEnvironment, CharlesDarwinUniversity,Darwin,Australia

S.K.O’Leary SchoolofEngineering,TheUniversityofBritishColumbia,Kelowna, Canada

I.-K.Oh CollegeofEngineering,InformationTechnologyandEnvironment,Charles DarwinUniversity,Darwin,Australia

YasuoOka InstituteofMultidisciplinaryResearchforAdvancedMaterials,Tohoku University,Sendai,Miyagi,Japan

D.Ompong CollegeofEngineering,InformationTechnologyandEnvironment,Charles DarwinUniversity,Darwin,Australia

AsimK.Ray DepartmentofElectrical&ComputerEngineering,BrunelUniversity London,Uxbridge,UK

HarryE.Ruda CentreforNanotechnologyandElectronicandPhotonicMaterialsGroup, DepartmentofMaterialsScience,UniversityofToronto,Ontario,Canada

KoichiShimakawa DepartmentofElectricalandElectronicEngineering,GifuUniversity, Japan

JaiSingh CollegeofEngineering,InformationTechnologyandEnvironment,Charles DarwinUniversity,Darwin,Australia

W.C.Tan DepartmentofElectrical&ComputerEngineering,NationalUniversityof Singapore,KentRidge,Singapore

KeijiTanaka DepartmentofAppliedPhysics,GraduateSchoolofEngineering,Hokkaido University,Sapporo,Japan

S.Tanemura JapanFineCeramicsCentre,Mutsuno,Atsuta-ku,Nagoya,Japan

V.-V.Truong PhysicsDepartment,ConcordiaUniversity,Montreal,Quebec,Canada

R.T.Williams DepartmentofPhysicsandNanotechnologyCenter,WakeForest University,Winston-Salem,NorthCarolina,USA

ChoiWingHong,DepartmentofPhysics,HongKongBaptistUniversity,KowloonTong, China

JunweiXu DepartmentofPhysicsandNanotechnologyCenter,WakeForestUniversity, Winston-Salem,NorthCarolina,USA

FurongZhu DepartmentofPhysics,HongKongBaptistUniversity,KowloonTong,China

SeriesPreface

WileySeriesinMaterialsforElectronicandOptoelectronic Applications

Thisbookseriesisdevotedtotherapidlydevelopingclassofmaterialsusedforelectronicandoptoelectronicapplications.Itisdesignedtoprovidemuch-neededinformationonthefundamentalscientificprinciplesofthesematerials,togetherwithhow theseareemployedintechnologicalapplications.Thesebooksareaimedat(postgraduate)students,researchers,andtechnologistsengagedinresearch,development,andthe studyofmaterialsinelectronicsandphotonics,andatindustrialscientistsdeveloping newmaterials,devices,andcircuitsfortheelectronic,optoelectronic,andcommunicationsindustries.

Thedevelopmentofnewelectronicandoptoelectronicmaterialsdependsnotonly onmaterialsengineeringatapracticallevel,butalsoonaclearunderstandingofthe propertiesofmaterialsandthefundamentalsciencebehindtheseproperties.Itisthe propertiesofamaterialthateventuallydetermineitsusefulnessinanapplication.The seriesthereforealsoincludessuchtitlesaselectricalconductioninsolids,opticalproperties,thermalproperties,andsoon,allwithapplicationsandexamplesofmaterialsin electronicsandoptoelectronics.Thecharacterizationofmaterialsisalsocoveredwithin theseriesasmuchasitisimpossibletodevelopnewmaterialswithoutthepropercharacterizationoftheirstructureandproperties.Structure–propertyrelationshipshave alwaysbeenfundamentallyandintrinsicallyimportanttomaterialsscienceandengineering.

Materialsscienceiswellknownforbeingoneofthemostinterdisciplinarysciences. Itistheinterdisciplinaryaspectofmaterialssciencethathasledtomanyexcitingdiscoveries,newmaterials,andnewapplications.Itisnotunusualtofindscientistswith achemicalengineeringbackgroundworkingonmaterialsprojectswithapplicationsin electronics.Inselectingtitlesfortheseries,wehavetriedtomaintaintheinterdisciplinaryaspectofthefield,andhenceitsexcitementtoresearchersinthisfield.

Preface

Thesecondedition,beingpublishedmorethan10yearsafterthefirstedition,presents state-of-the-artdevelopmentsinalmostalltopicsrelatedtotheopticalpropertiesof materialsandtheirapplicationspresentedinthefirstedition.Sincethepublicationofthe firsteditionin2006,manyadvanceshavebeenmadeinfieldssuchastheopticalpropertiesofmaterials,electroluminescenceinorganiclight-emittingdevices,organicsolar cells,opto-electronicdevices,etc.Itishenceverytimelytoupdateallthechaptersin thefirsteditionbyaddingdevelopmentssince2006toproducethesecondedition.This secondeditioncontains15oftheoriginal16chapters,allofwhichhavebeenupdated, aswellas5brandnewchapters,contributedbyveryexperiencedandwell-knownscientistsandgroupsavailableondifferentaspectsoftheopticalpropertiesofmaterials.Thestudyofopticalpropertiesofmaterialshasnowbecomeaninterdisciplinary field,andscientistsofphysical,chemical,andbiologicalsciences;nanotechnologyengineers;andindustryresearchershavestronginterestsinthisfield.Thefieldoffersoneof thefastest-growingresearchplatformsinmaterialsciences.Thesecondeditioncovers manyexamplesandapplicationsinthefieldofelectronicandoptoelectronicproperties ofmaterials,andinphotonics.Mostchaptersarepresentedtoberelativelyindependentwithminimalcross-referencing,andchapterswithcomplementarycontentsare arrangedtogethertofacilitateareaderwithcross-referencing.

Bookswritteninthisfieldmostlyfollowoneofthetwopedagogies:chaptersareeither basedon(i)physicalprocesses,or(ii)thevariousclassesofmaterials.Thisbookcombinesthetwoapproachesbyfirstidentifyingtheprocessesthatshouldbedescribed indetail,andthenintroducingtherelevantclassesofmaterials.Manybooksalsomiss thedetailsofhowvariousopticalpropertiesaremeasured.Thisbookpresentsacomprehensivereviewofexperimentaltechniques,includingrecentadvancesinultrafast (femtosecond)spectroscopyofmaterials.Notmanybooksarecurrentlyavailablewith suchawidecoverageofthefieldwithclarityandlevelsofreadershipinasinglevolume asthisbook.

InChapters1and2byKasapetal.,thefundamentalopticalpropertiesofmaterials arereviewed,andassuchthesechaptersareexpectedtorefreshthereaderswiththe basicsbyprovidingusefulopticalrelations.InChapter3,Shimakawaetal.presentan up-to-datereviewoftheopticalpropertiesofdisorderedinorganicsolids,andChapter4 byEdgarpresentsanextensivediscussionontheopticalpropertiesofglasses.Chapter 5bySinghandco-workerspresentstheconceptofexcitonsininorganicandorganic semiconductors,bothcrystallineandnon-crystallinevariants.InChapter6,Aokihas presentedacomprehensivereviewoftheexperimentaladvancesinthetechniquesof

measuringphotoluminescencetogetherwithupdatesinluminescenceresultsinamorphoussemiconductors,andChapter7bySinghcomplementsthetheoreticaladvances inthefieldofphotoluminescenceandphotoinducedchangesinnon-crystallinesemiconductors.InChapter8byKugleretal.,recentadvancesinthesimulationofphotoinducedbondbreakingandvolumechangesinchalcogenideglassesarepresented.In Chapter9,RudaandMatsuurapresentacomprehensivereviewofthepropertiesand applicationsofphotoniccrystals.InChapter10,Tanakahaspresentedanup-to-date reviewofthenonlinearopticalpropertiesofphotonicglasses.

Chapter11byKobayashiandNaitodiscussesthefundamentalopticalpropertiesof organicsemiconductors.InChapter12,Zhuhaspresentedacomprehensivereview oftheapplicationsoforganicsemiconductors,inparticular,indevelopingorganic light-emittingdiodes(OLEDs).InChapter13,HongandZhuhavereviewedtherecent developmentsinthefabricationoftransparentwhitelight-emittingdiodes(WOLEDs). Thisisanewchapteraddedinthesecondedition.InChapter14,TruongandTanemura havepresentedanup-to-datereviewoftheopticalpropertiesofthinfilmsandtheir applications,andChapter15byMistrikdealswiththeopticalcharacterizationof materialsbyspectroscopicellipsometry.Thisisthesecondnewchapterinthesecond edition.InChapter16,SinghandOhhavediscussedtheexcitonicprocessesinquantum wells.InChapter17,thethirdnewchapterinthisedition,Hvamhaspresentedan up-to-datecomprehensivereviewoftheoptoelectronicpropertiesandapplications ofquantumdots.Chapter18byXuetal.presentsup-to-datedevelopmentsinthe applicationsofperovskites.Thisisthefourthnewchapterinthesecondedition. InChapter19,MurayamaandOkahavepresentedtheopticalpropertiesandspin dynamicsofdilutedmagneticsemiconductornanostructures.InthefinalChapter20, thefifthnewchapterinthisedition,FreitasandShimakawahavediscussedthekinetics ofthepersistentphotoconductivityinCrystallineIII–Vsemiconductors.Thus,the additionofthefivenewchaptersontransparentWOLELDs,ellipsometry,quantum dots,perovskites,andpersistentphotoconductivitywidensthescopeofthesecond editiontoanewlevel.Oneofthechaptersonthenegativeindexofrefractioninthe firsteditionhasnotbeenincludedinthesecondeditionattherequestoftheauthors.

Thereadershipofthebookisexpectedtobetheseniorundergraduateandpostgraduatestudents,andteachingandresearchprofessionalsinthefield.Inconclusion,I amverygratefultoallthecontributingauthorsofthesecondeditionfortheirutmost co-operationinmeetingthedeadlines,withoutwhichthisprojectwouldnothaveconcluded.IalsowouldliketoacknowledgethetechnicalsupportfromDrsStefanijaKlaric andLuisHerreraDiazinpreparingmychapters.Iwouldalsoliketothankmyfriend BethWoofforhersupportthroughoutthecourseofpreparationofthisvolume. JaiSingh

Darwin,Australia

FundamentalOpticalPropertiesofMaterialsI

S.O.Kasap 1 ,W.C.Tan 2 ,JaiSingh 3 ,andAsimK.Ray 4

1 DepartmentofElectricalandComputerEngineering,UniversityofSaskatchewan,57CampusDrive,Saskatoon,Canada

2 DepartmentofElectrical&ComputerEngineering,NationalUniversityofSingapore,KentRidge,Singapore

3 CollegeofEngineering,ITandEnvironment,Purple12,CharlesDarwinUniversity,EllengowanDrive,Darwin,Australia

4 DepartmentofElectrical&ComputerEngineering,BrunelUniversityLondon,KingstonLane,Uxbridge,UK

CHAPTERMENU

Introduction,1

OpticalConstants n and K ,2 RefractiveIndexandDispersion,7 TheSwanepoelTechnique:Measurementof n and �� forThinFilmsonSubstrates,16 TransmittanceandReflectanceofaPartiallyTransparentPlate,25 OpticalPropertiesandDiffuseReflection:Schuster–Kubelka–MunkTheory,27 Conclusions,31 References,32

1.1Introduction

Opticalpropertiesofamaterialchangeoraffectthecharacteristicsoflightpassing throughitbymodifyingitspropagationvectororintensity.Twoofthemostimportant opticalparametersaretherefractiveindex n andtheextinctioncoefficient K ,whichare genericallycalled opticalconstants,althoughsomeauthorsincludeotheropticalcoefficientswithinthisterminology.Thelatterisrelatedtotheattenuationorabsorptioncoefficient �� .InPartI,inthischapter,wepresentthecomplexrefractiveindex,thefrequency orwavelengthdependenceof n and K ,so-calleddispersionrelations,how n and K are inter-related,andhow n and K canbedeterminedbystudyingthetransmissionasa functionofwavelengththroughathinfilmofthematerial.Physicalinsightsinto n and K areprovidedinPartII(Chapter2).Inaddition,therehasbeenastrongresearchinterestincharacterizingtheopticalpropertiesofinhomogeneousmedia,suchasporous media,inwhichbothlightabsorptionandscatteringtakeplacesothatthereflectance isnotspecularbutdiffuse.Thelatterproblemisnowincludedinthissecondedition. Theopticalpropertiesofvariousmaterials,with n and K beingthemostimportant, areavailableintheliteratureinoneformoranother,eitherpublishedinjournals, books,andhandbooks,orpostedonwebsitesofvariousresearchers,organizations (e.g.NIST),orcompanies(e.g.SchottGlass).Nonetheless,thereaderisreferredtothe OpticalPropertiesofMaterialsandTheirApplications, SecondEdition.EditedbyJaiSingh. ©2020JohnWiley&SonsLtd.Published2020byJohnWiley&SonsLtd.

worksofGreenwayandHarbeke[1],Wolfe[2],Klocek[3],Palik[4,5],Ward[6], Efimov[7],PalikandGhosh[8],Nikogosyan[9],andWeaverandFrederikse[10] fortheopticalpropertiesofawiderangeofmaterials.Adachi’sbooksontheoptical constantsofsemiconductorsarehighlyrecommended[11–13],alongwithMadelung’s thirdeditionof Semiconductors:DataHandbook [14].Thereare,ofcourse,otherbooks andhandbooksthatalsocontainopticalconstantsinvariouschapters;see,forexample, references[15–20].Therearealsovariousbooksthatdescribeopticalproperties ofsolidsattheseniorundergraduateandintroductorygraduatelevels,suchasthose byTanner[21],JimenezandTomm[22],Stenzel[23],Fox[24],SimmonsandPotter [25],Toyozawa[26],Wooten[27],andAbeles[28],whicharehighlyrecommended.

Anumberofexperimentaltechniquesareavailableformeasuring n and K ,some ofwhichhavebeensummarizedbySimmonsandPotter[25].Forexample,ellipsometrymeasureschangesinthepolarizationoflightincidentonasampletosensitively characterizesurfacesandthinfilms(seeChapter23inthisvolume).Theinteraction ofincidentpolarizedlightwiththesamplecausesapolarizationchangeinthelight, whichmaythenbemeasuredbyanalyzingthelightreflectedfromthesample.Collins hasalsoprovidedanextensivein-depthreviewofellipsometryforopticalmeasurements[29].Oneofthemostpopularandconvenientopticalexperimentsinvolvesa monochromaticlightpassingthroughathinsample,andmeasuringthetransmitted intensityasafunctionofwavelength, T (��),usingasimplespectrophotometer.Forthin samplesonathicktransparentsubstrate,thetransmissionspectrumshowsoscillations in T (��)withthewavelengthduetointerferenceswithinthethinfilm.Swanepoel’stechniqueusesthe T (��)measurementtodetermine n and K ,asdescribedinSection1.4.

1.2OpticalConstants n and K

Oneofthemostimportantopticalconstantsofamaterialisitsrefractiveindex,whichin generaldependsonthewavelengthoftheelectromagnetic(EM)wave,througharelationshipcalled dispersion.InmaterialswhereanEMwavelosesitsenergyduringits propagation,therefractiveindexbecomescomplex.Therealpartisusuallytherefractiveindex, n,andtheimaginarypartiscalledthe extinctioncoefficient , K .Inthissection, therefractiveindexandextinctioncoefficientwillbepresentedindetail,alongwith somecommondispersionrelations.Amorepracticalandasemiquantitativeapproach istakenalongthelinesin[30]ratherthanafulldedicationtorigorandmathematical derivations.Moreanalyticalapproachescanbefoundinothertexts,suchas[25,26].

1.2.1RefractiveIndexandExtinctionCoefficient

Therefractiveindexofanopticalordielectricmedium, n,istheratioofthevelocity oflight c invacuumtoitsvelocity v inthemedium; n = c/v.UsingthisandMaxwell’s equations,oneobtainsthewell-knownMaxwell’sformulafortherefractiveindexofa substanceas n = √��r ��r ,where ��r isthestaticdielectricconstantorrelativepermittivityand �� r therelativemagneticpermeabilityofthemedium.As �� r = 1fornonmagnetic substances,onegets n = √��r ,whichisveryusefulinrelatingthedielectricpropertiesto opticalpropertiesofmaterialsatanyparticularfrequencyofinterest.As ��r dependson thewavelengthoflight,therefractiveindexalsodependsonthewavelengthoflight,and

thisdependenceiscalled dispersion.Inadditiontodispersion,anEMwavepropagating throughalossymediumexperiencesattenuation,whichmeansitlosesitsenergy,dueto variouslossmechanismssuchasthegenerationofphonons(latticewaves),photogeneration,freecarrierabsorption,scattering,etc.Insuchmaterials,therefractiveindex becomesacomplexfunctionofthefrequencyofthelightwave.Thecomplexrefractive indexinthischapterisdenotedby n* ,withrealpart n,andimaginarypart K ,calledthe extinctioncoefficient ,isrelatedtothecomplexrelativepermittivity, ��

where ��′ r and ��′′

are,respectively,therealandimaginarypartsof

Inexplicitterms, n and K canbeobtainedas

Somebooks(particularlyinelectricalengineering)use ��r = ��′ r i

and

iK insteadof ��

+

and n

= n + iK .Thepreferenceliesinwhatwasassumedforthe propagatingelectricfield,whetheritisrepresentedbyexpi(��t kx)orexpi(kx ��t ), where k isthepropagationconstant.Inalossymedium,theimaginarypartof n*must leadtoatravelingwavewhoseamplitudedecays.Noticethat,for ��′′

≪��

, n

��′ r and K = ��′′ r ∕2n—thatis,therefractiveindexisessentiallydeterminedbytherealpartof ��r and K isdeterminedbytheimaginarypartof ��r ,whichisknowntorepresentlossesin adielectricmedium.

Theextinctioncoefficient K representslossfromtheenergycarriedbythepropagatingEMwavebyconvenientlyincludingthislossastheimaginarypartinthecomplex refractiveindex.Theopticalattenuationcoefficient �� gaugestherateofthislossfrom thepropagatingEMwave.Intheabsenceofscattering,theattenuationwouldbedue toabsorptionwithinthemedium.ForanEMwavethatispropagatingalong x withan intensity I , �� isdefinedby

Wecanrelate �� and K quiteeasilybytakingaplanewavetravelingalong x forwhich theelectricfieldinthewavepropagatesas E = E o expi(kx ��t ),where E o isaconstant, �� istheangularfrequencyand k isthecomplexpropagationconstantinthemedium, relatedto n*byitsdefinition k = n*��/c = (n + iK )(��/c).Infreespace k = k o = ��/c = 2�� /��, where �� isthefreespacewavelength.Wecansubstitutefor n*andthenuse I isproportionalto|E |2 tofind I ∝ exp[ 2(��/c)Kx)]—thatis, I decaysexponentiallywiththe distancepropagated.Wecansubstitutefor I in(1.3)tofind

Theopticalconstants n and K canbedeterminedbymeasuringthereflectancefrom thesurfaceofamaterialasafunctionofpolarizationandtheangleofincidence.For normalincidence,thereflectioncoefficient, r ,isobtainedas

Thereflectance R isthendefinedby:

Noticethatwhenever K islarge,forexample,overarangeofwavelengths,theabsorptionisstrong,andthereflectanceisalmostunity.Thelightisthenreflected,andany lightinthemediumishighlyattenuated(typicalsamplecalculationsmaybefoundin [24,30]).

Opticalpropertiesofmaterialsaretypicallypresentedeitherbyshowingthefrequency dependences(dispersionrelations)of n and K or ��′ r and ��′′ r .Anintuitiveguidetoexplainingdispersionininsulatorsisbasedonasingleoscillatormodelinwhichtheelectric fieldinthelightinducesforceddipoleoscillationsinthematerial(displacestheelectron shellsinanatomtooscillateaboutthepositivenucleus)withasingleresonantfrequency ��o .Thefrequencydependencesof ��′ r and ��′′ r arethenobtainedas:

where N at isthenumberofatomsperunitvolume, ��o isthevacuumpermittivity,and �� ′ e and �� ′′ e are,respectively,therealandimaginarypartsoftheelectronicpolarizability, givenrespectivelyby:

where �� eo istheDCpolarizabilitycorrespondingto �� = 0and �� isthelosscoefficientthat characterizestheEMwavelosseswithinthematerialsystem.UsingEqs.(1.1)–(1.2)and (1.7)–(1.8),thefrequencydependenceof n and K canbestudied.Figure1.1ashowsthe dependenceof n and K onthenormalizedfrequency ��/��o forasimplesingleelectronic dipoleoscillatorofresonancefrequency ��o .

Figure1.1 Refractiveindex n andextinction coefficient K obtainedfromasingleelectronic dipoleoscillatormodel.(a) n and K versus normalizedfrequency,and(b)reflectance versusnormalizedfrequency.

1.2OpticalConstants n and K 5

ItisseenfromFigure1.1that n and K peakcloseto �� = ��o .Ifamaterialhasa ��′′ r ≫��′ r ,then ��r ≈ i��′′ r ,and n ≈ K ≈ √��′′ r ∕2isobtainedfromEq.(1.1b).Figure1.1bshows thedependenceofthereflectance R onthefrequency.Itisobservedthat R reachesits maximumvalueatafrequencyslightlyabove �� = ��o ,andthenremainshighuntil �� reachesnearly3��o ;thus,thereflectanceissubstantialwhileabsorptionisstrong.The normaldispersionregionisthefrequencyrangebelow ��o ,where n fallsasthefrequency decreases;thatis, n decreasesasthewavelength �� increases.Anomalousdispersion regionisthefrequencyrangeabove ��o where n decreasesas �� increases.Below ��o , K issmalland,if ��DC is ��r (0),theDCpermittivity,then

astheresonancewavelength,onegets:

Whileintuitivelyuseful,thedispersionrelationsinEq.(1.8)arefartoosimple.More rigorously,wehavetoconsiderthedipoleoscillatorquantummechanically,which meansaphotonexcitestheoscillatortoahigherenergylevel—see,forexample,Fox[24] orSimmonsandPotter[25].Theresultisthatwewouldhaveaseriesof ��2 /(��2 ��i 2 ) termswithvariousweightingfactors Ai thataddtounity,where ��i representdifferent resonancewavelengths.Theweightingfactors Ai involvequantummechanicalmatrix elements.

Figure1.2showsthecomplexrelativepermittivityandthecomplexrefractiveindex ofcrystallinesiliconintermsofphotonenergy h�� [31,32].Forphotonenergiesbelow thebandgapenergy(1.1eV),both ��′′ r and K arenegligibleand n iscloseto3.7.Both ��′′ r and K increaseandchangestronglyasthephotonenergybecomesgreaterthan3eV, farbeyondthebandgapenergy.Noticethatboth ��′′ r and K peakat h�� ≈ 3.5eV,which correspondstoadirectphotoexcitationprocesses,electronsexciteddirectlyfromthe valencebandtotheconductionband,asdiscussedinChapter2.

1.2.2 n and K ,andKramers–KronigRelations

Ifweknowthefrequencydependenceoftherealpart, ��′ r ,oftherelativepermittivityofa material,wecan,usingthe Kramers–Kronigrelations betweentherealandtheimaginary parts,determinethefrequencydependenceoftheimaginarypart ��′′ r ,andviceversa. Thetransformrequiresthatweknowthefrequencydependenceofeithertherealor imaginarypartoveraswidearangeoffrequenciesaspossible,ideallyfromzero(DC) toinfinity,andthatthematerialhaslinearbehavior,thatis,ithasarelativepermittivity thatisindependentoftheappliedfield.TheKramers–Kronigrelationsfortherelative permittivity ��r = ��′ r + i��′′ r aregivenby[33–35](seealsoAppendix1Cin[25]aswell as[27])

Figure1.2 (a)Complexrelativepermittivityofasiliconcrystalasafunctionofphotonenergyplotted intermsofreal(��′ r )andimaginary(��′′ r )parts.(b)Opticalpropertiesofasiliconcrystalvs.photon energyintermsofreal(n)andimaginary(K )partsofthecomplexrefractiveindex.Source:Adapted fromD.E.AspnesandA.A.Studna,1983[32]andH.R.PhilippandE.A.Taft,1960[31].

where ��′ istheintegrationvariable, P representstheCauchyprincipalvalueoftheintegral,andthesingularityat �� = ��′ isavoided.

Similarly,onecanrelatetherealandimaginarypartsofthepolarizability, ��

(��)and �� ′′ (��),andthoseofthecomplexrefractiveindex, n(��)and K (��),aswell.Foracomplex refractiveindexwrittenas n* = n(��) + iK (��),

Althoughitappears,intheory,thatoneneedstointegratethespectrumof n or K from DCtoinfinitefrequencies,thisisobviouslynotfeasible,andisunnecessary.Itshould benotedthattheexperimentalsetupusuallyhaslow-andhigh-frequencylimitations thattruncatetheprecedingintegrations.Moreover,inmanycases,weareinterestedin thespectrumof n and K inandaroundanabsorptionband.Thus,beforeandafterthe absorptionfrequencyrange, K wouldbenegligiblysmall,andwecanusethisabsorption frequencyrangeintheprecedingintegralsinEq.(1.12).Therearenumerousstudiesin theliteraturethatusetheprecedingKramers–Kronigrelationsinextractingthewavelengthdependenceof n fromthatof K ,andviceversa,especiallyaroundclearabsorption bands;afewselectedexamplescanbefoundin[36–40],andtherearemanyothersinthe literature.Therearealsoseveralusefulapproachesinwhichtheabsorptionspectrum, or K (��),isdescribedintermsofaparticularphysicalmodelwithaparticularexpression,andthecorrespondingrefractiveindex n(��)isderivedfromtheKramers–Kronig transformationforbothamorphousandcrystallinesolids—forexamples,see[41,42]. Itshouldbeemphasizedthattheopticalconstants n and K havetoobeywhatare called f-sumrules [43].Forexample,theintegrationof[n(��)–1]overallfrequencies mustbezero,andtheintegrationof ��K (��)overallfrequenciesgives(�� /2)��p 2 ,where ��p = ℏ(4�� NZe2 /me )1/2 isthefreeelectronplasmafrequencyinwhich N istheatomic

concentration, Z isthetotalnumberofelectronsperatom,and e and me arethecharge andmassoftheelectron,respectively.The f -sumrulesprovideaconsistencycheckand enablevariousconstantstobeinterrelated.

1.3RefractiveIndexandDispersion

Thereareseveralpopularmodelsdescribingthespectraldependenceofrefractiveindex n inamaterial.Mostofthesearedescribedinthefollowingtext,althoughsome,such astheinfraredrefractiveindex,iscoveredinthediscussiononReststrahlenabsorption inPartII,sinceitiscloselyrelatedtothecouplingoftheEMwavetolatticevibrations. ThemostpopulardispersionrelationinopticalmaterialsisprobablytheSellmeierrelationship,sinceonecansumanynumberofresonance-typetermstogetaswidearange ofwavelengthdependenceaspossible.However,itsmaindrawbackisthatitdoesnot accuratelyrepresenttherefractiveindexwhenthereisacontributionarisingfromfree carriersinnarrowbandgapordopedsemiconductors.

Therearemanyhandbooks,books,andwebsitesthatnowprovideempiricalequations fortherefractiveindexofawiderangeofsolids,forexampleasinreferences[1–19,44].

1.3.1CauchyDispersionRelation

IntheCauchyrelationship,thedispersionrelationshipbetweentherefractiveindex(n) andthewavelengthoflight(��)iscommonlystatedinthefollowingform:

where A, B,and C arematerial-dependentspecificconstants.Equation(1.13)isknown as Cauchy’sformula;itistypicallyusedinthevisiblespectrumregionforvariousoptical glasses,anditappliesto normaldispersion,when n decreaseswithincreasing �� [45,46]. Thethirdtermissometimesdroppedforasimplerrepresentationof n versus �� behavior. Theoriginalexpressionwasaseriesintermsofthewavelength, ��,orfrequency, ��,or photonenergy ℏ�� oflightas:

or

where ℏ�� isthephotonenergy; ℏ��th = hc/��th istheopticalexcitationthreshold(e.g. bandgapenergy);and a0 , a2 ,… and n0 , n2 ,… areconstants.Ithasbeenfoundthata Cauchyrelationinthefollowingform[47]:

canbeusedsatisfactorilyoverawiderangeofphotonenergies.ThedispersionparametersofEq.(1.15)arelistedinTable1.1forafewselectedmaterialsoverspecificphoton energyranges.

Cauchy’sdispersionrelationsgiveninEqs.(1.13)–(1.14)wereoriginallycalledthe elasticethertheoryoftherefractiveindex.Ithasbeenwidelyusedformanymaterials,

Table1.1 Cauchy’sdispersionparametersofEq.(1.15)forGe,Si,andDiamondfrom[43].

although,inrecentyears,manyresearchershavepreferredtousetheSellmeierequation, describedinthefollowingtext.

1.3.2SellmeierEquation

TheSellmeierequation[48]isanempiricalrelationbetweentherefractiveindex n of asubstanceandwavelength �� oflightintheformofaseriesofsingledipoleoscillator terms,eachofwhichhastheusual ��2 /(��2 ��i 2 )dependenceasin

where A1 , A2 , A3 and ��1 , ��2 ,and ��3 areconstants,called Sellmeiercoefficients,which aredeterminedbyfittingthisexpressiontotheexperimentaldata.TheactualSellmeier formulaismorecomplicated.Ithasmoretermsofsimilarform,suchas Ai ��2 /(��2 – ��i 2 ), where i = 4,5,...,butthesecangenerallybeneglectedinrepresenting n vs. �� behavior overtypicalwavelengthsofinterestandbyensuringthatthethreetermsincludedin Eq.(1.16)correspondtothemostimportantorrelevanttermsinthesummation[49].

TheSellmeiercoefficientsforsomematerials,includingpureSilica(SiO2 )and86.5mol% SiO2 –13.5mol%GeO2 ,aregiveninTable1.2asexamples.Aquantitativeanalysisofthe applicationoftheSellmeierdispersionrelationtoarangeofmaterials,fromglassesto semiconductors,hasbeendiscussedbyTatian[49].

Therearetwomethodsfordeterminingtherefractiveindexofsilica–germania glass(SiO2 )1-x (GeO2 )x .Thefirstisasimple,butapproximate,linearinterpolationof therefractiveindexbetweenknowncompositions,forexample, n(x) n(0.135) = (x 0.235)[n(0.135) n(0)]/0.135,where n(x)isfor(SiO2 )1 x (GeO2 )x ; n(0.135)isfor 86.5mol%SiO2 –13.5mol%GeO2 ;and n(0)isforSiO2 .Thesecondisaninterpolation forcoefficients Ai and ��i betweenSiO2 andGeO2 as[50]: n2 1 = {A1 (S )+ X [A1 (G

where S and G inparenthesesrefertosilicaandgermania,respectively.ThetheoreticalbasisoftheSellmeierequationliesinrepresentingthesolidasasumof N lossless (frictionless)Lorentzoscillatorssuchthateachhastheusualformof ��2 /(��2 – ��i 2 )with different ��i andeachhasadifferentstrength,orweightingfactor; Ai , i = 1to N [51,52]. Suchdispersionrelationshipsareessentialindesigningphotonicdevicessuchaswaveguides.(Notethatalthough Ai weighsdifferentLorentzcontributions,theydonotsumto 1sincetheyincludeotherparametersbesidestheoscillatorstrength f i .)Therefractive indicesofmostopticalglasseshavebeenextensivelymodeledbytheSellmeierequation.

Table1.2 Sellmeiercoefficientsofafewmaterials,where ��1 , ��2 , ��3 arein μm.

Material

SiO2 (fusedsilica)0.6967490.4082180.8908150.06906600.1156629.900559

86.5%SiO2 –13.5%

GeO2 0.7110400.4518850.7040480.06427000.1294089.425478

GeO2 0.806866420.718158480.854168310.0689726060.1539660511.841931

Bariumfluoride0 33560 5067623 82610 0577890 10968146 38642

Sapphire1 0237981 0582645 2807920 06144820 11070017 92656

Diamond0.33064.33560.1750.106

Quartz, n o 1.354000.0100.99940.09261210.7009.8500

Quartz, n e 1 381000 01000 99920 09350511 3109 5280

KTP, n o 1 25400 01000 09920 096466 97775 9848

KTP, n e 1.130000.00010.99990.093517.671012.170

Source:Fromvarioussources.

VariousopticalglassmanufacturerssuchasSchottGlassnormallyprovidetheSellmeier coefficientsfortheirglasses[53].Theopticaldispersionrelationsforglasseshavebeen discussedbyanumberofauthors[7,25,54].

ThereareotherSellmeier–Cauchy-likedispersionrelationshipsthatinherentlytake accountofvariouscontributionstotheopticalproperties,suchastheelectronicand ionicpolarizationandtheinteractionofphotonswithfreeelectrons.Forexample,for manysemiconductorsandioniccrystals,twousefuldispersionrelationsare,

and

where A, B, C , D, E ,and ��o areconstantsparticulartoagivenmaterial.Eq.(1.18)is equivalenttotheSellmeierequation.Eq.(1.19)isknownasthe Herzbergerdispersion relation [52].Table1.3providesafewexamples.BothCauchyandSellmeierequations arestrictlyapplicableinwavelengthregionswherethematerialistransparent,thatis, theextinctioncoefficientisrelativelysmall.Therefractiveindexdispersionrelations

Table1.3 ParametersofEq.(1.19)forsomeselectedmaterials.

Source:SidatafromD.F.EdwardsandE.Ochoa, Appl.Optics 19,4130(1980),othersfromW.L.Wolfe,The HandbookofOptics,W.G.DriscollandW.Vaughan,McGraw-Hill,NewYork,1978.

1FundamentalOpticalPropertiesofMaterialsI

forawiderangeofsemiconductorshavebeencompiledbyMadelungin[14].There aremanyapplication-basedarticlesintheliteraturethatprovideempiricaldispersion relationsforavarietyofmaterials;arecentexampleonfarinfraredsubstrates(Ge,Si, ZnSe,ZnS,ZnTe)isgiveninreference[55].Therearebothwebsitesandvariousjournal articlesintheliteraturethatgivetherefractiveindexofnumerousmaterialsasafunction ofwavelength.

1.3.3RefractiveIndexofSemiconductors

1.3.3.1RefractiveIndexofCrystallineSemiconductors

Aparticularinterestinthecaseofsemiconductorsisin n and K forphotonenergiesgreaterthanthebandgap E g foroptoelectronicsapplications.Duetovarious featuresandsingularitiesinthe E -k diagramsofcrystallinesemiconductors,the opticalconstants n and K for ℏ��> E g arenotreadilyexpressibleinsimpleterms. Variousauthors,forexample,ForouhiandBloomer[42,56]andChenetal.[57],have nonethelessprovidedusefulandtractableexpressionsformodeling n and K inthis regime.Inparticular,Forouhi–Bloomer(FB)equationsexpress n and K intermsofthe photonenergy ℏ�� inaconsistentwaythatobeytheKramers–Kronigrelations[42], thatis

q ∑ i=1 Ai (ℏ�� Eg )2 (ℏ��)2 Bi (ℏ��)+ Ci and n = n(∞)+

i=1 Boi (ℏ��)+ Coi (ℏ��)2 Bi (ℏ��)+ Ci , (1.20) where(ℏ��)isthephotonenergy; q isanintegerthatrepresentsthenumberofterms neededtosuitablymodelexperimental n, K ; E g isthebandgapand Ai , Bi , C i , Boi , C oi are constants; Boi and C oi dependon Ai , Bi , C i ,and E g —onlythelatterfourareindependent parameters;and Boi = (Ai /Qi )[ (1/2)Bi 2 + E g Bi – E g 2 + C i ], C oi = (Ai /Qi )[(1/2)(E g 2 + C i ) Bi 2E g C i ],and Qi = (1/2)(4C i Bi 2 )1/2 .ForouhiandBloomerprovideatableof FBcoefficients, Ai , Bi , C i ,and E g forfourtermsinthesummationinEq.(1.20)[42]for anumberofsemiconductors;anexamplethatshowsanexcellentagreementbetween theFBdispersionrelationandtheexperimentaldataisshowninFigure1.3.Table1.4 providestheFBcoefficientsforafewselectedsemiconductors.

Otherusefultheoreticalorsomewhatsemiempiricaldispersionrelationshipshave alsobeenproposed,forexample,byAfromowitz[58],Adachi[59–63],Campiand Papuzza[64],andothers[65].Thesemodelshavebeenappliedtovarioussemiconductorsandtheiralloyswithrelativesuccessovercertainphotonenergyranges.Oneofthe usefulandstraightforwardapproachestomodelingthedispersionhasbeenbasedon writingthecomplexrelativepermittivity ��r (ℏ��)asafinitesumofanumberofdamped harmonicoscillators(theso-called harmonicoscillatorapproximation),andfittingthis expressiontotheexperimentaldataasinreferences[66,67],eventhoughmanyterms maybeneededandthecurvefitprocesshastobecarefullychosentoensureareliable representationofthedata.Oneofbestmodelsconsideredsofar,however,hasinvolved parametricmodeling[68–70],inwhichnotonlyasumofharmonicoscillatorsareused butalsoGaussianbroadenedpolynomialstorepresentthedispersionofthecomplex relativepermittivity,andhence n and K .

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Instant download Optical properties of materials and their applications second edition singh pdf all by Education Libraries - Issuu