Instant ebooks textbook Fundamentals of thermodynamics 10th edition claus borgnakke download all cha

Page 1


Fundamentals of Thermodynamics 10th Edition Claus Borgnakke

Visit to download the full and correct content document: https://ebookmass.com/product/fundamentals-of-thermodynamics-10th-edition-clausborgnakke/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Fundamentals of Engineering Thermodynamics 9th Edition

eBook

https://ebookmass.com/product/fundamentals-of-engineeringthermodynamics-9th-edition-ebook/

Fundamentals of Thermodynamics 1st Edition John H. S.

Lee

https://ebookmass.com/product/fundamentals-of-thermodynamics-1stedition-john-h-s-lee/

Thermodynamics: An Engineering Approach, 10th Edition

Yunus A. Çengel

https://ebookmass.com/product/thermodynamics-an-engineeringapproach-10th-edition-yunus-a-cengel/

Fundamentals of Nursing 10TH ED 2020 10th Edition Amy M.

https://ebookmass.com/product/fundamentals-of-nursing-10thed-2020-10th-edition-amy-m/

Fundamentals

of

Management 10th Edition Ricky Griffin

https://ebookmass.com/product/fundamentals-of-management-10thedition-ricky-griffin/

Thermodynamics: An Engineering Approach, 10e 10th

Edition Yunus A. Çengel

https://ebookmass.com/product/thermodynamics-an-engineeringapproach-10e-10th-edition-yunus-a-cengel/

Kozier & Erb’s Fundamentals of Nursing (Fundamentals of Nursing (Kozier)) 10th Edition, (Ebook PDF)

https://ebookmass.com/product/kozier-erbs-fundamentals-ofnursing-fundamentals-of-nursing-kozier-10th-edition-ebook-pdf/

Fundamentals of Anatomy & Physiology 10th Edition

Frederic H. Martini

https://ebookmass.com/product/fundamentals-of-anatomyphysiology-10th-edition-frederic-h-martini/

Fundamentals of Financial Management, Concise 10th

Edition Eugene F. Brigham

https://ebookmass.com/product/fundamentals-of-financialmanagement-concise-10th-edition-eugene-f-brigham/

Fundamentalsof Thermodynamics

ClausBorgnakke

UniversityofMichigan

10/e

VPANDEDITORIALDIRECTORLaurieRosatone

SENIORDIRECTORDonFowley

ACQUISITIONSEDITORLindaRatts

EDITORIALMANAGERJudyHowarth

CONTENTMANAGEMENTDIRECTORLisaWojcik

CONTENTMANAGERNicholeUrban

SENIORCONTENTSPECIALISTNicoleRepasky

PRODUCTIONEDITORAmeerBasha

PHOTORESEARCHERMikeCullen

COVERPHOTOCREDIT©Dr.HongIm

Thisbookwassetin10/12TimesLTStdbySPiGlobalandprintedandboundbyQuadGraphics.

Foundedin1807,JohnWiley&Sons,Inc.hasbeenavaluedsourceofknowledgeandunderstandingfor morethan200years,helpingpeoplearoundtheworldmeettheirneedsandfulfilltheiraspirations.Our companyisbuiltonafoundationofprinciplesthatincluderesponsibilitytothecommunitiesweserveand whereweliveandwork.In2008,welaunchedaCorporateCitizenshipInitiative,aglobalefforttoaddressthe environmental,social,economic,andethicalchallengeswefaceinourbusiness.Amongtheissuesweare addressingarecarbonimpact,paperspecificationsandprocurement,ethicalconductwithinourbusinessand amongourvendors,andcommunityandcharitablesupport.Formoreinformation,pleasevisitourwebsite: www.wiley.com/go/citizenship.

Copyright©2019,2017,2013,2009,2002JohnWiley&Sons,Inc.Allrightsreserved.Nopartofthis publicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans, electronic,mechanical,photocopying,recording,scanningorotherwise,exceptaspermittedunderSections107 or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,or authorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222 RosewoodDrive,Danvers,MA01923(Website:www.copyright.com).RequeststothePublisherforpermission shouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ 07030-5774,(201)748-6011,fax(201)748-6008,oronlineat:www.wiley.com/go/permissions.

Evaluationcopiesareprovidedtoqualifiedacademicsandprofessionalsforreviewpurposesonly,forusein theircoursesduringthenextacademicyear.Thesecopiesarelicensedandmaynotbesoldortransferredtoa thirdparty.Uponcompletionofthereviewperiod,pleasereturntheevaluationcopytoWiley.Return instructionsandafreeofchargereturnshippinglabelareavailableat:www.wiley.com/go/returnlabel.Ifyou havechosentoadoptthistextbookforuseinyourcourse,pleaseacceptthisbookasyourcomplimentarydesk copy.OutsideoftheUnitedStates,pleasecontactyourlocalsalesrepresentative.

ISBN:978-1-119-49524-6(PBK)

ISBN:978-1-119-49521-5(EVAL)

LibraryofCongressCataloging-in-PublicationData

Names:Borgnakke,C.(Claus),author.|Sonntag,RichardEdwin,author. Title:Fundamentalsofthermodynamics/ClausBorgnakke,RichardE.Sonntag (UniversityofMichigan).

Description:10e[Tenthedition].|Hoboken:Wiley,[2019]|Includes bibliographicalreferencesandindex.|

Identifiers:LCCN2018052418(print)|LCCN2018053073(ebook)|ISBN 9781119495178(AdobePDF)|ISBN9781119494966(ePub)|ISBN9781119495246 (pbk.)

Subjects:LCSH:Thermodynamics.|Thermodynamics—Textbooks.

Classification:LCCTJ265(ebook)|LCCTJ265.S662019(print)|DDC 621.402/1—dc23

LCrecordavailableathttps://lccn.loc.gov/2018052418

Theinsidebackcoverwillcontainprintingidentificationandcountryoforiginifomittedfromthispage.In addition,iftheISBNonthebackcoverdiffersfromtheISBNonthispage,theoneonthebackcoveriscorrect.

Preface

Inthistentheditionthebasicobjectiveoftheearliereditionshavebeenretained:

•topresentacomprehensiveandrigoroustreatmentofclassicalthermodynamics whileretaininganengineeringperspective,andindoingso

•tolaythegroundworkforsubsequentstudiesinsuchfieldsasfluidmechanics,heat transfer,andstatisticalthermodynamics,andalso

•topreparethestudenttoeffectivelyusethermodynamicsinthepracticeofengineering.

Thepresentationisdeliberatelydirectedtostudents.Newconceptsanddefinitions arepresentedinthecontextwheretheyarefirstrelevantinanaturalprogression.Theintroductionhasbeenreorganizedwithaveryshortintroductionfollowedbythefirstthermodynamicpropertiestobedefined(Chapter1)whicharethosethatcanbereadilymeasured: pressure,specificvolume,andtemperature.InChapter2,tablesofthermodynamicpropertiesareintroduced,butonlyinregardtothesemeasurableproperties.Internalenergyand enthalpyareintroducedinconnectionwiththeenergyequationandthefirstlaw,entropy withthesecondlaw,andtheHelmholtzandGibbsfunctionsinthechapteronthermodynamicrelations.Manyrealworldrealisticexamplesandcontemporarytopicshavebeen includedinthebooktoassistthestudentingaininganunderstandingofthermodynamics, andtheproblemsattheendofeachchapterhavebeencarefullysequencedtocorrelate withthesubjectmatter,andaregroupedandidentifiedassuch.Theearlychaptersinparticularcontainalargenumberofexamples,illustrationsandproblems,andthroughoutthe book,chapter-endsummariesareincluded,followedbyasetofconcept/studyproblems thatshouldbeofbenefittothestudents.

NEWFEATURESANDOVERALLBOOK ORGANIZATION

Thetentheditioncompletesthetransitiontothee-bookformatthatwasstartedwiththe ninthedition.Thisincludesafullysearchabletext,selectinteractivity,andconvenientdirect accesstosupplementalmaterial.Theprimaryinteractiveelementisthesetofnewstudent practiceproblemsforwhichstudentscanrevealthesolutionswithasimpleclickortap. Theseproblemsexpandtheexamplesbeyondthoseinthemainchaptertextandallowsstudentstoimmediatelytesttheirknowledge.Thedigitalformatalsoenablesstudentstoaccess supplementalnotesandfilesdirectlyfromthetext.(Supplementalmaterialsalsoareavailablefromthecompanionwebsite:www.wiley.com/go/borgnakke/FundofThermo10e.)

Thee-bookorganizationincludes:

•Problems,includingbothstudentpracticeproblemswiththesolutionasadrop downselectiontogetherwithregularhomeworkproblems

•Chaptersummaryandskillsetsincludesanewstudentstudyguidetable

•Themainexpositorytextendswithaconceptlistandequationsforeachchapter

•Additionalstudyresources,suchasextrastudentproblemsandhow-tonotes

•Linkstoappendicesandotherreferencetables

Thee-bookalsoisavailablebundledwithanabridgedprintcompanionthatincludes themainexpositorytextforChapters1-10andtheappendices.Problemsarenotincluded intheprintcompanion.

ChapterReorganizationandRevisions

Themajorityofthechangesforthetentheditionhavebeentoshortensomeofthepresentationsandtoreducetheamountofmathematicalderivationsofthetheory.Materialincluding derivationsthatcontributetotheunderstandingofthesubjecthavebeenleftinthetext. Manyoftheexampleshavebeenshortenedandtheyincludetheunitsandtheirconversions withoutbeingtoorepetitiveinthepresentationkeepingthedublicationofsomeexamples toshowtheuseofenglishunits.Theapplicationsectionsintheendofthechaptershave beenexpandedsomewhattoemphasizetherealworldexamplesofdevicesandprocesses forwhichthissubjectisimportantintheiranalysisanddesign.

Chapters1stillcontainsthemostimportantconceptsfromphysicsandtheconceptsof thethermodynamicpropertiesthatdescribestheconditionofthesubstancethatisincluded intheanalysis.Tohavethetoolsfortheanalysistheorderofthepresentationhasbeenkept fromthepreviouseditionssothebehaviorofpuresubstancesispresentedinchapter2with aslightexpansionandseparationofthedifferentdomainsforsolid,liquidandgasphase behavior.ThoughtheintroductionofthepropertyprogramCATT3hasbeenleftoutthe programisstillavailablefromWiley’sweb-sitethatisrelatedtothisbook.

Chapter3containsthefirstmajorchangenamelytoincludeadescriptionofthe energyresourcesweconsumeandthetypicalenergyconversionsthatareusedinmodernsocieties.Togetherwiththementioningofrenewableenergyresourcesandtheenduse ofenergyitprovidesabetterbackgroundforallthesubsequentprocessesanddetailsthat westudy.Ashortdescriptionofenergystoragesystemsandsomeoftheenergytransfer processesdevicesarealsopresentedaccompaniedbysmalltableswithtypicalnumbers forsuchdevices.Studentstypicallyhaveonlyvagueideasaboutthesizeofmanyofthe devicesandprocesseswestudy.Thismaterialiscoveredunderapplicationsinchapter3 aftertheintroductionoftheenergyequation.Thefollowingchaptersdealswithanalysis ofprocessesanddeviceswhichrelatestothisandalsoincludeaspecialsectionofthe homeworkproblemswhereapprobriate.Byhighlightingthismaterialearlyitcanserveas amotivatingfactortostudythesubsequentmaterialwheretheuseandneedforthetheory becomesevident.SuggestedhomeworkthatcanbeincludedinassignmentsforthiscategoryarealsoavailableonWiley’swebsiteforthebookforthosethatdesiretoemphasize theenergyconversionandconservationsubjects.

Thebalanceequationsformass,momentum,energyandentropyfollowthesame formattoshowtheuniformityinthebasicprinciplesandmaketheconceptsomethingto beunderstoodandnotmerelymemorized.Thisisalsothereasontousethenameenergy

equationandentropyequationforthefirstandsecondlawofthermodynamicstostress theyareuniversallyvalidnotjustusedinthefieldofthermodynamicsbutapplytoall situationsandfieldsofstudywithnoexceptions.Clearly,specialcasesrequiresextensions notcoveredinthistext,butafewofthesehavebeenaddedinChapter12togetherwiththe thermodynamicpropertyrelations.

Theenergyequationappliedtoageneralcontrolvolmeisretainedfromtheprevious editionthatincludedasectionwithmulti-flowdevices.Againthisisdonetoreinforceto studentsthattheanalysisisdonebyapplyingthebasicprinciplestosystemsunderinvestigation.Thismeanstheactualmathematicalformofthegenerallawsfollowsthesketches andfiguresofthesystemandtheanalysisisnotaquestionaboutfindingasuitableformula inthetext.Asmalltableisaddedintheendtogivestudentssomesenseoftherelative magnitudeofflowdevicesintermsoftheenergytransferperunitmass.

Thehistoricaldevelopmentofthesecondlawofthermodynamicsinchapter5has beenexpandedtoincludethein-equalityofClausius.Thischapterthenincludesallthehistoricalstatementsofthesecondlawsochapter6exclusivelydealswiththeentropyequation. Toshowthegeneralityoftheentropyequationasmallexampleiswrittenupapplyingthe energyandentropyequationstoheatenginesandheatpumpssoitcanbedemonstratedthat thehistoricalpresentationofthesecondlawinChapter5canbecompletelysubstitutedwith thepostulationoftheentropyequationandtheexistenceoftheabsolutetemperaturescale. Carnotcycleefficienciesandthefactthatrealdeviceshavelowerefficiencyfollowsfrom thebasicgenerallaws.Alsothedirectionofheattransferfromahighertemperaturedomain towardsalowertemperaturedomainispredictedbytheentropyequationduetotherequirementofapositiveentropygeneration.Theseareexamplesthatpracticetheapplicationof thegenerallawsforspecificcasesandimprovesthestudentsunderstandingofthematerial.

Theapplicationsectioninchapter7hasbeenexpandedalittletoincludesome descriptionofintercoolersandreheatersasameanofenergyconservationandefficiency improvements.Thedeviceefficienciesisalsoplacedhereasanapplicationoftheentropy equationandthiswholesectionhasabout30homworkproblemsassociatedwithit.The generalsummaryofthecontrolvolumeanalysishasbeenremovedandwillbeavailable on-linefromWileywebsite.

Exergyinchapter8hasbeenshortenedalittletoreducethemathematicalmanipulationoftheequationsandasmallapplicationsectionwiththesecondlawefficiencyfor cycleshavebeenaddedtoillustrateanimportantaspectofitsuse.AmoredetaileddiscussionofthisisnowincludedasaseparatesectioninChapter9.

Thechapterswithcyclesareexpandedwithafewdetailsforspecificcyclesandsome extensionsshowntotiethetheorytoindustrialapplicationswithrealsystems.TheexpressionforcycleefficiencyisnowincludedfortheStirling,AtkinsonandMillercyclesto showthattheyallarerelatedtocompressionandexpansionratios.

Thepropertyrelationsinchapter12hasbeenupdatedtoincludeeffectsofdilution andfugacityformixturesandasaspecialapplicationtheeffectofasurfacetensionis includedunderengineeringapplications.Thisrevisionhasalsoremovedtheoldermethod fordevelopmentofthermodynamictablesandnowonlyinlcudestheHelmholtzfunction baseddevelopment.

Web-BasedMaterial

Althoughmostofthesupplementalmaterialforthiseditionofthebookisaccessibledirectly orbylinksfromthee-book,severaldocumentsalsoareavailablefromWiley’swebsitefor thebook.Thefollowingmaterialwillbeaccessibleforstudentsthroughlinkstothebook

companionsiteandadditionalmaterialreservedforinstructorsofthecoursewillalsobyat Wiley’sbookcompanionsite.

Notesforclassicalthermodynamics. Averyshortsetofnotescoversthebasicthermodynamicanalysiswiththegenerallaws(continuity,energyandentropyequations)and someofthespecificlawslikedeviceequations,processequations,etc.Thisisusefulfor studentsdoingreviewofthecourseorforexampreparationasitgivesacomprehensive presentationinacondensedform.

GeneralControlVolumeAnalysis. Thisistheshortstepbystepprocedurethatwasat theendofchapter7intheeighthedition.

Extendedsetofstudyexamples. Thisdocumentincludesaupdatedcollectionofadditionalexamplesforstudentstostudy.Theseexamplesarewrittenslightlylongerandmore detailedinthesolutionthantheexamplesprintedinthebookandthusareexcellentfor self-study.Thereareabout8SIunitproblemswith3-4englishunitproblemsforeach chaptercoveringmostofthematerialinthechapters.

How-to-notes. Frequentlyaskedquestionsarelistedforeachofthesetofsubjectareas inthebookwithdetailedanswers.Thesearequestionsthataredifficulttohaveroomforin thebook.Examples:

HowdoIfindacertainstateforR-410AintheB-sectiontables?

HowdoImakealinearinterpolation?

ShouldIuseinternalenergy(u)orenthalpy(h)intheenergyequation?

WhencanIuseidealgaslaw?

Instructormaterial. Asetofpowerpointlectureslidesareavailable.Thesealsoinclude repeatcopiesofsomebookexampleswithspecificheatdonewiththeidealgastablesand visaversa.AdditionalenglishunitexamplesarealsolistedascopiesoftheSIunitproblemsandmodifiedifneededduetothetables.Othermaterialforinstructorscoverstypical syllabusandhomeworkassignmentsforafirstandasecondcourseinthermodynamics. Additionallyexamplesof2standard1hourmidtermexams,anda2hourfinalexamare givenfortypicalThermodynamicsIandThermodynamicsIIclasses.

FEATURESCONTINUEDFROM9TH EDITION

In-Text-ConceptQuestion

Thein-textconceptquestionsappearinthetextaftermajorsectionsofmaterialtoallow studenttoreflectoverthematerialjustpresented.Thesequestionsareintendedtobequick selftestsforstudentsorusedbyteachersaswrapupchecksforeachofthesubjectscovered andmostoftheseareemphasizingtheunderstandingofthematerialwithoutbeingmemory facts.

End-of-ChapterEngineeringApplications

Thelastsectionineachchapter,calledengineeringapplications,havebeenrevisedwith updatedillustrationsandafewmoreexamples.Thesesectionsareintendedtobemotivating materialmostlyinformativeexamplesofhowthisparticularchaptermaterialisbeingused inactualengineering.

End-of-ChapterSummarieswithMainConceptsandFormulas

Theend-of-chaptersummariesprovideareviewofthemainconceptscoveredinthechapter, withhighlightedkeywordsarenowlocatedassuplementalmaterialdirectlyaccessible fromthee-book.Theonlypartstillwiththechaptermaterialisanexpandedlistingof thekeyconceptsandtheformulasincludingequationnumbers.Thelistofskillsthatthe studentshouldhavemasteredafterstudyingthechapterispresentedtogetherwithatable ofdetailedreferencestoexamples,equationsandhomeworkproblemsforeachspecific skill.Thesemainconceptsandformulasareincludedafterthesummaryforreferenceand acollectionofthesewillbeaccessiblethroughthelinkstothebookcompanionsite.The mainsummaryofthegeneralcontrolvolumeanalysishasbeenremovedfromchapter7 andplacedtogetherwiththeonlinematerial.

Concept-StudyGuideProblems

Additionalconceptquestionsareplacedasproblemsinthefirstsectionoftheendofchapter homeworkproblems.Theseproblemsaresimilartothein-textconceptquestionsandserve asstudyguideproblemsforeachchaptertheyarealittlemorelikehomeworkproblemswith numberstoprovideaquickcheckofthechaptermaterial.Theseareselectedtobeshort anddirectedtowardaveryspecificconcept.Astudentcananswerallofthesequestionsto assesstheirlevelofunderstanding,anddetermineifanyofthesubjectsneedtobestudied further.Theseproblemsarealsosuitabletousetogetherwiththerestofthehomework problemsinassignmentsandincludedinthesolutionmanual.

HomeworkProblems

Thenumberofhomeworkproblemshasbeensignificantlyreducedbutstillcontainsintroductoryproblemsoverallaspectsofthechaptermaterialandlistedaccordingtothesubject sectionsforeasyselectionaccordingtotheparticularcoveragegivenandtheyaregenerally orderedtobeprogressivemorecomplexandinvolved.Laterproblemsinmanysectionsare relatedtorealindustrialprocessesanddevicesandlebeledunder applications or energy conservation withmorecomprehensiveproblemsretainedandgroupedas reviewproblems.Themorecomprehensiveandlengthyproblemshavebeenremovedtoconservespace. NewandmodifiedproblemsarereservedforinstructorsandavailablefromWileys websiteforthebook.

Tables

Thetablesofthesubstanceshavebeencarriedoverfromthe8th editionwith alternative refrigerantR-410A whichisthereplacementforR-22and carbondioxide whichisa naturalrefrigerant.Severalmoresubstancesareincludedinthesoftware.

FLEXIBILITYINCOVERAGEANDSCOPE

Thebookattemptstocoverfairlycomprehensivelythebasicsubjectmatterofclassical thermodynamics,andIbelievethatthebookprovidesadequatepreparationforstudyof theapplicationofthermodynamicstothevariousprofessionalfieldsaswellasforstudyof moreadvancedtopicsinthermodynamics,suchasthoserelatedtomaterials,surfacephenomena,plasmas,andcryogenics.Ialsorecognizethatanumberofcollegesofferasingle introductorycourseinthermodynamicsforalldepartments,andhavetriedtocoverthose

topicsthatthevariousdepartmentsmightwishtohaveincludedinsuchacourse.However, sincespecificcoursesvaryconsiderablyinprerequisites,specificobjectives,duration,and backgroundofthestudents,thematerialisarrangedinsections,particularlyinthelater chapters,soconsiderableflexibilityexistintheamountofmaterialthatmaybecovered. Thebookcoversmorematerialthanrequiredforatwo-semestercoursesequence, whichprovidesflexibilityforspecificchoicesoftopiccoverage.Instructorsmaywantto visitthepublisher’sWebsiteatwww.wiley.com/go/borgnakke/FundofThermo10eforinformationandsuggestionsonpossiblecoursestructureandschedules,andtheadditional materialmentionedasWeb-materialwhichwillbeupdatedtoincludecurrenterratafor thebook.

FlexibilitywithHWsimpleandextendedproblemstosatisfydepthandtimerequirementsExamplesofthisareconstantspecificheatquestionextendedtobewithvariable specificheats(gastables),apistoncylinderincludesthemetalmassbesidesthecontained mass,someproblemsarealsoinenglishunits.Manyproblemsfromearlierchaptersare repeatedwhenentropyisaddedtotheanalysis.

ACKNOWLEDGEMENTS

Iacknowledgewithappreciationthesuggestions,counsel,andencouragementofmany colleagues,bothattheUniversityofMichiganandelsewhere.Thisassistancehasbeen veryhelpfultomeduringthewritingofthisedition,asitwaswiththeearliereditionsof thebook.Bothundergraduateandgraduatestudentshavebeenofparticularassistance,for theirperceptivequestionshaveoftencausedmetorewriteorrethinkagivenportionofthe text,ortotrytodevelopabetterwayofpresentingthematerialinordertoanticipatesuch questionsordifficulties.Finally,theencouragementandpatienceofmywifeandfamily havebeenindispensable,andhavemadethistimeofwritingpleasantandenjoyable,in spiteofthepressuresoftheproject.Aspecialthankstoanumberofcolleaguesatother institutionswhohavereviewedtheearliereditionsofthebookandprovidedinputtothe revisions.Someofthereviewersare

RuhulAmin,MontanaStateUniversity

EdwardE.Anderson,TexasTech.University

CoryBerkland,UniversityofKansas

EugeneBrown,VirginiaPolytechnicInstituteandStateUniversity

SungKwonCho,UniversityofPittsburgh

SarahCodd,MontanaStateUniversity

RamDevireddy,LouisianaStateUniversity

FokionEgolfopoulos,UniversityofSouthernCalifornia

HarryHardee,NewMexicoStateUniversity

HongHuang,WrightStateUniversity

SatishKetkar,WayneStateUniversity

BorisKhusid,NewJerseyInstituteofTechnology

JosephF.Kmec,PurdueUniversity

RoyW.Knight,AuburnUniversity

DanielaMainardi,LouisianaTechUniversity

RandallManteufel,UniversityofTexas,SanAntonio

JosephPowers,NotreDameUniversity

HarryJ.Sauer,Jr.,MissouriUniversityofScienceandTechnology

J.A.Sekhar,UniversityofCincinnati

AhnedSoliman,UniversityofNothCarolina,Charlotte

RezaToossi,CaliforniaStateUniversity,LongBeach

ThomasTwardowski,WidenerUniversity

EtimU.Ubong,KetteringUniversity

YanhuaWu,WrightStateUniversity

WalterYuen,UniversityofCaliforniaatSantaBarbara

IalsowishtothanktheeditorChrisNelsonfortheencouragementandhelpduringthe productionofthisedition.

Ihopethatthisbookwillcontributetotheeffectiveteachingofthermodynamicsto studentswhofaceverysignificantchallengesandopportunitiesduringtheirprofessional careers.Yourcomments,criticism,andsuggestionswillalsobeappreciatedandyoumay communicatethosetomeatclaus@umich.edu.

ClausBorgnakke AnnArbor,Michigan October2018

1 IntroductionandPreliminaries 1

1.1AThermodynamicSystemandtheControlVolume, 2

1.2MacroscopicVersusMicroscopicPointsofView, 5

1.3PropertiesandStateofaSubstance, 6

1.4ProcessesandCycles, 6

1.5UnitsforMass,Length,Time,andForce, 7

1.6SpecificVolumeandDensity, 10

1.7Pressure, 13

1.8Energy, 20

1.9EqualityofTemperature, 22

1.10TheZerothLawofThermodynamics, 22

1.11TemperatureScales, 23

1.12EngineeringApplications, 24

2 PropertiesofaPureSubstance 29

2.1ThePureSubstance, 30

2.2ThePhaseBoundaries, 30

2.3The P–v–T Surface, 34

2.4TablesofThermodynamicProperties, 36

2.5TheTwo-PhaseStates, 39

2.6TheLiquidandSolidStates, 41

2.7TheSuperheatedVaporStates, 43

2.8TheIdealGasStates, 46

2.9TheCompressibilityFactor, 49

2.10EquationsofState, 54

2.11EngineeringApplications, 55

3 EnergyEquationandFirstLawof Thermodynamics 58

3.1TheEnergyEquation, 58

3.2TheFirstLawofThermodynamics, 61

3.3TheDefinitionofWork, 62

3.4WorkDoneattheMovingBoundaryofaSimpleCompressible System, 67

3.5DefinitionofHeat, 75

3.6HeatTransferModes, 76

3.7InternalEnergy—AThermodynamicProperty, 78

3.8ProblemAnalysisandSolutionTechnique, 80

3.9TheThermodynamicPropertyEnthalpy, 86

3.10TheConstant-VolumeandConstant-PressureSpecificHeats, 89

3.11TheInternalEnergy,Enthalpy,andSpecificHeatofIdeal Gases, 90

3.12NonuniformDistributionofStatesandMass, 97

3.13TheTransientProcess, 98

3.14GeneralSystemsthatInvolveWork, 100

3.15EngineeringApplications, 102

4 EnergyAnalysisforaControlVolume 111

4.1ConservationofMassandtheControlVolume, 111

4.2TheEnergyEquationforaControlVolume, 114

4.3TheSteady-StateProcess, 116

4.4ExamplesofSteady-StateProcesses, 118

4.5Multiple-FlowDevices, 129

4.6TheTransientFlowProcess, 131

4.7EngineeringApplications, 137

5 TheSecondLawofThermodynamics 143

5.1HeatEnginesandRefrigerators, 143

5.2TheSecondLawofThermodynamics, 149

5.3TheReversibleProcess, 151

5.4FactorsthatRenderProcessesIrreversible, 153

5.5TheCarnotCycle, 156

5.6TwoPropositionsRegardingtheEfficiencyofaCarnotCycle, 157

5.7TheThermodynamicTemperatureScale, 159

5.8TheIdealGasTemperatureScale, 159

5.9IdealVersusRealMachines, 161

5.10TheInequalityofClausius, 165

5.11EngineeringApplications, 169

6 Entropy 173

6.1Entropy—APropertyofaSystem, 173

6.2TheEntropyofaPureSubstance, 175

6.3EntropyChangeinReversibleProcesses, 177

6.4TheThermodynamicPropertyRelation, 181

6.5EntropyChangeofaSolidorLiquid, 182

6.6EntropyChangeofanIdealGas, 183

6.7TheReversiblePolytropicProcessforanIdealGas, 187

6.8EntropyChangeofaControlMassDuringanIrreversible Process, 191

6.9EntropyGenerationandtheEntropyEquation, 192

6.10PrincipleoftheIncreaseofEntropy, 194

6.11EntropyasaRateEquation, 197

6.12SomeGeneralCommentsAboutEntropyandChaos, 202

7

EntropyAnalysisforaControlVolume 206

7.1TheEntropyEquationforaControlVolume, 206

7.2TheSteady-StateProcessandtheTransientProcess, 207

7.3TheSteady-StateSingle-FlowProcess, 216

7.4PrincipleofTheIncreaseofEntropy, 220

7.5EngineeringApplications;EnergyConservationandDevice Efficiency, 224

8

Exergy 231

8.1Exergy,ReversibleWork,andIrreversibility, 231

8.2ExergyandItsBalanceEquation, 243

8.3TheSecondLawEfficiency, 248

8.4EngineeringApplications, 253

9

PowerandRefrigerationSystems—WithPhase Change 256

9.1IntroductiontoPowerSystems, 257

9.2TheRankineCycle, 258

9.3EffectofPressureandTemperatureontheRankineCycle, 261

9.4TheReheatCycle, 265

9.5TheRegenerativeCycleandFeedwaterHeaters, 266

9.6DeviationofActualCyclesfromIdealCycles, 272

9.7CombinedHeatandPower:OtherConfigurations, 276

9.8IntroductiontoRefrigerationSystems, 278

9.9TheVapor-CompressionRefrigerationCycle, 279

9.10WorkingFluidsforVapor-CompressionRefrigeration Systems, 282

9.11DeviationoftheActualVapor-CompressionRefrigerationCycle fromtheIdealCycle, 283

9.12RefrigerationCycleConfigurations, 284

9.13TheAbsorptionRefrigerationCycle, 287

9.14ExergyAnalysisofCycles, 288

10 PowerandRefrigerationSystems—Gaseous WorkingFluids 293

10.1Air-StandardPowerCycles, 293

10.2TheBraytonCycle, 294

10.3TheSimpleGas-TurbineCyclewithaRegenerator, 300

10.4Gas-TurbinePowerCycleConfigurations, 302

10.5TheAir-StandardCycleforJetPropulsion, 306

10.6TheAir-StandardRefrigerationCycle, 309

10.7ReciprocatingEnginePowerCycles, 312

10.8TheOttoCycle, 314

10.9TheDieselCycle, 317

10.10TheStirlingCycle, 320

10.11TheAtkinsonandMillerCycles, 321

10.12Combined-CyclePowerandRefrigerationSystems, 324

SummaryObjectives(Availableine-textfor students) S-1

StudyguideandChapterStudyResources (Availableine-textforstudents) R-1

Chapters11–15(Availableine-textfor students) W-1

Problems(Availableine-textforstudents) P-1

ContentsofAppendix A-1

AppendixASIUnits:Single-StateProperties A-3

AppendixBSIUnits:ThermodynamicTables A-23

AppendixCIdealGasSpecificHeat A-73

AppendixDEquationsofState A-75

AppendixEFigures A-80

AppendixFEnglishUnitTables A-85

Index I-1

Symbols

a acceleration

A area

a, A specificHelmholtzfunctionandtotalHelmholtzfunction

AF air-fuelratio

BS adiabaticbulkmodulus

BT isothermalbulkmodulus

c velocityofsound

cmassfraction

CD coefficientofdischarge

Cp constant-pressurespecificheat

Cv constant-volumespecificheat

Cpo zero-pressureconstant-pressurespecificheat

Cvo zero-pressureconstant-volumespecificheat

COPcoefficientofperformance

CRcompressionratio

e, E specificenergyandtotalenergy

EMFelectromotiveforce,electricalpotential,volt

ERexpansionratio

f fugacity,pseudopressure

FFaradaysconstant

F force,alsotension

FA fuel-airratio

g accelerationduetogravity

g, G specificGibbsfunctionandtotalGibbsfunction

h, H specificenthalpyandtotalenthalpy

HR,HPenthalpyofreactantsandenthalpyofproducts

HVheatingvalue

i electricalcurrent

i,I specifcandtotalirreversibility

k conductivity

k specificheatratio: Cp /Cv

K equilibriumconstant

ke,KEspecificandtotalkineticenergy

L length

m mass

m massflowrate

M molecularmass

M Machnumber

n numberofmoles

GreekLetters

n polytropicexponent

P pressure

Pi partialpressureofcomponent i inamixture

pe,PEspecificandtotalpotentialenergy

Pr reducedpressure P/Pc

Pr relativepressureasusedingastables

q, Q heattransferperunitmassandtotalheattransfer

̇ Q rateofheattransfer

QH , QL

heattransferwithhigh-temperaturebodyandheattransferwith low-temperaturebody;signdeterminedfromcontext

R gasconstant

R universalgasconstant

s, S specificentropyandtotalentropy

Sgen entropygeneration

̇

Sgen rateofentropygeneration

t time

T temperature

Tr reducedtemperature T/Tc

u, U specificinternalenergyandtotalinternalenergy

v, V specificvolumeandtotalvolume

vr relativespecificvolumeasusedingastables

V velocity

w, W workperunitmassandtotalwork

W rateofwork,power

wrev specificreversibleworkbetweentwostates

x quality

y gas-phasemolefraction

y extractionfraction

Z elevation

Z compressibilityfactor

Z electricalcharge

�� residualvolume

�� dimensionlessHelmholtzfunctiona/RT

�� p volumeexpansivity

�� coefficientofperformanceforarefrigerator

��

′ coefficientofperformanceforaheatpump

�� S adiabaticcompressibility

�� T isothermalcompressibility

�� dimensionlessdensity ��/��c

�� efficiency

�� chemicalpotential

�� stoichiometriccoefficient

�� density

�� surfacetension(F/L),surfaceenergy(E/A)

�� Stefan-Boltzmanconstant

�� dimensionlesstemperaturevariable Tc /T

�� 0 dimensionlesstemperaturevariable1 Tr

Subscripts

Superscripts

Φ equivalenceratio

�� relativehumidity

��, Φ exergyoravailabilityforacontrolmass

�� specificexergy,flowavailability

�� humidityratioorspecifichumidity

�� acentricfactor

c propertyatthecriticalpoint

c.v.controlvolume

e stateofasubstanceleavingacontrolvolume

f formation

f propertyofsaturatedliquid

fg differenceinpropertyforsaturatedvaporandsaturatedliquid

g propertyofsaturatedvapor

i stateofasubstanceenteringacontrolvolume

i propertyofsaturatedsolid

if differenceinpropertyforsaturatedliquidandsaturatedsolid

ig differenceinpropertyforsaturatedvaporandsaturatedsolid

r reducedproperty

s isentropicprocess

0propertyofthesurroundings

0stagnationproperty

–—baroversymboldenotespropertyonamolalbasis(over V, H, S, U, A, G,the bardenotespartialmolalproperty)

∘ propertyatstandard-statecondition

*idealgas

*propertyatthethroatofanozzle irrirreversible rrealgaspart revreversible

CHAPTER1PROBLEMS

Studentsolutionavailableininteractivee-text.

CONCEPT-STUDYGUIDEPROBLEMS

1.1 Separatethelist P, F, V, v, ��, T, a, m, L, t,and V into intensiveproperties,extensiveproperties,andnonproperties.

1.2 Atrayofliquidwaterisplacedinafreezerwhereit coolsfrom20to 5∘ C.Showtheenergyflow(s)and storageandexplainwhatchanges.

1.3 Theoveralldensityoffibers,rockwoolinsulation, foams,andcottonisfairlylow.Why?

1.4 Isdensityauniquemeasureofmassdistributionin avolume?Doesitvary?Ifso,onwhatkindofscale (distance)?

1.5 Waterinnatureexistsinthreedifferentphases:solid, liquid,andvapor(gas).Indicatetherelativemagnitudeofdensityandthespecificvolumeforthethree phases.

1.6 Whatistheapproximatemassof1Lofgasoline?Of heliuminaballoonat T0 , P0 ?

1.7 Canyoucarry1m3 ofliquidwater?

1.8 Aheavyrefrigeratorhasfourheight-adjustablefeet. Whatfeatureofthefeetwillensurethattheydonot makedentsinthefloor?

1.9 Aswimmingpoolhasanevenlydistributedpressure atthebottom.Considerastiffsteelplatelyingonthe

HOMEWORKPROBLEMS

Properties,Units,andForce

1.18 Onekilopond(1kp)istheweightof1kginthestandardgravitationalfield.Whatistheweightof1kgin newtons(N)?

1.19 Astainlesssteelstoragetankcontains5kgofcarbondioxidegasand7kgofargongas.Howmany kmolesareinthetank?

ground.Isthepressurebelowitjustasevenlydistributed?

1.10 Ifsomethingfloatsinwater,whatdoesitsayabout itsdensity?

1.11 Twodiversswimatadepthof20m.Oneofthem swimsdirectlyunderasupertanker;theotheravoids thetanker.Whofeelsagreaterpressure?

1.12 Anoperatingroomhasapositivegagepressure, whereasanenginetestcellhasavacuum;whyisthat?

1.13 Awaterskierdoesnotsinktoofardowninthewater ifthespeedishighenough.Whatmakesthatsituation differentfromourstaticpressurecalculations?

1.14 WhatisthelowesttemperatureindegreesCelsius? IndegreesKelvin?

1.15 HowcoldcanitbeonEarthandinemptyspace?

1.16 Athermometerthatindicatesthetemperaturewith aliquidcolumnhasabulbwithalargervolumeof liquid.Why?

1.17 Howcanyouillustratethebindingenergybetween thethreeatomsinwaterastheysitinatriatomicwater molecule. Hint: imaginewhatmusthappentocreate threeseparateatoms.

1.21 TheRoverExplorerhasamassof185kg,how muchdoesthisweighontheMoon(g = gstd /6)and onMarswhere g = 3.75m/s2

1.22 A1700kgcarmovingat80km/hisdeceleratedat aconstantrateof4m/s2 toaspeedof20km/h.What aretheforceandtotaltimerequired?

1.20 Asteelcylinderofmass4kgcontains4Lofwater at25∘ Cat100kPa.Findthetotalmassandvolume ofthesystem.Listtwoextensiveandthreeintensive propertiesofthewater.

1.23 Theelevatorinahotelhasamassof750kg,and itcarriessixpeoplewithatotalmassof450kg.How muchforceshouldthecablepullupwithtohavean accelerationof1m/s2 intheupwarddirection?

1.24 Oneofthepeopleinthepreviousproblemweighs 80kgstandingstill.Howmuchweightdoesthispersonfeelwhentheelevatorstartsmoving?

SpecificVolume

1.25 A1-m3 containerisfilledwith400kgofgranite stone,200kgofdrysand,and0.2m3 ofliquid25∘ C water.UsingpropertiesfromTablesA.3andA.4,find theaveragespecificvolumeanddensityofthemasses whenyouexcludeairmassandvolume.

1.26 Apowerplantthatseparatescarbondioxidefrom theexhaustgasescompressesittoadensityof 110kg/m3 andstoresitinanunminablecoalseam withaporousvolumeof100000m3 .Findthemass thatcanbestored.

1.27 A5-m3 containerisfilledwith900kgofgranite (densityof2400kg/m3 ).Therestofthevolumeisair, withdensityequalto1.15kg/m3 .Findthemassofair andtheoverall(average)specificvolume.

Pressure

1.28 A5000-kgelephanthasacross-sectionalareaof 0.02m2 oneachfoot.Assuminganevendistribution, whatisthepressureunderitsfeet?

1.29 AvalveinthecylindershowninFig.P1.29has across-sectionalareaof11cm2 withapressureof 735kPainsidethecylinderand99kPaoutside.How largeaforceisneededtoopenthevalve?

holdingthemasslesspistonupasthepistonlowerside has P0 besidestheforce.

1.31 Ahydrauliclifthasamaximumfluidpressureof 500kPa.Whatshouldthepiston/cylinderdiameterbe inordertoliftamassof850kg?

1.32 Ahydrauliccylinderhasa125-mmdiameterpiston withanambientpressureof1bar.Assumingstandard gravity,findthetotalmassthispistoncanliftifthe insidehydraulicfluidpressureis2500kPa.

1.33 A75-kghumantotalfootprintis0.05m2 whenthe humaniswearingboots.Supposethatyouwantto walkonsnowthatcanatmostsupportanextra3kPa; whatshouldthetotalsnowshoeareabe?

1.34 Apiston/cylinderwithacross-sectionalareaof 0.01m2 hasapistonmassof65kgplusaforceof 800Nrestingonthestops,asshowninFig.P1.34. Withanoutsideatmosphericpressureof101kPa,what shouldthewaterpressurebetoliftthepiston?

1.30 ThepistoncylinderinFig.P1.29hasadiameter of10cm,insidepressure735kPa.Whatistheforce

1.35 A2.5-m-tallsteelcylinderhasacross-sectionalarea of1.5m2 .Atthebottom,withaheightof0.5m,is liquidwater,ontopofwhichisa1-m-highlayerof engineoil.ThisisshowninFig.P1.35.Theoilsurfaceisexposedtoatmosphericairat101kPa.Whatis thehighestpressureinthewater?

FigureP1.29
FigureP1.34
FigureP1.35

1.36 Anunderwaterbuoyisanchoredattheseabedwith acable,anditcontainsatotalmassof250kg.What shouldthevolumebesothatthecableholdsitdown withaforceof1000N?

1.37 Afloatingoilrigisanchoredintheseabedwith cablesgivinganetpullof10000kNdown.Howlarge awaterdisplacementvolumedoesthatleadto?

1.38 Atthebeach,atmosphericpressureis1025mbar. Youdive15mdownintheocean,andyoulaterclimb ahillupto450minelevation.Assumethatthedensity ofwaterisabout1000kg/m3 ,andthedensityofairis 1.18kg/m3 .Whatpressuredoyoufeelateachplace?

1.39 Asteeltankofcross-sectionalarea3m2 andheight 16mweighs10000kgandisopenatthetop,asshown inFig.P1.39.Wewanttofloatitintheoceansothatit ispositioned10mstraightdownbypouringconcrete intoitsbottom.Howmuchconcreteshouldweuse?

1.44 Thedensityofatmosphericairisabout1.15kg/m3 , whichweassumeisconstant.Howlargeanabsolute pressurewillapilotencounterwhenflying2000m abovegroundlevel,wherethepressureis101kPa?

1.45 Abarometertomeasureabsolutepressureshowsa mercurycolumnheightof735mm.Thetemperatureis suchthatthedensityofthemercuryis13550kg/m3 . Findtheambientpressure.

1.46 Adifferentialpressuregaugemountedonavessel shows1.25MPa,andalocalbarometergivesatmosphericpressureas0.96bar.Findtheabsolutepressure insidethevessel.

1.47 Whatpressuredifferencedoesa100-mcolumnof atmosphericairshow?

1.48 Abarometermeasures760mmHgatstreetlevel and745mmHgontopofabuilding.Howtallisthe buildingifweassumeairdensityof1.15kg/m3 ?

1.49 Anexplorationsubmarineshouldbeabletodescend 1200mdownintheocean.Iftheoceandensityis 1020kg/m3 ,whatisthemaximumpressureonthe submarinehull?

1.50 Theabsolutepressureinatankis115kPaandthe localambientabsolutepressureis102kPa.IfaU-tube withmercury(density = 13550kg/m3 )isattachedto thetanktomeasurethegaugepressure,whatcolumn heightdifferencewillitshow?

1.40 Apiston, mp = 5kg,isfittedinacylinder, A = 15 cm2 ,thatcontainsagas.Thesetupisinacentrifuge thatcreatesanaccelerationof25m/s2 inthedirection ofpistonmotiontowardthegas.Assumingstandard atmosphericpressureoutsidethecylinder,findthegas pressure.

1.41 Acontainershipis240mlongand22mwide. Assumethattheshapeislikearectangularbox.How muchmassdoestheshipcarryasloadifitis10m downinthewaterandthemassoftheshipitselfis 30000tonnes?

ManometersandBarometers

1.42 Aprobeislowered16mintoalake.Findtheabsolutepressurethere.

1.43 Aperson,75kg,wantstofly(hoover)ona2kg skateboardofsize0.6mby0.25m.Howlargeagauge pressureundertheboardisneeded?

1.51 Anabsolutepressuregaugeattachedtoasteelcylindershows135kPa.Wewanttoattachamanometer usingliquidwateronadaythat Patm = 101kPa.How highafluidleveldifferencemustweplanfor?

1.52 Apipeflowinglightoilhasamanometerattached, asshowninFig.P1.52.Whatistheabsolutepressure inthepipeflow?

1.53 Thedifferenceinheightbetweenthecolumnsof amanometeris200mm,withafluidofdensity

FigureP1.39
FigureP1.52

900kg/m3 .Whatisthepressuredifference?Whatis theheightdifferenceifthesamepressuredifferenceis measuredusingmercury(density = 13600kg/m3 )as manometerfluid?

1.54 Apieceofexperimentalapparatus,Fig.P1.54,is locatedwhere g = 9.5m/s2 andthetemperatureis5∘ C. Airflowinsidetheapparatusisdeterminedbymeasuringthepressuredropacrossanorificewithamercurymanometer(density = 13580kg/m3 )showing aheightdifferenceof200mm.Whatisthepressure dropinkPa?

pressuredifferencebetweenthetwoholesflushwith thebottomofthechannel.Youcannotneglectthetwo unequalwatercolumns.

1.61 Adamretainsalake6mdeep,asshowninFig. P1.61.Toconstructagateinthedam,weneedtoknow thenethorizontalforceona5-m-wide,6-m-tallport sectionthatthenreplacesa5-msectionofthedam. Findthenethorizontalforcefromthewateronone sideandairontheothersideoftheport.

EnergyandTemperature

1.55 A0.25m3 pieceofsoftwoodislifteduptothetop shelfinastoragebinthatis4mabovetheground floor.Howmuchincreaseinpotentialenergydoesthe woodget?

1.56 Acarofmass1775kgtravelswithavelocityof 100km/h.Findthekineticenergy.Howhighshould thecarbeliftedinthestandardgravitationalfieldto haveapotentialenergythatequalsthekineticenergy?

1.57 Whatisatemperatureof 5∘ CindegreesKelvin?

1.58 Amercurythermometermeasurestemperatureby measuringthevolumeexpansionofafixedmassofliquidmercuryduetoachangeindensityas ��Hg = 13595 2.5 T kg/m3 (T inCelsius).Findtherelativechange (%)involumeforachangeintemperaturefrom10to 20∘ C.

1.59 Thedensityofliquidwateris �� = 1008 T/2 (kg/m3 )with T in ∘ C.Ifthetemperatureincreases 10∘ C,howmuchdeeperdoesa1-mlayerofwater become?

ReviewProblems

1.60 RepeatProblem1.54iftheflowinsidetheapparatus isliquidwater(�� = 1000kg/m3 )insteadofair.Findthe

1.62 Inthecitywatertower,waterispumpeduptoalevel of25mabovegroundinapressurizedtankwithair at125kPaoverthewatersurface.Thisisillustrated inFig.P1.62.Assumingwaterdensityof1000kg/m3 andstandardgravity,findthepressurerequiredto pumpmorewaterinatgroundlevel.

FigureP1.54
Side view
Top view Lake
6 m
5 m Lake
FigureP1.61
FigureP1.62

1.63 Themainwaterlineintoatallbuildinghasapressureof600kPaat5-melevationbelowgroundlevel. ThebuildingisshowninFig.P1.63.Howmuchextra pressuredoesapumpneedtoaddtoensureawaterlinepressureof200kPaatthetopfloor150maboveground?

ENGLISHUNITPROBLEMS

EnglishUnitConceptProblems

1.64E Amassof2lbmhasanaccelerationof5ft/s2 Whatistheneededforceinlbf?

1.65E Howmuchmassisin1galofgasoline?Inhelium inaballoonatatmospheric P and T?

1.66E Canyoueasilycarrya1-galbarofsolidgold?

1.67E Whatisthetemperatureof 5FindegreesRankine?

1.68E Whatisthelowestpossibletemperatureindegrees Fahrenheit?IndegreesRankine?

1.69E WhatistherelativemagnitudeofdegreeRankine todegreeKelvin?

EnglishUnitProblems

1.70E TheRoverExplorerhasamassof410lbm,how muchdoesthis“weigh”ontheMoon(g = gstd /6)and onMarswhere g = 12.3ft/s2

1.71E A2500-lbmcarmovingat25mi/hisaccelerated ataconstantrateof15ft/s2 uptoaspeedof50mi/h. Whataretheforceandtotaltimerequired?

1.72E Anescalatorbringsfourpeoplewithatotalmass of600lbmanda1000-lbmcageupwithanaccelerationof3ft/s2 .Whatistheneededforceinthecable?

1.73E Acarofmass4000lbmtravelswithavelocityof 60mi/h.Findthekineticenergy.Howhighshouldthe carbeliftedinthestandardgravitationalfieldtohave apotentialenergythatequalsthekineticenergy?

1.74E Apowerplantthatseparatescarbondioxidefrom theexhaustgasescompressesittoadensityof 8lbm/ft3 andstoresitinanunminablecoalseamwith aporousvolumeof3500000ft3 .Findthemassthat canbestored.

1.75E ThepistoncylinderinFig.P1.29hasadiameterof 4in.,insidepressure100psia.Whatforcemusthold themasslesspistonupasthepistonlowersidehas P0 besidestheforce?

1.76E Alaboratoryroomkeepsavacuumof1in.of waterduetotheexhaustfan.Whatisthenetforce onadoorofsize6ftby3ft?

1.77E Aperson,175lbm,wantstofly(hoover)ona 4lbmskateboardofsize2ftby0.8ft.Howlargea gaugepressureundertheboardisneeded?

1.78E Afloatingoilrigisanchoredintheseabedwith cablesgivinganetpullof2250000lbfdown.How largeawaterdisplacementvolumedoesthatleadto?

1.79E Acontainershipis790ftlongand72ftwide. Assumetheshapeislikearectangularbox.How muchmassdoestheshipcarryasloadifitis30ft downinthewaterandthemassoftheshipitselfis 30000tons.

1.80E Amanometershowsapressuredifferenceof 3.5in.ofliquidmercury.Find ΔP inpsi.

1.81E Whatpressuredifferencedoesa300-ftcolumnof atmosphericairshow?

FigureP1.63

1.82E Apiston/cylinderwithacross-sectionalareaof 0.1ft2 hasapistonmassof100lbmandaforceof 180lbfrestingonthestops,asshowninFig.P1.34. Withanoutsideatmosphericpressureof1atm,what shouldthewaterpressurebetoliftthepiston?

1.83E Themainwaterlineintoatallbuildinghasapressureof90psiaat16ftelevationbelowgroundlevel. Howmuchextrapressuredoesapumpneedtoaddto ensureawaterlinepressureof30psiaatthetopfloor 450ftaboveground?

1.84E Apiston, mp = 10lbm,isfittedinacylinder, A = 2.5in.2 ,thatcontainsagas.Thesetupisin acentrifugethatcreatesanaccelerationof75ft/s2 Assumingstandardatmosphericpressureoutsidethe cylinder,findthegaspressure.

1.85E Thehumancomfortzoneisbetween18and24∘ C. WhatistherangeinFahrenheit?

SummaryObjectives

CHAPTER1

Weintroduceathermodynamicsystemasa controlvolume,whichforafixedmassisa controlmass.Suchasystemcanbe isolated,exchangingneithermass,momentum,nor energywithitssurroundings.A closed systemversusan open systemreferstotheabilityof massexchangewiththesurroundings.Ifpropertiesforasubstancechange,the state changes anda process occurs.Whenasubstancehasgonethroughseveralprocesses,returningto thesameinitialstate,ithascompleteda cycle

Basic units forthermodynamicandphysicalpropertiesarementioned,andmostare coveredinTableA.1.Thermodynamicpropertiessuchas density ��, specificvolume v, pressure P,and temperature T areintroducedtogetherwithunitsfortheseproperties.Propertiesareclassifiedas intensive,independentofmass(like v),or extensive,proportionalto mass(like V).Studentsshouldalreadybefamiliarwithotherconceptsfromphysicssuchas force F,velocity V,andacceleration a.ApplicationofNewton’slawofmotionleadstothe variationofstaticpressureinacolumnoffluidandthemeasurementsofpressure(absolute andgauge)bybarometersandmanometers.Thenormaltemperaturescaleandtheabsolute temperaturescaleareintroduced.

Youshouldhavelearnedanumberofskillsandacquiredabilitiesfromstudyingthis chapterthatwillallowyouto

•Define(choose)acontrolvolumeC.V.aroundsomematterand

•Sketchthecontentandidentifystoragelocationsformass

•IdentifymassandenergyflowscrossingtheC.V.surface

•Knowproperties P–T–v–�� andtheirunits.

•KnowhowtolookupconversionofunitsinTableA.1.

•Knowthatenergyis stored askinetic,potential,orinternal(inmolecules).

•Knowthedifferencebetween(v, ��)and(V, m)intensiveversusextensive.

•Applyaforcebalancetoagivensystemandrelateittopressure P.

•Knowthedifferencebetweenarelative(gauge)andabsolutepressure P

•Understandtheworkingofamanometerorabarometerandget ΔP or P from height H.

•Knowthedifferencebetweenarelativeandabsolutetemperature T.

•Understandhowphysicsofadevicecaninfluenceaproperty.

•Youshouldhaveanideaaboutmagnitudes(v, ��, P, T).

Mostoftheseconceptswillberepeatedandreinforcedinthefollowingchapters,suchas propertiesinChapter2,energytransferasheatandwork,andinternalenergyinChapter3, togetherwiththeirapplications.

StudyguideandChapter StudyResources

CHAPTER1

Objectives

Knowproperties P-T-v-�� and theirunits

Knowthatenergyis stored as kinetic,potentialorinternal (inmolecules)

Knowthedifferencebetween (v, ��)and(V, m)intensive versusextensive

Applyaforcebalancetoa givensystemandrelateitto pressure P

Knowthedifferencebetween arelative(gauge)and absolutepressure P

Understandmanometerand barometertoget ΔP or P fromheight H

Knowthedifferencebetween arelativeandabsolute temperature T

Understandhowphysicsofa devicecaninfluencea property.

Haveanideaabout magnitudes(v, ��, P, T)

Reading,Examples, Eqs&Tables

Reading:Sec.1.3,1.5–1.7, 1.11

Examples:1.1–1.5 Eqs:1.2,1.3,1.12,1.13

Tables:A.1

Reading:Sec.1.8

Examples:1.1–1.5 Eqs.:1.9,1.10,1.11

Reading:Sec.1.3 Examples:1.2

Reading:Sec.1.5–1.7,1.11 Examples:1.3,1.4,1.7 Eqs:1.1,1.3–1.7

Reading:Sec.1.7 Examples:1.5–1.6 EqsandTables:1.3–1.4,1.6

Reading:Sec.1.7 Examples:1.5–1.6 Eqs:1.3–1.6

Reading:Sec.1.11 Examples:1.5–1.6 Eqs:1.12,1.13 Tables:A.1

Reading:all Examples:1.2–1.7 Deviceeqs.: P = C,V = C, T = C

Reading:Sec.1.7 Examples:1.5–1.6 Equations:1.2–1.6 Figure:1.8

Concepts,Study, Hwproblems

C:1,3–10,14–15

S:5,18,59

Hw:19–24,57–58,65E–69E, 85E

C:17

Hw:19–24,55–56,73E

C:1,3 Hw:20

C:8–13

S:13,31,38,40,84E Hw:28–41,84E

C:11–12, S:44,49,53 Hw:42–46,49,52,54

C:11–12

S:44,49,53,80E Hw:42–54,80E–83E

C:14–16 S:59 Hw:57–59

nearlyallhw

S:18 Hw:18,57,85E

Introduction andPreliminaries

Thefieldofthermodynamicsisconcernedwiththescienceofenergyfocusingonenergy storageandenergyconversionprocesses.Wewillstudytheeffectsofenergyondifferentsubstances,aswemayexposeamasstoheating/coolingortovolumetriccompression/expansion.Duringsuchprocesses,wearetransferringenergyintooroutofthemass, soitchangesitsconditionsexpressedbypropertiessuchastemperature,pressure,andvolume.Weuseseveralprocessessimilartothisinourdailylives;weheatwatertomakecoffee orteaorcoolitinarefrigeratortomakecoldwateroricecubesinafreezer.Innature,water evaporatesfromoceansandlakesandmixeswithairwherethewindcantransportit,and laterthewatermaydropoutoftheairaseitherrain(liquidwater)orsnow(solidwater). Aswestudytheseprocessesindetail,wewillfocusonsituationsthatarephysicallysimple andyettypicalofreal-lifesituationsinindustryornature.

Byacombinationofprocesses,weareabletoillustratemorecomplexdevicesor completesystems—forinstance,asimplesteampowerplantthatisthebasicsystemthat generatesthemajorityofourelectricpower.Figure1.1showsapowerplantthatproduces electricpowerandhotwaterfordistrictheatingbyburningcoal.Thecoalissuppliedby ship,andthedistrictheatingpipesarelocatedinundergroundtunnelsandthusarenot visible.Forabetterunderstandingandatechnicaldescription,seethesimpleschematicof thepowerplantshowninFig.1.2.Thisincludesvariousoutputsfromtheplantaselectric powertothenet,warmwaterfordistrictheating,slagfromburningcoal,andothermaterials suchasashandgypsum;thelastoutputisaflowofexhaustgasesoutofthechimney.

Anothersetofprocessesformsagooddescriptionofarefrigeratorthatweuseto coolfoodorapplyitatverylowtemperaturestoproduceaflowofcoldfluidforcryogenic surgerybyfreezingtissueforminimalbleeding.Asimpleschematicforsuchasystemis showninFig.1.3.Thesamesystemcanalsofunctionasanairconditionerwiththedual purposeofcoolingabuildinginsummerandheatingitinwinter;inthislastmodeofuse,it isalsocalleda heatpump.Formobileapplications,wecanmakesimplemodelsforgasoline anddieselenginestypicallyusedforgroundtransportationandgasturbinesinjetengines usedinaircraft,wherelowweightandvolumeareofprimeconcern.Thesearejustafew examplesoffamiliarsystemsthatthetheoryofthermodynamicsallowsustoanalyze.Once welearnandunderstandthetheory,wewillbeabletoextendtheanalysistoothercaseswe maynotbefamiliarwith.

Beyondthedescriptionofbasicprocessesandsystems,thermodynamicsisextended tocoverspecialsituationslikemoistatmosphericair,whichisamixtureofgases,andthe combustionoffuelsforuseintheburningofcoal,oil,ornaturalgas,whichisachemical andenergyconversionprocessusedinnearlyallpower-generatingdevices.Manyother extensionsareknown;thesecanbestudiedinspecialtytexts.Sincealltheprocessesengineersdealwithhaveanimpactontheenvironment,wemustbeacutelyawareoftheways

The AvedoerePowerStation, Denmark.

inwhichwecanoptimizetheuseofournaturalresourcesandproducetheminimalamount ofnegativeconsequencesforourenvironment.Forthisreason,thetreatmentofefficiencies forprocessesanddevicesisimportantinamodernanalysisandisrequiredknowledgefor acompleteengineeringstudyofsystemperformanceandoperation.

Beforeconsideringtheapplicationofthetheory,wewillcoverafewbasicconcepts anddefinitionsforouranalysisandreviewsomematerialfromphysicsandchemistrythat wewillneed.

1.1 ATHERMODYNAMICSYSTEM ANDTHECONTROLVOLUME

Athermodynamicsystemisadeviceorcombinationofdevicescontainingaquantityof matterunderstudy.Todefinethismoreprecisely,a controlvolume ischosensothatit

FIGURE1.1
(Courtesy of Dong Energy, Denmark.)

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.