Full download Population ecology in practice : underused, misused and abused methods. 1st edition de

Page 1


Population Ecology in Practice : Underused, Misused and Abused Methods. 1st Edition Dennis L. Murray

Visit to download the full and correct content document: https://ebookmass.com/product/population-ecology-in-practice-underused-misused-a nd-abused-methods-1st-edition-dennis-l-murray/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Introduction to Research Methods in Psychology, 4th ed 4th Edition Dennis Howitt

https://ebookmass.com/product/introduction-to-research-methodsin-psychology-4th-ed-4th-edition-dennis-howitt/

Harrisons manual of medicine 19ed. Edition Dennis L.

Kasper

https://ebookmass.com/product/harrisons-manual-of-medicine-19ededition-dennis-l-kasper/

Harrisons Manual of Medicine 19th Edition Dennis L.

Kasper

https://ebookmass.com/product/harrisons-manual-of-medicine-19thedition-dennis-l-kasper/

Harrison’s Manual Of Medicine 20th Edition Dennis L.

Kasper

https://ebookmass.com/product/harrisons-manual-of-medicine-20thedition-dennis-l-kasper/

Harrison Principios de Medicina Interna 19th Edition

Dennis L. Kasper

https://ebookmass.com/product/harrison-principios-de-medicinainterna-19th-edition-dennis-l-kasper/

Statistical methods 4th Edition Donna L. Mohr

https://ebookmass.com/product/statistical-methods-4th-editiondonna-l-mohr/

Chiral Analysis: Advances in Spectroscopy, Chromatography and Emerging Methods P L Polavarapu

https://ebookmass.com/product/chiral-analysis-advances-inspectroscopy-chromatography-and-emerging-methods-p-l-polavarapu/

Harrison’s Principles of Internal Medicine, 20th Edition (Volume I & II) Dennis L. Kasper

https://ebookmass.com/product/harrisons-principles-of-internalmedicine-20th-edition-volume-i-ii-dennis-l-kasper/

Research Methods in Practice: Strategies for Description and Causation – Ebook PDF Version

https://ebookmass.com/product/research-methods-in-practicestrategies-for-description-and-causation-ebook-pdf-version/

PopulationEcologyinPractice

PopulationEcologyinPractice

TrentUniversity

Peterborough,Ontario,Canada

BrettK.Sandercock

NorwegianInstituteforNatureResearch Trondheim,Trøndelag,Norway

Thiseditionfirstpublished2020 ©2020JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans,electronic, mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthis titleisavailableathttp://www.wiley.com/go/permissions.

TherightofDennisL.MurrayandBrettK.Sandercocktobeidentifiedastheauthorsoftheeditorialmaterialinthisworkhasbeenassertedin accordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

9600GarsingtonRoad,Oxford,OX42DQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsinstandardprintversions ofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswithrespectto theaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarranties ofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensalesmaterialsor promotionalstatementsforthiswork.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitationand/orpotentialsource offurtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmay provideorrecommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessional services.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialistwhereappropriate. Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhen itisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto special,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Murray,Dennis,1966– editor.|Sandercock,BrettK.(BrettKevin), 1966– editor.

Title:Populationecologyinpractice/editedbyDennisMurrayandBrett K.Sandercock.

Description:FirstEdition.|Hoboken:Wiley-Blackwell,2019.|Includes bibliographicalreferencesandindex.

Identifiers:LCCN2019013320(print)|LCCN2019980192(ebook)|ISBN 9780470674147(Paperback)|ISBN9781119574620(eBook)|ISBN 9781119574644(PDF)

Subjects:LCSH:Population–Environmentalaspects.|Populationecology.| Nature–Effectofhumanbeingson.|Sustainabledevelopment.

Classification:LCCHB849.415P65852019(print)|LCCHB849.415(ebook) |DDC304.2–dc23

LCrecordavailableathttps://lccn.loc.gov/2019013320

LCebookrecordavailableathttps://lccn.loc.gov/2019980192

CoverDesign:Wiley

CoverImage:©CopyrightMichaelCummings/GettyImages

Setin10/12ptWarnockbySPiGlobal,Pondicherry,India

10987654321

Contents

Contributors xvii

Preface xxi

AbouttheCompanionWebsite xxiii

PartIToolsforPopulationBiology 1

1HowtoAskMeaningfulEcologicalQuestions 3 CharlesJ.Krebs

1.1WhatProblemsDoPopulationEcologistsTrytoSolve? 3

1.2WhatApproachesDoPopulationEcologistsUse? 6

1.2.1GeneratingandTestingHypothesesinPopulationEcology 10

1.3GeneralityinPopulationEcology 11

1.4FinalThoughts 12 References 13

2FromResearchHypothesistoModelSelection:AStrategyforRobustInferenceinPopulationEcology 17 DennisL.Murray,GuillaumeBastille-Rousseau,LynneE.Beaty,MeganL.Hornseth,JeffreyR.Rowand DanielH.Thornton

2.1Introduction 17

2.1.1InductiveMethods 18

2.1.2Hypothetico-deductiveMethods 19

2.1.3MultimodelInference 20

2.1.4BayesianMethods 22

2.2WhatConstitutesaGoodResearchHypothesis? 22

2.3MultipleHypothesesandInformationTheoretics 24

2.3.1HowManyAreTooManyHypotheses? 25

2.4FromResearchHypothesistoStatisticalModel 26

2.4.1FunctionalRelationshipsBetweenVariables 26

2.4.2InteractionsBetweenPredictorVariables 26

2.4.3NumberandStructureofPredictorVariables 27

2.5ExploratoryAnalysisandHelpfulRemedies 28

2.5.1ExploratoryAnalysisandDiagnosticTests 28

2.5.2MissingData 28

2.5.3Inter-relationshipsBetweenPredictors 30

2.5.4InterpretabilityofModelOutput 31

2.6ModelRankingandEvaluation 32

2.6.1ModelSelection 32

2.6.2MultimodelInference 36

2.7ModelValidation 39

2.8SoftwareTools 41

2.9OnlineExercises 41

2.10FutureDirections 41 References 42

PartIIPopulationDemography 47

3EstimatingAbundanceorOccupancyfromUnmarkedPopulations 49

BrettT.McClintockandLenThomas

3.1Introduction 49

3.1.1WhyCollectDatafromUnmarkedPopulations? 49

3.1.2RelativeIndicesandDetectionProbability 50

3.1.2.1PopulationAbundance 50

3.1.2.2SpeciesOccurrence 51

3.1.3HierarchyofSamplingMethodsforUnmarkedIndividuals 52

3.2EstimatingAbundance(orDensity)fromUnmarkedIndividuals 53

3.2.1DistanceSampling 53

3.2.1.1ClassicalDistanceSampling 54

3.2.1.2Model-BasedDistanceSampling 57

3.2.2ReplicatedCountsofUnmarkedIndividuals 61

3.2.2.1SpatiallyReplicatedCounts 61

3.2.2.2RemovalSampling 63

3.3EstimatingSpeciesOccurrenceunderImperfectDetection 64

3.3.1Single-SeasonOccupancyModels 65

3.3.2Multiple-SeasonOccupancyModels 66

3.3.3OtherDevelopmentsinOccupancyEstimation 68

3.3.3.1SiteHeterogeneityinDetectionProbability 68

3.3.3.2OccupancyandAbundanceRelationships 68

3.3.3.3MultistateandMultiscaleOccupancyModels 68

3.3.3.4MetapopulationOccupancyModels 69

3.3.3.5FalsePositiveOccupancyModels 70

3.4SoftwareTools 70

3.5OnlineExercises 71

3.6FutureDirections 71 References 73

4AnalyzingTimeSeriesData:Single-SpeciesAbundanceModeling 79

StevenDelean,ThomasA.A.Prowse,JoshuaV.RossandJonathanTuke

4.1Introduction 79

4.1.1PrincipalApproachestoTimeSeriesAnalysisinEcology 80

4.1.2ChallengestoTimeSeriesAnalysisinEcology 82

4.2TimeSeries(ARMA)Modeling 83

4.2.1TimeSeriesModels 83

4.2.2AutoregressiveMovingAverageModels 83

4.3RegressionModelswithCorrelatedErrors 87

4.4PhenomenologicalModelsofPopulationDynamics 88

4.4.1DeterministicModels 89

4.4.1.1ExponentialGrowth 89

4.4.1.2ClassicODESingle-SpeciesPopulationModelsthatIncorporateDensityDependence 90

4.4.2Discrete-TimePopulationGrowthModelswithStochasticity 92

4.5State-spaceModeling 93

4.5.1GompertzState-spacePopulationModel 94

4.5.2NonlinearandNon-GaussianState-spacePopulationModels 96

4.6SoftwareTools 96

4.7OnlineExercises 97

4.8FutureDirections 97 References 98

5EstimatingAbundancefromCapture-RecaptureData 103

J.AndrewRoyleandSarahJ.Converse

5.1Introduction 103

5.2GenesisofCapture-RecaptureData 104

5.3TheBasicClosedPopulationModels: M0, Mt, Mb 104

5.4InferenceStrategies 105

5.4.1LikelihoodInference 105

5.4.2BayesianAnalysis 107

5.4.3OtherInferenceStrategies 108

5.5ModelswithIndividualHeterogeneityinDetection 108

5.5.1Model Mh 108

5.5.2IndividualCovariateModels 109

5.5.2.1TheFullLikelihood 109

5.5.2.2Horvitz-ThompsonEstimation 110

5.5.3DistanceSampling 110

5.5.4SpatialCapture-RecaptureModels 110

5.5.4.1TheState-space 112

5.5.4.2InferenceinSCRModels 112

5.6StratifiedPopulationsorMultisessionModels 112

5.6.1NonparametricEstimation 112

5.6.2HierarchicalCapture-RecaptureModels 113

5.7ModelSelectionandModelFit 113

5.7.1ModelSelection 113

5.7.2Goodness-of-Fit 114

5.7.3WhattoDoWhenYourModelDoesNotFit 115

5.8OpenPopulationModels 115

5.9SoftwareTools 116

5.10OnlineExercises 117

5.11FutureDirections 118 References 119

6EstimatingSurvivalandCause-specificMortalityfromContinuousTimeObservations 123

DennisL.MurrayandGuillaumeBastille-Rousseau

6.1Introduction 123

6.1.1AssumptionofNoHandling,MarkingorMonitoringEffects 125

6.1.2CauseofDeathAssessment 125

6.1.3HistoricalOriginsofSurvivalEstimation 126

6.2SurvivalandHazardFunctionsinTheory 127

6.3DevelopingContinuousTimeSurvivalDatasets 130

6.3.1DatasetStructure 131

6.3.2Right-censoring 133

6.3.3DelayedEntryandOtherTimeConsiderations 133

6.3.4SamplingHeterogeneity 134

6.3.5Time-dependentCovariates 135

6.4SurvivalandHazardFunctionsinPractice 135

6.4.1MayfieldandHeisey –FullerSurvivalEstimation 135

6.4.2Kaplan–MeierEstimator 136

6.4.3Nelson–AalenEstimator 138

6.5StatisticalAnalysisofSurvival 138

6.5.1SimpleHypothesisTests 138

6.5.2CoxProportionalHazards 139

6.5.3ProportionalityofHazards 140

6.5.4ExtendedCPH 142

6.5.5FurtherExtensions 143

6.5.6ParametricModels 143

6.6Cause-specificSurvivalAnalysis 144

6.6.1TheCaseforCause-specificMortalityData 144

6.6.2Cause-specificHazardsandMortalityRates 145

6.6.3CompetingRisksAnalysis 146

6.6.4AdditiveVersusCompensatoryMortality 147

6.7SoftwareTools 149

6.8OnlineExercises 149

6.9FutureDirections 149 References 151

7Mark-RecaptureModelsforEstimationofDemographicParameters 157

BrettK.Sandercock

7.1Introduction 157

7.2LiveEncounterData 158

7.3EncounterHistoriesandModelSelection 159

7.4ReturnRates 163

7.5Cormack–Jolly–SeberModels 164

7.6TheChallengeofEmigration 164

7.7ExtendingtheCJSModel 167

7.8Time-since-markingandTransientModels 167

7.9TemporalSymmetryModels 168

7.10Jolly–SeberModel 169

7.11MultilevelModels 169

7.12SpatiallyExplicitModels 170

7.13RobustDesignModels 170

7.14Mark-resightModels 171

7.15YoungSurvivalModel 172

7.16MultistateModels 173

7.17MultistateModelswithUnobservableStates 175

7.18MultieventModelswithUncertainStates 176

7.19JointModels 177

7.20IntegratedPopulationModels 178

7.21Frequentistvs.BayesianMethods 178

7.22SoftwareTools 179

7.23OnlineExercises 180

7.24FutureDirections 180 References 180

PartIIIPopulationModels 191

8ProjectingPopulations 193

StéphaneLegendre

8.1Introduction 193

8.2TheLifeCycleGraph 194

8.2.1Description 194

8.2.2Construction 194

8.3MatrixModels 198

8.3.1TheProjectionEquation 198

8.3.2DemographicDescriptors 200

8.3.3Sensitivities 200

8.4AccountingfortheEnvironment 202

8.5DensityDependence 203

8.5.1Density-dependentScalarModels 203

8.5.2Density-dependentMatrixModels 203

8.5.3ParameterizingDensityDependence 204

8.5.4Density-dependentSensitivities 204

8.6EnvironmentalStochasticity 204

8.6.1ModelsoftheEnvironment 204

8.6.2StochasticDynamics 205

8.6.3ParameterizingEnvironmentalStochasticity 208

8.7SpatialStructure 208

8.8DemographicStochasticity 209

8.8.1BranchingProcesses 209

8.8.2Two-sexModels 210

8.9DemographicHeterogeneity 210

8.9.1IntegralProjectionModels 211

8.10SoftwareTools 212

8.11OnlineExercises 212

8.12FutureDirections 212 References 212

9CombiningCountsofUnmarkedIndividualsandDemographicDataUsingIntegratedPopulationModels 215 MichaelSchaub

9.1Introduction 215

9.2ConstructionofIntegratedPopulationModels 216

9.2.1DevelopmentofaPopulationModel 216

9.2.2ConstructionoftheLikelihoodforDifferentDatasets 218

9.2.3TheJointLikelihood 220

9.2.4FittinganIntegratedPopulationModel 221

9.3ModelExtensions 223

9.3.1EnvironmentalStochasticity 223

9.3.2DirectDensityDependence 224

9.3.3OpenPopulationModelsandOtherExtensions 226

9.3.4AlternativeObservationModels 226

9.4InferenceAboutPopulationDynamics 227

9.4.1RetrospectivePopulationAnalyses 227

9.4.2PopulationViabilityAnalyses 227

9.5MissingData 229

9.6Goodness-of-fitandModelSelection 230

9.7SoftwareTools 230

9.8OnlineExercises 231

9.9FutureDirections 231 References 232

10IndividualandAgent-basedModelsinPopulationEcologyandConservationBiology 237 EloyRevilla

10.1IndividualandAgent-basedModels 237

10.1.1WhatanIBMIsandWhatitIsNot 238

10.1.2WhentoUseanIndividual-basedModel 238

10.1.3CriticismsontheUseofIBMs:AdvantagesorDisadvantages 239

10.2BuildingtheCoreModel 239

10.2.1DesignPhase:TheQuestionandtheConceptualModel 239

10.2.2ImplementationoftheCoreModel 240

10.2.3IndividualsandTheirTraits 240

10.2.4FunctionalRelationships 244

10.2.5TheEnvironmentandItsRelevantProperties 244

10.2.6TimeandSpace:Domains,Resolutions,BoundaryConditions,andScheduling 244

10.2.7SingleModelRun,DataInput,ModelOutput 246

10.3ProtocolsforModelDocumentation 247

10.3.1TheOverview,DesignConcepts,andDetailsProtocol 249

10.4ModelAnalysisandInference 249

10.4.1ModelDebuggingandCheckingtheConsistencyofModelBehavior 249

10.4.2ModelStructuralUncertaintyandSensitivityAnalyses 252

10.4.3ModelSelection,Validation,andCalibration 254

10.4.4AnsweringyourQuestions 256

10.5SoftwareTools 257

10.6OnlineExercises 257

10.7FutureDirections 257 References 258

PartIVPopulationGeneticsandSpatialEcology 261

11GeneticInsightsintoPopulationEcology 263

JeffreyR.RowandStephenC.Lougheed

11.1Introduction 263

11.2TypesofGeneticMarkers 264

11.2.1MitochondrialDNA 264

11.2.2NuclearIntrons 265

11.2.3Microsatellites 265

11.2.4SingleNucleotidePolymorphisms 265

11.2.5Next-generationSequencing 265

11.3QuantifyingPopulationStructurewithIndividual-basedAnalyses 266

11.3.1BayesianClustering 267

11.3.2MultivariateAnalysisofGeneticDataThroughOrdinations 269

11.3.3SpatialAutocorrelationAnalysis 271

11.3.4Population-levelConsiderations 273

11.4EstimatingPopulationSizeandTrends 273

11.4.1EstimatingCensusPopulationSize 277

11.4.2EstimatingContemporaryEffectivePopulationSizewithOneSampleMethods 277

11.4.3EstimatingContemporaryEffectivePopulationSizewithTemporalSampling 279

11.4.4DiagnosingRecentPopulationBottlenecks 280

11.5EstimatingDispersalandGeneFlow 281

11.5.1EstimatingDispersalandRecentGeneFlow 282

11.5.2EstimatingSustainedLevelsofGeneFlow 282

11.5.3NetworkAnalysisofGeneticConnectivity 283

11.6SoftwareTools 284

11.6.1Individual-basedAnalysis 284

11.6.2Population-basedPopulationSize 285

11.6.3DispersalandGeneFlow 286

11.7OnlineExercises 286

11.8FutureDirections 286

Glossary 287 References 289

12SpatialStructureinPopulationData 299

Marie-JoséeFortin

12.1Introduction 299

12.2DataAcquisitionandSpatialScales 302

12.3PointDataAnalysis 302

12.4AbundanceDataAnalysis 304

12.5SpatialInterpolation 306

12.6SpatialDensityMapping 308

12.7MultipleScaleAnalysis 308

12.8SpatialRegression 311

12.9SoftwareTools 312

12.10OnlineExercises 312

12.11FutureDirections 312 Glossary 312 References 313

13AnimalHomeRanges:Concepts,Uses,andEstimation 315 JonS.Horne,JohnFieberg,LucaBörger,JanetL.Rachlow,JustinM.CalabreseandChrisH.Fleming

13.1WhatIsaHomeRange? 315

13.1.1QuantifyingAnimalHomeRangesasaProbabilityDensityFunction 316

13.1.2WhyEstimateAnimalHomeRanges? 318

13.2EstimatingHomeRanges:PreliminaryConsiderations 319

13.3EstimatingHomeRanges:TheOccurrenceDistribution 321

13.3.1MinimumConvexPolygon 321

13.3.2KernelSmoothing 322

13.3.3ModelsBasedonAnimalMovements 323

13.3.4EstimationfromaOne-dimensionalPath 324

13.4EstimatingHomeRanges:TheRangeDistribution 324

13.4.1BivariateNormalModels 324

13.4.2TheSynopticModel 324

13.4.3MechanisticModels 325

13.4.4KernelSmoothing 326

13.5SoftwareTools 326

13.6OnlineExercises 327

13.7FutureDirections 327

13.7.1ChoosingaHomeRangeModel 327

13.7.2TheFutureofHomeRangeModeling 327 References 328

14AnalysisofResourceSelectionbyAnimals 333

JoshuaJ.Millspaugh,ChristopherT.Rota,RobertA.Gitzen,RobertA.Montgomery,ThomasW.Bonnot,JerroldL. Belant,ChristopherR.Ayers,DylanC.Kesler,DavidA.EadsandCatherineM.BodinofJachowski

14.1Introduction 333

14.2Definitions 335

14.2.1TerminologyandCurrenciesofUseandAvailability 335

14.2.2Use-availability,PairedUse-availability,UseandNon-use(Case-control),andUse-onlyDesigns 336

14.2.3DifferencesBetweenRSF,RSPF,andRUF 336

14.3ConsiderationsinStudiesofResourceSelection 338

14.3.1TwoImportantSamplingConsiderations:SelectingSampleUnitsandTimeofDay 338

14.3.2EstimatingtheNumberofAnimalsandLocationsNeeded 338

14.3.3LocationErrorandFixRateBiasResourceSelectionStudies 339

14.3.4ConsiderationofAnimalBehaviorinResourceSelectionStudies 339

14.3.5BiologicalSeasonsinResourceSelectionStudies 340

14.3.6ScalinginResourceSelectionStudies 340

14.3.7LinkingResourceSelectiontoFitness 341

14.4MethodsofAnalysisandExamples 342

14.4.1CompositionalAnalysis 342

14.4.2LogisticRegression 343

14.4.3SamplingDesignsforLogisticRegressionModeling 344

14.4.3.1RandomSamplingofUnitswithintheStudyArea 344

14.4.3.2RandomSamplingofUsedandUnusedUnits 344

14.4.3.3RandomSampleofUsedandAvailableSamplingUnits 345

14.4.4DiscreteChoiceModels 346

14.4.5PoissonRegression 347

14.4.6ResourceUtilizationFunctions 348

14.4.7EcologicalNicheFactorAnalysis 348

14.4.8MixedModels 349

14.5SoftwareTools 349

14.6OnlineExercises 350

14.7FutureDirections 350 References 351

15SpeciesDistributionModeling 359

DanielH.ThorntonandMichaelJ.L.Peers

15.1Introduction 359

15.1.1RelationshipofDistributiontoOtherPopulationParameters 362

15.1.2SpeciesDistributionModelsandtheNicheConcept 363

15.2BuildingaSpeciesDistributionModel 366

15.2.1SpeciesData 366

15.2.2EnvironmentalData 368

15.2.3ModelFitting 368

15.2.4InterpretationofModelOutput 371

15.2.5ModelAccuracy 372

15.3CommonProblemswhenFittingSpeciesDistributionModels 374

15.3.1Overfitting 374

15.3.2SampleSelectionBias 375

15.3.3BackgroundSelection 376

15.3.4Extrapolation 377

15.3.5ViolationofAssumptions 378 15.4RecentAdvances 378

15.4.1IncorporatingDispersal 378

15.4.2IncorporatingPopulationDynamics 379

15.4.3IncorporatingBioticInteractions 379 15.5SoftwareTools 381

15.5.1FittingandEvaluationofModels 381

15.5.2IncorporatingDispersalorPopulationDynamics 381

15.6OnlineExercises 381

15.7FutureDirections 381

References 383

16The R SoftwareforDataAnalysisandModeling 391

ClémentCalenge 391

16.1AnIntroductionto R 391

16.1.1TheNatureofthe R Language 391

16.1.2QualitiesandLimits 392

16.1.3 R forEcologists 392

16.1.4 R isanEnvironment 393

16.2Basicsof R 393

16.2.1SeveralBasicModesofData 394

16.2.2SeveralBasicTypesofObjects 395

16.2.3FindingHelpandInstallingNewPackages 398

16.2.4HowtoWriteaFunction 400

16.2.5The for loop 401

16.2.6TheConceptofAttributesand S3DataClasses 402

16.2.7TwoImportantClasses:TheClass factor andtheClass data.frame 404

16.2.8DrawingGraphics 406

16.2.9 S4Classes:WhyItIsUsefultoUnderstandThem 407

16.3OnlineExercises 410

16.4FinalDirections 410 References 411

Index 413

Contributors

ChristopherR.Ayers Wildlife,Fisheries,andAquaculture MississippiStateUniversity Starkville,MS,USA

GuillaumeBastille-Rousseau SchoolofBiologicalSciences SouthernIllinoisUniversity Carbondale,IL,USA

LynneE.Beaty DepartmentofBiology PennStateErie Erie,PA,USA

JerroldL.Belant CampFirePrograminWildlifeConservation CollegeofEnvironmentalScienceandForestry StateUniversityofNewYork Syracuse,NY,USA

CatherineM.BodinofJachowski DepartmentofForestryand EnvironmentalConservation ClemsonUniversity Clemson,SC,USA

ThomasW.Bonnot DepartmentofFisheriesand WildlifeSciences UniversityofMissouri Columbia,MO,USA

LucaBörger DepartmentofBiosciences CollegeofScience SwanseaUniversity Swansea,UnitedKingdom

JustinM.Calabrese DepartmentofBiology UniversityofMarylandCollegePark CollegePark,MD,USA

ClémentCalenge

DirectiondelaRechercheetdel’Expertise OfficeNationaldelaChasseetdelaFauneSauvage SaintBenoist,Auffargis,France

SarahJ.Converse U.S.GeologicalSurvey WashingtonCooperativeFishand WildlifeResearchUnit SchoolofEnvironmentalandForestSciences(SEFS)and SchoolofAquaticandFisherySciences(SAFS) UniversityofWashington Seattle,WA,USA

StevenDelean SchoolofBiologicalSciencesand theEnvironmentInstitute TheUniversityofAdelaide Adelaide,SouthAustralia,Australia

DavidA.Eads

U.S.GeologicalSurvey FortCollinsScienceCenter FortCollins,CO,USA

JohnFieberg DepartmentofFisheries WildlifeandConservationBiology UniversityofMinnesota St.Paul,MN,USA

ChrisH.Fleming SmithsonianConservationBiologyInstitute FrontRoyal,VA,USA

Marie-JoséeFortin DepartmentofEcologyandEvolutionaryBiology UniversityofToronto Toronto,Ontario,Canada

RobertA.Gitzen ForestryandWildlifeSciences AuburnUniversity Auburn,AL,USA

JonS.Horne IdahoDepartmentofFishandGame Boise,ID,USA

MeganL.Hornseth BorealisEcology ThunderBay,Ontario,Canada

DylanC.Kesler TheInstituteforBirdPopulations PointReyesStation,CA,USA

CharlesJ.Krebs DepartmentofZoology UniversityofBritishColumbia Vancouver,BritishColumbia,Canada

StéphaneLegendre InstitutdeBiologiede l’EcoleNormaleSupérieure(IBENS) LeCentreNationaldelaRecherche Scientifique(CNRS) Paris,France

StephenC.Lougheed DepartmentofBiology Queen’sUniversity Kingston,Ontario,Canada

BrettT.McClintock NOAANationalMarineMammalLaboratory AlaskaFisheriesScienceCenter NationalMarineFisheriesService Seattle,WA,USA

JoshuaJ.Millspaugh WildlifeBiologyProgram DepartmentofEcosystemand ConservationSciences UniversityofMontana Missoula,MT,USA

RobertA.Montgomery DepartmentofFisheriesandWildlife MichiganStateUniversity EastLansing,MI,USA

DennisL.Murray DepartmentofBiology TrentUniversity Peterborough,Ontario,Canada

MichaelJ.L.Peers DepartmentofBiologicalSciences UniversityofAlberta Edmonton,Alberta,Canada

ThomasA.A.Prowse SchoolofMathematicalSciences TheUniversityofAdelaide Adelaide,SouthAustralia,Australia

JanetL.Rachlow DepartmentofFishandWildlifeSciences UniversityofIdaho Moscow,ID,USA

EloyRevilla DepartmentofConservationBiology EstaciónBiológicadeDoñanaCSIC Sevilla,Spain

JoshuaV.Ross SchoolofMathematicalSciences TheUniversityofAdelaide Adelaide,SouthAustralia,Australia

ChristopherT.Rota WildlifeandFisheriesResourcesProgram SchoolofNaturalResources WestVirginiaUniversity Morgantown,WV,USA

JeffreyR.Row SchoolofEnvironment,Resources andSustainability,UniversityofWaterloo Waterloo,Ontario,Canada

J.AndrewRoyle U.S.GeologicalSurvey PatuxentWildlifeResearchCenter Laurel,MD,USA

BrettK.Sandercock DepartmentofTerrestrialEcology NorwegianInstituteforNatureResearch Trondheim,Norway

MichaelSchaub SwissOrnithologicalInstitute Sempach,Switzerland

LenThomas CentreforResearchintoEcologicaland EnvironmentalModelling SchoolofMathematicsandStatistics UniversityofSt.Andrews St.Andrews,UnitedKingdom

DanielH.Thornton SchoolofEnvironment WashingtonStateUniversity Pullman,WA,USA

JonathanTuke SchoolofMathematicalSciences TheUniversityofAdelaide Adelaide,SouthAustralia,Australia

Preface

Ourmotivationaseditorsforassemblingabookoncurrentmethodsinpopulationecologyarosefromourongoinginteractionswithgraduatestudentsandprofessionals inthefieldsofecology,conservationbiology,andwildlife management.Overthepastseveraldecades,researchin populationecologyhasdevelopedatarapidpace,from alargelydescriptivefielddominatedbyobservationand description,toamaturedisciplinethatemphasizesinnovativeandrobustanalysesofecologicalpatternsand processes.Manyrecentadvanceshavebeendrivenbypersistentknowledgegaps,nottheleastofwhichareurgent questionsaboutthekeydriversofpopulationdynamics andtheirecologicalrelevanceinthefaceofongoingglobal environmentalchange.Increasingly,populationecologistshaverecognizedthatkeyquestionsinecologyand evolutionarybiologymustbeinvestigatedusingthedata andanalyticalmethodsthatallowresearcherstomake robustinferencesaboutcausality.Atthesametime, advancesinsatelliteorGPS-basedtelemetry,noninvasive geneticsampling,automatedfieldphotography,andother newtechnologieshaverevolutionizedourabilitytocollect newdataontheoccurrence,abundance,anddistributions ofrareorelusiveorganismsundernaturalconditions. Emergingtechnologieshaveopenedupnewpossibilities fordatacollection,butmanyhavealsorequireddevelopmentofinnovativeapproachesfordataanalysis.Insome cases,newquantitativeapproacheshavebeenadopted directlyfromotherfieldsofresearchbutsometypesof datahaverequiredthedevelopmentofentirelynovelanalyticaltools.Improvementsinthecapacityofpersonaland cloud-basedcomputing,availabilityofProgramRand otherfreewarestatisticalpackages,andonlineresources forlearningandtroubleshootingnewstatisticalprocedureshaveledtotremendousimprovementsinthe potentialcapacityfordataanalysisinpopulationecology. Developmentsinpopulationecologyhaveparalleled improvementsindataqualityandanalysisingenomics, datasciences,andotherscientificdisciplines.Still,populationecologyhasbeentransformedinrecentdecadesso thatourcurrentabilitytoanswerlongstandingandelusivequestionsgreatlysurpasseswhatcouldhavebeen imaginableevenashorttimeago.

Developmentofnewtoolsforecologicalanalysishas beenexcitingtowitnessbutpresentsachallengefor bothnewandseasonedecologistswhowouldliketo staycurrentwithavailabletechnologiesandanalytical approaches.Duringourownformativeyearsasgraduate studentsafewdecadesago,theprevailingquantitative methodsfordataanalysisconsistedmainlyofstatistical testsinafrequentistframeworkthatwereoriginally designedforanalysisofdatafromcontrolledexperiments andbalancedstudydesigns.Basictestslikeanalysisof varianceandregressionwerefamiliarbecauseoftheir extensivecoverageinundergraduatecourses,orelse theywerereadilyadoptedfollowingfocusedreadingor trialanderror.Evenspecializedtechniqueslikepopulationestimationorhabitatselectionanalysisweremostly accessibleusingoff-the-shelfanalyticalapproaches. Accordingly,atthetimemostecologistswerenotunduly challengedtoconductdataanalysisthatmetcontemporarystandards.However,ecologicalsystemsarerarely governedbyfactorsthatconformtocontrolledconditions,andthereforeecologicalresearchrarelyyieldsfield datathattrulyfitsstandardassumptionsofindependence,normality,andlackofbias.Moreover,thesheer volume,structure,andcomplexityofecologicaldatacollectedinmanyfieldstudiesprecludestandardstatistical approaches.Newquantitativemethodsinecologyoften deviatesubstantiallyfromthestandardapproachesthat formthebasisofundergraduatetraininginstatistics, andecologistsmaybeleftscramblingtocorrectlyidentify andimplementanappropriateanalyticaltechnique.The correctapplicationofcontemporarymethodsfordata analysisisincreasinglyaprerequisiteforpublication andforimplementationofeffectivemanagementpolicy inecology.

Oureditedvolumeisprimarilyaimedatgraduatestudentsandearlycareerprofessionalswhomaybeembarkingontheirfirstattempttoanalyzeecologicaldatausing contemporarymethods.Weaimedtoassembleaseries ofchaptersthatreviewthestateofknowledgeinthecore areasofpopulationecology,andourselectionoftopics andauthorswaspurposefultocoverthemainareasby expertsinthefield.Ourfinalsubmissionsincluded

16manuscriptsfrom39contributorsworkingin8differentcountries.Ouraimwasforeverychaptertoserveasa stand-aloneassessmentfordifferenttopicsinpopulation ecology,includingprosandconsofrelatedquantitative methods,basicassumptionsandlimitationswhenderivinginferencefromagivenapproach,andsomeofthe potentialpitfallsintheapplicationofavailabletechniques.Perhapsunavoidably,thechaptersincludesome biastowardmethodsthatareespeciallyrelevantforuse withwildlifespeciesandforusingdatathathavebeen collectedthroughnewermonitoringtechnologies.Nevertheless,manyofthegeneralconceptsandapproaches coveredinourcontributedchaptershavebroadrelevance toadiversityofresearchquestionsandstudysystems.

The16chaptersofourbookareorganizedintofivesections.Thefirstsectionbeginswithtwochaptersthatprovideaframeworkforaskingrelevantquestionsinecology, includinghowresearchstudiescanbebestdesignedto deriverobustinference.Thesecondsectionassembles fivechapterscoveringavarietyofanalyticalapproaches inpopulationdemographyandpopulationtimeseries analysis;thesetopicsnormallyformtherequisitebasis ofmostinvestigationsintopopulationstatusandtrend. Theanalyticalapproachesdifferinwhethertheyare basedonclosedoropenpopulationmodels,useencounterhistoriesfrommarkedorunmarkedindividuals,or controlforsituationswheredetectionmaybeperfect orimperfect.Thethirdsectionhighlightspopulationlevelanalysis,includingnewerapproachesthatuseintegrativeandindividual-basedmodelstounderstandpopulationdriversandforecasttheirpotentialchange.The fourthsectionincludesfivechaptersthataddressgenetic andspatialapproachesinpopulationanalysis,covering topicslikehomerangeandresourceselectionanalysis andspeciesdistributionmodeling.

Thisvolumeisintendedtoprovideanoverviewfor researchersusingavarietyofanalyticaltoolsandplatforms.Importantly,theRstatisticalsoftwareplatform hasbeentransformativetodataanalysisinecology,and tothatendthefinalchapterprovidesanecologically focusedoverviewofbasicnomenclatureanddatamanagementusingRsoftware.ChaptersaresupportedbyacompendiumofonlineexercisesinRthatprovideworked throughexamplesthatreinforcetopicscoveredinindividualchapters.Theintentisforexercisestoprovidereaders withboththenecessarybackgroundtoimplementmore commonanalyticalapproaches,aswellassamplecode inRthatcanbeadaptedtostarttheirowndataanalysis. Allonlineexercisescanbeaccessedfromthepublisher’ s website(www.wiley.com/go/MurrayPopulationEcology).

Oureditedbookwouldnothaveseenthelightofday withoutthesignificanteffortsofanumberofpeopleto whomweareindebted.WethankGuillaumeChapron, whobeganthisjourneywithusandhelpedstartthe

editorialprocessofselectingtopicsforthedifferent chaptersandinvitingcontributors.Wethankallofthe contributorswhocontributedtheirworktothisvolume forsharingwithusavisionforthebook,mostlyadhering tooureditorialrequests,peer-reviewingeachother’ s chapters,andforworkinghardtoimprovethequality oftheirchapters.Workingonaneditedvolumecanprovidenewappreciationoftheoldadagethatacaravanis onlyasfastastheslowestcamel.Wethankthecontributorsfortheirsustainedeffortsandcommitment,butespeciallyfortheirpatienceingraciouslyacceptingdelays thatarosewhiletwoslowcamelsworkedtokeepthe editorialprocessontrack.Specialthankstoallofthe externalreviewerswhoprovidedanonymousreviewsof chapters,includingthemanygraduatestudentswho servedastestgroupsforthechaptersandtheonlineexercises.Thestudentsprovidedmanyusefulcommentsthat helpedcalibratethevolumeforitsintendedaudience. WealsohighlightthevaluablecontributionbyPatHeney, whostandardizedandtestedalltheonlineexercisespriorto theirrelease.Likewise,adebtofgratitudeisowedtoSam Sonnegaforhelpwithindexingthecompletevolume. ThestaffatWiley-Blackwell,especiallyAnupamaSreekanth,KavithaChandrasekarandEmmaCole,provided valuableassistanceinsupportofourvisionforthebook. Last,wethankH.DeanCluffforbeinganinitialsource ofinspirationandforanexplodingcanofsardines.

Ourhopeisthatoureditedbookwillcontributetoa growingbodyofliteraturethatguidesresearchersin therigorousanalysisofecologicaldata.Thecurrentstate ofourplanet,andofthespeciesandecosystemsthathave captivatedthefascinationofpopulationecologistsfor decades,areundergraveperil.Thequantitativemethods describedinthisvolumeprovideavaluablesetoftools foraddressingsomeofthecurrentandemergingenvironmentalproblemsthatwillcommandhumanity’ s attentionfortheforeseeablefuture.Ourbookwillbea successifitprovidesanewgenerationofearlycareer researcherswiththenecessarytoolstotacklesomeof theseproblems.

Inrecognitionofthedauntingenvironmentalchallenges facingthisandfuturegenerations,theeditorsarepleased todonateroyaltiesfromthebooktoconservationactivities ofWildlifeConservationSocietyCanada.Formore informationaboutthisorganization,pleasevisitwww. wcscanada.org.

DennisL.Murray TrentUniversity Peterborough,Ontario,Canada

BrettK.Sandercock NorwegianInstituteforNatureResearch Trondheim,Trøndelag,Norway

AbouttheCompanionWebsite

Thisbookisaccompaniedbyacompanionwebsite:

www.wiley.com/go/MurrayPopulationEcology

Thewebsiteincludes:

Exercisesrelatedtoeachchapter.Theexercisesaremeanttoreinforcetheapplicationofthemainconceptscoveredin thisvolume,andthereforeincludedatasets,coding,andexplanatorydetailstohelpguideusersintheirownanalyses.

ToolsforPopulationBiology

HowtoAskMeaningfulEcologicalQuestions

DepartmentofZoology,UniversityofBritishColumbia,Vancouver,BritishColumbia,Canada

Summary

Ipresentanddiscussfourrulesforaskinggoodecologicalquestions:

RuleNo.1.Understandthesuccessesandfailuresfromecologicalhistorybutdonotletthisknowledgebecomeastraitjacket.

RuleNo.2.Developanddefineaseriesofmultiplealternativehypothesesandexplicitlystatewhateachhypothesispredictsand whatitforbids.

RuleNo.3.Seekgeneralityfromyourhypothesesandexperimentsbutdistrustit.

RuleNo.4.Ifyourresearchhaspolicyimplications,readthesocialscienceliteratureabouthowscientificinformationand policydecisionsinterface.

Meaningfulquestionsinpopulationecologyaddresstheoreticalissuesormanagementquestionsthatdemandasolution.The solutionshouldbelookedforamongasetofmultipleworkinghypotheses.Ifyouhaveonlyonehypothesiswithnoalternatives, thereisnothingtodo.Theclassicalnullhypothesisinastatisticalsenseisnotanalternativehypothesisinwhichpopulation ecologyisinterested.Givenaquestion,thepossibleoutcomesofthestudyshouldbenotedbeforeanyfieldworkiscarriedout, andaninterpretationgivenofwhateachpossibleresultmeansintermsofbasictheoryorappliedmanagement.Themost usefulquestionsoftenhavemultipledimensionsandapplytomorethanonetaxonomicgroup.Onceyouhaveanimportant questionformulatedwithalternativehypotheses,youmustdiscussthecriticalaspectsoftheexperimentaldesign – replication, randomization,treatments,andcontrols.Howmanyreplicatesareneededoverwhatlandscapeunits?Howlongastudyis required?Howoftendoyouneedtosample?Willtheconfidencelimitsofanyestimatesbenarroworwide?Iftheproposed stepsarenotfollowed,itispossibletogetlostinthemechanicaldetailsofastudywithoutknowingclearlyhowtheoutcomewill reflectbackontheoriginalquestions.Serendipitymayrescuepoorlyconceivedstudies,buttheprobabilityofthiseventmaybe lessthan P <0.01.Managementandconservationproblemsdemandbothgooddataandeffectivepolicydevelopment.Ecologistsneedtobecomemoreproactiveinprovidingsolutionstopoliticiansandbusinessleaderswhodeveloppolicyoptions withecologicalconsequences.

1.1WhatProblemsDoPopulation EcologistsTrytoSolve?

Everyecologicalquestioncomesdowntoaquestionof populationecology,andhenceitisusefultostartbyaskinghowonegoesaboutaskingmeaningfulecological questionsinpopulationecology.Implicitlythestarting pointmustinvolveansweringtheflipquestionof: Howdoesoneavoidquestionsthatyieldinformation thatdonothelpinsolvinganecologicalproblem?

Thefirstandsimplestguideistolookatthehistorical literatureinpopulationecology,whichislitteredwith

questionsthathavelednowhereintermsofincreased understandingofecologicaldynamicsorimprovingsustainablelandmanagement(HartwayandMills2012; Walshetal.2012).Thesecondguidemustbethatahistoricalsearchisnotsufficient,becauseitwillnottellyou aboutfutureresearchquestions.Thus,itispossibleto makeamistakeandtospendtimeexploringalleysthat aredeadends.Butitisusefultorealizethatsetbacksare notascientificdefeatbecausetheseexplorationswill showthenextgenerationofecologistswhattoavoid. Sothisadvicemightbecodedasthefirstruleofasking meaningfulquestions:

PopulationEcologyinPractice,FirstEdition.EditedbyDennisL.MurrayandBrettK.Sandercock. ©2020JohnWiley&SonsLtd.Published2020byJohnWiley&SonsLtd. Companionwebsite:www.wiley.com/go/MurrayPopulationEcology

RuleNo.1.Understandthesuccessesandfailuresfrom ecologicalhistorybutdonotletthisknowledgebecome astraitjacket.

Asimpleexamplewillillustratethispoint.ThemanagementofNorthernBobwhites(Colinusvirginianus)inthe USAinvolvedacontroversialissueofwhetherquail populationscouldbelimitedbythelackofwaterandthus wouldbenefitfrommanagersprovidingfreewater,such asapond,intheirhabitat.Guthery(1999)examined thecompetinghypothesesaboutwaterlimitationand showedthateveninsouthernTexasquaildidnotneed freewatertosurviveandthusthatwatersourceswere notrequiredasamanagementtool.Whetherthisconclusionwillholdunderclimatechangeisanimportantissue formanagersinthefuture.

Atagenerallevel,philosophersofscienceprovideaset ofguidelinesonhowtodevelopgeneraltheory.Ask generalquestionsratherthanparticularones.General questionswillapplytoavarietyofspeciesandhabitats, particularquestionswillinvolveonlyoneorafewspecies inarestrictedenvironmentalspace.Formulateyour researchquestionsas testablehypotheses,andifpossible developmultipleworkinghypotheseswith alternative predictions thataremutuallyexclusive(Platt1964; Chapter2;Chamberlin1897).

Thetwomajorquestionsthatpopulationecologists addressinvolvethe distribution and abundance oforganisms.Thisfocusforpopulationecologywasclearlystated byCharlesElton(1927)andrigorouslyre-statedby AndrewarthaandBirch(1954).Knowingthefactorsthat limitthedistributionofanorganismcanassistinanalyzingproblemswithintroducedpests(Urbanetal.2007),as wellasgivingsomeindicationofhoworganismsmight changetheirdistributionsinlightofclimatechangeor otheranthropogenicstressorslikehabitatloss(Thomas etal.2006;Flockhartetal.2015,Chapter15).Knowing thefactorsthataffectchangesintheabundanceofan organismcanbeevenmorecriticalifthespeciesisakeystoneinthecommunityorifitisendangeredanddeclininginnumbers.Itiswiththesekindsofproblemsthatthis bookgrapples,andasmethodsofapproacharecontinuallyimproved,weecologistshopetoanswerpressing questionsmorerapidlyandmoreaccurately.

Wemustrecognizeatthestartthatpopulationecologistsshouldnotpretendtosolveeveryecologicalproblem orsolveeverymanagementquestion.Inparticular,ecologiststrytoanswer scientificquestions andnotpolicy issues.Ifasongbirdisdeclininginabundance,thejob ofthepopulationecologististofindoutwhyitisdecliningandtorecommendwhatmightbedonetoreversethe observeddecline.Ourpoliticalsystemsandsocietyat largemakethe policydecisions,forexamplethedecision eithertosetasidearablegrasslandstoprotectthisbird populationortousethegrasslandareatoproducemore

cropsforhumanconsumption.Ecologistswillhave strongviewsaboutthevalueof biodiversityconservation, andwillpressforpolicydecisionsthatfavorbiodiversity, buttheirroleasscientistsistomakeestimatesofthe probablecourseofeventsunderpolicyAvs.policyB. Soletusbeginwithaclearunderstandingthatweecologistsdonotruntheworldanddonotmakepolicy,but ratherweprovideevidence-basedrecommendations fromthescienceweareabletodo.Theseparationofpolicyoptionsandresearchquestionsiscentraltothis approachtoglobalissuestowhichecologicaldataon populationsarerelevant(Sutherlandetal.2010).

Manyecologicalquestionsareposedwithnoclearconnectiontopopulationecology.Forexample,increasing levelsofcarbondioxide(CO2)intheatmosphereare affectingtheacidityofseawaterandpotentiallyaffecting thegeochemicalcarboncycle(Dybas2006;Ruttimann 2006;Boydetal.2010).Onthesurfacetheproblem appearstobeoneforchemicalecologists,butquickly thequestionbecomeexactlywhichspeciesofphytoplanktonarebeingaffectedbychangesinseawateracidity,andhowthisdisruptionofpopulationgrowthaffects predatorsorcompetitorsinthecommunitythateither feedontheparticularphytoplanktonspeciesorcompete withitfornutrients.Problemsofthistype,oncebroken downinareductionistmanner,quicklyfallintothebasketofpopulationdynamics.

Thereisatemptationtoaskquestionsaboutcommunityorecosystemecologywiththeimplicitbeliefthatwe canreachanunderstandingoftheproblem,andinparticulartobeabletorecommendpolicyalternativestoalleviatetheproblem,withoutgettingburiedinpopulation dynamics.Neither communityecology nor ecosystemecology havesolvedecologicalproblemswithoutdelvinginto thedetailsofpopulationdynamicstosortoutmechanisms. Macroecology isalsousefulforrecognizingecologicalpatternsthatrequireexplanationsatthelevelofboth communityandpopulationecology(Trebilcoetal.2013; Borrellietal.2015).

Giventhebroadquestionsaboutdistributionand abundance,therearemanymorestepsthathavetobe decidedbeforeonehasposedagoodecologicalquestion. Thefirststepistochoosethespeciesofinterest.Research prioritiesmaybedictatedtoyoubyyouremployerifyou workforawildlifeagency,ormaybedecidedbyfunding optionsifyouareagraduatestudent.Financialsupport wouldseemtobeamajorconstraintforanewscientist, butinfactthereareimportantandinterestingquestions tobeaskedforeveryspecies.Importantquestionsare eithergeneralquestionsthatapplytomanyspecies,or conservationquestionsthathaveadirectbearingon managementdecisions.Importantquestionsalwayshave atleasttwoandpossiblythreeormorepotentialanswers whicharenotpresentlyknown.Toconfirmpotential

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Full download Population ecology in practice : underused, misused and abused methods. 1st edition de by Education Libraries - Issuu