Buy ebook The load-pull method of rf and microwave power amplifier design john f. sevic cheap price

Page 1


John F. Sevic

Visit to download the full and correct content document: https://ebookmass.com/product/the-load-pull-method-of-rf-and-microwave-power-amp lifier-design-john-f-sevic/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

The load-pull method of RF and microwave power amplifier design 1st Edition John Sevic

https://ebookmass.com/product/the-load-pull-method-of-rf-andmicrowave-power-amplifier-design-1st-edition-john-sevic/

RF and Microwave Circuit Design: Theory and Applications Charles E. Free

https://ebookmass.com/product/rf-and-microwave-circuit-designtheory-and-applications-charles-e-free/

High Power Microwave Sources and Technologies Using Metamaterials 1st Edition John W. Luginsland (Editor)

https://ebookmass.com/product/high-power-microwave-sources-andtechnologies-using-metamaterials-1st-edition-john-w-luginslandeditor/

Practical RF System Design (Wiley – IEEE) – Ebook PDF

Version

https://ebookmass.com/product/practical-rf-system-design-wileyieee-ebook-pdf-version/

Wideband Microwave Materials Characterization John W. Schultz

https://ebookmass.com/product/wideband-microwave-materialscharacterization-john-w-schultz/

F**k It ( Fuck It ) : The Ultimate Spiritual Way ( Another version of Lester Levenson Sedona Method ) John C Parkin

https://ebookmass.com/product/fk-it-fuck-it-the-ultimatespiritual-way-another-version-of-lester-levenson-sedona-methodjohn-c-parkin/

The Power Of The Cross John Bradshaw

https://ebookmass.com/product/the-power-of-the-cross-johnbradshaw/

DYNAMICS OF THE STANDARD MODEL John F. Donoghue

https://ebookmass.com/product/dynamics-of-the-standard-modeljohn-f-donoghue/

Applied Power Quality: Analysis, Modelling, Design and Implementation of Power Quality Monitoring Systems Sarath Perera

https://ebookmass.com/product/applied-power-quality-analysismodelling-design-and-implementation-of-power-quality-monitoringsystems-sarath-perera/

Thiseditionfirstpublished2020 ©2020JohnWiley&Sons,Inc.

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthis titleisavailableathttp://www.wiley.com/go/permissions.

TherightofJohnF.Sevictobeidentifiedastheauthorofthisworkhasbeenassertedinaccordance withlaw.

RegisteredOffice

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

EditorialOffice 111RiverStreet,Hoboken,NJ07030,USA

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontent thatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakeno representationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthiswork andspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales representatives,writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatan organization,website,orproductisreferredtointhisworkasacitationand/orpotentialsourceof furtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservices theorganization,website,orproductmayprovideorrecommendationsitmaymake.Thisworkissold withtheunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.The adviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwith aspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmay havechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthe publishernorauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,including butnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Sevic,JohnF.,author.

Title:Theload-pullmethodofRFandmicrowavepoweramplifierdesign/ JohnF.Sevic,VicePresidentofMillimeter-WaveEngineering,MajaSystems, Milpitas,CA.

Description:Firstedition.|Hoboken,NJ:JohnWiley&Sons,Inc.,2020. |Includesindex.

Identifiers:LCCN2020009983(print)|LCCN2020009984(ebook)|ISBN 9781118898178(hardback)|ISBN9781119078067(adobepdf)|ISBN 9781119078036(epub)

Subjects:LCSH:Poweramplifiers–Designandconstruction.|Amplifiers, Radiofrequency–Designandconstruction.|Microwaveamplifiers–Design andconstruction.

Classification:LCCTK7871.58.P6S452020(print)|LCCTK7871.58.P6 (ebook)|DDC621.3841/2–dc23

LCrecordavailableathttps://lccn.loc.gov/2020009983

LCebookrecordavailableathttps://lccn.loc.gov/2020009984

CoverDesign:Wiley

CoverImage:©Elesey/Shutterstock

Setin9.5/12.5ptSTIXTwoTextbySPiGlobal,Chennai,India

10987654321

Thisbookisdedicatedtothenextgenerationofload-pullexperts:mayyour experiencesbeasenrichingandrewarding.

Contents

ListofFigures xi

ListofTables xxi

Acronyms,Abbreviations,andNotation xxiii

Preface xxv

Foreword xxix

Biography xxxi

1HistoricalMethodsofRFPowerAmplifierDesign 1

1.1TheRFPowerAmplifier 1

1.2HistoryofRFPowerAmplifierDesignMethods 3

1.2.1CopperTapeandtheX-ActoKnife 4

1.2.2TheShuntStubTuner 4

1.2.3TheCrippsMethod 5

1.3TheLoad-PullMethodofRFPowerAmplifierDesign 5

1.3.1HistoryoftheLoad-PullMethod 6

1.3.2RFPowerAmplifierDesignwiththeLoad-PullMethod 8

1.4HistoricalLimitationsoftheLoad-PullMethod 9

1.4.1MinimumImpedanceRange 10

1.4.2IndependentHarmonicTuning 11

1.4.3PeakandRMSPowerCapability 12

1.4.4OperatingandModulationBandwidth 12

1.4.5LinearityImpairment 13

1.4.6RigorousErrorAnalysis 14

1.4.7AcousticallyInducedVibrations 14

1.5ClosingRemarks 15 References 15

2AutomatedImpedanceSynthesis 17

2.1MethodsofAutomatedImpedanceSynthesis 18

2.1.1PassiveElectromechanicalImpedanceSynthesis 18

2.1.2TheActive-LoopMethodofImpedanceSynthesis 21

2.1.3TheActive-InjectionMethodofImpedanceSynthesis 24

2.2UnderstandingElectromechanicalTunerPerformance 26

2.2.1ImpedanceSynthesisRange 26

2.2.2OperatingBandwidth 27

2.2.3ModulationBandwidth 29

2.2.4TunerInsertionLoss 31

2.2.5PowerCapability 32

2.2.6VectorRepeatability 34

2.2.7ImpedanceStateResolutionandUniformity 35

2.2.8FactorsInfluencingTunerSpeed 36

2.2.9TheSlab-LinetoCoaxialTransition 37

2.3AdvancedConsiderationsinImpedanceSynthesis 37

2.3.1IndependentHarmonicImpedanceSynthesis 37

2.3.2Sub-1 Ω ImpedanceSynthesis 41

2.4ClosingRemarks 43 References 43

3Load-PullSystemArchitectureandVerification 45

3.1Load-PullSystemArchitecture 46

3.1.1Load-PullSystemBlockDiagram 46

3.1.2SourceandLoadBlocks 48

3.1.3SignalSynthesisandAnalysis 52

3.1.4Large-SignalInputImpedanceMeasurement 53

3.1.5AM–AM,AM–PM,andIMPhaseMeasurement 53

3.1.6DynamicRangeOptimization 54

3.2TheDCPowerSource 54

3.2.1ChargeStorage,Memory,andVideoBandwidth 55

3.2.2Load-PullofTruePAE 56

3.2.3TheEffectofDCBiasNetworkLoss 57

3.3The ΔGT MethodofSystemVerification 57

3.4ElectromechanicalTunerCalibration 60

3.5ClosingRemarks 60 References 61

4Load-PullDataAcquisitionandContourGeneration 63

4.1ConstantSourcePowerLoad-Pull 64

4.1.1Load-PullwithaSingleSetofContours 65

4.1.2Load-PullwithTwoorMoreSetsofContours 69

4.1.3Load-PullforSignalQualityOptimization 73

4.1.4Large-SignalInputImpedance 76

4.2Fixed-ParametricLoad-Pull 77

4.2.1FixedLoadPower 77

4.2.2FixedGainCompression 79

4.2.3FixedPeak–AverageRatio 79

4.2.4FixedSignalQuality 80

4.2.5TreatingMultipleContourIntersections 81

4.3HarmonicLoad-Pull 82

4.3.1SecondHarmonicLoad-Pull 83

4.3.2Third-HarmonicLoad-Pull 85

4.3.3Higher-OrderEffectsandInter-harmonicCoupling 85

4.3.4BasebandLoad-PullforVideoBandwidthOptimization 85

4.4SweptLoad-Pull 87

4.4.1SweptAvailableSourcePower 87

4.4.2SweptBias 88

4.4.3SweptFrequency 88

4.5AdvancedTechniquesofDataAcquisition 88

4.5.1SimplifiedGeometric-LogicalSearch 89

4.5.2SyntheticGeometric-LogicalSearch 89

4.5.3MultidimensionalLoad-PullandDataSlicing 91

4.5.4Min–MaxPeakSearching 93

4.6ClosingRemarks 94 References 95

5OptimumImpedanceIdentification 97

5.1PhysicalInterpretationoftheOptimumImpedance 97

5.2TheOptimumImpedanceTrajectory 99

5.2.1OptimalityCondition 99

5.2.2UniquenessCondition 100

5.2.3TerminatingImpedance 100

5.3GraphicalExtractionoftheOptimumImpedance 101

5.3.1OptimumImpedanceStateExtraction 101

5.3.2OptimumImpedanceTrajectoryExtraction 102

5.3.3TreatmentofOrthogonalContours 104

5.4OptimumImpedanceExtractionfromLoad-PullContours 105

5.4.1SimultaneousAverageLoadPowerandPAE 106

5.4.2SimultaneousAverageLoadPower,PAE,andSignalQuality 107

5.4.3OptimumImpedanceExtractionUnderFixed-Parametric Load-Pull 108

x Contents

5.4.4PAEandSignalQualityExtractionUnderConstantAverageLoad Power 109

5.4.5OptimumImpedanceExtractionwithBandwidthasaConstraint 110

5.4.6ExtensiontoSource-Pull 112

5.4.7ExtensiontoHarmonicandBase-BandLoad-Pull 112

5.5ClosingRemarks 112

6MatchingNetworkDesignwithLoad-PullData 115

6.1SpecificationofMatchingNetworkPerformance 116

6.2TheButterworthImpedanceMatchingNetwork 116

6.2.1TheButterworth L-SectionPrototype 117

6.2.2AnalyticalSolutionoftheButterworthMatchingNetwork 119

6.2.3GraphicalSolutionoftheButterworthMatchingNetwork 120

6.3PhysicalImplementationoftheButterworthMatchingNetwork 121

6.3.1TheLumped-ParameterButterworthMatchingNetwork 122

6.3.2TheDistributed-ParameterButterworthMatchingNetwork 124

6.3.3TheHybrid-ParameterButterworthMatchingNetwork 126

6.4SupplementalMatchingNetworkResponses 130

6.4.1TheChebyshevResponse 131

6.4.2TheHeckenandKlopfensteinResponses 131

6.4.3TheBessel–ThompsonResponse 135

6.5MatchingNetworkLoss 135

6.5.1DefinitionofMatchingNetworkLoss 135

6.5.2TheEffectsofMatchingNetworkLoss 136

6.5.3MinimizingMatchingNetworkLoss 137

6.6OptimumHarmonicTerminationDesign 138

6.6.1OptimallyEngineeredWaveforms 138

6.6.2PhysicalImplementationofOptimumHarmonicTerminations 140

6.6.3OptimumHarmonicTerminationsinPractice 141

6.7ClosingRemarks 142 References 143

Index 145

ListofFigures

Figure1.1 Contemporarymicrowavetunerspanning2.5–50GHzoperating bandwidth.Source:ReproducedwithpermissionofFocus Microwaves,Inc. 7

Figure1.2 Contemporarymicrowavetunerspanning600MHzto18.0GHz operatingbandwidth.Source:Reproducedwithpermissionof MauryMicrowave,Inc. 7

Figure1.3 Blockdiagramofagenericload-pullsystemillustratingkey impedancedefinitions. 9

Figure2.1 Transversesectionviewofelectromechanicaltunerslab-line illustratingprobeplacementanditsdisplacementforsynthesisof anarbitraryimpedance.Tofirst-order,probedisplacementfrom thecenterconductor(alongthe y-axis)representsthemagnitude ofthereflectioncoefficientanditslongitudinaldisplacement (alongthe z-axis)fromanarbitraryreference-plane,usuallythe physicalendofthetunernearesttheDUT,representsphase. 18

Figure2.2 Typicalprobeusedinthepassiveelectromechanicaltuner.Each square-gridrepresents1cm.Source:Reproducedwithpermission ofFocusMicrowaves,Inc. 19

Figure2.3 Reflectioncoefficientvectorseenattunercalibration reference-planeillustratingrelationshipbetweenprobe displacementandcarriagedisplacementandassociated magnitudeandphase. 19

Figure2.4 Internalviewofamodernelectromechanicaltunerwiththree carriages.Amulti-probetunerofthisstyleiscapableof independentfundamentalandharmonicimpedancesynthesis,as wellasfrequency-agiledynamicpre-matching.Source: ReproducedwithpermissionofFocusMicrowaves,Inc. 20

Figure2.5 FundamentalreferencePApowercapabilitynormalizedby expectedDUTPEPcapabilityversusrequiredsyntheticload impedanceatDUTreference-planeforactive-loop.Thefour trajectoriesillustrate0–3dBinsertionloss,in1dBsteps. 21

Figure2.6 Thefundamentalfeed-forwardactive-loopimpedancesynthesis architecture,duetoTakayama,andoftenreferredtoasthe split-signalmethod[1]. 22

Figure2.7 Thefundamentalfeed-backactive-loopimpedancesynthesis architecture. 23

Figure2.8 Modernactive-loopload-pullsystemcapableofsimultaneous fundamental,harmonic,andbasebandcharacterization.Source: ReproducedwithpermissionofMauryMicrowave,Inc. 23

Figure2.9 Thefundamentalactive-injectionimpedancesynthesis architecture. 24

Figure2.10 FundamentalreferencePApowercapabilitynormalizedby expectedDUTPEPcapabilityversusrequiredsyntheticload impedanceatDUTreference-planeforactiveinjection.Thenine trajectoriesillustratepassivepre-matchingfrom0.1to0.9,in0.1 steps. 24

Figure2.11 FundamentalreferencePApowercapabilitynormalizedby expectedDUTPEPcapabilityversusrequiredsyntheticreflection coefficientmagnitudeatDUTreference-planeforactive-injection impedancesynthesis.Insertionlossbetweentheactive-injection reference-planeandtheDUTreference-planeisassumedtobe 2.0dB,withtheinitialtrajectorysetfor0magnitudepre-match andeachsubsequenttrajectoryanincreaseof0.1upto0.9.The reflectioncoefficientisnormalizedto50 Ω 25

Figure2.12 Modernhigh-performancevectornetworkanalyzerwithfour portsandtime-domaincapability.Source:Reproducedwith permissionofKeysight,Inc. 26

Figure2.13 Typicaldual-carriagetuner VSWR responseversusfrequency, illustratingoperatingbandwidthandcrossoverfrequency,inthis examplebeing4GHz.Theoperatingbandwidthislimitedto approximately9GHzinthisexample,illustratedbythe15:1 VSWR at10GHz. 28

Figure2.14 Phaseresponseoftunerinputimpedancearounditsnominal centerfrequencyillustratingphasenonlinearityrepresentativeof nonconstantgroupdelaythatinducesIMandACPRasymmetry.

ListofFigures xiii

Thedashedlineistangenttotheapproximatelyconstantgroup delayregion,whichisafunctionoftuner VSWR 30

Figure2.15 Tuneravailable(heating)lossindBversusthemagnitudeofthe reflectioncoefficientforthesidefacingtheDUT. 31

Figure2.16 ConfigurationtoevaluatemaximumtunerRMSpowercapability foraspecifiedchangeintunerimpedanceduetoself-heating. Tunerimpedance Rmin referstolowestimpedancestateofeach tuner,asdefinedinFigure2.3. 33

Figure2.17 Graphicalillustrationoftunervectorrepeatability. 35

Figure2.18 Two-portrepresentationoftwocarriage–probepairscascadedon asharedtransmission-line,similartotheconfigurationillustrated byFigure1.1. 38

Figure2.19 Fundamentalandharmonicimpedancevectors, Γ1 and Γ2 , respectively,andthe �� ej�� vectorsweepingouttheconstraintcircle at ��1 .Thecircleisshownseveralordersofmagnitudelargerthan itstypicalradiustoillustrateitslocationon Γ1 . 40

Figure2.20 Fundamentalandharmonicimpedancevectors, Γ1 and Γ2 , respectively,andthe �� ej�� vectorsweepingouttheconstraintcircle at ��1 .Thecircleisshownseveralordersofmagnitudelargerthan itstypicalradiustoillustrateitslocationon Γ1 .Thedashedlines showthecorrespondencebetweenthefundamentalstatesonthe interiorof �� ej�� andthesecond-harmonicstatesontheboundary oftheSmithchart.Thisexpansionarymappingprocess,dueto frequencydispersion,isthebasisofthemulti-probemethodof harmonicload-pullwithelectromechanicaltuners. 41

Figure2.21 Gammamagnitudeattheprobe-tipreferenceversustuner VSWR forprobeinsertionlossfrom0to2.0dBin0.2dBincrements. 42

Figure3.1 Contemporaryhigh-performanceon-waferload-pullsystem. Source:ReproducedwithpermissionofMauryMicrowave, Inc. 46

Figure3.2 Genericload-pullsystemillustratingvariousfunctionalblocks andtheirlocationwithintheoverallarchitecture. 47

Figure3.3 SmithchartillustratingvectordependenceofDUTsource impedanceonsourcetuner,thesourceblock,andthesource terminatingimpedance,composedofthesignalsourceand possiblyareferencePA. 49

Figure3.4 ApparentPAEversustotalharmoniccontentwithrespectto fundamentalpowerparametrizedtoactualPAEtoassess optimumlow-passfilteringrequirements. 50

Figure3.5 Voltageandcurrentconventionsthatdefinethelarge-signalinput impedanceofatransistor,ataspecificfrequency,usuallythe fundamental. 53

Figure3.6 TypicaldynamicrangecurveforIMandACPRmeasurements illustratingnoise-limitedandlinearity-limitedboundaries.The regionbetweenthesetwoboundariesestablishesthedynamic rangeofIMandACPRcharacterization. 55

Figure3.7 Responsetoatwo-tonestimulusillustratingacommondefinition ofvideobandwidth(VBW)whenthetonespacingyields2∘ of asymmetryinthethird-ordermixingproducts.Notethatthe lowersidebandleadsinphaseandtheuppersidebandlagsin phasewithrespecttothelinearphaseresponseshown.Itisthis factthatproducesintermodulationasymmetry,asdescribedby SevicandSteer[4]. 56

Figure3.8 Load-pullsystemconfigurationtoevaluate ΔGT . 58

Figure3.9 Typical ΔGT responseforawell-calibratedsub-1 Ω high-power 2GHzload-pullsystemwithquarter-wavepre-matching[10]. 59

Figure4.1 Canonicalload-pullsystemdefiningindependentvariablesfrom whichallmeasurementdataarederived.DCconditionsatthe drain(collector)andgate(base)formthebasisofDCpowerfor efficiencycalculations.Forthepresentload-pullmethodthat transistoroutputimpedanceanditsavailablepowerneednotbe knownnordefined. 64

Figure4.2 Loadpowercontoursillustratingthemaximumpower impedance,contourclosure,andtheimpedance-stategridfor dataacquisition.Thelargedashedconcentriccircleattheedgeof theSmithchartboundaryisthemaximum VSWR thetunercan developwhilethepartialdashedcirclenearthetopoftheSmith chartistheloadstabilitycircleattheload-pullfrequency. 66

Figure4.3 Threeiterationsof(a)load-pulland(b)source-pullcontours illustratingconvergencetomaximumpowerandgain.Thefirst iterationisbasedonCrippsestimate,shownasasquare,also illustratingtheimpedancestatesdidnotresolvepowerandgain maxima,thusexhibitingopencontours.Subsequentexpansionof theimpedancestatesforbothload-pullandsource-pullenabled powerandgainmaximatobeuniquelyresolved. 67

Figure4.4 Transducergainversusloadpowerforeachofthethreeload-pull iterationsofFigure4.3.Asconvergenceisachievedforoptimum

Figure4.5

ListofFigures xv loadandsourceimpedance,bothmaximumpowerandgain increase. 68

Loadpower(solidcontours)andPAE(dashedcontours)contours illustratingthemaximumpowerandPAEimpedances,contour closure,andtheimpedance-stategridfordataacquisition.The largedashedconcentriccircleattheedgeoftheSmithchart boundaryisthemaximum VSWR thetunercandevelopwhilethe partialdashedcirclenearthetopoftheSmithchartistheload stabilitycircleattheload-pullfrequency.TheXsymbolillustrates apossibletrade-offpointformaximumPAEforagivenpower,at afixedfrequency. 70

Figure4.6

Threeiterationsof(a)load-pulland(b)source-pullcontoursfor loadpowerandPAEillustratingconvergencetomaximumpower, gain,andPAE.ThefirstiterationisbasedonCrippsestimate, shownasasquare,alsoillustratingtheimpedancestatesdidnot resolvepowerandgainmaxima,thusexhibitingopencontours. Subsequentexpansionoftheimpedancestatesforbothload-pull andsource-pullenabledpower,gain,andPAEmaximatobe uniquelyresolved.TheXsymbolillustratesapossibletrade-off pointformaximumPAEforagivenpower,atafixed frequency. 71

Figure4.7 Loadpower(solidcontours),PAE(dashedcontours),andACPR (solidlines)contoursillustratingthemaximumpowerandPAE impedances,ACPRcontours,contourclosure,andthe impedance-stategridfordataacquisition.Thelargedashed concentriccircleattheedgeoftheSmithchartboundaryisthe maximum VSWR thetunercandevelopwhilethepartialdashed circlenearthetopoftheSmithchartistheloadstabilitycircleat theload-pullfrequency. 74

Figure4.8

Twoiterationsof(a)load-pulland(b)source-pullcontoursfor loadpower(solidcontours),PAE(dashedcontours),andsignal quality(dottedcontours)illustratingconvergencetooptimum simultaneouspower,gain,PAE,andsignalquality.Theinitial source-pullcoverstheentireSmithcharttoquicklyidentify trendsinoptimumsignalquality.Notefromthefirstiterationthat maximumtransducergainandmaximumsignalquality,e.g. minimumACPR,aresubstantiallydisplaced. 75

Figure4.9 GenericmultistagePAline-upillustratinginterstagematching networkandrelevantimpedancedefinitions. 76

Figure4.10 Illustrationofregionsrequiringspecialattentionduringfixedload powerfromanother,withthegrayannularringrepresentativeof highavailablelossandthesecondgrayregionthelocationof relativelyhighimpedancesthatcaninduceprematuresaturation andsubsequentlylowerpowercapability. 78

Figure4.11 Contoursofloadpower,PAE,andpeak–averageratio.Notethe phenomenaofmultiplemaxima,illustratingtheneedforfixed peak–averageratioload-pulltobeprecededbyfixedavailable sourcepowerload-pulltoassistinidentificationofanappropriate loadpowerandPAEstationarypointtoperformfixed peak–averageratioload-pull.Thecircularregioningrayis identifiedastheregionforfixedpeak–averageratiosinceit enclosestheloadpowerandPAEstationarypointandwhile providingalocallyuniquesolution. 80

Figure4.12 Illustrationofmultiplecontourintersectionsandtheir interpretation. 81

Figure4.13 Commonimpedancestatedistributionforharmonicload-pull exploringoptimumPAE.Ausualdistributionwouldbe36or72 states,yieldingaphasestepof10∘ or5∘ ,respectively.The VSWR forharmonicload-pullwillusuallybethemaximum VSWR the tuneriscapableofproducing,asshownbythevector. 84

Figure4.14 PAE versussecondharmonicphaseforfixedavailablesource power(dashedline)andfixedloadpower(solidline). 84

Figure4.15 VectorIMdiagramillustratinghowthebasebandimpedance influencesin-bandlinearity.Maximizingvideobandwidthpushes outanyresonancesofthebiasnetworkthatexpandsthelengthof thesecond-orderIMvector,whereasoptimizationusingbaseband load-pullsystematicallyseeksoutanimpedanceantiparallelto thevectorsumoftheothertwomixingproductvectors.(a)Phase responsedeviation,(b)asymmetricintermodulationproducts,(c) upperIMvectordiagram,and(d)lowerIMvectordiagram. 86

Figure4.16 Illustrationofgeometric-logicalsearchmethodshowingthe boundarywherePAEandACPRconstraintsaresatisfied simultaneouslyforfixedloadpowerandfixedfrequency.The ellipticaldashedlinesarecontoursofconstant Q,usedlater. 90

Figure4.17 Illustrationofthesyntheticgeometric-logicalsearchmethod showingthreeregionswherePAEandACPRconstraintsare satisfied,representinglow-band,mid-band,andhigh-band.The tolerancebandforeachparametermustgenerallybesmallerthan

Figure4.18

ListofFigures xvii

thegeometric-logicalsearchmethodtoapproximatealineversus region.Ablow-upisshowninthecircletoillustratethis,along withanapproximateimpedancetrajectory. 91

Illustrationofdata-structurecomposedofthreeindependent dimensionstoillustrateadatasliceforfixedavailablesource power. 92

Figure4.19 Illustrationofdata-structurecomposedofthreeindependent dimensionstoillustrateadatasliceforfixedfrequency. 93

Figure5.1 ThreedimensionalrenderingofaCWoptimumimpedance trajectoryillustratingthelinethatissimultaneouslymaximum foreachparameter.Notethatanydisplacementofftheoptimum trajectory,representedbythesequenceofimpedancestatesonthe surface,exceptinitsoptimaldirection,yieldsadecreaseinatleast oneoftheparameters. 98

Figure5.2 Graphicaldefinitionoftheoptimumimpedancetrajectory, illustratingitsdefinitionasthelineeverywhereorthogonaltothe tangentpointsofadjacentcontoursconnectingthetwoassociated optima.Theoptimumimpedancetrajectoryisthelinecomposed ofthesetofoptimumimpedancestatesbetweenthetwocontours, inthepresentexamplebeingloadpowerandPAE. 99

Figure5.3 Illustrationofgraphicaloptimumimpedancestateextraction, showingthetangentlineatthepointwheretwoparametric contoursaremutuallytangent. 101

Figure5.4 Load-pullcontoursfora10WGaNdevice,at1.9GHz,illustrating loadpowerandPAE. 102

Figure5.5 Rectangular-coordinateplotofaverageloadpowerversusPAE. Theunderlyingimpedancestatesattachedtotheconvexhullof thedatarepresentoftheoptimumimpedancetrajectorybetween maximumloadpowerandmaximumPAE,witheachstate representinganoptimumpointthatissimultaneouslymaximum loadpowerandmaximumPAE. 103

Figure5.6 Theoptimalimpedancetrajectoryofthe10WGaNHEMT describedbytheload-pullcontoursofFigure5.4.Notethatthis trajectoryindeeddescribestheoptimaltrade-offinloadpower andPAE,iseverywhereorthogonaltoeachcontour,and terminatesatmaximumloadpowerandPAE. 104

Figure5.7 Illustrationoftheconceptoforthogonalcontourswhereone parameterisheldapproximatelyfixedandtheotherisallowedto vary. 105

Figure5.8

Load-pullcontoursfora38dBmGSM-900DUTillustratingits optimumimpedancetrajectoryandtheoptimumimpedancestate at36dBmand75%PAE. 106

Figure5.9 Load-pullcontoursfora26dBmWCDMADUTillustratingits optimumimpedancetrajectoryandtheoptimumimpedancestate at24dBmand44%PAE,withapproximately 51dBc ACPR1. 107

Figure5.10 Instantaneoustransducergaintrajectoriesillustratingtransducer gainandgaincompressiondisplacementunderconstantavailable sourcepowerversusiterationofavailablesourcepowertofix transducergainandgaincompression. 108

Figure5.11 Load-pullcontoursfora26dBmWCDMADUT,underconstant averageloadpowerload-pull,illustratingitsoptimumimpedance trajectoryandtheoptimumimpedancestateat 50dBcACPR1 and48%PAE.Anincreaseof1dBinACPR1hasyieldeda substantial4%pointimprovementinPAE,from44%to48%,while reducingtheparameterspacefromthreetotwo. 109

Figure5.12 Expanded-scalegraphicalrepresentationofhigh-band,mid-band, andlow-bandoptimalimpedancetrajectories,witheachsquare denotingthedesiredoptimalimpedanceatitscorresponding frequency.Overfrequency,theconsolidatedcollectionof impedancestatesbecomestheoptimalimpedancetrajectoryover frequency,tobereplicatedbythematchingnetwork.Inpractice, thecollectionofoptimalimpedancestatesresembles Figure4.17. 111

Figure5.13 ExtensionofFigure5.12toillustratetheeffectofnarrow-band frequencyresponseusingaconstant-Q circleof Q = 1.5.Notethat theimpedancestatesontheexteriorofconstant-Q circlerequire proportionallyhighermatchingnetworkorderor,identically,a changeintransistorpowercapabilityortechnology.Theoptimal impedancestatesfallwithinthecapturerangeofamatching networkconstrainedbythe Q = 1.5circle,asillustrated. 111

Figure5.14 Contoursofconstantaverageloadpowerof43dBmfora400W PEPLDMOStransistorillustratingACLR1andPAEcontours superimposedover Q = 1.5and Q = 2.0circlesforbandwidth analysis. 112

Figure6.1 An N sectionmatchingnetworkwithoverallimpedance transformationratio T .Theimpedancetransformationratioof eachsectionis Tp .FortheButterworthmatchingnetwork, Tp of eachsectionisidentical,sothat T = T N p . 117

ListofFigures

Figure6.2 Low-passButterworth L-sectionmatchingprototype. 117

Figure6.3 ThefourcanonicalButterworth L-sectionmatchingsections basedonfrequencyresponseandtransformation.Thesoliddoton therealaxisisthegeometricmeanbetween RH and RL and representsthecharacteristicimpedanceofthequarter-waveline matchingthesetwoimpedances. 118

Figure6.4 Impedancedisplacementlociforconstructionofatwo-section Butterworthdistributed-parametermatchingnetworkwith Qo = 2.0.Notethatimpedances Z1 and Z2 arethegeometric meansoftheimpedancepairs R1 and Ra and Ra and R2 , respectively,andthusrepresentcharacteristicimpedanceofthe quarter-wavelinesmatchingtheseimpedancepairs. 121

Figure6.5 Physicalimplementationofthetwo-sectionlow-passButterworth matchingnetworkmatching50to5 Ω forExample6.1. 123

Figure6.6 Impedancelociofasingle-sectionlow-passButterworthmatching networkforidealchipcomponents(dashedline)andchip componentswithfirst-orderparasiticresonanceeffects (solid-line).Notethatforbothinductanceandcapacitance,the effectofparasiticresonanceistoincreasetheapparentreactance fromnominal,causingovershootofeachlocifromtheintended target. 124

Figure6.7 Physicalimplementationofthedistributed-parametermatching networkforExample4.3basedonatwo-section lumped-parameter L-sectionsynthesis. Z1 = 9.5 Ω and Z2 = 28.9 Ω. 125

Figure6.8 Physicalimplementationofthehybrid-parametermatching networkillustratingthedot-arraytosoldercoppertapefor changingcharacteristicimpedanceandelectricallengthand top-metalviaarraysforsolderingchipcapacitorsanarbitrary electricallengthequivalenttoseriesinductance.Thetopology illustratediselectricallyequivalenttothetwo-section lumped-parameteranddistributedmatchingnetworksillustrated inFigures6.5and6.7,respectively. 126

Figure6.9 Impedancedisplacementlociforconstructionofatwo-section low-passButterworthhybrid-parametermatchingnetwork physicallyimplementingFigure6.8bydistributedseries inductanceandlumpedshuntcapacitance. 127

Figure6.10 Impedancetransformationlociofthefirstsectionofthe hybrid-parameterButterworthmatchingnetworkofExample4.4. ThereferenceimpedanceoftheSmithchartis10 Ω. 129

Figure6.11 Impedancetransformationlociofthesecondsectionofthe hybrid-parameterButterworthmatchingnetworkofExample4.4. ThereferenceimpedanceoftheSmithchartis50 Ω 129

Figure6.12 Physicalimplementationofthehybrid-parametertwo-section low-passButterworthmatchingnetworkofExample4.4. 130

Figure6.13 Asingle-sectionHeckentapermatchingnetwork. 132

Figure6.14 AgenericHeckentaperillustratinginstantaneousimpedance responseversusphysicallength. 133

Figure6.15 Heckeninstantaneouscharacteristicimpedancetrajectoryfor Example6.6.Theelectricallengthisatthenominaldesign frequency. 134

Figure6.16 Heckenmatchingnetworkinputimpedancespanning800MHz to8GHzforExample7.6.TheSmithchartreferenceimpedanceis 50 Ω. 134

Figure6.17 EffectivePAEversusloadmatchingnetworkinsertionloss. 136

Figure6.18 Generalizationof L-sectiontoincludeseriesandshuntloss elements. 137

Figure6.19 Anoptimallyengineereddrain-sourcevoltagewaveform, satisfyingtheRaabcriteriaformaximumefficiency,composedof azerosecond-harmoniccomponentandanin-phase third-harmoniccomponentof0.125V1 .TheDCquiescentvoltage hasbeenremoved. 139

Figure6.20 Transistorloadterminationsatthefundamentalandharmonics foroptimumefficiencynormallyassociatedwithClassF operation.Formostwirelessapplications,harmonictermination abovethird-orderisseldomnecessary.TheSmithchartreference impedanceis50 Ω. 140

ListofTables

Table2.1 MaximumPEPandRMSpowerratingsbytunerfrequencyand connectorstyle,subjecttotheconstraintslistedinthetext. 34

Table3.1 Examplesof ΔGT andresultant Δ�� forvarious applications[1]. 60

Acronyms,Abbreviations,andNotation

ADCanalog-to-digitalconverter

APCamphenolprecisionconnector

BJTbipolarjunctiontransistor

BWbandwidth

CADcomputer-aideddesign

CDMAcodedivisionmultipleaccess

CMOScomplementarymetaloxidesemiconductor

CWcontinuouswave

DCSdigitalcellularsystem

DINdeutscheinternationaleNormen

DUTdeviceundertest(usedsynonymouslywithtransistor)

EDAengineeringdesignautomation

EERenvelopeeliminationandrestoration

GSMglobalsystemformobilecommunication

HFhighfrequency

LPload-pull

LTElongtermevolution(4G)

MMICmonolithicmicrowaveintegratedcircuit

MOSmetaloxidesemiconductor

PCSpersonalcommunicationsystem

PNpseudonoise

SAspectrumanalyzer

SOLshort-open-load

TEtransverseelectric

TEMtransverseelectromagnetic

TRLthru-reflect-line

VHFveryhighfrequency

VNAvectornetworkanalyzer

VSWRvoltagestandingwaveratio

xxiv Acronyms,Abbreviations,andNotation

WCDMAwidebandCDMA(3G)

RMSrootmeansquare

PEPpeakenvelopepower

PAEpower-addedefficiency(%)

PARpeak-to-averageratio(dB)

CCDFcomplexcumulativedistributionfunction

VBWvideobandwidth(ameasureofinstantaneousmodulationBW)

��o resonantradianfrequency(rad∕s)

BW3 3dBbandwidthoffrequencyresponsemagnitude(Hz)

MCPAmulti-carrierpoweramplifier

DPDdigitalpre-distortion

HBTheterojunctionbipolartransistor

LDMOSlaterallydiffusedmetaloxidesemiconductor

HEMThighelectronmobilitytransistor

GaNgalliumnitride

GaAsgalliumarsenide

ACPRadjacentchannelpowerratio(usuallyassociatedwith2GCDMA)

ACLRadjacentchannelleakageratio(usuallyassociatedwith3GWCDMA and4GLTE)

EVMerrorvectormagnitude

CDPcode-domainpower

IM3 third-orderintermodulationratio(dB)

AM–AMamplitudetoamplitudeconversiondistortion(gaincompression)

AM–PMamplitudetophaseconversion

ETenvelopetracking

EFenvelopefollowing

T matchingnetworkimpedancetransformationratio

Tp L-sectionprototypeimpedancetransformationratio

ILinsertionloss(dB)

ESRequivalentseriesresistance

CWclockwiserotation(ontheSmithcharttowardthesource)

PVTprocess,voltage,andtemperature(anacronymforthesevariables associatedwithrobustness)

BOMbillofmaterials

PDKprocessdevelopmentkit

Preface

WhenIwasaskedtobuildahandsetpoweramplifier(PA)designgroupatQualcomminSanDiego,manyyearsago,itbecameevidentthatcomprehensivetreatmentofasystematicRFPAdesignprocessinaconciseself-containedvolume wasnecessary.Atthetime,themostcommondesignprocesswastrialanderror usingtriple-stubtunersor,oftentimes,withtheubiquitousrollofcoppertape andX-Actoknife.Automatedload-pullwasstillarelativelynewtool,suffering fromseverallimitations,includingharmoniccontrol,limitedimpedancerange, andlinearityimpairment.Indeed,first-generationautomatedload-pullwasincapableofcreatingtheimpedancenecessaryforahandsetcodedivisionmultiple access(CDMA)PA.Itwasnotentirelyplausiblethatload-pullwouldevolveinto theuniversalstandardofRFPAdesignthattodayitcurrentlyis,20yearslater.

Writingabookonload-pullforRFPAdesignthusposedsomewhatofarisk,due toitswell-knownlimitationsandskepticismbyatechnicallyadeptaudience,often highlycriticalandguardedofnewdesignmethods.Thatload-pullhasevolvedinto themostpopularmethodforsystematicRFPAdesignisprecisebecauseallofthe earlylimitationsofload-pullhavebeenrigorouslyaddressedintheintervening timesinceQualcomm.Thetimingisthereforerightforthepresentvolume,containinginasinglesittingcomprehensivetreatmentoftheload-pullmethodforRF PAdesign.

Thepopularityoftheload-pullmethod,totheexclusionofallothers,isbecause absoluteperformanceissystematically,accurately,andrapidlyappraisedwithout resortingtoslowanduncertaintrialanderrororrelianceonabstruseand nonphysicalmathematics.Becausetheload-pullmethoddistinguishesbetween managementofnonlinearityversusanalysisofnonlinearity,ittransformswhat isessentiallyanintractablenonlinearmathematicalproblemintoaseriesof variable-impedancemeasurementsfollowedbyutilizationofwell-understood linearnetworktheoryformatchingnetworkdesign.Theuptakeoftheload-pull methodcanalsobeattributedtoitsaccessibilitybyabroadclassofnewelectrical engineers,mostofwhosuccessfullydesignanRFPAontheirfirstattempt.

Adistinguishingfeatureofthepresentvolumeisanattempttoinstillinthe readerastrongsenseofempiricaljudgment,whichIbelieveiscentraltosuccessasanRFPAengineer.Duringmy20-yearcareerdesigningRFPA’s,Ihave observedanaffinitybyasurprisingnumberofengineers,andnotafewacademics, anoverrelianceonintractablemathematicalanalysisforRFPAdesign.Donotget mewrong:Iembracemathematicswhennecessary.Butfortheload-pullmethod presentedtothereaderofthisbook,mathematicsbeyondfreshmancalculusis unnecessary.Insteadofreducingthephysicalworldtoafewoversimplified,yet intractableequations,Ipreferinsteadtoimbueasenseofjudgmenttoinferrealityandimplementarobustdesignbasedonsoundengineeringprinciplesthat achievesfirst-passsuccess.ThegreatSiliconValleyRFengineeringeducatorand icon,Dr.FrederickTerman,wellexpressesthethemeofmybook[1].Paraphrasing fromFred’sclassictreatiseonradioengineering,heobservesthat…

…equationscanonlygosofar.Atsomepoint,alittlebitofhand-tuningwith ascrewdriverbecomesabsolutelyessentialforsuccessfulRFPAdesign.

IwholeheartedlyagreewithFred,andmakenoapologiesabouttheabsenceof complexandintractablemathematicsandinitsplacedeliberateemphasison empiricismandgraphicalmethods.Itissuspectedthereaderwillagreewith,and appreciate,thisapproach.

ThebookiswrittentobeaccessiblebypracticingRFengineerswithexposure tointermediatedistributed-parameternetworks,intermediateanalogcircuits, andintroductorymicrowavesemiconductorphysicstypicallyassociatedwith theBSEEorequivalent.Thewell-preparedreaderwillbecomfortablewiththe materialintheGonzalestextonmicrowaveamplifierdesign,particularlyits excellenttreatmentofSmithchartoperations,andtheRaabtextonsolid-state radioengineering,whiletheadvancedreaderwillbefamiliartheMaastexton nonlinearmicrowavecircuitdesign[2–4].ThetwoCrippsbooksonRFPAdesign arehighlycomplementarycompanionstotheload-pullmethodofRFPAdesign treatedhere,anditisrecommendedthereaderbecomfortablewitheachof thesetexts[5,6].InadditiontobeingsuitableforthepracticingRFPAengineer, undergraduateandgraduatestudentswillbenefitfromthebook,aswillthose attendingindustryclassessuchasthoseofferedbyBesserandAssociates.As anRFengineer,IhavebenefitedfromBessercourses,andhighlyrecommend them.

AlthoughthePAcanbefoundinapplicationsspanninghighfrequency(HF) tosub-millimeter-wave,emphasisinthebookisonapplicationsforwirelesscommunicationsystems.Theload-pullmethodofPAdesignpresentedisgeneraland canbeappliedtootherbandsorapplications,thoughthebulkofthereadershipis

Preface

expectedtobeengagedincontemporarywirelessstandards,suchaslongtermevolution(4G)(LTE)and5G,usingsucharchitecturesasDoherty,envelopetracking (ET),anddigitalpre-distortion(DPD).Eachofthechaptersiswrittentobeused independentlyofeachother,althoughitisrecommendedtobefamiliarwiththe vectornetworkanalyzer(VNA)anditscalibration,becauseofitscentralimportancetothepracticeofload-pull.

Uniquetothebookiscomprehensivetreatmentofload-pullaccuracyanalysis andverification,includingintroductiontothenow-universal ΔGT method[7,8].A rigorousintroductiontomatchingnetworkdesignusingload-pulldataisprovided, alongwithseveralworkedexamplesforbothlumpedanddistributedmatching networks.

Inparallelwiththegrowthofload-pullhasbeenaconcomitantriseintheuse ofengineeringdesignautomation(EDA)toolsforRFdesign,commercialtools basedontheharmonic-balancemethodandthecircuit-envelopemethod.Whileit ispossibletouseEDAexclusivelyforRFPAdesign,withadditionalallowancefor post-fabricationtuning,IinsteadtaketheagnosticpositionthatEDAandload-pull arenotsubstitutesbutrathercompliments.Tothisthemespecifically,themethod describedherecaninitsentiretybeusedwithEDA-basedload-pull.Forexample, theKeysightAdvancedDesignSystem(ADS)hastemplatesforload-pullsimulation.1

Adistinguishingfeatureofscienceistheabilityofsuccessivegenerationsto buildontheworkofothers,toconstantlyimprove,adapt,andinvent.Tothispoint, Ioweadebtofgratitudetomanypeople,someofwhowereearlyinspirations andhavenowbecomecloseandtrustedfriends,includingDr.FredRaab,Nathan Sokal,Dr.SteveCripps,andDr.LesBesser.MygenerationofRFPAengineers owetothesemenagreatdebtinadvancingtheartandscienceofsystematically rigorousRFPAanalysis,design,andsimulation.

IwouldalsoliketoacknowledgeJimLongofMotorolaCellularInfrastructure Group,whohiredmein1990asafresh-outRFPAdesignerfromMichiganTech. MotorolawasfortunatetohavesomeofthebestRFengineersintheworld,andI wouldliketothankthemanyoutstandingpeopleIlearnedfromthere,especially JimLong,JoeStaudinger,MikeMajerus,Dr.MikeGolio,Dr.RobertStengel,Alan Wood,RoyHejhall,andHelgeGranberg.

Ihavebeenextremelyfortunatetoworkwitharguablytwoofthemostimportant meninthemodernload-pullbusiness,Dr.ChristosTsironis,PresidentofFocus Microwaves,andGarySimpson,CTOofMauryMicrowave.Theirfriendshipand leadershipishappilyacknowledged.

1ThesetemplateswerefirstmadebytheauthorinHPMicrowaveDesignSystem,theprecursor toADS,includingthetemplateforadjacentchannelpowerratio(ACPR)harmonic-balanceand circuit-envelopesimulation.

ManythanksareduetotheWileystaff,especiallymyEditorBrettKurzman,for theirpatienceandsupportduringthewritingofthisbook.

2020

References

1 Terman,F.(1940). RadioEngineering.McGraw-Hill.

2 Gonzales,G.(1984). MicrowaveTransistorAmplifierDesign.NewYork: McGraw-Hill.

3 Krauss,HerbertL.,Bostian,CharlesW.andRaab,FrederickH.(1980). Solid-StateRadioEngineering.NewYork:McGraw-Hill.

4 Maas,S.A.(1988). AnalysisofNonlinearMicrowaveCircuits.London:Artech House.

5 Cripps,S.C.(2002). RFPowerAmplifiersforWirelessCommunications,2e.London:ArtechHouse.

6 Cripps,S.C.(2008). AdvancedTechniquesinRFPowerAmplifierDesign.London: ArtechHouse.

7 Sevic,J.F.andBurger,K.(1996).Rigorouserroranalysisforlowimpedance load-pull,fromInternalNotesatQualcomm.

8 Sevic,J.F.(2001). TheoryofHigh-PowerLoad-PullCharacterizationforRFand MicrowaveTransistors,Chapter7.BocaRaton,FL:CRCPress.

Foreword

Everyengineershouldunderstandthebasictheorybehindthecircuitbeing designed.Ifyoudon’tknowthetheory,youwon’tknowwhattoexpectinthelab. Often,relativelysimpletheoryissufficienttogetadesign“intotheballpark.”

Theutilityofpuretheoryisoftenlimitedbythecomplexityofthecircuitand themodelofthetransistor.Simulationoffersameansofdealingwithcircuitsand modelsthataretoocomplextobetractablewithanalyticalmathematics.Consequently,simulationisausefultoolforfurtheranalysisandoptimizationofan RF-powercircuit.

Theaccuracyofthesimulationisofcoursedependentupontheaccuracyand completenessofthemodelsofthetransistorandcircuit.Realcircuitsinclude “stray”inductanceandcapacitanceaswellasnonzerolengthsofinterconnecting leads,andtheseareoftendifficulttodeterminewithprecision.Amodelfor agiventransistorisnotalwaysavailable.Simulatorsareexpensiveandoften beyondthereachofsmallcompaniesandindividuals.Themodelsofthetransistorsareoftenbaseduponoperationthelinearandmildlynonlinearregions,as theseapplicationsaccountforthemajorityofthesales.Significantlynonlinear operationsuchasswitchingmodesmayproducebizarreresults.Itisgenerally agoodideatocomparetheresultsofsimulationtotheperformanceofareal amplifierbeforerelyingtooheavilyuponthesimulation.

Load-pull,incontrasttotheoryandsimulation,requiresneitherknowledgeof thecircuitnortheamodelofthetransistor,norevenknowingtheclassofoperation.Onesimplyplacesthetransistorintoabasiccircuitandconnectsitsoutput totheload-pulltuner.Thetunerthenvariestheloadimpedanceoveraspecified range,afterwhichcontoursofpoweroutput,efficiency,distortion,etc.areplottedonaSmithchart.IfrequentlyextractapowerversusefficiencycurvethatI thenuseittoselecttheoperatingpoint.Datacanalsobeprocessedtoproducejust aboutanyothertrade-offofinterest.Theengineerselectsaloadimpedancethat givesthepreferredcombinationofperformanceparametersandthenproceedsto designthematchingnetwork.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Buy ebook The load-pull method of rf and microwave power amplifier design john f. sevic cheap price by Education Libraries - Issuu