Download ebooks file Static and dynamic analysis of engineering structures: incorporating the bounda

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/static-and-dynamic-analysis-of-engineering-structures -incorporating-the-boundary-element-method-levon-g-petrosian/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

The Inclusion-Based Boundary Element Method (iBEM)

Huiming Yin

https://ebookmass.com/product/the-inclusion-based-boundaryelement-method-ibem-huiming-yin/

Damage Modeling of Composite Structures: Strength, Fracture, and Finite Element Analysis 1st Edition

Pengfei Liu

https://ebookmass.com/product/damage-modeling-of-compositestructures-strength-fracture-and-finite-element-analysis-1stedition-pengfei-liu/

Elements of Numerical Mathematical Economics with Excel: static and dynamic optimization. Romeo

https://ebookmass.com/product/elements-of-numerical-mathematicaleconomics-with-excel-static-and-dynamic-optimization-romeo/

Finite Element Method: Physics and Solution Methods

Sinan Muftu

https://ebookmass.com/product/finite-element-method-physics-andsolution-methods-sinan-muftu/

Partition of Unity Methods: The Extended Finite Element Method St¿Phane Bordas

https://ebookmass.com/product/partition-of-unity-methods-theextended-finite-element-method-stphane-bordas/

Introduction to the Finite Element Method 4E 4th Edition Reddy

https://ebookmass.com/product/introduction-to-the-finite-elementmethod-4e-4th-edition-reddy/

Engineering Economic Analysis 14th Edition Donald G. Newnan

https://ebookmass.com/product/engineering-economic-analysis-14thedition-donald-g-newnan/

A First Course in the Finite Element Method 6 Enhanced SI Edition Daryl L. Logan

https://ebookmass.com/product/a-first-course-in-the-finiteelement-method-6-enhanced-si-edition-daryl-l-logan/

Reaction Mechanisms in Environmental Engineering. Analysis and Prediction James G. Speight

https://ebookmass.com/product/reaction-mechanisms-inenvironmental-engineering-analysis-and-prediction-james-gspeight/

StaticandDynamic AnalysisofEngineering Structures

StaticandDynamic AnalysisofEngineering Structures IncorporatingtheBoundary

ElementMethod

LevonG.Petrosian

WashingtonDistrictDepartmentofTransportation,USA

VladimirA.Ambartsumian

StructuralEngineeringandStructuralMechanics

ArmenianNationalUniversityofArchitecture&Construction,Armenia

Thiseditionfirstpublished2020 ©2020JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,in anyformorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedby law.Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableat http://www.wiley.com/go/permissions.

TherightofLevonG.PetrosianandVladimirA.Ambartsumiantobeidentifiedastheauthorsofthisworkhas beenassertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthat appearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmentalregulations,andtheconstantflow ofinformationrelatingtotheuseofexperimentalreagents,equipment,anddevices,thereaderisurgedtoreview andevaluatetheinformationprovidedinthepackageinsertorinstructionsforeachchemical,pieceofequipment, reagent,ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusageandforadded warningsandprecautions.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,they makenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthiswork andspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesofmerchantabilityor fitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensales materialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductisreferredto inthisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisherand authorsendorsetheinformationorservicestheorganization,website,orproductmayprovideorrecommendations itmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessional services.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwith aspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechanged ordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbe liableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental, consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Petrosian,LevonG.(LevonGregory),1-author.| Ambartsumian,V.A.(VladimirAlexander),author.

Title:Staticanddynamicanalysisofengineeringstructures: incorporatingtheboundaryelementmethod/LevonG.Petrosian, ProfessorofStructuralEngineeringandStructuralMechanics, WashingtonDistrictDepartmentofTransportation,USA VladimirA.Ambartsumian,ProfessorofStructuralEngineeringandStructuralMechanics, ArmenianNationalUniversityofArchitecture&Construction,Armenia

Description:Firstedition.|Hoboken,NJ:JohnWiley&Sons,Inc.,2020. |Includesbibliographicalreferencesandindex.

Identifiers:LCCN2019034987(print)|LCCN2019034988(ebook)|ISBN 9781119592839(hardback)|ISBN9781119592884(adobepdf)|ISBN 9781119592938(epub)

Subjects:LCSH:Structuralanalysis(Engineering)–Mathematics.|Boundary elementmethods.

Classification:LCCTA640.P482020(print)|LCCTA640(ebook)|DDC 624.1/7–dc23

LCrecordavailableathttps://lccn.loc.gov/2019034987

LCebookrecordavailableathttps://lccn.loc.gov/2019034988

CoverDesign:Wiley

CoverImage:©aaaaimages/GettyImages

Setin11.5/14ptSTIXTwoTextbySPiGlobal,Chennai,India

PrintedandboundbyCPIGroup(UK)Ltd,Croydon,CR04YY

InMemoryof myTeacher,Mentor,andFriend

ALEXANDERIZRAELEVICHTSEITLIN

(1933–2011)

DoctorofTechnicalScience,Professor, MemberoftheRussian&InternationalEngineering AcademyofScience

AbouttheAuthorsxi Prefacexiii Introductionxv

Chapter1: MethodsofDynamicDesignofStructuralElements1

1.1TheMethodofSeparationVariables1

1.2TheVariationalMethods7

1.3IntegralEquationsandIntegralTransformsMethods11

1.4TheFiniteElementMethod17

1.5TheFiniteDifferenceMethod25

1.6TheGeneralizedMethodofIntegralTransformation27

1.7TheMethodofDelta-Transform44

1.8TheGeneralizedFunctionsinStructuralMechanics63

1.9GeneralApproachestoConstructingBoundaryEquations,and StandardizedFormofBoundaryValueProblems67

1.10TheRelationshipofGreen’sFunctionwithHomogeneousSolutions oftheMethodofInitialParameters80

1.11TheSpectralMethodofBoundaryElements83

1.12TheCompensateLoadsMethod89

Chapter2: BoundaryElementsMethods(BEM)inthe MultidimensionalProblems93

2.1TheIntegralEquationsofBoundaryElementsMethods93

2.2TheConstructionofBoundaryEquationsbytheDelta-Transformation Technique103

2.3TheEquivalenceofDirectandIndirectBEM114

2.4TheSpectralMethodofBoundaryElements(SMBE)inMultidimensional Problems118

2.5TheProblemsDescribedbytheIntegro-DifferentialSystemof Equations124

Chapter3: OscillationofBarsandArches131

3.1TheNonlinearOscillationsofSystemswithOneDegreeofFreedom131

3.2TheNonlinearOscillationsofSystemswithMultiple-Degrees-of-Freedom141

3.3TheNonlinearOscillationsofSystemswithDistributedMass154

3.3.1SimplySupportedBeams156

3.3.2BeamsWithBuilt-inEnds157

3.3.3BeamsWithOneEndHingedSupportandAnotherEnd Built-inSupport157

3.3.4TheCantileverBeam158

3.4TheOscillationsoftheBeamoftheVariableCross-sections161

3.5TheOptimumDesignoftheBar167

3.6TheOscillationsofFlexural-Shifted(Bending-Shifted)BarsUnderthe SeismicImpacts170

3.7OscillationsofCircularRingsandArches176

3.8TheFreeOscillationsofSystem“FlexibleArch-RigidBeam”182

3.9TheResultsofDynamicTestingModelofCombinedSystemRigid-beam andFlexibleArch195

3.10TheOscillationsoftheCombinedSystemTakingintoAccountitsExtent ataGivenHarmonicMotionBase207

3.11TheDeterminationoftheReactionsofMultipleSpansFrameBridges, ExtendedBuildings,andStructuresTakingintoAccounttheInitialPhase ofPassing(Propagation)oftheSeismicWave224

Chapter4: OscillationofPlatesandShells243

4.1TheDesignoftheCantileverPlateofMinimalMassWorkingontheShift withtheAssignedFundamentalFrequency243

4.2TheExperimentalandTheoreticalResearchofOscillationofaCantilever PlatewithRectangularOpenings254

4.3TheOscillations(Vibrations)ofSphericalShells262

4.4TheApplicationoftheSpectralMethodofBoundaryElement(SMBE)to theOscillationofthePlatesonElasticFoundation265

Chapter5: ThePropagationofElasticWavesandTheirInteraction withtheEngineeringStructures271

5.1ThePropagationofSeismicWavesintheLaminarInhomogeneous Medium271

5.2DiffractionofHorizontalWavesontheSemi-cylindricalBase ofStructure277

5.3MethodofCalculationoftheLiningofTunnelstoSeismic Resistance285

5.4AStudyoftheActionofSeismicWaveontheRigidRingLocated intheHalf-plane298

5.5CalculationsofUndergroundStructureswithArbitraryCross-section underSeismicActionImpact306

Chapter6: TheSpecialFeaturesoftheSolutionofDynamicProblems bytheBoundaryElementMethods(BEM)315

6.1OneMethodofCalculation:TheHilbertTransformanditsApplications totheAnalysisofDynamicSystem315

6.2ConstructionofGreen’sFunctionforBasesHavingFrequency-Dependent InternalFriction324

6.3TheGreen’sFunctionsofSystemswiththeFrequency-Independent InternalFriction332

6.4TheNumericalRealizationofBoundaryElementMethod(BEM)342

6.5TheConstructionoftheGreen’sFunctionoftheDynamicStationary ProblemfortheElasto-ViscousHalf-Plane351

Chapter7: TheQuestionsoftheStaticandDynamicAnalysisof StructuresonanElasticFoundation365

7.1TheKerneloftheGeneralizedModelofElasticFoundation(Base)378

7.2TheDeterminationoftheCharacteristicsoftheGeneralized(Unified, Integrated)ModeloftheElasticFoundation(Base)393

7.3ContactProblemfortheRigidDie,LyingontheGeneralized ElasticBase397

7.4OnOneMethodofCalculationofStructuresonanElastic Foundation404

7.5TheCalculationofthe(Non-isolated)BeamsandPlates,Lyingonan ElasticFoundation,DescribedbytheGeneralizedModel408

7.6TheForcedOscillationsofaRectangularPlateonanElastic Foundation415

7.7TheCalculationoftheMembraneofArbitraryShapeonanElastic Foundation428

AppendixA: CertificateofEssentialBuildingData443

AppendixB: ContactStressesontheSoleoftheCircularDieandthe SoleofthePlaneDie455

B.1ContactStressesontheSoleoftheCircularDie.455

B.2ContactStressesontheSoleofthePlaneDie.457

References459 Index483

AbouttheAuthors

LevonG.PetrosianisaProfessorofStructuralEngineeringandStructural Mechanics.HereceivedhisB.S.andM.S.degreesfromtheArmenian NationalUniversityofArchitecture&Construction.HereceivedaPh.D.from theMoscowStateUniversityofCivilEngineering(MGSU)andthedegree ofDoctorofTechnicalSciencefromtheMoscowResearchCenterofConstruction,ResearchInstituteofBuildingStructures(TSNIISK).Dr.Petrosian istheauthorofmorethan60scientificworksandpublications,including monographsandtextbooks.Hehasbeenassociatedwithtransportationand structuralengineeringindustriesforover40yearsasaresearchengineer andscientist.PriortohismovetotheUnitedStates,Dr.Petrosianwasthe ChairmanofDepartmentofStructuralMechanicsattheArmenianNational UniversityofArchitecture&ConstructionaswellastheExecutiveDirector andtheHeadoftheArmenianEarthquakeEngineeringResearchInstitute. Currently,Dr.PetrosianservesastheChiefofthePlanReviewDivisionat theDistrictofColumbiaDepartmentofTransportation.

VladimirA.Ambartsumian,ProfessorofStructuralEngineeringand StructuralMechanicsreceivedB.S.,M.S.,Ph.D.,andthedegreeofDoctorof TechnicalSciencefromtheArmenianNationalUniversityofArchitecture& Construction.HewasaProfessorofStructuralMechanicsattheArmenian NationalUniversityofArchitecture&Construction.Heauthoredand co-authorednumerousscientificpublications.

Preface

Thisbookpresentsbothmethodologicalandpracticalpurposesofstatic anddynamicanalysisofengineeringstructures.Therefore,accountingof allmethodsisaccompaniedbythesolutionofthespecificproblems,which notonlyareillustrativematerial,butalsomayrepresentindependent interestinthestudyofvarioustechnicalissues.Itprovidesanoverview andapplicationsofallmodernaswellaswell-knownclassicmethodsof calculationofvariousstructuremechanicsproblemsinoneplace.

Thebookgeneralizesallexistingclassicalandmodernmethodsof calculationsofengineeringproblemsandstructuralmechanicsproblems overthespanofthelast50years.Throughcomprehensiveanalysis,the bookshowsanalyticalandmechanicalrelationshipsbetweenclassicaland modernmethodsofsolvingboundaryvalueproblems.

Thebookfeaturesextensiveuseofthegeneralizedfunctionsfordescribingtheimpactsonstructures,andsubstantiationsofthemethodsofthe apparatusofthegeneralizedfunctions.

Thebookillustratesthemodernmethodsofstaticanddynamicanalysisofstructuresandthemethodsforsolvingboundaryvalueproblemsof structuralmechanicsandsoilmechanics.

Thebookincludesexamplesofsolvingdifferentproblemsofstaticand dynamiccalculationofbeams,plates,shells,multi-bodysystems,regular structures,bridgestructures,andundergroundconstructions.

Thebookprovidesawidespectrumofapplicationsofmoderntechnics andmethodsofcalculationofstatic,dynamic,andseismicproblemsofengineeringdesign.

Thebookshowswhichmethodsandtechniquesshouldbeusedforspecificandcomplexproblems.Thesemethodsaremosteffectiveforsolving deferentproblemsofstaticanddynamicanalysisofstructures.

Finally,thebookpresentsanewmodelofacohesiveelasticbasecovering awiderangeofpropertiesofrealsoils.Thelimitingcasesofthemodelare theWinklerbaseandtheisotropicelastichalf-space.

Thebookprovidesnumeroussolutionsofvariousstaticanddynamic problemsofthetheoryofelasticity.

Introduction

Theclassicalmethodsofstructuralmechanicswidelyusedforstaticand dynamicdesignofstructures,inparticularthemethodsofforceand displacement/deformation,arebasedonverytransparentmechanical representationsassociatedwiththereplacementofagivenstructureto someother,moreconvenienttocalculate“primarysystem,”thatisloaded insuchawaythattheentireprimarysystemoroneofitspartsisturnedinto agiven.Inthetheoryofelasticityandinmathematicalphysicsasimilar methodofsolvingtheboundary-valueproblemsisusedandconsidered classical;themethodofpotential.Whenapplyingthismethod,theassigned domainisactuallysubstitutedbysomeunlimiteddomain,loadedwith someadditionalload,suchthatthesolutioninthegivendomainand chosenunlimiteddomain(analogofprimarysystem)areidentical.The reasonforchoosingtheprimarysysteminaformofunlimiteddomain, forwhichsolutionsofthecorrespondingboundary-valueproblemsare constructed,hasproventobeverysuccessfulandhasfounddevelopmentin suchengineeringmethodsasthemethodofcompensatingloads,extended domains,andboundaryelements,aswellasinpurelymathematical methodsofgeneralizedsolutions(GSMs),boundaryintegralequations, anddelta-transforms.Fromthelistedmethods,whichhaveprogressedin therecentyears,thegreatestdevelopmentwasobtainedinthemethodof boundaryintegralequationswiththediscretenessoftheboundary,also

calledthemethodofboundaryelementbytheanalogywiththeknown finiteelementmethod(FEM).TodayFEMisthemaintoolofcalculations andanalysisofconstructionindesignandresearchpractice.Methods oftheBoundaryElementMethod(BEM)typehaveprovedtobevery effectivetosuccessfullycompeteinplane(two-dimensional)andspatial (three–dimensional)problemswithFEMandFiniteDifferenceMethod (FDM),sincetheydonotrequirediscretenessoftheentiredomain,butonly itsboundary.Thisleadstoper-unitreductionofthedimensionalityofa problemwithmoreeffectivecomputationalalgorithms.Anotheradvantage oftheBEMistheabilitytosolveproblemsinunlimiteddomains,which isparamountforthedynamicsofconstructions,soilmechanics,andother areasofthetheoryofelasticityandstructuralmechanics.

Inthisbook,alongwiththegeneralapproachtotheconstruction ofboundaryequationsofdifferenttypes,twonewmethodsareapplied; DeltaTransformationMethodandSpectralMethodofBoundaryElements(SMBEs)whichmakeobtainingeffectivesolutionsofvarious boundary-valueproblemsofstructuralmechanicspossible.Application ofthemethodsisillustratedbysolvinganumberofproblemsinthe calculationofstructuresonstaticanddynamicimpacts.

Contemporarystructuralmechanicsandtheoriesofconstruction investigatestressesonmanyobjects,calculationofwhichisassociated withthesolutionofboundary-valueproblemsfordifferentialoperators. Inthiscase,incontrasttotheclassicalproblemsofmathematicalphysics, theboundary-valueproblemsofstructuralmechanicshavehigherorder andmorecomplexstructures.Therefore,bothgeneralmethodsofsolving differentialandintegralequations,andspecificengineeringmethodspurely basedonmechanicalperformancesarewidelyused.Inthisbookwewill examinethemethodsofsolvingboundary-valueproblems;typicalforstructuralmechanicsandrelatedfields.Allofthesemethods,whiledifferentin form,canbeunitedbyonebasicprocedure–theIntegralTransform,which iseitheranintegralpartofthemethoditself,orisusedforitssubstantiation orconclusion.Inthemoderntechnicalandphysicalliterature,theMethod ofIntegralTransformsispresentedinessenceasapparatusconnectedwith theuseofclassicalFouriertransform,Laplace,Melina,Hankel,aswellas thetransformsofKantorovich-Lebedev,Meler-Fock,andothers.Eachof thetransformsisobtainedwithinacomparativelyclearlyoutlinedfieldof application.

Atthesametime,thevarietyofproblemswhichareencountered inthevarioussectionsofsciencecannotbesolvedonlywiththeaidof

traditionalintegraltransforms.Therefore,furtherdevelopmentofthe methodofintegraltransformsshouldproceedinthedirectionofexpanding thequantityofpracticalsuitablekernels,andgeneralizationandnecessary applicationofthemethodsofconstructingthekernelsoftransforms.This bookpresentsageneralapproachtothemethodofintegraltransforms basedonthespectraltheoryofthelineardifferentialoperators,andprovides newtransformswhichwillaidusinsolvingvariousproblemsrelevantto bars,beams,plates,andshells,inparticular.

Anotherequallyimportanttaskistoshowthecloserelationshipofintegraltransformswithdifferentmodernmethodsandwithtypesofpotentials; inparticular,withthemethodofdelta-transform(A.I.Tseitlin[370]),which maybethebasisforamathematicalfoundationofmanymethodsofstructuralmechanics.

Thebookpursuesbothmethodologicalandpracticalpurposes,andthe accountingofallmethodsisaccompaniedbysolutionsofthespecificproblems,whicharenotmerelyillustrativeinnature,butmayrepresentindependentinterestinstudyofvarioustechnicalissues.Twospecialfeatures ofthebookareanextensiveuseofthegeneralizedfunctionsfordescribing theimpactsonstructuresandsubstantiationsofthemethodsoftheapparatusofthegeneralizedfunctions.Instructuralmechanicsthetheoryofthe generalizedfunctionsdoesnotyetapplyasthoroughlyasinothersections ofmechanicsandphysics.Inthisbookitisshownthatthetheoryofgeneralizedfunctionsallowsustoobtainbroadgeneralizationsoftheclassical methodsofstructuralmechanics,tosimplifysolutionsofmanyproblems, andidentifytherelationshipsamongthemethods.

Thisbookillustratesthemodernmethodsofstaticanddynamicanalysis ofstructuresandthemethodsforsolvingboundary-valueproblemsofstructuralmechanicsandsoilmechanicsbasedontheapplicationofboundary equations.Thesystemswithnon-linearandvariableelasticcharacteristics areexamined.Thefundamentalsofthegeneraltheoryofoscillationsare considered.Examplesofsolvingdifferentproblemsofstaticanddynamic calculationofbeams,plates,shells,multi-bodysystems,regularstructures, bridgestructures,undergroundconstructions,andstructuresonanelastic foundationaregivenaccordingtothemethodspresentedinthebook.The bookalsoanalyzestheimpactofseismicinfluencesonregularstructures.

Further,thebookoffersamethodofphysicalrealizationofthedynamic systemsbasedontheexamplesofanelastic-viscousfoundationwithinternal friction.Theinternalfrictioninthefoundationisdescribedbythemodels ofKelvin-VoigtandSorokin.

Chapter1showsthemainmethodsusedinthedynamicanalysisofbars, plates,andshells.Historically,oneofthefirstmethodsofsolvingequations ofmathematicalphysicsisthemethodofseparationofvariables.Theapplicationofthismethodisdescribedintheexamplesofsolvingproblemsof freeoscillationofrectangularandcircularmembranes.

Therangeofproblemswhichcanbesolvedaccuratelyinaclosedform islimited,andtherefore,thereareoftenvariationalmethodsusedinpractice.Theapplicationoftwovariationalmethods–theRayleigh-Ritzmethod andtheGalerkinmethodareshownintheexamplesofthetransverseoscillationsofbars.Theuseofintegralequations,inparticularthereduction ofproblemswithoscillationofone-dimensionalstructurestotheintegral equationsofVolterraofthesecondkindandFredholmofthesecondkind, aredemonstrated.Themethodsusedfornumericalsolutionsofproblemsof dynamicsaredescribed.ThesearetheFEMandFDM.IneithertheFEMor FDMthewholedomainofthepartialdifferentialequations(PDEs)requires discretization.TheFEMispresentedinanexampleofaplaneproblemof thetheoryofelasticity.Adiagramofsolvingaproblemofnon-stationary oscillationsofacantileverplateisshown.Theoscillationsofacompressed bararesolvedusingtheFDM.

TheBEMoriginatedfromtheworkscarriedoutbyseveralresearch groupsduringthe1960sintheapplicationofboundaryintegralequations forthesolutionofengineeringproblems.Theseresearcherswerelooking foradifferentsolutionfromtheFEMwhichwasstartingtobecomemore widelyestablishedforcomputationalanalysisofstructuralmechanics problems.

TheBoundaryIntegralEquationsMethod(BIEM)isgenerallyfoundin themethodsofTheoryofPotentialandBoundaryIntegralEquations,but thebasicfeaturesandideaofthemethodofboundaryequationscanbe alsofoundintheclassicalmethodsofstructuralmechanicsthathavedevelopedconsiderablyearlierthanthecorrespondingmethodsofmathematical physics.BIEMinstructuralmechanicswereknowninthewesterncountries throughtheworkofformerSovietUnionresearchersandscientistssuchas N.I.Muskelishvili,S.G.Miklin,V.D.Kupradze,V.Z.Parton,P.I.Perlin,G.J. Popov,A.I.Tseitlin,andY.V.Veryuzhsky.Atthattimethesemethodswere consideredtobedifficulttoimplementnumerically.

Successfulapproachesofstructuralmechanicstothecalculationof complexsystemsbyreplacingthemwithsimplersystemsandmaking themmoreaccessibleforcalculationscarriedallsignsoftheMethodsof BoundaryEquations.Sincestructuralmechanicsinitiallydevelopedmainly

asascienceofbarsystems,theapplicationofsuchclassicalmethodsas methodsofforce,displacement,ormixedmethodledtotheboundary equationsinadiscretesetofjoints.

Thus,asarule,auxiliarytasksforwhichone-dimensionalanaloguesof Green’sfunction–aunitreactionandunitdisplacement,weredetermined andcorrespondedtoelementsofthesystem(e.g.thehorizontalandvertical elementsoftheframe),sothattheconstructionofauxiliaryconditions wasassociatedwiththenarrowingofthedomaintoseveralsub-domains. Thefirstone-dimensionalanaloguesoftheBEMappearedinstructural mechanicswithanintroductionofinfinitesystems,whichinitiatedthe CompensatingLoadsMethod(CLM),Extended-DomainMethod(EDM), andBEM,aswellasinpurelymathematicalmethodsofGSM,BIEM,and theDelta-TransformMethod(DTM).Amongthesemethodsdevelopedin recentdecades,themostdevelopedisthemethodofBoundaryIntegral Equationswiththediscretizationoftheboundary,alsoknownasthe BEM.BEMissimilartothemethodoffiniteelements,whichisnowthe majorinstrumentforactualcalculationsandanalysisofstructuresinthe designandresearchpractice.TheBEMisatechniqueforsolvingarangeof engineeringandphysicalproblems.TheheartoftheBEMtechniqueliesin theintegralequationformulationforagivenboundaryvalueproblem.The mathematicalbasisofthisapproach,ofcourse,isclassicalGreen’sfunction, andasmentionedearlieritcorrespondswiththeinfluencefunctionof structuralmechanics.TheBEMhasthedistinctioninandadvantageof thefactthatonlythesurfacesofthedomainneedtobemeshed.Methods suchasboundaryelementshaveprovedtobeveryeffective,andthey successfullycompeteintwoandthree-dimensionalproblemswiththe (FEM)andthe(FDM),becauseunlikethesemethods,BEMdoesnot requiresampling(discreteness)oftheentirearea,butonlyitsborder,which decreasesdimensionoftheproblembyoneunitandleadstomoreefficient computingalgorithms.TheadvantagesintheBEMarisefromthefact thatonlytheboundaryorboundariesofthedomainofthePDEsrequire sub-divisiontoproduceasurfaceorboundarymesh.

AnotheradvantageofBEMisapossibilityofsolvingproblemsinan unboundeddomain,whichisveryimportantforthestructuraldynamics, soilmechanics,andotherfieldsofthetheoryofelasticityandstructural mechanics.

ThisbookdescribesbothageneralapproachtotheconstructionofvarioustypesofboundaryequationsandaspectralBEM,whichallowsusto obtaineffectivesolutionsofvariousboundaryvalueproblemsofstructural

mechanics.TheapplicationofSMBEisillustratedbysolvinganumberof problemsonthestructuralanalysisofthedesignofconstructiononthestatic anddynamicimpacts.

Theissueoftheequivalenceofboundaryandinitialvalueproblems withtheinhomogeneityintheboundary(initial)conditionsandtheright sideoftheequationinrespecttothedesignofstructuresonthestaticand dynamicloadsareconsidered.Thisbookshowsa“standard”formofthe problem,obtainedbyusingthedeltatransformandallowingreplacement oftheboundaryorinitialconditionsbyacertaincorrespondingloadon thestructuresintheformofadelta-functionanditsderivatives.The constructionofthe“standard”formisillustratedonthesimplestexamples oftheboundaryvalueproblemforbeamsandtheCauchyproblemforthe systemwithonedegreeoffreedom.

ThereisageneralschemeforsolvingtheproblemsofthetheoryofelasticitybytheCLMinthefirstchapter.

Chapter2examinestheapplicationofBEMinthemultidimensional problems.TheintegralequationsofBEMareconsidered;constructionofthe boundaryequationsusingthemethodofdelta-transformisgiven;andthree basicschemesforconstructingboundaryintegralequationsusingtheDTM areanalyzed.Simpleproofofthecompleteequivalenceoftwobasicversions ofBEM–directandindirect–isgiven.TheSMBE,basedonexpansion ofdifferentialoperatorsconsideringintheextendeddomainisproposed. Inparticular,forthispurposetheFourierandHankeltransforms,aswell asexpansionofbeamfunctionswidelyusedinstructuralmechanicscan beused.Problemsdescribedbytheintegro-differentialsystemofequations areexamined.Asanexample,acontactproblemforaplanestructurewith stress-strainedconditionsinacertaindomainisdescribedbyalineardifferentialoperator,somegivenboundaryconditions,andcontactconditions withalinear-deformedmedium.

Chapter3outlinestheissuesofvibrationsofbars,arches,andcombined systems.Thefreenonlinearvibrationsystemswithoneandmanydegrees offreedom,andthesystemswithdistributedmassatvariousdependencies oftherestoringforcefrommovingareexamined.Thevaluesoftheperiods offreevibrationareobtainedbyvariousmethods,suchasdirectintegration oftheequationsofmotionandtheuseofasymptoticmethods.

Astudyoffreevibrationsofabeamwithanarbitrarylawofvariationof thecrosssectionisalsodiscussedinthethirdchapter.Classicalresultsfor theoscillationproblemsofacantileverbeamofminimummassareshown. Theoutlinedsolutionshavespecificapplicationsinthedynamicstructural

analysis.Inparticular,thechaptershowstheapplicationofthesolutionof theproblemofforcedoscillationsoftheshiftedflexural-cantileverbeam undertheseismicanalysisofthestructures.

Alongwiththestudyoftheoscillationsofelementswithastraightaxis, theoscillationsofcurvilinearelements,inparticularcirculararchesand rings,arealsoexamined.TheseincludetheequationofoscillationsofS.P. Timoshenkoforcirculararchesandrings,aswellassomesimpleresultson valuesofnaturalfrequenciesoftheseelements.

Thethirdchapterfurtherdescribesfreevibrationsofcombinedsystems suchas“rigidbeam-flexiblearch”consideringthedynamicthrustwhenthe axisofthearchisoutlinedbyasquareparabolaandacirculararch.

Thechaptershowsanexperimentally-theoreticalmethodforcalculating thecombinedsystemstakingintoaccountthejointdynamicworkofthe basicspantoadjacentbridgetrestlesusingthefactor“increasing”frequency. Weshowamethodforseismicanalysisofcombinedsystemswithregard totheirlengthusingrealseismogramsofpowerfulearthquakes.Thereare generalequationsofmotionforasystemwithafinitenumberofdegreesof freedominaspatialdeformationstructures.

Chapter4isdevotedtothevibrationsofplatesandshells.Weshowthe optimumdesignoftheshearcantileverplate.Theminimumofthetotal massoftheplateisconsideredastheoptimalitycriterion.Theproblemis solvedconsideringthelimitationofthethicknessoftheplate.

Thischaptergivestheexperimentalresultsoffreevibrationofcantilever plateswithrectangularholes.Wealsoshowasatisfactorymatchbetweenthe resultsoftheoreticalcalculationsandtheexperiment,andpresenttheasymmetricvibrationsofthinelasticsphericalshellsandequationsfordeterminingthefrequencyofahemispherewithfreeends.

TheapplicationoftheSMBEtotheoscillationoftheplatesonanelastic foundationisexamined.InparticularaspectralBEMtotheoscillationsor freevibrationofplateofarbitraryshapelyingonWinklerianfoundationand beingunderaloadisprovided.

Chapter5examinesissuesofelasticwavesspreadandtheirinteraction withengineeringstructures.Thechapterexaminestheproblemofpropagationofelasticwavesininhomogeneouslayeredmediumandanalyzescases ofchangeofshearmodulusandthedensityoftheexponentialandpower law.Thischaptersolvestheproblemofinteractionsofelasticwaveswitha semi-cylindricalbasestructures.Theissuesofinteractionofseismicwaves onthetunnelliningareexamined.Anapproachtothestudyofstressaround acircularlining,locatednearthesurfaceofthehalf-space,isoutlined.The

chapterproposesamethodforstudyingthedynamicstressesaffectingthe cross-sectionlining.Numericalresultsarestated.

Chapter6describesfeaturesofsolvingdynamicmethodsofboundaryequations.Itisknownthatmostbuildingmaterialshavedamping properties,characterizedbythefrequency’sindependentloss.However, thereisacertaindependencyofdampingparameters(coefficientsloss, decrement)onthefrequencyofthedeformationforsoilsintheexperiments.Frequency-dependentlossesaretypicalforanumberofmodern materials,suchascertainplastics.Itistherefore,averyimportanttaskto describethedynamicbehaviorofsoilandstructuralmaterialspossessing bothfrequency-independentandfrequency-dependentinternalfriction. Wediscussthetypesofproblemsinrelationtotheconstructionofthe Greenfunctionforthecorrespondingenvironment.Fromthetheoryof dynamicsystems,itfollowsthatbetweentherealandimaginarypartsofthe transmissionfunctionofthecasualsystem,certainintegraldependencies whichdefinetheformulasofHilberttransform,mustexist.Thischapter presentsanewwayofcalculationofHilberttransformthroughFourier transformationofcorrespondingfunctions,whichsimplifiestheproblem, duetoextensiveFouriertransformstables.Thepresentedmethodof calculatingtheHilberttransformallowstocomparativelyeasilyanalyze theaprioristicmodelsofthedynamicsystemsbasedonthecreationof complexrigidityorcomplexpliabilityofsystem.Thismethodmakesit possibletoanalyticallydetermineoneofthecomponentsofthecomplex rigidityinaccordancewiththeexperimentallydefinedothercomponent.A fewexamplesofthecalculationoftheHilberttransformofdelta-functions, Heavisidefunction,andapowerfunctionareexamined.

Theabove-describedmethodofcalculatingtheHilberttransform isappliedtotheanalysisofdynamicmodelsbasesofinternalfriction, describedbythehypothesisofVoigt,Sorokin,andSchlippe-Boc.Further, constructionofGreen’sfunctionfortheunlimitedplate,whichlieson Winkleriantypeelasto-viscousbasewiththearbitrarydependenceofthe parametersofthecomplexcoefficientofbedonthefrequencyisexamined. Theimportance,fromapracticalpointofview,ofthetaskonoscillations ofthesystemwithonedegreeoffreedom,whoseelastic-viscousproperties (parameters)dependonfrequencyofoscillations,isconsidered.

ThequestionofconstructionoftheGreen’sfunctionforonedimensionaldynamicalsystemswithdampingdescribedbydifferent modelfrequency-independentandfrequency-dependentinternalfriction isexamined.Weexaminestationaryone-dimensionalwavetasks,based

onanexampleofthelongitudinalfreevibrationsoftheisotropicuniform unlimitedbarwithunitharmonicloadinthecentralsectionorthe lateraloscillationsofstring.Thefollowingbasicmodelsofmediumare investigated:

1.commonlinearmodel;

2.elastic-viscousmodelofVoigt;and 3.themodelofthefrequency-independentelastic-viscousresistance.

TheconstructionoftheGreen’sfunctionforthenon-stationary transversefreevibrationofabarandplatetakingintoaccountthe frequency-independentelastic-viscousresistanceisconsidered.AnumericalrealizationofadirectBEMforthesolutionofplanestationaryproblems ofthelineartheoryofelasticity,takingintoaccounttheinternalfriction,is presented.

Anurgentproblemofstructuralmechanics,connectedinparticular, withthedevelopmentandimprovementoffoundationengineering,amajor trendintheconstructionbusiness,isthetheoryofanalysisofstructures onelasticfoundation.Thistheoryprovidesforreliabilityandefficiencyof someofthemostpopularandimportantstructures,suchas;foundationsof buildings,roadandairportpaving,coatingslopesofhydraulicstructures, dams,baselayersoffloorsofindustrialbuildings,powerfloorsoftestcases, andmore.

Improvingthemethodsofanalysisofstructuresbasedonactualsoil propertiesisoneofthemajorhurdlesincreatingamoreefficientandreliabledesignsolution,andpreventingundesirableconsequencesinconstructiononweakandsubsidingsoils,andinseismicallyactiveareasnearminingandblasting.ThisproblemhasbecomeverysignificantafterthedevastatingearthquakesinArmenia,China,Chili,Italy,Japan,Haiti,Pakistan, andPhilippinesinconnectionwithlarge-scalereconstructionworkandthe revaluationintensitiesofaseismicallyactivezone.

Chapter7isdevotedtothestaticanddynamicanalysisofstructures onelasticfoundation.Descriptionofanewmodelofcohesiveelasticfoundation,coveringawiderangeofpropertiesofrealsoils,isexamined.The limitingcasesforthismodelaretheWinklerfoundationandisotropicelastichalf-space.Theproposedmodel,alongwiththeversatility,hasseveral advantagesovertheearthfoundationmodelscurrentlyappliedinpractical calculations.Inparticular,underaconcentratedloadthemodelgivesthe finaldisplacementsandstresses,allowsforjumpsofdisplacementsonthe surfaceofthebase,anddoesnotresultinendlessmovementsolutionsof

planeproblems.Theproposedmodelhassolvedanumberofproblemsinthe analysisofstructuresontheelasticfoundation,suchas;membranes,hard foundation,barebeams,andslabs;andfreeoscillationsofrectangularfoundationslabsarealsoexamined.Thischaptershowstechniquesfordeterminingthemodelparametersundertheresultsofexperimentalstudiesofsoils.

TheapplicationofSMBEtothecalculationofstructuresontheelastic foundationisfurtherexamined.Theequilibriumofthemembrane,bendof thenon-isolatedbeamsandplateswiththefreeends,lyingonthebasiswith theproposedbasekernel,areexamined.

Thenumericalsolutionofcontacttaskfortheplaneandaxisymmetrical (axisymmetric)rigiddie,whichrestsonthebasiswiththeproposedkernelandanewiterationtechniqueforsolvingcontactproblems,aregiven. Theproposedgeneralizedmodelofelasticfoundationduetotheregularityofitskernelpavesthewayfortheapplicationofeffectivemethodsof solvingcontactproblemsandproblemsofdesignstructuresonelasticfoundation,associatedwithdifferentwaysofdirectlyreducingtheformulated problemtothesolutionoftheintegralequationofFredholmofthesecond kind.Theeffectivenessofthismethodisdeterminedbytheabilitytoapply asimpleiterativeprocedureforobtainingthemostimportantcharacteristic(variable)–contactpressure.Thenthecalculationofstructurescanbe producedwiththecombinedactionofexternalloadandobtainedcontact pressure.Toillustratethemethodofcalculationasolutiontotheproblemof thebendingofthebeamoffinitelength,freelyingontheelasticfoundation, describedbythegeneralizedmodelisgiven.

Theauthorsoffermethodsandapplications(notalwaysasimpletask consideringboundary-valueproblems),inasufficientlysimpleandclear wayinordertomakeiteasilyaccessibleforreaderswithmathematicaland technicalbackgroundatuniversitylevel.However,forcomprehensionofthe book,initialknowledgeinsuchareasofmathematicsasthetheoryofthe generalizedfunctions,transforms,andtheoryoflinearintegralequations, isnecessary.Thespecifiedmathematicalapparatusinrecentdecadeshas widelypenetratedthetechnicalsciences,especiallystructuralmechanics, andknowledgeableandsophisticatedreadersshouldbefamiliarwithit. Withintheframeworkofthelimitedsizeofthispublication,dedicationwas madetoemphasizeBEMcalculationsofconstructions,howeveritisnotpossibletoillustrateallaspectsoftherapidlydevelopingareasofBEM.Oneof thepurposesofthispublicationistofamiliarizethereaderswiththedifferentmethodsofbuildingtheboundaryequations,includingthosebasedon theorthogonalexpansionsthatleadtotheboundaryalgebraicequations.

Thetechniquesofsolvingboundaryintegralequations,thechoiceof boundaryelements,approximationoffunctions,etc.remainbeyondthe scopeofthiswork.Thereaderswhoareinterestedintheseissuesshould pursuemonographsandnumerousarticlesbyM.H.Aliabadi,P.K.Banerjee, R.Butterfield,C.A.Brebbia,S.Walker,T.A.Cruse,F.J.Rizzo,P.Fedelinski, S.Hirose,S.Mellings,V.Z.Parton,P.I.Perlin,U.V.Veryuzhsky,J.O.Watson, andothers.

Thebookisintendedmainlyforprofessionalsandspecialistsinthefield ofstructuralmechanicsandrelatedareas.Inpreparingthebook,theauthors triedtomakeitaccessiblenotonlyforscientists,researchers,andgraduate studentsinthefieldofstructuralmechanicsandrelatedareas,butalsofor engineersworkingindesigncentersandorganizations.

Intheappendixtothebookprintoutsaregivenoftheprogramsof solutionofcontactproblemforthebasewiththeregularkernel,andtables ofthecontactstressesobtainedwithsolutionofplaneandaxisymmetrical (axisymmetric)contactproblems.

Additionally,thebookcanserveasaguideforstudentsoftechnical collegesinthestudyoftherelevantsectionsforthecourseofstructural mechanics.

ThisbookwaswrittenincollaborationwithDr.Ambartsumian,who passedawayseveralyearspriortoitscompletionandpublication.Iwould liketoacknowledgehiscontributiontothismonographandhisdedication toscienceandresearch.

Iwishtotakethisopportunitytoexpressmyappreciationtomyformerteachersandcolleagueswhoovertheyearshavesograciouslyadvised andencourageddiscussionsthatledtopreparationofthistext.Inparticular,IgratefullyacknowledgeindebtednesstoprofessorsA.I.Tseitlin,A.R. Rzhanitsin,B.G.Korenev,N.N.Leontiev,V.I.Travush,D.N.Sobolev,A.A. Babloyan,V.A.Ilichev,E.E.Khachiyan,M.A.Dashevsky,V.A.Smirnov,and A.W.Taylor.

Iwouldespeciallyliketothankmywife,Natalie,andmydaughters, GalinaandIrina,fortheirsupport,patienceandlove.

Finally,IwanttothankJohnWileyandSonsInc.andthestafffor theireffectivecooperationandtheirgreatcareinpreparingthiseditionof thebook.

Theworkwasspreadbetweenauthorsthefollowingway: Paragraphs1.1,1.2,1.3,1.4,and1.5ofchapter1;andparagraph5.1 ofchapter5arewrittentogether.Paragraphs1.6,1.7,1.8,1.9,1.10,1.11, and1.12ofchapter1;paragraphs2.1,2.2,2.3,2.4,and2.5ofchapter2,

paragraphs3.8,3.9,3.10,and3.11ofchapter3;paragraph4.4ofchapter4, chapter6,andchapter7ofthebookarewrittenbyL.G.Petrosian:

Paragraphs3.1,3.2,3.3,3.4,3.5,3.6,and3.7ofchapter3;paragraphs4.1, 4.2,and4.3ofchapter4;paragraphs5.2,5.3,5.4,and5.5ofchapter5ofthe bookarewrittenbyV.A.Ambartsumian.

Iamdeeplygratefultothoseusersofthisbookwhohavebeenkind enoughtowritemetheirimpressionsandcriticisms.Anyfurthercomment andsuggestionforimprovementofthebookwillbegratefullyreceived.

Chapter1

MethodsofDynamicDesign ofStructuralElements

1.1TheMethodofSeparationVariables

LetusbrieflypresentthesubstanceoftheFourierMethodoramethodof separationofvariables.The separationofvariables istheprocessinwhich solutionsarefoundforseparabledifferentialequations.Themethodofseparationofvariablesreliesupontheassumptionthatafunctionoftheform u(x, t) = X(x)T(t)willbeasolutiontolinearhomogeneouspartialdifferential equations (PDEs)in x and t.Thisiscalledproductsolution,andprovided theboundaryconditionsarealsolinearandhomogeneous,thiswillalso satisfytheboundaryconditions.Thistechniqueworksbecauseiftheproductoffunctionsofindependentvariablesisaconstant,eachfunctionmust separatelybeaconstantaswell.Successrequiresthechoiceofanappropriatecoordinatesystemandmaynotbeattainableatalldependingonthe equation.Considertheproblemofoscillationsifthestringisfixedatthe ends.Theproblemisreducedtothesolutionoftheequationsofhyperbolic type:

Let u(x, t)denotetheverticaldisplacementofthestringfromthe x axis atposition x andtime t.Inthederivationof(1.1.1)itwasassumedthatthe extensionofindividualsectionsofthestringduringtheoscillationdoesnot

StaticandDynamicAnalysisofEngineeringStructures:IncorporatingtheBoundaryElementMethod, FirstEdition.LevonG.PetrosianandVladimirA.Ambartsumian. ©2020JohnWiley&SonsLtd.Published2020byJohnWiley&SonsLtd.

occurand,therefore,accordingtotheHooke’slaw,thetension T0 = |T|does notdependontimeoron x.Theaxis x coincideswiththedirectionofa stringinequilibriumposition.Thestringisathinstringthatdoesnotresist bending,andisnotassociatedwithachangeinitslength.

Thestringhaslength l:(0 < x < l).Thefunction u(x,t) satisfiestheinitial conditions.

Theconditionsthatspecifytheinitialstateofthesystemare:

Theconditionsattheboundaryoftheproblemare:

Theideaofseparationofvariablesissimple.Theideaistoassume thesolutiontothePDE(1.1.1)hasaspecialformofsolution,namely (x, t) = X(x)T(t).WeattempttoconvertthegivenPDEintoseveralordinary differentialequations.Whenaproblemisposed,suchasourproblemfor u(x, t),onecanlookforaproductsolutionintheformof u(x, t) = X(x)T(t). Thesolutioncanbedonebyinserting X(x)T(t)intothePDEforthevariable u,andthenseparatingthevariablessothateachsideoftheequation dependsononlyonevariable.Oncetheequationhasbeenbrokenup intoseparateequationsofonevariable,theproblemcanbesolvedlikean ordinarydifferentialequation.WewillfirstseekparticularsolutionsofEq. (1.1.1)thatarenotequaltozeroandsatisfyingtheboundaryconditions (1.1.3),intheformof:

Substituting(1.1.4)in(1.1.1),wecometoequations:

where �� isconstant.Thevalueof �� isnotspecifiedintheequation,finding thevaluesof �� forwhichthereexistsanon-trivialsolutionof(1.1.1)satisfyingtheboundaryconditions.Forobtainingthenon-trivialsolutionsof (1.1.4)itisnecessarytofindnon-trivialsolutionssatisfyingtheconditions:

ThisbringsustotheproblemofSturm-Liouvilleoreigenvalueproblem.Inmathematics,acertainclassofPDEsaresubjecttoextraconstraints, knownasboundaryvalues,onthesolution.

Theeigenvaluesofthisproblemarethenumbers:

Theseeigenvaluescorrespondtothenormalizeduniqueeigenfunctions:

when ��=���� ,Eq.(1.1.5)hasthegeneralsolution

Thereforethefunction

satisfiesEq.(1.1.1)andtheboundaryconditions(1.1.3)forany ak and bk ThesolutionofEq.(1.1.1),satisfyingtheconditions(1.1.2)–(1.1.3),isfound intheformofaseries

Ifthisseriesconvergesuniformlyandcanbetwicedifferentiatedtermby term,thesumoftheserieswillsatisfyEq.(1.1.1)andtheboundary(1.1.3). Determiningconstants ak and bk ,suchthatthesumoftheseries(1.1.8)satisfiestheinitialcondition(1.1.2),thefollowingequationsareobtained:

Equations(1.1.9)and(1.1.10)giveadecompositionoffunctions u0 ( x)and u1 ( x)intheFouriersineseriesintheinterval(0, l).

Thecoefficientsofthesedecompositionsarecalculatedfromtheknown formulas:

So,whilethesum(1.1.8)canbeverycomplicated,eachtermisquite simple.Foreachfixed t andeachfixed x thetermsin ������ l (ak cos ����at l + bk sin k��at l ) isjustaconstanttimesin ������ l ,andconstanttimecos k��at l plusa constanttimesin k��at l foreachfixed x.As x runsfrom0to l,theargument ofsin ������ l runsfrom0to k�� ,whichis k half-periodsofsin.Ifthestringhas density �� andtension T,then a =

Themethodofseparationofvariablesisoneofthemostwidespread methodsofthesolutionoftasksonoscillationsofbars,plates,shells,membranes,andotherconstructiveelements.

Wewillillustratethismethodonanexampleofaproblemoffreeoscillationsofarectangularmembrane.IntheCartesiancoordinates,oscillations ofamembranearedescribedbythewaveequationofthetype:

where W(x, y, t)–displacementofthemembrane; T –tensionofthemembrane;– �� –densityperunitarea;and a and b –dimensionsofthemembrane intheplan.

Boundaryandinitialconditionsareasfollows:

TheparticularsolutionsofEq.(1.1.11)wearelookingforareintheform of:

Substituting(1.1.13)into(1.1.11)anddividing T(t) × X(x) × Y(y),wewill

obtain:

Designating(denoting):

weobtainthefollowingdifferentialequations:

Withaviewto(1.1.15)from(1.1.14)wewillobtaintheinterrelation

Thesolutionsof(1.1.16)willbe

Usingboundaryconditions,wefind:

From(1.1.17)followsthat:

Thegeneralsolutionofthetaskbearinginthemind(1.1.13)isrepresentedintheformof:

(x , y, t )=

Thecoefficients Amn ; Bmn aredeterminedfromtheinitialconditions (1.1.12),usingtheorthogonalityoftheeigenfunctionsof Xmn (x)and Ymn (y)intheintervals0 ≤ x ≤ a;0 ≤ y ≤ b.

Thus,theuseofthemethodofseparationofvariablesmadeitpossible topresentasolutiontotheproblemintheformofaseriesinwhicheach termistheproductofthreefunctionsdependingon x, y,and t.

Wewillconsiderthefreeoscillationsofacircularmembrane.Thedifferentialequationofoscillationsofacircularmembraneinpolarcoordinates hastheform:

where r, �� –polarcoordinates.

Usingthemethodofseparationofvariables,wesearchforthesolution intheformof:

Substituting(1.1.22)into(1.1.21)anddividingby

Φ( �� ),wewill obtain:

Denoting:

Andthenwecanwrite:

Solutionsoftheseequationsare:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.