TransientAnalysisofPowerSystems
APracticalApproach
Editedby
JuanA.Martinez-Velasco
RetiredProfessor
PolytechnicUniversityofCatalonia
Barcelona
Spain
Thiseditionfirstpublished2020 ©2020JohnWiley&SonsLtd
Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inany formorbyanymeans,electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw. Adviceonhowtoobtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/go/ permissions.
TherightofJuanA.Martinez-Velascotobeidentifiedastheauthoroftheeditorialmaterialinthisworkhasbeen assertedinaccordancewithlaw.
RegisteredOffices
JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA
JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK
EditorialOffice
TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK
Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com.
Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappears instandardprintversionsofthisbookmaynotbeavailableinotherformats.
LimitofLiability/DisclaimerofWarranty MATLAB® isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMathWorksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook.Thiswork’suseordiscussionofMATLAB® softwareorrelated productsdoesnotconstituteendorsementorsponsorshipbyTheMathWorksofaparticularpedagogicalapproachor particularuseoftheMATLAB® software.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparing thiswork,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsof thisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimpliedwarrantiesof merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives, writtensalesmaterialsorpromotionalstatementsforthiswork.Thefactthatanorganization,website,orproductis referredtointhisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmeanthatthepublisher andauthorsendorsetheinformationorservicestheorganization,website,orproductmayprovideor recommendationsitmaymake.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedin renderingprofessionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.You shouldconsultwithaspecialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthiswork mayhavechangedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernor authorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial, incidental,consequential,orotherdamages.
LibraryofCongressCataloging-in-PublicationData
Names:Martinez-Velasco,JuanA.,editor.
Title:Transientanalysisofpowersystems:apracticalapproach/edited byJuanA.Martinez-Velasco,RetiredProfessor,PolytechnicUniversity ofCatalonia,Barcelona,Spain.
Description:Hoboken,NJ:Wiley-IEEEPress,2020.|Includes bibliographicalreferencesandindex.
Identifiers:LCCN2019027811(print)|LCCN2019027812(ebook)|ISBN 9781119480532(hardback)|ISBN9781119480303(adobepdf)|ISBN 9781119480495(epub)
Subjects:LCSH:Transients(Electricity)–Simulationmethods.
Classification:LCCTK3226.T762020(print)|LCCTK3226(ebook)|DDC 621.319/21–dc23
LCrecordavailableathttps://lccn.loc.gov/2019027811
LCebookrecordavailableathttps://lccn.loc.gov/2019027812
CoverDesign:Wiley
CoverImage:©kentoh/Shutterstock
Setin10/12ptWarnockProbySPiGlobal,Chennai,India
10987654321
Contents
AbouttheEditor xv
ListofContributors xvii
Preface xix
AbouttheCompanionWebsite xxi
1IntroductiontoTransientsAnalysisofPowerSystemswithATP 1
JuanA.Martinez-Velasco
1.1Overview 1
1.2TheATPPackage 3
1.3ATPDocumentation 5
1.4ScopeoftheBook 6 References 8
2ModellingofPowerComponentsforTransientsStudies 11
JuanA.Martinez-Velasco
2.1Introduction 11
2.2OverheadLines 12
2.2.1Overview 12
2.2.2Multi-conductorTransmissionLineEquationsandModels 13
2.2.2.1TransmissionLineEquations 13
2.2.2.2CoronaEffect 15
2.2.2.3LineConstantsRoutine 15
2.2.3TransmissionLineTowers 16
2.2.4TransmissionLineGrounding 17
2.2.4.1Introduction 17
2.2.4.2Low-FrequencyModels 17
2.2.4.3High-FrequencyModels 18
2.2.4.4TreatmentofSoilIonization 20
2.2.5TransmissionLineInsulation 21
2.2.5.1Voltage-TimeCurves 21
2.2.5.2IntegrationMethods 22
2.2.5.3PhysicalModels 22
2.3InsulatedCables 23
2.3.1Overview 23
2.3.2InsulatedCableDesigns 24
2.3.3BondingTechniques 25
2.3.4MaterialProperties 26
2.3.5Discussion 27
2.3.6CableConstants/ParametersRoutines 27
2.4Transformers 28
2.4.1Overview 28
2.4.2TransformerModelsforLow-FrequencyTransients 31
2.4.2.1IntroductiontoLow-FrequencyModels 31
2.4.2.2Single-PhaseTransformerModels 32
2.4.2.3Three-PhaseTransformerModels 36
2.4.3TransformerModellingforHigh-FrequencyTransients 37
2.4.3.1IntroductiontoHigh-FrequencyModels 37
2.4.3.2ModelsforInternalVoltageCalculation 39
2.4.3.3TerminalModels 41
2.5RotatingMachines 45
2.5.1Overview 45
2.5.2RotatingMachineModelsforLow-FrequencyTransients 46
2.5.2.1Introduction 46
2.5.2.2ModellingofInductionMachines 46
2.5.2.3ModellingofSynchronousMachines 51
2.5.3High-FrequencyModelsforRotatingMachineWindings 55
2.5.3.1Introduction 55
2.5.3.2InternalModels 56
2.5.3.3TerminalModels 58
2.6CircuitBreakers 58
2.6.1Overview 58
2.6.2CircuitBreakerModelsforOpeningOperations 59
2.6.2.1CurrentInterruption 59
2.6.2.2CircuitBreakerModels 60
2.6.2.3Gas-FilledCircuitBreakerModels 61
2.6.2.4VacuumCircuitBreakerModels 62
2.6.3CircuitBreakerModelsforClosingOperations 64
2.6.3.1Introduction 64
2.6.3.2StatisticalSwitches 65
2.6.3.3PrestrikeModels 66 Acknowledgement 66 References 66
3SolutionTechniquesforElectromagneticTransientAnalysis 75 JuanA.Martinez-Velasco
3.1Introduction 75
3.2ModellingofPowerSystemComponentsforTransientAnalysis 76
3.3SolutionTechniquesforElectromagneticTransientsAnalysis 78
3.3.1Introduction 78
3.3.2SolutionTechniquesforLinearNetworks 78
3.3.2.1TheTrapezoidalRule 78
3.3.2.2CompanionCircuitsofBasicCircuitElements 79
3.3.2.3ComputationofTransientsinLinearNetworks 85
3.3.2.4Example:TransientSolutionofaLinearNetwork 86
3.3.3NetworkswithNonlinearElements 87
3.3.3.1Introduction 87
3.3.3.2CompensationMethods 87
3.3.3.3PiecewiseLinearRepresentation 89
3.3.4SolutionMethodsforNetworkswithSwitches 90
3.3.5NumericalOscillations 91
3.4TransientAnalysisofControlSystems 96
3.5Initialization 97
3.5.1Introduction 97
3.5.2InitializationofthePowerNetwork 97
3.5.2.1OptionsforSteady-StateSolutionWithoutHarmonics 97
3.5.2.2Steady-StateSolution 98
3.5.3LoadFlowSolution 99
3.5.4InitializationofControlSystems 100
3.6Discussion 100
3.6.1SolutionTechniquesImplementedinATP 101
3.6.2OtherSolutionTechniques 101
3.6.2.1TransientSolutionofNetworks 101
3.6.2.2TransientAnalysisofControlSystems 102
3.6.2.3Steady-StateInitialization 102 Acknowledgement 103 References 103 ToProbeFurther 106
4TheATPPackage:CapabilitiesandApplications 107
JuanA.Martinez-VelascoandJacintoMartin-Arnedo
4.1Introduction 107
4.2CapabilitiesoftheATPPackage 108
4.2.1Overview 108
4.2.2TheSimulationModule–TPBIG 109
4.2.2.1Overview 109
4.2.2.2ModellingCapabilities 110
4.2.2.3SolutionTechniques 117
4.2.3TheGraphicalUserInterface–ATPDraw 120
4.2.3.1Overview 120
4.2.3.2MainFunctionalities 120
4.2.3.3SupportingModulesforPowerSystemComponents 123
4.2.4ThePostprocessor–TOP 125
4.2.4.1DataManagement 125
4.2.4.2DataDisplay 126
4.2.4.3DataProcessing 127
4.2.4.4DataFormatting 127
4.2.4.5GraphicalOutput 127
4.3Applications 128
4.4IllustrativeCaseStudies 129
4.4.1Introduction 129
4.4.2CaseStudy1:OptimumAllocationofCapacitorBanks 130
4.4.3CaseStudy2:ParallelResonanceBetweenTransmissionLines 132
4.4.4CaseStudy3:SelectionofSurgeArresters 133
4.5Remarks 136
References 136 ToProbeFurther 138
5IntroductiontotheSimulationofElectromagneticTransientsUsingATP 139
JuanA.Martinez-VelascoandFranciscoGonzález-Molin
5.1Introduction 139
5.2InputDataFileUsingATPFormats 140
5.3SomeImportantIssues 142
5.3.1BeforeSimulatingtheTestCase 142
5.3.1.1SettingUpaSystemModel 142
5.3.1.2TopologyRequirements 142
5.3.1.3SelectionoftheTime-StepSizeandtheSimulationTime 143
5.3.1.4Units 143
5.3.1.5OutputSelection 144
5.3.2AfterSimulatingtheTestCase 144
5.3.2.1VerifyingtheResults 144
5.3.2.2DebuggingSuggestions 144
5.4IntroductoryCases.LinearCircuits 145
5.4.1TheSeriesandParallelRLCCircuits 145
5.4.2TheSeriesRLCCircuit:EnergizationTransient 145
5.4.2.1TheoreticalAnalysis 145
5.4.2.2ATPImplementation 147
5.4.2.3SimulationResults 148
5.4.3TheParallelRLCCircuit:De-energizationTransient 150
5.4.3.1TheoreticalAnalysis 150
5.4.3.2ATPImplementation 152
5.4.3.3SimulationResults 153
5.5SwitchingofCapacitiveCurrents 155
5.5.1Introduction 155
5.5.2SwitchingTransientsinSimpleCapacitiveCircuits–DCSupply 155
5.5.2.1EnergizationofaCapacitorBank 155
5.5.2.2EnergizationofaBack-to-BackCapacitorBank 157
5.5.3SwitchingTransientsinSimpleCapacitiveCircuits–ACSupply 159
5.5.3.1EnergizationofaCapacitorBank 159
5.5.3.2EnergizationofaBack-to-BackCapacitorBank 160
5.5.3.3ReclosingintoTrappedCharge 162
5.5.4DischargeofaCapacitorBank 164
5.6SwitchingofInductiveCurrents 168
5.6.1Introduction 168
5.6.2SwitchingofInductiveCurrentsinLinearCircuits 168
5.6.2.1InterruptionofInductiveCurrents 168
5.6.2.2VoltageEscalationDuringtheInterruptionofInductiveCurrents 170
5.6.2.3CurrentChopping 172
5.6.2.4MakingofInductiveCurrents 175
5.6.3SwitchingofInductiveCurrentsinNonlinearCircuits 176
5.6.4TransientsinNonlinearReactances 178
5.6.4.1InterruptionofanInductiveCurrent 180
5.6.4.2EnergizationofaNonlinearReactance 181
5.6.5Ferroresonance 184
5.7TransientAnalysisofCircuitswithDistributedParameters 187
5.7.1Introduction 187
5.7.2TransientsinLinearCircuitswithDistributed-ParameterComponents 187
5.7.2.1EnergizationofLinesandCables 187
5.7.2.2TransientRecoveryVoltageDuringFaultClearing 191
5.7.3TransientsinNonlinearCircuitswithDistributed-ParameterComponents 195
5.7.3.1SurgeArresterProtection 195
5.7.3.2ProtectionAgainstLightningOvervoltagesUsingSurgeArresters 196
References 201
Acknowledgement 202
ToProbeFurther 202
6CalculationofPowerSystemOvervoltages 203
JuanA.Martinez-VelascoandFerleyCastro-Aranda
6.1Introduction 203
6.2PowerSystemOvervoltages:CausesandCharacterization 204
6.3ModellingforSimulationofPowerSystemOvervoltages 206
6.3.1Introduction 206
6.3.2ModellingGuidelinesforTemporaryOvervoltages 207
6.3.3ModellingGuidelinesforSlow-FrontOvervoltages 208
6.3.3.1LinesandCables 208
6.3.3.2Transformers 208
6.3.3.3Switchgear 208
6.3.3.4CapacitorsandReactors 209
6.3.3.5SurgeArresters 209
6.3.3.6Loads 210
6.3.3.7PowerSupply 210
6.3.4ModellingGuidelinesforFast-FrontOvervoltages 210
6.3.4.1OverheadTransmissionLines 210
6.3.4.2Substations 212
6.3.4.3SurgeArresters 213
6.3.4.4Sources 214
6.3.5ModellingGuidelinesforVeryFast-FrontOvervoltagesinGasInsulated Substations 214
6.4ATPCapabilitiesforPowerSystemOvervoltageStudies 216
6.5CaseStudies 216
6.5.1Introduction 216
6.5.2Low-FrequencyOvervoltages 216
6.5.2.1CaseStudy1:ResonanceBetweenParallelLines 217
6.5.2.2CaseStudy2:FerroresonanceinaDistributionSystem 219
6.5.3Slow-FrontOvervoltages 225
6.5.3.1CaseStudy3:TransmissionLineEnergization 227
6.5.3.2CaseStudy4:CapacitorBankSwitching 238
6.5.4Fast-FrontOvervoltages 243
6.5.4.1CaseStudy5:LightningPerformanceofanOverheadTransmissionLine 244
6.5.5VeryFast-FrontOvervoltages 261
6.5.5.1CaseStudy6:OriginofVeryFast-FrontTransientsinGIS 262
6.5.5.2CaseStudy7:PropagationofVeryFast-FrontTransientsinGIS 263
6.5.5.3CaseStudy8:VeryFast-FrontTransientsina765kVGIS 267 References 270 ToProbeFurther 274
7SimulationofRotatingMachineDynamics 275
JuanA.Martinez-Velasco
7.1Introduction 275
7.2RepresentationofRotatingMachinesinTransientsStudies 275
7.3ATPRotatingMachinesModels 276
7.3.1Background 276
7.3.2Built-inRotatingMachineModels 276
7.3.3RotatingMachineModelsforFastTransientsSimulation 278
7.4SolutionMethods 278
7.4.1Introduction 278
7.4.2Three-PhaseSynchronousMachineModel 278
7.4.3UniversalMachineModule 281
7.4.4WindSyn-BasedModels 284
7.5ProceduretoEditMachineDataInput 284
7.6CapabilitiesofRotatingMachineModels 285
7.7CaseStudies:Three-PhaseSynchronousMachine 287
7.7.1Overview 287
7.7.2CaseStudy1:Stand-AloneThree-PhaseSynchronousGenerator 288
7.7.3CaseStudy2:LoadRejection 288
7.7.4CaseStudy3:TransientStability 298
7.7.5CaseStudy4:SubsynchronousResonance 302
7.8CaseStudies:Three-PhaseInductionMachine 309
7.8.1Overview 309
7.8.2CaseStudy5:InductionMachineTest 310
7.8.3CaseStudy6:TransientResponseoftheInductionMachine 313
7.8.3.1FirstCase 314
7.8.3.2SecondCase 314
7.8.3.3ThirdCase 318
7.8.4CaseStudy7:SCIM-BasedWindPowerGeneration 323 References 328 ToProbeFurther 331
8PowerElectronicsApplications 333
JuanA.Martinez-VelascoandJacintoMartin-Arnedo
8.1Introduction 333
8.2ConverterModels 334
8.2.1SwitchingModels 334
8.2.2DynamicAverageModels 334
8.3PowerSemiconductorModels 335
8.3.1Introduction 335
8.3.2IdealDeviceModels 335
8.3.3MoreDetailedDeviceModels 335
8.3.4ApproximateModels 336
8.4SolutionMethodsforPowerElectronicsStudies 337
8.4.1Introduction 337
8.4.2Time-DomainTransientSolution 337
8.4.3Initialization 338
8.5ATPSimulationofPowerElectronicsSystems 338
8.5.1Introduction 338
8.5.2SwitchingDevices 339
8.5.2.1Built-inSemiconductorModels 339
8.5.2.2Custom-madeSemiconductorModels 340
8.5.3PowerElectronicsSystems 342
8.5.4PowerSystems 343
8.5.5ControlSystems 343
8.5.6RotatingMachines 344
8.5.6.1Built-inRotatingMachineModels 344
8.5.6.2Custom-madeRotatingMachineModels 344
8.5.7SimulationErrors 345
8.6PowerElectronicsApplicationsinTransmission,Distribution,Generationand StorageSystems 345
8.6.1Overview 345
8.6.2TransmissionSystems 346
8.6.3DistributionSystems 346
8.6.4DERSystems 347
8.7IntroductiontotheSimulationofPowerElectronicsSystems 349
8.7.1Overview 349
8.7.2One-SwitchCaseStudies 350
8.7.3Two-SwitchesCaseStudies 351
8.7.4ApplicationoftheGIFURequest 355
8.7.5SimulationofPowerElectronicsConverters 361
8.7.5.1Single-phaseInverter 361
8.7.5.2Three-phaseLine-CommutatedDiodeBridgeRectifier 362
8.7.6Discussion 365
8.8CaseStudies 367
8.8.1Introduction 367
8.8.2CaseStudy1:Three-phaseControlledRectifier 367
8.8.3CaseStudy2:Three-phaseAdjustableSpeedACDrive 369
8.8.4CaseStudy3:Digitally-controlledStaticVARCompensator 373
8.8.4.1TestSystem 375
8.8.4.2ControlStrategy 375
8.8.5CaseStudy4:UnifiedPowerFlowController 382
8.8.5.1Configuration 382
8.8.5.2Control 382
8.8.5.3Modelling 384
8.8.5.4ATPDrawImplementation 385
8.8.5.5SimulationResults 385
8.8.6CaseStudy5:SolidStateTransformer 386
8.8.6.1Introduction 386
8.8.6.2SSTConfiguration 388
8.8.6.3ControlStrategies 388
8.8.6.4TestSystemandModellingGuidelines 393
8.8.6.5CaseStudies 396
Acknowledgement 399
References 399
ToProbeFurther 404
9CreationofLibraries 405
JuanA.MartinezVelascoandJacintoMartin-Arnedo
9.1Introduction 405
9.2CreationofCustom-MadeModules 406
9.2.1Introduction 406
9.2.2ApplicationofDATABASEMODULE 406
9.2.3ApplicationofMODELS 411
9.2.4TheGroupOption 417
9.3ApplicationoftheATPtoPowerQualityStudies 419
9.3.1Introduction 419
9.3.2PowerQualityIssues 419
9.3.3SimulationofPowerQualityProblems 422
9.3.4PowerQualityStudies 423
9.4Custom-MadeModulesforPowerQualityStudies 426
9.5CaseStudies 426
9.5.1Overview 426
9.5.2HarmonicsAnalysis 426
9.5.2.1CaseStudy1:GenerationofHarmonicWaveforms 428
9.5.2.2CaseStudy2:HarmonicResonance 431
9.5.2.3CaseStudy3:HarmonicFrequencyScan 434
9.5.2.4CaseStudy4:CompensationofHarmonicCurrents 441
9.5.3VoltageDipStudiesinDistributionSystems 447
9.5.3.1Overview 447
9.5.3.2CaseStudy5:VoltageDipMeasurement 449
9.5.3.3CaseStudy6:VoltageDipCharacterization 454
9.5.3.4CaseStudy7:VoltageDipMitigation 462 References 466
ToProbeFurther 470
10ProtectionSystems 471
JuanA.Martinez-VelascoandJacintoMartin-Arnedo
10.1Introduction 471
10.2ModellingGuidelinesforProtectionStudies 472
10.2.1LineandCableModels 472
10.2.1.1ModelsforSteady-StateStudies 473
10.2.1.2ModelsforTransientStudies 473
10.2.2TransformerModels 473
10.2.2.1Low-frequencyTransformerModels 474
10.2.2.2High-frequencyTransformerModels 475
10.2.3SourceModels 475
10.2.4CircuitBreakerModels 475
10.3ModelsofInstrumentTransformers 476
10.3.1Introduction 476
10.3.2CurrentTransformers 476
10.3.3CouplingCapacitorVoltageTransformers 478
10.3.4VoltageTransformers 479
10.3.5CaseStudies 480
10.3.5.1CaseStudy1:CurrentTransformerTest 480
10.3.5.2CaseStudy2:CouplingCapacitorVoltageTransformerTest 482
10.3.6Discussion 484
10.4RelayModelling 484
10.4.1Introduction 484
10.4.2ClassificationofRelayModels 485
10.4.3ImplementationofRelayModels 486
10.4.4ApplicationsofRelayModels 488
10.4.5TestingandValidationofRelayModels 488
10.4.6AccuracyandLimitationsofRelayModels 490
10.4.7CaseStudies 490
10.4.7.1Overview 490
10.4.7.2CaseStudy3:SimulationofanElectromechanicalDistanceRelay 491
10.4.7.3CaseStudy4:SimulationofaNumericalDistanceRelay 497
10.5ProtectionofDistributionSystems 508
10.5.1Introduction 508
10.5.2ProtectionofDistributionSystemswithDistributedGeneration 508
10.5.2.1DistributionFeederProtection 508
10.5.2.2InterconnectionProtection 508
10.5.3ModellingofDistributionFeederProtectiveDevices 509
10.5.3.1CircuitBreakers–OvercurrentRelays 509
10.5.3.2Reclosers 511
10.5.3.3Fuses 511
10.5.3.4Sectionalizers 512
10.5.4ProtectionoftheInterconnectionofDistributedGenerators 513
10.5.5CaseStudies 514
10.5.5.1CaseStudy5:TestingtheModels 514
10.5.5.2CaseStudy6:CoordinationBetweenProtectiveDevices 524
10.5.5.3CaseStudy7:ProtectionofDistributedGeneration 525
10.6Discussion 531
Acknowledgement 533
References 533
ToProbeFurther 537
11ATPApplicationsUsingaParallelComputingEnvironment 539
JavierA.Corea-Araujo,GerardoGuerraandJuanA.Martinez-Velasco 11.1Introduction 539
11.2BifurcationDiagramsforFerroresonanceCharacterization 540
11.2.1Introduction 540
11.2.2CharacterizationofFerroresonance 540
11.2.3ModellingGuidelinesforFerroresonanceAnalysis 541
11.2.4GenerationofBifurcationDiagrams 541
11.2.5ParametricAnalysisUsingaMulticoreEnvironment 542
11.2.6CaseStudies 544
11.2.6.1Case1:AnIllustrativeExample 544
11.2.6.2Case2:FerroresonantBehaviourofaVoltageTransformer 545
11.2.6.3Case3:FerroresonanceinaFive-LeggedCoreTransformer 545
11.2.7Discussion 550
11.3LightningPerformanceAnalysisofTransmissionLines 550
11.3.1Introduction 550
11.3.2LightningStrokeCharacterization 551
11.3.3ModellingforLightningOvervoltageCalculations 552
11.3.4ImplementationoftheMonteCarloProcedureUsingParallelComputing 554
11.3.5IllustrativeExample 555
11.3.5.1TestLine 555
11.3.5.2LineandLightningStrokeParameters 555
11.3.5.3SimulationResults 559
11.3.6Discussion 562
11.4OptimumDesignofaHybridHVDCCircuitBreaker 563
11.4.1Introduction 563
11.4.2DesignandOperationoftheHybridHVDCCircuitBreaker 563
11.4.3ATPImplementationoftheHybridHVDCCircuitBreaker 565
11.4.4TestSystem 566
11.4.5TransientResponseoftheHybridCircuitBreaker 567
11.4.6ImplementationofaParallelGeneticAlgorithm 568
11.4.7SimulationResults 570
11.4.8Discussion 574
Acknowledgement 575
References 575
ACharacteristicsoftheMulticoreInstallation 579
BTestSystemParametersforFerroresonanceStudies 579
ToProbeFurther 580
Index 581
AbouttheEditor
JuanA.Martinez-VelascowasborninBarcelona,Spain.HereceivedtheIngenieroIndustrial andDoctorIngenieroIndustrialdegreesfromtheUniversitatPolitècnicadeCatalunya(UPC), Spain.Heisretiredandworkingasprivateconsultant.
Hehasauthoredandco-authoredmorethan200journalandconferencepapers,mostof themonTransientAnalysisofPowerSystems.HehasbeeninvolvedinseveralEMTP(ElectroMagneticTransientsProgram)coursesandworkedasconsultantforsomeSpanishcompanies. HisteachingandresearchareascoverPowerSystemsAnalysis,TransmissionandDistribution, PowerQualityandElectromagneticTransients.HehasbeenanactivememberofseveralIEEE andCIGREWorkingGroups.
Hehasbeeninvolvedaseditororco-authorinseveralbooks.HeisalsocoeditoroftheIEEE publication‘ModelingandAnalysisofSystemTransientsUsingDigitalPrograms’(1999).In 2010,hewasthecoordinatoroftheTutorialCourse‘TransientAnalysisofPowerSystems.SolutionTechniques,Tools,andApplications’,givenatthe2010IEEEPESGeneralMeeting,July 2010andheldinMinneapolis.
In1999,hewasgiventhe‘1999PESWorkingGroupAwardforTechnicalReport’,forhis participationinthetasksperformedbytheIEEETaskForceonModelingandAnalysisofSlow Transients.In2000,hewasgiventhe‘2000PESWorkingGroupAwardforTechnicalReport’, forhisparticipationintheeditionofthespecialpublication‘ModelingandAnalysisofSystemTransientsusingDigitalPrograms’.In2009hewasalsogiventhe‘TechnicalCommittee WorkingGroupAward’oftheIEEEPESTransmissionandDistributionCommittee.
ListofContributors
FerleyCastro-Aranda UniversidaddelValle,LaboratoriodeAlta Tensión Cali,Colombia
JavierA.Corea-Araujo Applus+ IDIADA SantaOliva,Spain
FranciscoGonzález-Molina UniversitatRoviraiVirgili,Depto.de IngenieríaElectrónica,Eléctricay Automática Tarragona,Spain
GerardoGuerra DNVGL Barcelona,Spain
JacintoMartín-Arnedo EstabanellyPahisaEnergia, Granollers,Spain
JuanA.Martinez-Velasco Retired–FormerlywithUniversitat PolitecnicadeCatalunya Barcelona,Spain
Preface
Thetransientanalysisisanimportanttaskforpowersystemanalysisanddesign.Severalsimulationtoolsarecurrentlyavailableforthispurpose.OneofthemostpopularistheAlternative TransientsProgram(ATP).
TheATPisaroyalty-freepackageintegratedbyatleastthreetools:(i)ATPDraw,agraphicaluserinterface(GUI)forcreatingand/oreditinginputfiles;(ii)TPBIG,themainprocessorfortransientsandharmonicssimulations;and(iii)onepostprocessorforplottingsimulationresults.Actually,ATPuserscanalsotakeadvantageofseveralothertools,andcreatea custom-madeenvironmentwithlinkstootherpackages.
TheacronymATPwasoriginallyusedtonamethetoolfortransientssimulation.Formany users,ATPisstillthesimulationtool;inthisbook,ATPisusedtonameindistinctlythepackage orthetransientssimulationtool,whileTPBIGisusedtoname(whenused)thesimulationtool. ATPDrawisaninteractiveWindows-basedGUIthatcanactasashellforthewholepackage; thatis,userscancontroltheexecutionofallprogramsintegratedinthepackagefromATPDraw. Severalroyalty-freetoolswithdifferentcapabilitiesarecurrentlyavailableforpostproccesing simulationresults.
ATPuserscantakeadvantageofseveralbooksforimprovingtheirknowledgeontransient analysisandtheapplicationofthistool.Althoughthisnewbookcoverstopicsalreadycoveredbyformerlyreleasedbooks,theoverlappingwithallofthemisrathersmall;themain differencesareintheorganisationofthebookandthecasestudiesthatillustratepotentialATP applications.
Actually,somereadersmightmisssomeequationsandmathematicalartefactsneededto detailanddescribetheperformanceofpowercomponentsandsystems.Thisaspecthasbeen sacrificedtogiveroomtomorepracticalaspects.Readersarereferredtootherbooksthatsatisfactorilycoverthispartofthetransientanalysis.
Itisimportanttoemphasizethat,althoughthecontentsofthebookhonouritstitle,thebook cannotbeusedasaReferenceManualorRuleBook.Inotherwords,readerswillnotlearnhow tousethepackagewiththisbook;forthatpurpose,theyshouldusetheso-calledATPRule Book,andthemanualsofthecomplementarytools(e.g.ATPDrawandtheselectedplotting program).
Themaingoalofthisbookistoprovideaclearscopeofthestudiesthatcanbecarriedout withtheATPpackage.Althoughsomecomplexstudiesandsophisticatedcustom-madesimulationenvironments(withATPasasimulationtool)arepresented,theaveragelevelofthe casesstudiedhereisintermediate;agreatmajorityofstudiesarerelatedtosmallandmedium testsystems.However,thebookcouldalsobeusefulforbeginners;Chapter5hasbeenwritten withthatpurpose.
Thechaptersofthisbookcanbeclassifiedintotwogroups;thefirstfourchaptersarededicatedtointroducethetransientanalysisofpowersystemsanddetailATPcapabilities;therestof
thebookisdedicatedtointroducesomeofthemostcommonapplicationsoftheATPpackage withalargeenoughnumberofcasestudies.
AveryimportantaspectisthecomplementarycollectionofdatafilesavailabletoATPusers fromthewebsiteofthisbook.Foreverycasestudypresentedinthebook,readerswillfindone orseveraldatafiles.WhenATPDrawcapabilitiescansatisfactorilycreateandeditadatafile, thisoptionhasbeenused;however,thereareafewcasesforwhichthosecapabilitiescannotbe used,thenthefilehasbeenmanuallyeditedusingasimpletexteditorandtakingintoaccount theformatsdetailedintheRuleBook.ThisisaveryimportantaspectaboutwhichATPusers shouldbeaware:soonerorlatersomeknowledgeofATPformatswillberequired,mainlyfor thoseinterestedindevelopingtheirowncustom-mademodels.
Inaddition,itisworthmentioningthatalthoughthisbookusesthemostimportantcapabilitiesimplementedinthesimulationtool(eithernamedasATPorTPBIG),therearedozensof ATPoptionsandrequeststhatarenotcoveredorappliedhere.Therequiredlengthforillustratingthosemissedoptionscouldeasilydoubleortriplethatofthisbook.
Itisalsoworthmentioningthatthetoolsofthepackagearecontinuouslyupdated.Thisis importantbecause,duringthepreparationofthisbook,modelsandcapabilitieswereeither addedormodified.Notallofthesemodels/capabilitieshavebeencoveredinthisbook.
Asfortheapplications,IamawarethatsomethatareofconcernformanyATPusershavenot beenincludedinthisbook.Forinstance,verylittleissaidaboutdistributedenergyresources. Thisis,withoutanydoubt,averyimportantaspect;however,althoughmorethanonehundred datafilesareprovidedwiththebook,asimilarreasoningcouldbemadeevenforapplications thatarecoveredinthebook:sometopicscouldneedmorecasestudiesforabetterunderstanding.Attheend,someselectionhadtobemade.
Althoughallthedatefilesusedinthisbookhavebeenimplementedbythecontributors, severalcasestudiesarebasedonmodelsandparametersprovidedbyotherauthors.Ingeneral, areferencetotheoriginalsourceismadeinthechapterorintheAcknowledgement.Someof thecasestudies,eveniftheyarenowimplementedinATPDraw,wereinitiallydevelopedwhen thisGUIwasnotyetreleased.Thismeansthatthosecasestudiesareratherold.Sincethetrace totheoriginalsourcewasneitherclearnoravailableforallcases,Iapologizeifourgratitudeto someauthorsisnotmentionedinanypartofthisbook.
Finally,IwanttothankDr.W.ScottMeyerandallthosewhobecameinvolvedinthedevelopmentofanyofpackagetoolsfortheirworkandeffort,withoutwhichthisbookwouldhave notbeenpublished.
Barcelona,Spain February2019
JuanA.Martinez-Velasco
IntroductiontoTransientsAnalysisofPowerSystemswithATP
JuanA.Martinez-Velasco
1.1Overview
Transientanalysishasbecomeafundamentalmethodologyforunderstandingtheperformance ofpowersystems,determiningpowercomponentratings,explainingequipmentfailures,or testingprotectiondevices.Thestudyoftransientsisamaturefieldthatcanhelptoanalyse anddesignmodernpowersystems.
Asignificantefforthasbeendedicatedtothedevelopmentofnewtechniquesandsoftware toolsadequatefortransientanalysisofpowersystems.Sophisticatedmodels,complexsolutiontechniques,andpowerfulsimulationtoolshavebeendevelopedtoperformstudiesthat areofparamountimportanceintheanalysisanddesignofmodernpowersystems.Current toolsfortransientanalysiscanbeappliedintoamyriadofstudies(e.g.overvoltagecalculation, flexibleACtransmissionsystems(FACTS)andCustomPowerapplications,protectiverelay performance,powerqualitystudies)forwhichdetailedmodelsandaccuratesolutionscanbe crucial.
Transientphenomenainpowersystemsareassociatedwithdisturbancescausedbyfaults, switchingoperations,lightningstrikes,orloadvariations.Thesephenomenacanstress anddamagepowerequipment.Theimportanceoftheirstudyisbasicallyduetotheeffects theycanhaveonthesystemperformanceorthefailurestheycancausetopowerequipment. Therefore,protectionagainstthesestressesisnecessary.Thisprotectioncanbeprovided byspecializedequipmentwhoseoperationisaimedateitherisolatingthepowersystem sectionwherethedisturbancehasbeenoriginated(e.g.apowercomponentfailurethatcauses short-circuit)orlimitingthestressacrosspowerequipmentterminals(e.g.byinstallingasurge arresterthatwillmitigatevoltagestresses).Inaddition,abetterperformanceagainststresses causedbytransientphenomenacanbealsoachievedwithanadequatedesignofpowerequipment(e.g.byshieldingoverheadtransmissionlinestolimitflashoverscausedbydirectlightning strokes).Thatis,althoughthepowersystemoperatesmostofthetimeundernormalconditions, itmustbedesignedtocopewiththeconsequencesassociatedtotransientphenomena.
Arigorousandaccurateanalysisoftransientsinpowersystemsisdifficultduetothesize ofthesystem,thecomplexityoftheinteractionbetweenpowerdevices,andthephysical phenomenathatneedtobeanalysed.Aspectsthatcontributetothiscomplexityarethevariety ofcauses,thenatureofthephysicalphenomena,andthetimescaleofpowersystemtransients. Inordertoselectanadequateprotectionagainstanytypeofstress,itisfundamentaltoknow theirorigin,calculatetheirmaincharacteristics,andestimatethemostadverseconditions. Disturbancescanbeexternal(lightningstrokes)orinternal(faults,switchingoperations,load variations).Powersystemtransientscanbeelectromagnetic,whenitisnecessarytoanalyse theinteractionbetweenthe(electric)energystoredincapacitorsandthe(magnetic)energy TransientAnalysisofPowerSystems:APracticalApproach, FirstEdition.EditedbyJuanA.Martinez-Velasco. ©2020JohnWiley&SonsLtd.Published2020byJohnWiley&SonsLtd. CompanionWebsite:www.wiley.com/go/martinez/power_systems
storedininductors,orelectromechanical,whentheanalysisinvolvestheinteractionbetween theenergysuppliedbysources,theelectricenergystoredincircuitelements,andthemechanicalenergystoredinrotatingmachines.Toaccuratelyanalysephysicalphenomenaassociated withtransients,itisnecessarytoexaminethepowersystemforatimeintervalasshortasafew nanosecondsoraslongasseveralminutes.Thisisachallengesincethebehaviourofpower equipmentisverydependentonthetransientphenomena;namely,itdependsontherange offrequenciesassociatedtotransients.Despitethepowerfulnumericaltechniques,simulation tools,andgraphicaluserinterfaces(GUIs)currentlyavailable,thoseinvolvedintransients studies,soonerorlater,facelimitationsofthosemodelsavailableintransientspackages, thelackofreliabledataandconversionproceduresforparameterestimation,orinsufficient studiesaimedatvalidatingmodels.
Figure1.1depictsthestepsofatypicalprocedurewhensimulatingtransientsinpower systems[1].
1. Theselectionofthestudyzoneandthemostadequaterepresentationofeachcomponent involvedinthetransient .Thesystemzoneisselectedtakingintoaccountthefrequencyrange ofthetransientstobesimulated:thehigherthefrequencies,thesmallerthezonemodelled. Ingeneral,itisadvisabletominimizethestudyzonesincealargernumberofcomponents doesnotnecessarilyincreaseaccuracy;insteaditwillincreasethesimulationtimeandthere willbeahigherprobabilityofinsufficientorincorrectmodelling.Althoughahighnumber ofworkshasbeendedicatedtoprovideguidelinesontheseaspects[2–4],someexpertiseis necessarytochoosethestudyzoneandthemodels.
Casestudy Applyingmodeling guidelines
Collectinginformation andapplyingdata conversionprocedures
Usingsoftwaretool (GUI)
Usingsoftwaretoolto obtainresults
PowerSystem
System Model-1
Selectingthestudyzone andtherepresentationof powercomponents
Determiningpower componentparameters PowerSystemModel-2
Creatingtheinputfileof thetestsystem
Simulatingthetest system
Figure1.1 Simulationoftransientsinpowersystems[1].
2. Theestimationofparameterstobespecifiedinthemathematicalmodels.Oncethe mathematicalmodelhasbeenselected,itisnecessarytocollecttheinformationthat couldbeusefultoobtainthevaluesofparameterstobespecified.Detailsaboutparameter determinationofsomepowercomponentswerepresentedin[5].Asensitivitystudyshould becarriedoutifoneorseveralparameterscannotbeaccuratelydetermined.Resultsderived fromsuchstudywillshowwhichparametersareofconcern.
3. Theapplicationofasimulationtool .Thesteadilyincreasingcapabilitiesofhardware andsoftwaretoolshaveledtothedevelopmentofpowerfulsimulationtoolsthatcancope withlargeandcomplexpowersystems.Modernsoftwarefortransientanalysisincorporates friendlyGUIsthatcanbeveryusefulwhencreatingtheinputfileofthetestsystem model.
4. Theanalysisofresults.Simulationofelectromagnetictransientscanbeused,amongothers, fordeterminingcomponentratings(e.g.insulationlevelsorenergyabsorptioncapabilities),testingcontrolandprotectionsystems,validatingpowercomponentrepresentations orunderstandingequipmentfailures.Adeepanalysisofsimulationresultsisanimportant aspectoftheentireproceduresinceeachofthesestudiesmayinvolveaniterativeprocedure inwhichmodelsandparametersvaluesmustbeadjusted.
Readersinterestedintransientsanalysiscanconsultspecializedliterature[3,6–18].
1.2TheATPPackage
ATPisanacronymthatstandsforAlternativeTransientsProgram[19].TheATPpackageis integratedbyatleastthreetools:(i)ATPDraw,aGUIforcreating/editinginputfiles[20,21]; (ii)TPBIG,themainprocessorfortransientsandharmonicssimulations;(iii)onepostprocessorforplottingsimulationresults.Actually,ATPuserscanalsotakeadvantageofothertools (e.g.ATPControlCenterandATPDesigner[22]whichcanbeusedasacontrolcenterforthe entirepackage)oraddothertoolsthatcanbeusefulforsomespecifictasks.
ATPDrawisaninteractiveWindows-basedprogramthatcanactasashellforthewhole package;thatis,userscancontroltheexecutionofallmodulesintegratedinthepackagefrom ATPDraw.Asforthepostprocessor,severaltoolshavebeendevelopedtoobtaingraphical results(e.g.PCPlot,TPPLOT,GTPPLOT,TOP,PlotXY,ATPAnalyzer),anditispossibletorun mostofthemfromATPDraw.ThemostpopularpostprocessoramongATPusersisPlotXY, developedbyMaximoCeraolo(UniversityofPisa,Italy)[23].TOP(TheOutputProgram),a royalty-freetoolcreatedbyElectrotekConcepts,isthepostprocessorusedwithmostofthe casestudiespresentedinthisbook[24].
TheacronymATPwasinitiallyusedtodenotethetransientssimulationtoolherenamed TPBIG.Presently,manyusersuseATPtoindistinctlynameeitherthetransientssimulation toolortheentirepackage.
ATPwasoriginallydevelopedforsimulationofelectromagnetictransientsinpowersystems.However,thepackagecanalsobeusedtoperformACsteady-statecalculationsand simulateelectromechanicaltransients(e.g.subsynchronousresonance,ACdrives).Solution methodstosolvesystemswithnonlinearcomponentshavealsobeenimplemented[9,19]. ATPcanrepresentcontrolsystemsandinterfacethemwithanelectricnetwork.Finally,several non-simulationsupportingroutinesarealsoavailabletocreatemodeldatafiles;thesesupportingroutinescanbeusedforcomputingparametersandcreatingmodelsoflines,cables, andtransformers.Figure1.2showsaschematicdiagramoftheconnectivitybetweensimulationcapabilities,supportingroutines,externalprograms,andalltypesoffiles.Amoredetailed descriptionofATPDrawandTPBIGcapabilitiesisprovidedinChapter4.
Time-and Frequency-Domain Simulations
Figure1.2 ATPsimulationmodules,supportingroutines,andfiles.
TheapplicationsthatcanbecoveredbytheATPcanbeclassifiedasfollows:
• Time-domainsimulations.Theyaregenerallyusedforsimulationoftransients,suchas switchingorlightningovervoltages;however,theycanalsobeusedforanalysingharmonic distortioncreatedbypowerelectronicsdevices.
• Frequency-domainsimulations.ATPcapabilitiescanalsobeusedtoobtainthedrivingpoint impedanceataparticularnodeversusfrequency,detectresonanceconditions,designfilter banks,oranalyseharmonicpropagation.
• Parametricstudies.Theyareusuallycarriedouttoevaluatetherelationshipbetweenvariablesandparameters.Whenoneormoreparametercannotbeaccuratelyspecified,this analysiswilldeterminetherangeofvalueswhichmaybeofconcern.
• Statisticalstudies.SeveralATPcapabilitiescanbeappliedtoperformthesestudies(e.g.studiesbasedontheMonteCarlomethod).Theirresultscanbeofparamountimportanceinsome insulationcoordinationandpowerqualitystudies.
ATPcapabilitiescanalsobeusedtoexpandthefieldsofapplications;withthistooladata casecanbesimulatedseveraltimesbeforedeactivatingtheprogram,parametersofthesystem undersimulationcanbechangedaccordingtoagivenlaw,somecomponentscanbeeither disconnectedoractivated,andsomecalculationscanbecarriedoutbyexternalprograms.In addition,itispossible,ifrequired,tomodifythesimulationtimeonlineorthenumberofruns inaparametricstudy.
Thefollowingconceptscanbeofparamountimportanceforexpandingtheapplicationsof ATP:
• Multiplerunoption.Adatacasecanbesimulatedasmanytimesasnecessary,whilechanges areintroducedintothesystemmodelateveryrun.ThisoptionisknownasPOCKET CALCULATORVARIESPARAMETERS(PCVP);seetheATPRuleBook[19].Suchan optioncanbeusedtoperformstatisticalandparametricstudies.However,itcanalsobe usedinmanyotherapplications.Forinstance,oncethetargetofthestudyhasbeenset, PCVPcanbeusedtorunthecaseasmanytimesasrequiredwhileoneorseveralparameters aregraduallyadjustedorthesystemtopologyismodifieduntilthetargetisreached.
• Opensystem.Alinktoexternaltoolscanbeestablishedbefore,duringandafterasimulationtotakeadvantageofthecapabilitiesofthesetoolsandtoaddortestnewcapabilities. Thisoptioncanbeused,forinstance,tolinktheATPtoMATLABandtakeadvantageof itsfeatures,ortorunacustom-madeprogramthatcanderivetheparametersofapower componentusingadataconversionprocedurenotyetimplementedinthepackage.
• Datasymbolreplacement .$PARAMETERisadeclarationthatcanbeusedtoreplacedata symbolsofarbitrarylengthpriortoasimulation[19].Uptothreereplacementmodescan beused:simplecharacterreplacement(onestringisreplacedbyanotherwiththesame length),mathematicalreplacement(stringisreplacedbyanumberdeducedfromamathematicalformula),integerserialization(usedtoencodestringswithinaDOloop).Conditional branching(IF-THEN-ENDIF)isabuilt-infeaturethatcanbeusedtoselectbetweentwoor morechoices.
• Datamodule.ATP-codedtemplateshavebeenusedinthepastforthedevelopmentof datamodulesthatcouldfacilitatetheuseofthetoolbybeginners,ortosimplifytheuse ofpowercomponentsandextendmodellingcapabilitiestomorecomplexequipment[5]. Presently,custom-mademodelsarerepresentedbyamoduleanditsassociatedATPDraw icon.AlthoughthedevelopmentofnewmodulesgenerallyreliesontheroutineDATABASE MODULE,otherATPcapabilitiescanbeusedtoperformsimplecalculationswithmodule arguments,todecidewhatpartsofamodulecanbeactivatedatagivenrun,orwhatparts shouldremainsleeping.Theso-calledType94componentcouldbethebestsolutionfor developingsomenonlinearcomponents.
• Interactivity.Severalsimulationmoduleswillusuallybeinvolvedinageneralprocedure. Interactivitybetweenthemiscriticalascalculationswillbeperformedinseveralmodules. Theconnectivitybetweenapowersystemandacontrolsectiontopassvariablesinboth senseshasbeenafeaturesincetheearliestdevelopmentofcontrolcapabilities.However,it hasbeenthepossibilityofpassingalsoparameterswhathasaddedflexibilitytosomeofthe capabilitiesdescribedaboveandincreasedthetypeofapplications.
Actually,thetypeoftasksthattheATPpackagecancarryoutispracticallyunlimited. Forinstance,byusingsomesimplerulesandtakingadvantageofsomecapabilities(e.g.TO SUPPORTINGPROGRAMfeaturetorunsupportingroutines,DOloopstoserializepower components,stringreplacement),itispossibletodevelopadatasectionaimedatcreating thecodeofacomponenttakingintoaccountthetransientprocesstobesimulatedandthe informationavailable.
1.3ATPDocumentation
Thefollowingmaterialwillbeofhelpwhenusinganyofthebasictoolsthatconstitutethe package.
• Theso-called EMTPTheoryBook ,writtenbyH.W.Dommel[9],shouldbeusedbythose interestedinmodelsandsolutiontechniquesimplementedinTPBIG.Althoughthebook needstobeupdated,itisstillaveryvaluablesourceofinformationforusersofanytransients tool.
• Therulestobefollowedforcreatinganinputdatafilearepresentedinthe ATPRuleBook [19].AlthoughtheaverageuserwillcreateandruninputdatafilesbyrelyingonlyontheGUI ATPDraw,therearemanysituationsforwhichtheRuleBookwillbeanecessaryresource. ExampleswhereauserwillneedtoconsulttheRuleBookarethosecasestudiesinwhichthe controlsectionisbasedonMODELSlanguage(seeChapter4)orthoseapplicationsforwhich custom-mademodelsbasedonDATABASEMODULEmightberequired(seeChapter9).
• ATPDrawiscurrentlythegateusedbymostATPusersforcreatingandrunningcasestudies. Althoughbasedonafriendlyenvironmentandeasytouse,ATPDrawhasmanycapabilities andnotallofthemareobvious;the ATPDrawReferenceManual canbethenavaluablesource forconsultation[20,21].
Ingeneral,postprocessingtools(e.g.PlotXY,TOP)areeasytouseandthehelpcapabilities availableinmostofthemareclearenough.
1.4ScopeoftheBook
Thisbookprovidesabasicbackgroundonthemainaspectstobeconsideredwhenperforming transientsstudieswithATPandascopeofthepackageapplications.Thechaptersarededicatedto
• summarizingmodellingguidelinesintransientsimulationsandthemostbasicsolutiontechniquesimplementedinATP;
• coveringthemainapplicationfieldsofATP(overvoltagecalculation,rotatingmachine dynamics,protectionofpowersystems,powerelectronicsapplications,powerquality studies);
• describingtheprocedureandselecttheATPcapabilitiesthatcanbeusedforbuilding custom-mademodels;
• providingsomeinsightsabouttheconstructionofsimulationenvironmentsinwhichATPis thetooldedicatedtocarryouttransientcalculations.
Themantopicscoveredbyeachchapteraresummarizedinthefollowingparagraphs.
Modellingofpowercomponents.Therepresentationofpowercomponentsfortransientsstudiesdependsofthephenomenatobeanalysed(i.e.thecause,therangeoffrequencieswith whichthetransientoccurs,thecomponentsinvolvedinthetransient).Chapter2provides asummaryoftheguidelinestobefollowedwhenrepresentingsomeofthemostimportant powercomponentsinatransientstudy.Modellingguidelineswillalsobeprovidedinother chapters,andsummarizedinmostofthecasestudiespresentedinthisbook.
Solutiontechniques.ATPisanoff-linecircuit-orientedsimulationtoolthatcanbeusedtosimulatetransientsinpowersystemsusingatime-domainsolutiontechnique[9].However,the steady-stateofthesystemunderstudy,priortothecalculationofatransientprocess,isusuallyrequired,anditscalculationisperformedinthefrequency-domain.Chapter3detailsthe solutiontechniquesimplementedinATPforsteady-stateandtransientsolutionsofpower andcontrolsystems.
ATPcapabilitiesandapplications.ATPcapabilitiescanbeusedtosimulatepowersystems, developcustom-mademodels,orcreatenewsimulationenvironments.Asalready mentioned,ATPcanbeappliednotonlyforsimulationofelectromagnetictransients
butalsotoanextensiverangeofstudies.Chapter4detailsthecapabilitiesandbuilt-in modelsavailableinATP.Thechapterwillincludeafewexamplestoillustratetherangeof applicationsofthepackage.
Introductiontothesimulationofpowersystemstransients.Chapter5presentsthesimulation ofsomesimplecasestudiesusingtheATPpackage.Thechaptersummarizestheprocedure tobefollowedwitheachmoduleoftheATPpackage;discussesthemodellingguidelinesto beapplied,andanalysestheresultsobtainedfromeachcasestudy.Theselectedexamples willillustratetheusageofelementarylinearandnonlinearcomponents,witheitherlumpedand/ordistributed-parametercomponents.
Calculationofovervoltagesinpowersystems.Anovervoltageisavoltagehavingacrestvalue exceedingthecorrespondingcrestofthemaximumsystemvoltage.Overvoltagescanoccur withaverywiderangeofwaveshapesanddurations.Causesandmaincharacteristicsofovervoltagesarewellknown,andtheyareclassifiedinstandards(IEC,IEEE).Forinstance,the magnitudeofexternallightningovervoltagesremainsessentiallyindependentofthesystem design,whereasthatofinternalswitchingovervoltagesincreaseswiththeoperatingvoltage ofthesystem.Theestimationofovervoltagemagnitudesandshapesisfundamentalforthe insulationdesignofpowercomponents,andfortheselectionofprotectivedevices[25,26]. Chapter6analysesthedifferenttypesofovervoltagesandtheircauses,summarizesmodellingguidelinesforovervoltagecalculationwithATP,andpresentssomeillustrativecasesof overvoltages.
Simulationofrotatingmachinedynamics.TwooptionsareavailableinATPforrepresenting conventionalrotatingmachines:theThree-PhaseSynchronousMachinemodelandthe so-calledUniversalMachinemodule[19].Todate,thesecapabilitieshavemostlybeen usedtosimulateonlythree-phasesynchronousandinductionmachines.However,the applicationsareendlessandasignificantexperienceisalreadyavailable.Chapter7providesa summaryofthefeaturesavailableinthetwooptions,summarizesthemethodsimplemented forinterfacingtherotatingmachinemodelstothepowersystem,andincludesseveral illustrativeexamplesthatwillcoversomeofthemostimportantapplicationsofATPinthe studyofrotatingmachinedynamics.
Simulationofpowerelectronicsdevices.Powerelectronicsapplicationshavequicklyspreadto allvoltagelevels,fromhigh-voltagetransmissiontolow-voltagecircuitsinend-userfacilities[27–29].Modellingandsimulationofpowerelectronicsdevicesareimportanttasksfor conceptvalidationanddesignofnewdevices.Chapter8providesgeneralmodellingguidelinesandproceduresforsimulationofpowerelectronicsdevicesusingATPcapabilities, andpresentsseveralcasestudiesthatwillcoversomeimportantapplications(FACTSand CustomPowerdevices,drives,solidstatetransformer)ofthepackageinthisfield.
Developmentofcustom-mademodelsandlibraries.Severalcomponentmodelsneededinsome studies(e.g.protection,powerquality)arenotavailableintheATP.However,manycapabilitiesofthepackagecanbeusedtodevelopcustom-mademodelsaimedatrepresenting missedcomponents.Chapter9showshowATPcapabilitiescanbeusedforthedevelopment ofalibraryofcomponentmodulesthatcanbecalledfromATPDrawasbuilt-inmodels[30]. Thechapterdetailsthestepstobemadeforthedevelopmentofalibraryofmodelsaimed atcarryingoutpowerqualitystudies.Powerqualityisamultidisciplinaryarearelatedtothe assessment,analysis,characterization,andquantificationofthemutualinteractionbetween theutilityanditscustomers(i.e.theinteractionequipmentandthepowersystem).Theconceptcanbeconsideredasacombinationofvoltageandcurrentquality,soitis,therefore, concernedwithdeviationsofvoltageandcurrentfromtheidealsingle-frequencysinewaves ofconstantamplitudeandfrequency.Powerqualitydisturbancescanbegenerallyclassified intwocategories:variations(smalldeviationsofvoltageand/orcurrentcharacteristicsfrom
theirnominalordeclaredvalue/waveform)andevents(largedeviationsofvoltageorcurrentcharacteristicsfromtheirnominalordeclaredvalues/waveforms)[31,32].Thechapter showshowtheATPcapabilitiescanbeusedtoanalysetheeffectofvoltagedips,assessdistortioncausedbyharmonicsources,andsimulatetechniquesformitigatingvoltagedipsand harmoniccurrents.
Protectionsystems.Protectionsystemsarecriticalcomponentsandtheirbehaviourisanimportantpartofthepowersystemresponsetoatransientevent.Asystemaimedatprotectingagainstovercurrentsconsistsofthreemajorparts:instrumenttransformers(current, woundelectromagneticvoltage,andcapacitorvoltagetransformers),protectiverelays,and circuitbreakers[33,34].Chapter10summarizesmodellingguidelinesforrepresentingthe powersystem,instrumenttransformersandthedifferenttypesofrelays(electromechanical,static/electronic,microprocessor-based)atbothtransmissionanddistributionlevels usingATPcapabilities.Thechapterincludessomecasestudiesthatillustratethepotential ofATPinthisfield,andtheapplicationofcustom-mademodelsdevelopedforrepresenting distribution-levelprotectivedevicesfollowingtheprocedureproposedinChapter9.
Advancedapplications.ATPuserscandevelopsimulationenvironmentsinwhichATPcapabilitiesarecombinedwithcapabilitiesfromothersimulationtools.Suchcombinationscan allowuserstocreatepowerfultoolsthatareabletosignificantlyexpandATPapplications. Chapter11proposesageneralprocedurebasedonaMATLAB-ATPlinkandtheusageofa multicoreenvironmenttoexpandATPapplicationsandreducesimulationtimes.Thechapter detailsthreedifferentcasestudiesthatshowhowATPcanalsobeusedasadesigntoolthat couldbeappliedtostudiesthatrequireadditionalcapabilities.
References
1 Martinez-Velasco,J.A.(ed.)(2015). TransientAnalysisofPowerSystems.Solution Techniques,ToolsandApplications.Chichester(UnitedKingdom):Wiley/IEEEPress.
2 CIGREWG33.02(1990). GuidelinesforRepresentationofNetworkElementswhenCalculatingTransients.CIGREBrochure39.
3 Gole,A.,Martinez-Velasco,J.A.andKeri,A.(eds.)(1998). ModelingandAnalysisofPower SystemTransientsUsingDigitalPrograms.IEEESpecialPublicationTP133,1–187.
4 IECTR60071-4(2004). InsulationCo-ordination-Part4:ComputationalGuidetoInsulationCo-ordinationandModelingofElectricalNetworks.
5 Martinez-Velasco,J.A.(ed.)(2009). PowerSystemTransients.ParameterDetermination.Boca Raton(FL,USA):CRCPress.
6 Phadke,A.G.(1980). DigitalSimulationofElectricalTransientPhenomena.IEEEPublication 81EHO173-5-PWR.
7 Tziouvaras,D.A.(1999). ElectromagneticTransientProgramApplicationstoPowerSystem Protection.IEEESpecialPublicationTP150,1–101.
8 Martinez-Velasco,J.A.(2011). TransientAnalysisofPowerSystems:SolutionsTechniques, ToolsandApplications.IEEESpecialPublication11TP255E,100–194.
9 Dommel,H.W.(1986). ElectromagneticTransientsProgramReferenceManual(EMTPTheory Book).Portland(OR,USA):BonnevillePowerAdministration.
10 Greenwood,A.(1991). ElectricalTransientsinPowerSystems,2e.NewYork(NY,USA): JohnWiley.
11 vanderSluis,L.(2001). TransientsinPowerSystems.Chichester(UnitedKingdom):Wiley.
12 Chowdhuri,P.(2003). ElectromagneticTransientsinPowerSystems,2e.Taunton (UnitedKingdom):RSPress/Wiley.
13 Watson,N.andArrillaga,J.(2003). PowerSystemsElectromagneticTransientsSimulation. Stevenage(UnitedKingdom):TheInstitutionofElectricalEngineers.
14 Shenkman,A.L.(2005). TransientAnalysisofElectricPowerCircuitsHandbook .Dordrecht (TheNetherlands):Springer.
15 Das,J.C.(2010). TransientsinElectricalSystems.Analysis,Recognition,andMitigation. NewYork(NY,USA):McGraw-Hill.
16 Ametani,A.,Nagaoka,N.,Baba,Y.etal.(2017). PowerSystemTransients:Theoryand Applications,2e.BocaRaton(FL,USA):CRCPress.
17 Ametani,A.(ed.)(2015). NumericalAnalysisofPowerSystemTransientsandDynamics Stevenage(UnitedKingdom):TheInstitutionofEngineeringandTechnology.
18 Haginomori,E.,Koshiduka,T.,Arai,J.,andIkeda,H.(2016). PowerSystemTransient Analysis.TheoryandPracticeUsingSimulationPrograms(ATP-EMTP).Chichester (UnitedKingdom):Wiley.
19 Can/AmUsersGroup(2000). ATPRuleBook .Can/AmUsersGroup.
20 Høidalen,H.K.,Prikler,L.,andHall,J.L.(1999).ATPDraw–GraphicalpreprocessortoATP, Windowsversion.PresentedattheIPST’99inBudapest,Hungary(June1999).
21 Prikler,L.andHøidalen,H.K.(2002). ATPDrawforWindowsUser’sManual ,SEFASTR F5680.
22 Kizilcay,M.andHoidalen,H.K.(2015).EMTP-ATP.In: Chapter2ofNumericalAnalysisof PowerSystemTransientsandDynamics (ed.A.Ametani).Stevenage(UnitedKingdom):The InstitutionofEngineeringandTechnology.
23 Ceraolo,M.(2018).Experiencesincreatingasoftwaretooltoanalyzeandpostprocess simulatedandmeasureddata. Software:PracticeandExperience 48(12):2380–2388.Visit thefollowinglinkhttp://ceraolo-plotxy.ing.unipi.it/default.htm.
24 Grebe,T.andSmith,S.(1999).Visualizesystemsimulationandmeasurementdata. IEEEComputerApplicationsinPower 12(3):46–51.
25 Ragaller,K.(ed.)(1980). SurgesinHigh-VoltageNetworks.NewYork(NY,USA):Plenum Press.
26 Hileman,A.R.(1999). InsulationCoordinationforPowerSystems.NewYork(NY,USA): MarcelDekker.
27 Sen,K.K.andSen,M.L.(2009). IntroductiontoFACTSController:Theory,Modeling,and Applications.Hoboken(NJ,USA):Wiley/IEEEPress.
28 Ghosh,A.andLedwich,G.(2002). PowerQualityEnhancementusingCustomPower Devices.Norwell(MA,USA):KluwerAcademicPublishers.
29 Yazdani,A.andIravani,R.(2010). Voltage-SourcedConverters:Modeling,Control,and Applications.Hoboken(NJ,USA):Wiley.
30 Martinez-Velasco,J.A.andMartin-Arnedo,J.(1999).EMTPmodularlibraryforpowerqualityanalysis.PresentedatIEEEBudapestPowerTechinBudapest,Hungary(29August–2 September).
31 Bollen,M.H.J.(2000). UnderstandingPowerQualityProblems.VoltageDipsandInterruptions.NewYork(NY,USA):IEEEPress.
32 Dugan,R.C.,McGranaghan,M.F.,Santoso,S.,andWayneBeaty,H.(2012). ElectricalPower SystemsQuality,3e.NewYork(NY,USA):Mc-GrawHill.
33 Anderson,P.M.(1998). PowerSystemProtection.NewYork(NY,USA):Mc-GrawHill/IEEE Press.
34 Phadke,A.G.andThorp,J.S.(2009). ComputerRelayingforPowerSystems,2e.Chichester (UnitedKingdom):Wiley.