Full download Molecular hematology fourth edition gribben pdf docx

Page 1


Molecular hematology Fourth Edition Gribben

Visit to download the full and correct content document: https://ebookmass.com/product/molecular-hematology-fourth-edition-gribben/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Molecular Hematology 4th Edition Drew Provan

https://ebookmass.com/product/molecular-hematology-4th-editiondrew-provan/

Clinical Hematology Atlas 5th Edition

https://ebookmass.com/product/clinical-hematology-atlas-5thedition/

Hematology – Oncology Therapy 2nd Edition

https://ebookmass.com/product/hematology-oncology-therapy-2ndedition/

T&T Clark Handbook of John Owen Crawford Gribben

https://ebookmass.com/product/tt-clark-handbook-of-john-owencrawford-gribben/

Clinical

Hematology: Theory & Procedures Sixth Edition

https://ebookmass.com/product/clinical-hematology-theoryprocedures-sixth-edition/

Williams Hematology 10th Edition Kenneth Kaushansky

https://ebookmass.com/product/williams-hematology-10th-editionkenneth-kaushansky/

Williams Manual of Hematology, Ninth Edition Marshall A. Lichtman & Kenneth Kaushansky & Josef T. Prchal & Marcel M. Levi & Linda Burns & James Armitage

https://ebookmass.com/product/williams-manual-of-hematologyninth-edition-marshall-a-lichtman-kenneth-kaushansky-josef-tprchal-marcel-m-levi-linda-burns-james-armitage/

Schalm's Veterinary Hematology 7th Edition Marjory B.

Brooks

https://ebookmass.com/product/schalms-veterinary-hematology-7thedition-marjory-b-brooks/

Clinical Hematology Atlas 6th Edition Jacqueline H.

Carr

https://ebookmass.com/product/clinical-hematology-atlas-6thedition-jacqueline-h-carr/

MolecularHematology

Molecular Hematology FOURTHEDITION

EmeritusReaderinAutoimmuneHaematology

DepartmentofHaematology

BartsandTheLondonSchoolofMedicineandDentistry

QueenMaryUniversityofLondon,UK

ProfessorofMedicalOncology

BartsCancerInstitute

BartsandTheLondonSchoolofMedicineandDentistry

QueenMaryUniversityofLondon,UK

Thiseditionfirstpublished2020 ©2020byJohnWiley&Sons

EditionHistory[3rd edition,2010]

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,or transmitted,inanyformorbyanymeans,electronic,mechanical,photocopying,recordingor otherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreusematerialfromthis titleisavailableat http://www.wiley.com/go/permissions

TherightofDrewProvantobeidentifiedastheauthorofeditorialinthisworkhasbeenassertedin accordancewithlaw.

RegisteredOffice(s)

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

EditorialOffice

9600GarsingtonRoad,Oxford,OX42DQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWiley productsvisitusat www.wiley.com

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontent thatappearsinstandardprintversionsofthisbookmaynotbeavailableinotherformats.

LimitofLiability/DisclaimerofWarranty

Thecontentsofthisworkareintendedtofurthergeneralscientificresearch,understanding,and discussiononlyandarenotintendedandshouldnotberelieduponasrecommendingorpromoting scientificmethod,diagnosis,ortreatmentbyphysiciansforanyparticularpatient.Inviewofongoing research,equipmentmodifications,changesingovernmentalregulations,andtheconstantflowof informationrelatingtotheuseofmedicines,equipment,anddevices,thereaderisurgedtoreviewand evaluatetheinformationprovidedinthepackageinsertorinstructionsforeachmedicine,equipment, ordevicefor,amongotherthings,anychangesintheinstructionsorindicationofusageandforadded warningsandprecautions.Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthis work,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthe contentsofthisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentatives,writtensalesmaterialsorpromotionalstatementsforthiswork.The factthatanorganization,website,orproductisreferredtointhisworkasacitationand/orpotential sourceoffurtherinformationdoesnotmeanthatthepublisherandauthorsendorsetheinformationor servicestheorganization,website,orproductmayprovideorrecommendationsitmaymake.Thiswork issoldwiththeunderstandingthatthepublisherisnotengagedinrenderingprofessionalservices.The adviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwitha specialistwhereappropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhave changedordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublisher norauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnot limitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationData

Names:Provan,Drew,editor.|Gribben,Johneditor.

Title:Molecularhematology/editedbyDrewProvan,JohnG.Gribben.

Description:Fourthedition.|Hoboken,NJ:Wiley-Blackwell,2020.|Includesbibliographical referencesandindex.

Identifiers:LCCN2019034376(print)|LCCN2019034377(ebook)|ISBN9781119252870(hardback)| ISBN9781119252955(adobepdf)|ISBN9781119252931(epub)

Subjects:MESH:HematologicDiseases|MolecularBiology–methods

Classification:LCCRC636(print)|LCCRC636(ebook)|NLMWH120|DDC616.1/5–dc23 LCrecordavailableathttps://lccn.loc.gov/2019034376

LCebookrecordavailableathttps://lccn.loc.gov/2019034377

CoverDesign:Wiley

CoverImage:©JUANGAERTNER/SCIENCEPHOTOLIBRARY/GettyImages Setin10/12ptMinionProbyAptaraInc.,NewDelhi,India

10987654321

Dedication

Wewouldliketodedicatethisbooktotwopeople:ourdearfriendandcolleague,ProfessorSirDavidWeatherall,whosadly passedawayon8December2018.Hewastrulyapioneerofmolecularbiologyandwasthefirstphysicianscientisttouse moleculartechniquestostudyhematologicaldisease.Wewillallmisshimverymuch. Inaddition,wewouldliketodedicatethebooktoValProvan.Alwaysinourthoughtsandmuchmissed.

Contents

Contributors, ix

Prefacetothefourthedition, xiii

Furtherreading, xv

Acknowledgments, xvi

1Beginnings:themolecularpathologyofhemoglobin, 1 DavidWeatherall

2Stemcells, 21 DavidT.Scadden

3Thegeneticsofacutemyeloidleukemias, 37 AmyM.Trottier&CarolynJ.Owen

4Moleculardiagnosticsandriskassessmentin myeloidmalignancies, 49 ChristianScharenberg&TorstenHaferlach

5Molecularbasisofacutelymphoblasticleukemia, 59 BelaPatel&FionaFernando

6Chronicmyeloidleukemia, 71 HagopKantarjian,JorgeCortes,EliasJabbour& SusanO’Brien

7Myeloproliferativeneoplasms, 87 JyotiNangalia,AnthonyJ.Bench,AnthonyR. Green&AnnaL.Godfrey

8Lymphomagenetics, 101 JenniferL.Crombie,AnthonyLetai&JohnG.Gribben

9Themolecularbiologyofchroniclymphocytic leukemia, 111 JohnG.Gribben

10Themolecularbiologyofmultiplemyeloma, 121 WeeJooChng&P.LeifBergsagel

11Themolecularbasisofbonemarrowfailure syndromesandredcellenzymopathies, 131 DeenaIskander,LucioLuzzatto&Anastasios Karadimitris

12Anemiaofchronicdisease, 155 TomasGanz

13Themolecularbasisofironmetabolism, 161 NancyC.Andrews&TomasGanz

14Hemoglobinopathiesduetostructuralmutations, 173 D.MarkLayton&StevenOkoli

15Molecularpathogenesisofmalaria, 193 DavidJ.Roberts,ArnabPain&ChetanE.Chitnis

16Molecularcoagulationandthrombophilia, 207 BjornDahlback&AndreasHillarp

17Themolecularbasisofhemophilia, 221 DanielP.Hart&PaulL.F.Giangrande

18ThemolecularbasisofvonWillebranddisease, 235 LucianoBaronciani

19Plateletdisorders, 251 KennethJ.Clemetson

20Themolecularbasisofbloodcellalloantigens, 267 CristinaNavarrete,LouiseTilley,WinnieChong &ColinJ.Brown

21Functionsofbloodgroupantigens, 285 JonathanS.Stamler&MarilynJ.Telen

22Autoimmunehematologicaldisorders, 297 DrewProvan&JohnW.Semple

23Moleculartherapeuticsinhematology:gene therapy, 319 WilliamM.McKillop&JeffreyA.Medin

24Pharmacogenomics, 339 LeoKager&WilliamE.Evans

25Historyanddevelopmentofmolecularbiology, 353 PaulMoss

26Cancerstemcells, 363 SaraAli&DominiqueBonnet

27Molecularbasisoftransplantation, 373 FrancescoDazzi&AntonioGalleu

Index,389

Contributors

SaraAliMD

HaematopoieticStemCellLaboratory,TheFrancisCrick Institute,London,UK

NancyC.AndrewsMD,PhD DukeUniversitySchoolofMedicine,Durham,NC,USA

LucianoBaroncianiPhD

FondazioneIRCCSCa’GrandaOspedaleMaggiorePoliclinico,AngeloBianchiBonomiHemophiliaandThrombosis Center,Milan,Italy

AnthonyJ.BenchMA,PhD LaboratoryMedicine,NHSLothian,Edinburgh,UK

P.LeifBergsagelMD

DivisionofHematology-Oncology,ComprehensiveCancer Center,MayoClinicArizona,Scottsdale,AZ,USA

DominiqueBonnetPhD

HaematopoieticStemCellLaboratory,TheFrancisCrick Institute,London,UK

ColinJ.BrownPhD,FRCPath

HistocompatibilityandImmunogeneticsLaboratory,NHS BloodandTransplant;FacultyofLifeSciences&Medicine, King’sCollegeLondon,London,UK

ChetanE.ChitnisMSc,MA,PhD MalariaGroup,PasteurInstitute,Paris,France

WeeJooChngMBChB,MRCP,FRCPath

NationalUniversityCancerInstitute,NationalUniversityHealthSystemofSingapore;UniversityofSingapore, NationalUniversityHospital,Singapore

WinnieChongPhD

HistocompatibilityandImmunogeneticsServiceDevelopmentLaboratory,NHSBloodandTransplant,London,UK

KennethJ.ClemetsonPhD,ScD,CChem,FRSC DepartmentofHaematology,Inselspital,UniversityofBerne, Berne,Switzerland

JorgeCortesMD

DepartmentofLeukemia,UniversityofTexasMDAnderson CancerCenter,Houston,TX,USA

JenniferL.CrombieMD

DepartmentofMedicalOncology,Dana-FarberCancer Institute,HarvardMedicalSchool,Boston,MA,USA

Bj ¨ ornDahlb ¨ ackMD,PhD DepartmentofTranslationalMedicine,SectionofClinical Chemistry,LundUniversity,UniversityHospital,Malmo, Sweden

FrancescoDazziMD,PhD

SchoolofCancer&PharmaceuticalSciences,King’sCollege London;King’sHealthPartnersCancerResearchUKCentre, London,UK

WilliamE.EvansPharmD

StJudeChildren’sResearchHospital,Memphis,TN,USA

FionaFernandoMD

CentreofHaemato-Oncology,BartsCancerInstitute,Queen MaryUniversityofLondon,London,UK

AntonioGalleuMD,PhD

SchoolofCancer&PharmaceuticalSciences,King’sCollege London;King’sHealthPartnersCancerResearchUKCentre, London,UK

TomasGanzPhD,MD

DepartmentofMedicine,DavidGeffenSchoolofMedicine atUCLA,LosAngeles,CA,USA

PaulL.F.GiangrandeMD,FRCP,FRCPath,FRCPCH

FormerlyofOxfordHaemophiliaandThrombosisCentre, ChurchillHospital,Oxford,UK

AnnaL.GodfreyPhD,MRCP,FRCPath DepartmentofHaematology,CambridgeUniversityHospitalsNHSFoundationTrust,Cambridge,UK

AnthonyR.GreenPhD,FRCP,FRCPath,FMedSci DepartmentofHaematology,CambridgeInstituteforMedicalResearch;WellcomeMedicalResearchCouncilStemCell Institute,Cambridge,UK

JohnG.GribbenMD,DSc,FRCP,FRCPath,FMedSci BartsCancerInstitute,BartsandTheLondonSchoolof MedicineandDentistry,QueenMaryUniversityofLondon, London,UK

TorstenHaferlachMD

MLLMunichLeukemiaLaboratory,Munich,Germany

DanielP.HartFRCP,FRCPath,PhD

TheRoyalLondonHospitalHaemophiliaCentre,Bartsand TheLondonSchoolofMedicineandDentistry,QueenMary UniversityofLondon,London,UK

AndreasHillarpPhD

DepartmentofClinicalChemistryandTransfusion Medicine,HallandCountyHospital,Halmstad,Sweden

DeenaIskanderMD,PhD,MRCP CentreforHaematology,ImperialCollegeLondon,HammersmithHospital,London,UK

EliasJabbourMD

DepartmentofLeukemia,UniversityofTexasMDAnderson CancerCenter,Houston,TX,USA

LeoKagerMD

DepartmentofPediatrics,St.AnnaChildren’sHospital, MedicalUniversityVienna,Austria

HagopKantarjianMD DepartmentofLeukemia,UniversityofTexasMDAnderson CancerCenter,Houston,TX,USA

AnastasiosKaradimitrisPhD,MRCP,FRCPath DepartmentofHaematologyandBloodTransfusion, MuhimbiliUniversityCollegeofHealthSciences,Dar-esSalaam,Tanzania

D.MarkLaytonMBBS,FRCP,FRCPCH CenterforHematology,ImperialCollegeLondon,London, UK

AnthonyLetaiMD,PhD DepartmentofMedicalOncology,Dana-FarberCancer Institute,HarvardMedicalSchool,Boston,MA,USA

LucioLuzzattoMD DepartmentofHaematologyandBloodTransfusion, MuhimbiliUniversityCollegeofHealthSciences,Dar-esSalaam,Tanzania

WilliamM.McKillopPhD DepartmentofPediatrics,MedicalCollegeofWisconsin, Milwaukee,WI,USA

JeffreyA.MedinPhD DepartmentsofPediatricsandBiochemistry,MedicalCollegeofWisconsin,Milwaukee,WI,USA

PaulMossMD,PhD SchoolofCancerSciences,UniversityofBirmingham,Birmingham,UK

JyotiNangaliaPhD,MRCP,FRCPath WelcomeSangerInstitute,Hinxton;DepartmentofHaematology,UniversityofCambridge;Wellcome-Medical ResearchCouncilCambridgeStemCellInstitute,Cambridge,UK

CristinaNavarretePhD,FRCPath HistocompatibilityandImmunogeneticsServiceDevelopmentDepartment,NHSBloodandTransplant;Department ofImmunologyandMolecularPathology,UniversityCollege London,London,UK

SusanO’BrienMD DepartmentofLeukemia,UniversityofTexasMDAnderson CancerCenter,Houston,TX,USA

StevenOkoliMBChB,FRCP,FRCPath CenterforHematology,ImperialCollegeLondon,London, UK

CarolynJ.OwenMD,MDres(UK),FRCPC DivisionofHematologyandHematologicalMalignancies, UniversityofCalgary,FoothillsMedicalCentre,Calgary, Canada

ArnabPainPhD BiologicalandEnvironmentalSciencesandEngineering (BESE)Division,KingAbdullahUniversityofScienceand Technology,Jeddah,SaudiArabia;NuffieldDivisionofClinicalLaboratorySciences(NDCLS),TheJohnRadcliffeHospital,UniversityofOxford,Headington,Oxford,UK

BelaPatelMD,FRCPath,MD(res) CentreofHaemato-Oncology,BartsCancerInstitute,Queen MaryUniversityofLondon,London,UK

DrewProvanMD,FRCP,FRCPath BlizardInstitute,BartsandTheLondonSchoolofMedicine andDentistry,QueenMaryUniversityofLondon,London, UK

DavidJ.RobertsDPhil,MRCP,FRCPath NationalHealthServiceBloodandTransplant(Oxford),The JohnRadcliffeHospital,Oxford,UK

DavidT.ScaddenMD DepartmentofStemCellandRegenerativeBiology,Harvard StemCellInstitute,HarvardUniversity;CenterforRegenerativeMedicine,MassachusettsGeneralHospital,Boston,MA, USA

ChristianScharenbergMD,PhD DepartmentofHematology,SkaraborgsHospital,Skovde; DepartmentofCellandMolecularBiology,KarolinskaInstitute,Stockholm,Sweden

JohnW.SemplePhD DivisionofHematologyandTransfusionMedicine,Lund University,Lund,Sweden

JonathanS.StamlerMD

HarringtonDiscoveryInstituteandInstituteofTransformativeMolecularMedicine,UniversityHospitalsCleveland MedicalCenterandCaseWesternReserveUniversity,Cleveland,OH,USA

MarilynJ.TelenMD DepartmentofMedicine,DivisionofHematology,Duke UniversityMedicalCenter,Durham,NC,USA

LouiseTilleyPhD

InternationalBloodGroupReferenceLaboratory,NHS BloodandTransplant,Bristol,UK

AmyM.TrottierMSc,MD,FRCPC DivisionofHematologyandHematologicalMalignancies, UniversityofCalgary,FoothillsMedicalCentre,Calgary, Canada

DavidWeatherallMD,FRCP,FRS FormerlyofWeatherallInstituteofMolecularMedicine,The JohnRadcliffeHospital,Oxford,UK

Prefacetothefourthedition

Hematologyisafast-movingdisciplinewithinnovationboth diagnosticallyandtherapeutically.Inthe19yearssincethe firsteditionof MolecularHematology waspublished,many advanceshavebeenmade.Moleculartechniqueshavehelped explainthebasisofmanydiseases,startinginitiallywithred celldisordersandhemostasis.However,thankstotheuseof molecularbiologywecannowdiagnoseandstratifypatients withdiseasessuchasleukemia,myeloma,myeloproliferative neoplasms,andothers.Suchadvancesintechnologyhavenot onlyhelpedexplaintheunderlyingbasisofthediseases,but havealsoprovidedtargetsfortreatment.

Theworldofredcellsstartedthewholespecialtyofmolecularmedicineand,usingmolecularbiologytechniques, manyofthephenotypicfeaturesofredcelldisordershave beenexplained.ThisisdiscussedeloquentlybythelateProfessorSirDavidWeatherallatthebeginningofthebook. Othernon-malignantareaswhichhavebeenupdatedinclude the FunctionsofBloodGroupAntigens, vonWillebrandDisease,and PlateletDisorders

Undoubtedly,hemato-oncologyhasseenthebiggest explosionintermsofunderstandingthemolecularbasisof diseasessuchasleukemias,lymphomas,themyeloprolifer-

ativeneoplasms,myeloma,andmyelodysplasticsyndromes. Thehugearrayofbiologicalmarkersmakesstratificationand treatmentmuchmoresophisticatedthaneverbefore.Allthe chaptersdealingwithmalignantblooddiseaseshavebeen thoroughlyrevisedandbroughtuptodate.

However,despitethegrowingcomplexityintermsof pathogenesis,diagnosis,andmanagementofpatientswith blooddiseases,theethosofthebookremainsthesame–namely,toprovideasuccinctaccountofthemolecularbiologyofhematologicaldiseasewrittenatalevelwhereitshould beofbenefittoboththeseasonedmolecularbiologistand thepracticingclinicianalike.Wehaveretainedtheoriginal structureforthechapters,high-qualityartwork,and Further Reading sectionsinordertomakethebookvisuallyappealing andrelevanttomodernhematologypractice.

Weverymuchhopeyouenjoythiseditionand,asalways, wewelcomeanycommentsorsuggestionsfromreaders, whichwewillattempttoincorporateintothenextedition.

DrewProvan JohnGribben

Furtherreading

Anderson,K.C.andNess,P.M.(eds.)(2000). ScientificBasisofTransfusionMedicine:ImplicationsforClinicalPractice,2e.Philadelphia,PA: WBSaunders. Beutler,E.andLichtman,M.A.(eds.). Williams’Hematology,6e.New York:McGraw-Hill.

Cooper,G.M.(1997). TheCell:AMolecularApproach.Washington,DC: ASMPress.

Cox,T.M.andSinclair,J.(1997). MolecularBiologyinMedicine.Oxford: BlackwellScience. Jameson,J.L.(ed.)(1998). PrinciplesofMolecularMedicine.NewYork: HumanaPress.

Mullis,K.B.(1990).Theunusualoriginofthepolymerasechainreaction. ScientificAmerican262:56–65. Roitt,I.(2001). Roitt’sEssentialImmunology,10e.Oxford:BlackwellScience.

Stamatoyannopoulos,G.,Nienhuis,A.W.,Majerus,P.W.,andVarmus, H.(eds.)(2000). TheMolecularBasiseofBloodDiseases,2e.Philadelphia,PA:W.B.Saunders.

Watson,J.D.,Gilman,M.,Witkowski,J.,andZoller,M.(eds.)(1992). RecombinantDNA,2e.NewYork:ScientificAmericanBooks.

Acknowledgments

WewouldliketoexpressthankstoClaireBonnett,Publisher,andDeirdreBarry,SeniorEditorialAssistant,fortheirhelpwith thiswork.

Chapter1 Beginnings:themolecular pathologyofhemoglobin

Historicalbackground, 1

Thestructure,geneticcontrol,andsynthesisofnormalhemoglobin, 2

Themolecularpathologyofhemoglobin, 6

Genotype–phenotyperelationshipsinthethalassemias, 12

Structuralhemoglobinvariants, 16

Historicalbackground

LinusPaulingfirstusedtheterm“moleculardisease”in1949, afterthediscoverythatthestructureofsicklecellhemoglobin differedfromthatofnormalhemoglobin.Indeed,itwasthis seminalobservationthatledtotheconceptof molecular medicine,thedescriptionofdiseasemechanismsatthelevel ofcellsandmolecules.However,untilthedevelopmentof recombinantDNAtechnologyinthemid-1970s,knowledge ofeventsinsidethecellnucleus,notablyhowgenesfunction, couldonlybethesubjectofguessworkbasedonthestructure andfunctionoftheirproteinproducts.However,assoonas itbecamepossibletoisolatehumangenesandtostudytheir properties,thepicturechangeddramatically.

Progressoverthelast30yearshasbeendrivenbytechnologicaladvancesinmolecularbiology.Atfirstitwaspossible onlytoobtainindirectinformationaboutthestructureand functionofgenesbyDNA/DNAandDNA/RNAhybridization;thatis,byprobingthequantityorstructureofRNA orDNAbyannealingreactionswithmolecularprobes.The nextmajoradvancewastheabilitytofractionateDNAinto piecesofpredictablesizewithbacterialrestrictionenzymes. Thisledtotheinventionofatechniquethatplayedacentral roleintheearlydevelopmentofhumanmoleculargenetics, called Southernblotting afterthenameofitsdeveloper,Edwin Southern.Thismethodallowedthestructureandorganizationofgenestobestudieddirectlyforthefirsttimeandled tothedefinitionofanumberofdifferentformsofmolecular pathology.

OnceitwaspossibletofractionateDNA,itsoonbecame feasibletoinsertthepiecesintovectorsabletodivide

Molecularaspectsofthehighfrequencyofthehemoglobinvariants, 17

Molecularaspectsofthepreventionandmanagementofthe hemoglobindisorders, 18

Postscript, 18

Furtherreading, 18

withinbacteria.Thesteadyimprovementinthepropertiesofcloningvectorsmadeitpossibletogeneratelibraries ofhumanDNAgrowinginbacterialcultures.Ingenious approachesweredevelopedtoscanthelibrariestodetect genesofinterest;oncepinpointed,theappropriatebacterialcoloniescouldbegrowntogeneratelargerquantitiesof DNAcarryingaparticulargene.Lateritbecamepossible tosequencethesegenes,persuadethemtosynthesizetheir productsinmicroorganisms,culturedcells,orevenother species,andhencetodefinetheirkeyregulatoryregions.

Theearlyworkinthefieldofhumanmoleculargeneticsfocusedondiseasesinwhichtherewassomeknowledgeofthegeneticdefectattheproteinorbiochemicallevel. However,oncelinkagemapsofthehumangenomebecame available,followingtheidentificationofhighlypolymorphic regionsofDNA,itwaspossibletosearchforanygenefora disease,evenwherethecausewascompletelyunknown.This approach,firstcalled reversegenetics andlaterrechristened positionalcloning,ledtothediscoveryofgenesformany importantdiseases.

Asmethodsforsequencingwereimprovedandautomated, thoughtsturnedtothenextmajorgoalinthisfield,whichwas todeterminethecompletesequenceofthebasesthatconstituteourgenesandallthatliesbetweenthem:theHuman GenomeProject.Thisremarkableendeavorwasfinallycompletedin2006.Thefurtherunderstandingofthefunctions andregulationofourgeneswillrequiremultidisciplinary researchencompassingmanydifferentfields.Thenextstage intheHumanGenomeProject,called genomeannotation, entailsanalyzingtherawDNAsequenceinordertodetermineitsbiologicalsignificance.Oneofthemainventures intheeraoffunctionalgenomicswillbeinwhatistermed proteomics,thelarge-scaleanalysisoftheproteinproductsof genes.Theultimategoalwillbetotrytodefinetheprotein

complement,orproteome,ofcellsandhowthemanydifferentproteinsinteractwithoneanother.Tothisend,largescalefacilitiesarebeingestablishedforisolatingandpurifyingtheproteinproductsofgenesthathavebeenexpressed inbacteria.Theirstructurecanthenbestudiedbyavarietyofdifferenttechniques,notablyX-raycrystallography andnuclearmagneticresonancespectroscopy.Thecrystallographicanalysisofproteinsisbeinggreatlyfacilitated bytheuseofX-raybeamsfromasynchrotronradiation source.

Inthelastfewyearsboththeutilityandextremecomplexityofthefruitsofthegenomeprojecthavebecome apparent.Theexistenceofthousandsofsingle-nucleotide polymorphisms(SNPs)hasmadeitpossibletosearchfor genesofbiologicalormedicalsignificance.Thediscoveryof familiesofregulatoryRNAsandproteinsisstartingtoshed lightonhowthefunctionsofthegenomearecontrolled, andstudiesofacquiredchangesinitsstructure, epigenetics, promisetoprovidesimilarinformation.Recentdevelopmentsinnew-generationsequencingofDNAandRNAare alsoprovidinginvaluableinformationaboutmanyaspects ofgeneregulation.

Duringthisremarkableperiodoftechnicaladvance,considerableprogresshasbeenmadetowardanunderstanding ofthepathologyofdiseaseatthemolecularlevel.Thishas hadaparticularimpactonhematology,leadingtoadvances intheunderstandingofgenefunctionanddiseasemechanismsinalmosteveryaspectofthefield.

Theinheriteddisordersofhemoglobin–thethalassemias andstructuralhemoglobinvariants,thecommonesthuman monogenicdiseases–werethefirsttobestudiedsystematicallyatthemolecularlevelandagreatdealisknownabout theirgenotype–phenotyperelationships.Thisfieldledthe waytomolecularhematologyand,indeed,tothedevelopmentofmolecularmedicine.Thus,eventhoughthegeneticsofhemoglobiniscomplicatedbythefactthatdifferent varietiesareproducedatparticularstagesofhumandevelopment,themolecularpathologyofthehemoglobinopathies providesanexcellentmodelsystemforunderstandingany monogenicdiseaseandthecomplexinteractionsbetween genotypeandenvironmentthatunderliemanymultigenic disorders.

InthischapterIconsiderthestructure,synthesis,and geneticcontrolofthehumanhemoglobins,describethe molecularpathologyofthethalassemias,anddiscussbriefly howthecomplexinteractionsoftheirdifferentgenotypes producearemarkablydiversefamilyofclinicalphenotypes; thestructuralhemoglobinvariantsarediscussedinmore detailinChapter14.Readerswhowishtolearnmoreabout themethodsofmoleculargenetics,particularlyasappliedto thestudyofhemoglobindisorders,arereferredtothereviews citedattheendofthischapter.

Thestructure,geneticcontrol,and synthesisofnormalhemoglobin

Structureandfunction

Thevaryingoxygenrequirementsduringembryonic,fetal, andadultlifearereflectedinthesynthesisofdifferent structuralhemoglobinsateachstageofhumandevelopment. However,theyallhavethesamegeneraltetramericstructure,consistingoftwodifferentpairsofglobinchains,each attachedtoonehememolecule.Adultandfetalhemoglobins have α chainscombinedwith β chains(HbA, α2 β2 ), δ chains(HbA2 , α2 δ2 ),and γ chains(HbF, α2 γ2 ).In embryos, α-likechainscalled ζ chainscombinewith γ chainstoproduceHbPortland(ζ2 γ2 ),orwith ε chainsto makeHbGower1(ζ2 ε2 ),while α and ε chainsformHb Gower2(α2 ε2 ).Fetalhemoglobinisheterogeneous;there aretwovarietiesof γ chainthatdifferonlyintheiramino acidcompositionatposition136,whichmaybeoccupiedby eitherglycineoralanine; γ chainscontainingglycineatthis positionarecalled G γ chains,thosewithalanine A γ chains (Figure1.1).

Thesynthesisofhemoglobintetramersconsistingoftwo unlikepairsofglobinchainsisabsolutelyessentialforthe effectivefunctionofhemoglobinasanoxygencarrier.The classicalsigmoidshapeoftheoxygendissociationcurve, whichreflectstheallostericpropertiesofthehemoglobin molecule,ensuresthat,athighoxygentensionsinthelungs, oxygenisreadilytakenupandlaterreleasedeffectivelyatthe lowertensionsencounteredinthetissues.Theshapeofthe curveisquitedifferenttothatofmyoglobin,amoleculethat consistsofasingleglobinchainwithhemeattachedtoit, which,likeabnormalhemoglobinsthatconsistofhomotetramersoflikechains,hasahyperbolicoxygendissociation curve.

Thetransitionfromahyperbolictoasigmoidoxygen dissociationcurve,whichisabsolutelycriticalfornormal oxygendelivery,reflectscooperativitybetweenthefour hememoleculesandtheirglobinsubunits.Whenoneof themtakesonoxygen,theaffinityoftheremainingthree increasesmarkedly;thishappensbecausehemoglobincan existintwoconfigurations,deoxy(T)andoxy(R),whereT andRrepresentthetightandrelaxedstates,respectively. TheTconfigurationhasaloweraffinitythantheRfor ligandssuchasoxygen.Atsomepointduringtheaddition ofoxygentothehemes,thetransitionfromtheTtotheR configurationoccursandtheoxygenaffinityofthepartially ligandedmoleculeincreasesdramatically.Theseallosteric changesresultfrominteractionsbetweentheironofthe hemegroupsandvariousbondswithinthehemoglobin tetramer,whichleadtosubtlespatialchangesasoxygenis takenonorgivenup.

Embryo

Fetus

Adult

Fig.1.1Thegeneticcontrolofhumanhemoglobinproductioninembryonic,fetal,andadultlife. Thestandardnamesforthesegenes areasfollows:Alphagenes HBA1 and HBA2,Betagene HBB,Gammagenes HBG1 and HBG2,Deltagene HBD,andtheembryonicgenes HBE1 and HBZ

Theprecisetetramericstructuresofthedifferenthuman hemoglobins,whichreflecttheprimaryaminoacid sequencesoftheirindividualglobinchains,arealsovital forthevariousadaptivechangesthatarerequiredtoensure adequatetissueoxygenation.Thepositionoftheoxygen dissociationcurvecanbemodifiedinseveralways.For example,oxygenaffinitydecreaseswithincreasingCO2 tension(theBohreffect).Thisfacilitatesoxygenloadingtothe tissues,whereadropinpHduetoCO2 influxlowersoxygen affinity;theoppositeeffectoccursinthelungs.Oxygenaffinityisalsomodifiedbythelevelof2,3-diphosphoglycerate (2,3-BPG)intheredcell.Increasingconcentrationsshift theoxygendissociationcurvetotheright(i.e.theyreduce oxygenaffinity),whilediminishingconcentrationshavethe oppositeeffect.2,3-BPGfitsintothegapbetweenthetwo β chainswhenitwidensduringdeoxygenation,andinteracts withseveralspecificbindingsitesinthecentralcavityof themolecule.Inthedeoxyconfigurationthegapbetween thetwo β chainsnarrowsandthemoleculecannotbe accommodated.Withincreasingconcentrationsof2,3-BPG, whicharefoundinvarioushypoxicandanemicstates, morehemoglobinmoleculestendtobeheldinthedeoxy configurationandtheoxygendissociationcurveistherefore shiftedtotheright,withmoreeffectivereleaseofoxygen.

Fetalredcellshavegreateroxygenaffinitythanadult redcells,although,interestingly,purifiedfetalhemoglobin hasanoxygendissociationcurvesimilartothatofadult hemoglobin.Thesedifferences,whichareadaptedtotheoxygenrequirementsoffetallife,reflecttherelativeinabilityof HbFtointeractwith2,3-BPGcomparedwithHbA.Thisis becausethe γ chainsofHbFlackspecificbindingsitesfor 2,3-BPG.

Inshort,oxygentransportcanbemodifiedbyavariety ofadaptivefeaturesintheredcellthatincludeinteractions betweenthedifferenthememolecules,theeffectsofCO2 ,and differentialaffinitiesfor2,3-BPG.Thesechanges,together withmoregeneralmechanismsinvolvingthecardiorespiratorysystem,providethemainbasisforphysiologicaladaptationtoanemia.

Geneticcontrolofhemoglobin

The α-and β-likeglobinchainsaretheproductsoftwodifferentgenefamilieswhicharefoundondifferentchromosomes(Figure1.1).The β-likeglobingenesformalinked clusteronchromosome11,spreadoverapproximately60kb (kilobaseor1000nucleotidebases).Thedifferentgenesthat formthisclusterarearrangedintheorder5′ –ε–G γ–A γ–ψβ–δ–β–3′ .The α-likegenesalsoformalinkedcluster,in thiscaseonchromosome16,intheorder5′ –ζ–ψζ–ψα1–α2–α1–3′ .The ψβ, ψζ,and ψα genesarepseudogenes;that is,theyhavestrongsequencehomologywiththe β, ζ,and α genes,butcontainanumberofdifferencesthatprevent themfromdirectingthesynthesisofanyproducts.Theymay reflectremnantsofgenesthatwerefunctionalatanearlier stageofhumanevolution.

Thestructureofthehumanglobingenesis,inessence, similartothatofallmammaliangenes.Theyconsistoflong stringsofnucleotidesthataredividedintocodingregions, orexons,andnon-codinginsertscalled interveningsequences (IVSs)orintrons.The β-likeglobingenescontaintwo introns,oneof122–130basepairsbetweencodons30and31 andoneof850–900basepairsbetweencodons104and105 (theexoncodonsarenumberedsequentiallyfromthe5′ to

the3′ endofthegene,i.e.fromlefttoright).Similar,though smaller,intronsarefoundinthe α and ζ globingenes.These intronsandexons,togetherwithshortnon-codingsequences atthe5′ and3′ endsofthegenes,representthemajorfunctionalregionsoftheparticulargenes.However,therearealso extremelyimportantregulatorysequenceswhichsubserve thesefunctionsthatlieoutsidethegenesthemselves.

Atthe5′ non-coding(flanking)regionsoftheglobin genes,asinallmammaliangenes,thereareblocksof nucleotidehomology.Thefirst,theATAbox,isabout30 basesupstream(totheleft)oftheinitiationcodon;thatis,the startwordforthebeginningofproteinsynthesis(seelater). Thesecond,theCCAATbox,isabout70basepairsupstream fromthe5′ endofthegenes.About80–100basesfurther upstreamthereisthesequenceGGGGTG,orCACCC,which maybeinvertedorduplicated.Thesethreehighlyconserved DNAsequences,called promoterelements,areinvolvedin theinitiationoftranscriptionoftheindividualgenes.Finally, inthe3′ non-codingregionofalltheglobingenesthere isthesequenceAATAAA,whichisthesignalforcleavage andpolyAadditiontoRNAtranscripts(seeGeneActionand GlobinSynthesis).

Theglobingeneclustersalsocontainseveralsequences thatconstituteregulatoryelements,whichinteracttopromoteerythroid-specificgeneexpressionandcoordination ofthechangesinglobingeneactivityduringdevelopment.Theseincludetheglobin genesthemselvesandtheir

promoterelements:enhancers(regulatorysequencesthat increasegeneexpressiondespitebeinglocatedataconsiderabledistancefromthegenes)and“master”regulatory sequencescalled,inthecaseofthe β globingenecluster,the locuscontrolregion (LCR)and,inthecaseofthe α genes, HS40(anuclease-hypersensitivesiteinDNA40kbfromthe α globingenes).Eachofthesesequenceshasamodularstructuremadeupofanarrayofshortmotifsthatrepresentthe bindingsitesfortranscriptionalactivatorsorrepressors.

Geneactionandglobinsynthesis

TheflowofinformationbetweenDNAandproteinissummarizedinFigure1.2.Whenaglobingeneistranscribed, messengerRNA(mRNA)issynthesizedfromoneofits strands,aprocesswhichbeginswiththeformationofatranscriptioncomplexconsistingofavarietyofregulatoryproteinstogetherwithanenzymecalledRNApolymerase(see later).TheprimarytranscriptisalargemRNAprecursor whichcontainsbothintronandexonsequences.Whilein thenucleus,thismoleculeundergoesavarietyofmodifications.First,theintronsareremovedandtheexonsarespliced together.Theintron/exonjunctionsalwayshavethesame sequence:GTattheir5′ end,andAGattheir3′ end.This appearstobeessentialforaccuratesplicing;ifthereisamutationatthesesitesthisprocessdoesnotoccur.Splicingreflects acomplexseriesofintermediarystagesandtheinteraction

Fig.1.2

ofanumberofdifferentnuclearproteins.Aftertheexonsare joined,themRNAsaremodifiedandstabilized;attheir5′ end acomplexCAPstructureisformed,whileattheir3′ enda stringofadenylicacidresidues(polyA)isadded.ThemRNA processedinthiswaymovesintothecytoplasm,whereit actsasatemplateforglobinchainproduction.Becauseof therulesofbasepairing–thatis,cytosinealwayspairswith thymine,andguaninewithadenine–thestructureofthe mRNAreflectsafaithfulcopyoftheDNAcodonsfromwhich itissynthesized;theonlydifferenceisthat,inRNA,uracil(U) replacesthymine(T).

AminoacidsaretransportedtothemRNAtemplateon carrierscalledtransferRNAs(tRNAs);therearespecific tRNAsforeachaminoacid.Furthermore,becausethegenetic codeisredundant(i.e.morethanonecodoncanencodea particularaminoacid),forsomeoftheaminoacidsthereare severaldifferentindividualtRNAs.Theirorderintheglobin chainisdeterminedbytheorderofcodonsinthemRNA. ThetRNAscontainthreebases,whichtogetherconstitutean anticodon;theseanticodonsarecomplementarytomRNA codonsforparticularaminoacids.Theycarryaminoacids tothetemplate,wheretheyfindtheappropriatepositioning bycodon–anticodonbasepairing.WhenthefirsttRNAis inposition,aninitiationcomplexisformedbetweenseveral proteininitiationfactorstogetherwiththetwosubunitsthat constitutetheribosomes.AsecondtRNAmovesinalongsideandthetwoaminoacidsthattheyarecarryingform apeptidebondbetweenthem;theglobinchainisnowtwo aminoacidresidueslong.Thisprocessiscontinuedalong

themRNAfromlefttoright,andthegrowingpeptidechain istransferredfromoneincomingtRNAtothenext;thatis, themRNAistranslatedfrom5′ to3′ .Duringthistimethe tRNAsareheldinappropriatestericconfigurationwiththe mRNAbythetworibosomalsubunits.Therearespecific initiation(AUG)andtermination(UAA,UAG,andUGA) codons.Whentheribosomesreachtheterminationcodon, translationceases,thecompletedglobinchainsarereleased, andtheribosomalsubunitsarerecycled.Individualglobin chainscombinewithheme,whichhasbeensynthesized throughaseparatepathway,andtheninteractwithonelike chainandtwounlikechainstoformacompletehemoglobin tetramer.

Regulationofhemoglobinsynthesis

Theregulationofglobingeneexpressionismediatedmainly atthetranscriptionallevel,withsomefinetuningduring translationandpost-translationalmodificationofthegene products.DNAthatisnotinvolvedintranscriptionisheld tightlypackagedinacompact,chemicallymodifiedformthat isinaccessibletotranscriptionfactorsandpolymerasesandis heavilymethylated.Activationofaparticulargeneisreflected bychangesinthestructureofthesurroundingchromatin, whichcanbeidentifiedbyenhancedsensitivitytonucleases. Erythroidlineage-specificnuclease-hypersensitivesitesare foundatseverallocationsinthe β globingenecluster.Four aredistributedover20kbupstreamfromthe ε globingene intheregionofthe β globinLCR(Figure1.3).Thisvital

Chromosome 11

Chromosome 16

Fig.1.3Thepositionsofthemajorregulatoryregionsinthe β and α globingeneclusters. Thearrowsindicatethepositionofthe erythroidlineage-specificnuclease-hypersensitivesites.HS,hypersensitive.

regulatoryregionisabletoestablishatranscriptionallyactive domainspanningtheentire β globingenecluster.Several enhancersequenceshavebeenidentifiedinthiscluster.A varietyofregulatoryproteinsbindtotheLCR,andtothe promoterregionsoftheglobingenesandtotheenhancer sequences.ItisthoughtthattheLCRandotherenhancer regionsbecomeopposedtothepromoterstoincrease therateoftranscriptionofthegenestowhichtheyare related.

Theseregulatoryregionscontainsequencemotifsfor variousubiquitousanderythroid-restrictedtranscription factors.Bindingsitesforthesefactorshavebeenidentifiedin eachoftheglobingenepromotersandatthehypersensitive siteregionsofthevariousregulatoryelements.Anumber ofthefactorswhichbindtotheseareasarefoundinallcell types.TheyincludeSp1,Yy1,andUsf.Incontrast,anumber oftranscriptionfactorshavebeenidentified,including GATA-1,EKLF,andNF-E2,whicharerestrictedintheir distributiontoerythroidcellsand,insomecases,megakaryocytes,andmastcells.Theoverlappingoferythroid-specific andubiquitous-factorbindingsitesinseveralcasessuggests thatcompetitivebindingmayplayanimportantpartin theregulationoferythroid-specificgenes.Anotherbinding factor,SSP,thestageselectorprotein,appearstointeract specificallywith ε and γ genes.Severalelementsinvolving thechromatinandhistoneacetylationrequiredforaccessof theseregulatoryproteinshavebeenidentified.

Thebindingofhematopoietic-specificfactorsactivatesthe LCR,whichrenderstheentire β globingeneclustertranscriptionallyactive.Thesefactorsalsobindtotheenhancer andpromotersequences,whichworkintandemtoregulatetheexpressionoftheindividualgenesintheclusters.It islikelythatsomeofthetranscriptionalfactorsaredevelopmentalstagespecific,andhencemayberesponsiblefor thedifferentialexpressionoftheembryonic,fetal,andadult globingenes.The α globingeneclusteralsocontainsanelement,HS40,whichhassomestructuralfeaturesincommon withthe β LCR,althoughitisdifferentinaspectsofitsstructure.Anumberofenhancer-likesequenceshavebeenidentified,althoughitisbecomingclearthattherearefundamental differencesinthepatternofregulationofthetwoglobingene clusters.

Inadditiontothedifferentregulatorysequencesoutlined, therearealsosequenceswhichmaybeinvolvedspecifically with“silencing”ofgenes,notablythosefortheembryonic hemoglobins,duringdevelopment.

Somedegreeofregulationismediatedbydifferencesin theratesofinitiationandtranslationofthedifferentmRNAs, andatthepost-transcriptionallevelbydifferentialaffinity fordifferentproteinsubunits.However,thiskindofposttranscriptionalfinetuningprobablyplaysarelativelysmall roleindeterminingtheoveralloutputoftheglobingene products.

Regulationofdevelopmentalchanges inglobingeneexpression

Duringdevelopment,thesiteofredcellproductionmoves fromtheyolksactothefetalliverandspleen,andthence tobonemarrowintheadult.Embryonic,fetal,andadult hemoglobinsynthesisisapproximatelyrelatedintimeto thesechangesinthesiteoferythropoiesis,althoughitisquite clearthatthevariousswitches,betweenembryonicandfetal andbetweenfetalandadulthemoglobinsynthesis,arebeautifullysynchronizedthroughoutthesedifferentsites.Fetal hemoglobinsynthesisdeclinesduringthelatermonthsof gestation,andHbFisreplacedbyHbAandHbA2 bythe endofthefirstyearoflife.

Althoughtheexactmechanismoftheswitchfromfetalto adulthemoglobinisstillnotunderstood,recentstudiesof patientswithunusuallyhighlevelsofHbFandgenome-wide associationstudies(GWAS)haveyieldedextremelypromisinginformationaboutsomeoftheregulatorygenesinvolved. TheyincludeBCL11A,MYB,andKLF1.Itisclearfromstudiesoftheseandrelatedgenesthattheyareinvolveddirectlyin theregulationofhemoglobinswitching,workwhichisyieldinggreatpromiseforthedevelopmentoffuturetechnology forincreasingHbFsynthesistomodifythephenotypeofthalassemiasandsicklecellanemia.

Themolecularpathology ofhemoglobin

Asisthecaseformanymonogenicdiseases,theinheriteddisordersofhemoglobinfallintotwomajorclasses.First,there arethosethatresultfromreducedoutputofoneorother globingenes,the thalassemias.Second,thereisawiderange ofconditionsthatresultfromtheproductionof structurally abnormalglobinchains;thetypeofdiseasedependsonhow theparticularalterationinproteinstructureinterfereswith itsstabilityorfunction.Ofcourse,nobiologicalclassificationisentirelysatisfactoryandthosewhichattempttodefine thehemoglobindisordersarenoexception.Therearesome structuralhemoglobinvariantswhichhappentobesynthesizedatareducedrateandhenceareassociatedwithaclinicalpicturesimilartothalassemia.Andthereareotherclasses ofmutationswhichsimplyinterferewiththenormaltransitionfromfetaltoadulthemoglobinsynthesis,afamilyof conditionsgiventhegeneraltitle hereditarypersistenceoffetal hemoglobin (HPFH).Furthermore,becausethesediseasesare allsocommonandoccurtogetherinparticularpopulations, itisnotuncommonforanindividualtoinheritagenefor oneorotherformofthalassemiaandastructuralhemoglobin variant.Theheterogeneousgroupofconditionsthatresults fromthesedifferentmutationsandinteractionsissummarizedinTable1.1.

Table1.1 Thethalassemiasandrelateddisorders

α Thalassemia γ Thalassemia

α0

α+ δ Thalassemia

Deletion( α)

Non-deletion(αT ) εγδβ Thalassemia

β Thalassemia Hereditarypersistenceof β0 fetalhemoglobin

β+ Deletion

NormalHbA2 (δβ)0

“Silent” Non-deletion

Dominant Linkedto β globingenes

δβ Thalassemia G γβ+ (δβ)+A γβ+ (δβ)0 Unlinkedto β globingenes (A γδβ)0

Overrecentyears,determinationofthemolecularpathologyofthetwocommonformsofthalassemia, α and β,has providedaremarkablepictureoftherepertoireofmutations thatcanunderliehumanmonogenicdisease.Inthesections thatfollowIdescribe,inoutline,thedifferentformsofmolecularpathologythatunderlietheseconditions.

The

β thalassemias

Therearetwomainclassesof β thalassemia, β0 thalassemia, inwhichthereisanabsenceof β globinchainproduction, and β+ thalassemia,inwhichthereisavariablereduction intheoutputof β globinchains.AsshowninFigure1.4, mutationsofthe β globingenesmaycauseareducedoutput ofgeneproductattheleveloftranscriptionormRNA processing,ortranslation,orthroughthestabilityofthe globingeneproduct.

Defective β globingenetranscription

Thereareavarietyofmechanismsthatinterferewithnormaltranscriptionofthe β globingenes.First,thegenesmay beeithercompletelyorpartiallydeleted.Overall,deletions ofthe β globingenesarenotcommonlyfoundinpatients with β thalassemia,withoneexception:a619-bpdeletion involvingthe3′ endofthegeneisfoundfrequentlyinthe SindpopulationsofIndiaandPakistan,whereitconstitutes about30%ofthe β thalassemiaalleles.Otherdeletionsare extremelyrare.

Amuchmorecommongroupofmutations,whichresults inamoderatedecreaseintherateoftranscriptionofthe β globingenes,involvessingle-nucleotidesubstitutionsin orneartheTATAboxatabout 30nucleotides(nt)from thetranscriptionstartsite,orintheproximalordistalpromoterelementsat 90and 105nt.Thesemutationsresult indecreased β globinmRNAproduction,rangingfrom10% to25%ofthenormaloutput.Thus,theyareusuallyassociatedwiththemildformsof β+ thalassemia.TheyareparticularlycommoninAfricanpopulations,anobservationwhich explainstheunusualmildnessof β thalassemiainthisracial group.Oneparticularmutation,C → Tatposition 101nt tothe β globingene,causesanextremelymilddeficitof β globinmRNA.Indeed,thisalleleissomildthatitiscompletelysilentincarriersandcanonlybeidentifiedbyitsinteractionwithmoresevere β thalassemiaallelesincompound heterozygotes.

Mutationsthatcauseabnormalprocessing ofmRNA

Asmentionedearlier,theboundariesbetweenexonsand intronsaremarkedbytheinvariantdinucleotidesGTatthe donor(5′ )siteandAGattheacceptor(3′ )site.Mutationsthat affecteitherofthesesitescompletelyabolishnormalsplicing

Point mutations

Fig.1.4Themutationsofthe β globingenethatunderlie β thalassemia. Theheavyblacklinesindicatethelengthofthedeletions.The pointmutationsaredesignatedasfollows:PR,promoter;C,CAPsite;I,initiationcodon;FS,frameshiftandnonsensemutations;SPL,splice mutations;PolyA,polyAadditionsitemutations.

Deletions

andproducethephenotypeof β0 thalassemia.Thetranscriptionofgenescarryingthesemutationsappearstobenormal, butthereiscompleteinactivationofsplicingatthealtered junction.

Anotherfamilyofmutationsinvolveswhatarecalled splice siteconsensussequences.AlthoughonlytheGTdinucleotide isinvariantatthedonorsplicesite,thereisconservation ofadjacentnucleotidesandacommon,orconsensus, sequenceoftheseregionscanbeidentified.Mutations withinthissequencecanreducetheefficiencyofsplicing tovaryingdegrees,becausetheyleadtoalternatesplicing atthesurroundingcrypticsites.Forexample,mutationsof thenucleotideatposition5ofIVS-1(thefirstintervening sequence),G → CorT,resultinamarkedreductionof β chainproductionandinthephenotypeofsevere β+ thalassemia.Ontheotherhand,thesubstitutionofCforT atposition6inIVS-1leadstoonlyamildreductioninthe outputof β chains.

Anothermechanismthatleadstoabnormalsplicing involves crypticsplicesites.TheseareregionsofDNAwhich, ifmutated,assumethefunctionofasplicesiteataninappropriateregionofthemRNAprecursor.Forexample,avariety ofmutationsactivateacrypticsitewhichspanscodons24–27ofexon1ofthe β globingene.ThissitecontainsaGT dinucleotide,andadjacentsubstitutionsthatalteritsothatit morecloselyresemblestheconsensusdonorsplicesiteresult initsactivation,eventhoughthenormalsplicesiteisintact.A mutationatcodon24GGT → GGA,thoughitdoesnotalter theaminoacidwhichisnormallyfoundinthispositionin the β globinchain(glycine),allowssomesplicingtooccur atthissiteinsteadoftheexon–intronboundary.Thisresults intheproductionofbothnormalandabnormallyspliced β

globinmRNAandhenceintheclinicalphenotypeofsevere β thalassemia.Interestingly,mutationsatcodons19,26,and 27resultinbothreducedproductionofnormalmRNA(due toabnormalsplicing)andanaminoacidsubstitutionwhen themRNAwhichissplicednormallyistranslatedintoprotein.TheabnormalhemoglobinsproducedareHbMalay,Hb E,andHbKnossos,respectively.Allthesevariantsareassociatedwithamild β+ thalassemia-likephenotype.Thesemutationsillustratehowsequencechangesincodingratherthan IVSinfluenceRNAprocessing,andunderlinetheimportanceofcompetitionbetweenpotentialsplicesitesequences ingeneratingbothnormalandabnormalvarietiesof β globin mRNA.

Crypticsplicesitesinintronsmayalsocarrymutations thatactivatethemeventhoughthenormalsplicesitesremain intact.AcommonmutationofthiskindinMediterranean populationsinvolvesabasesubstitutionatposition110in IVS-1.Thisregioncontainsasequencesimilartoa3′ acceptorsite,thoughitlackstheinvariantAGdinucleotide.The changeoftheGtoAatposition110createsthisdinucleotide. Theresultisthatabout90%oftheRNAtranscriptsplicesto thisparticularsiteandonly10%tothenormalsite,againproducingthephenotypeofsevere β+ thalassemia(Figure1.5). Severalother β thalassemiamutationshavebeendescribed whichgeneratenewdonorsiteswithinIVS-2ofthe β globin gene.

Anotherfamilyofmutationsthatinterfereswith β globin geneprocessinginvolvesthesequenceAAUAAAinthe3′ untranslatedregions,whichisthesignalforcleavageand polyadenylationofthe β globingenetranscript.Somehow, thesemutationsdestabilizethetranscript.Forexample,a T → Csubstitutioninthissequenceleadstoonlyone-tenthof

Fig.1.5Thegenerationofanewsplicesitein anintronasthemechanismforaformof β+ thalassemia.Fordetailsseetext.

Normal splicing

thenormalamountof β globinmRNAtranscript,andhence tothephenotypeofamoderatelysevere β+ thalassemia. Anotherexampleofamutationwhichprobablyleadsto defectiveprocessingofthefunctionof β globinmRNAisthe single-basesubstitutionA → CintheCAPsite.Itisnotyet understoodhowthismutationcausesareducedrateoftranscriptionofthe β globingene.

Thereisanothersmallsubsetofraremutationsthatinvolve the3′ untranslatedregionofthe β globingene,andtheseare associatedwithrelativelymildformsof β thalassemia.Itis thoughtthattheseinterfereinsomewaywithtranscription, butthemechanismisunknown.

Mutationsthatresultinabnormal translationof β globinmRNA

Therearethreemainclassesofmutationsofthiskind. Basesubstitutionsthatchangeanaminoacidcodontoa chainterminationcodonpreventthetranslationof β globin mRNAandresultinthephenotypeof β0 thalassemia.Several mutationsofthiskindhavebeendescribed;thecommonest,involvingcodon17,occurswidelythroughoutSoutheastAsia.Similarly,acodon39mutationisencounteredfrequentlyintheMediterraneanregion.

Thesecondclassinvolvestheinsertionordeletionof one,two,orfournucleotidesinthecodingregionofthe β globingene.Thesedisruptthenormalreadingframe,cause aframeshift,andhenceinterferewiththetranslationof β globinmRNA.Theendresultistheinsertionofanomalous aminoacidsaftertheframeshiftuntilaterminationcodon isreachedinthenewreadingframe.Thistypeofmutation alwaysleadstothephenotypeof β0 thalassemia.

Finally,thereareseveralmutationswhichinvolvethe β globingeneinitiationcodonandwhich,presumably,reduce theefficiencyoftranslation.

Unstable β globinchainvariants

Someformsof β thalassemiaresultfromthesynthesisof highlyunstable β globinchainswhichareincapableofforminghemoglobintetramersandwhicharerapidlydegraded, leadingtothephenotypeof β0 thalassemia.Indeed,inmany oftheseconditionsnoabnormalglobinchainproductcanbe demonstratedbyproteinanalysis,andthemolecularpathologyhastobeinterpretedsimplyonthebasisofaderived sequenceofthevariant β chainobtainedbyDNAanalysis. Recentstudieshaveprovidedsomeinterestinginsights intohowcomplexclinicalphenotypesmayresultfromthe synthesisofunstable β globinproducts.Forexample,there isaspectrumofdisordersthatresultfrommutationsinexon 3whichgiverisetoamoderatelysevereformof β thalassemiainheterozygotes.Ithasbeenfoundthatnonsenseor frameshiftmutationsinexonsIandIIareassociatedwiththe

absenceofmRNAfromthecytoplasmofredcellprecursors. Thisappearstobeanadaptivemechanism,called nonsensemediateddecay,wherebyabnormalmRNAofthistypeisnot transportedtothecytoplasm,whereitwouldactasatemplatefortheproductionoftruncatedgeneproducts.However,inthecaseofexonIIImutations,apparentlybecause thisprocessrequiresthepresenceofanintactupstreamexon, theabnormalmRNAistransportedintothecytoplasmand hencecanactasatemplatefortheproductionofunstable β globinchains.Thelatterprecipitateintheredcellprecursorstogetherwithexcess α chainstoformlargeinclusionbodies,andhencethereisenoughglobinchainimbalanceinheterozygotestoproduceamoderatelyseveredegree ofanemia.

The α thalassemias

Themolecularpathologyofthe α thalassemiasismorecomplicatedthanthatofthe β thalassemias,simplybecausethere aretwo α globingenesperhaploidgenome.Thus,thenormal α globingenotypecanbewritten αα/αα.Asinthecaseof β thalassemia,therearetwomajorvarietiesof α thalassemia, α+ and α0 thalassemia.In α+ thalassemiaoneofthelinked α globingenesislost,eitherbydeletion( )ormutation(T);the heterozygousgenotypecanbewritten–α/αα or αT α/αα In α0 thalassemiathelossofboth α globingenesnearly alwaysresultsfromadeletion;theheterozygousgenotypeis thereforewritten /αα.Inpopulationswherespecificdeletionsareparticularlycommon,SoutheastAsia(SEA)orthe Mediterraneanregion(MED),itisusefultoaddtheappropriatesuperscriptasfollows:––SEA /αα or––MED /αα.Itfollows thatwhenwespeakofan“α thalassemiagene,”whatweare reallyreferringtoisahaplotype;thatis,thestateandfunction ofbothofthelinked α globingenes.

α0 thalassemia

Threemainmolecularpathologies,allinvolvingdeletions, havebeenfoundtounderliethe α0 thalassemiaphenotype. Themajorityofcasesresultfromdeletionsthatremoveboth α globingenesandavaryinglengthofthe α globingene cluster(Figure1.6).Occasionally,however,the α globingene clusterisintact,butisinactivatedbyadeletionwhichinvolves themajorregulatoryregionHS40,40kbupstreamfromthe α globingenes,orthe α globingenesmaybelostaspartofa truncationofthetipoftheshortarmofchromosome16. Aswellasprovidinguswithanunderstandingofthe molecularbasisfor α0 thalassemia,detailedstudiesofthese deletionshaveyieldedmoregeneralinformationaboutthe mechanismsthatunderliethisformofmolecularpathology. Forexample,ithasbeenfoundthatthe5′ breakpointsofa numberofdeletionsofthe α globingeneclusterarelocated approximatelythesamedistanceapartandinthesameorder

alongthechromosomeastheirrespective3′ breakpoints; similarfindingshavebeenobservedindeletionsofthe β globingenecluster.Thesedeletionsseemtohaveresulted fromillegitimaterecombinationevents,whichhaveledtothe deletionofanintegralnumberofchromatinloopsasthey passthroughtheirnuclearattachmentpointsduringchromosomalreplication.AnotherlongdeletionhasbeencharacterizedinwhichanewpieceofDNAbridgesthetwobreakpointsinthe α globingenecluster.Theinsertedsequence originatesupstreamfromthe α globingenecluster,where normallyitisfoundinaninvertedorientationwithrespect tothatfoundbetweenthebreakpointsofthedeletion.Thus itappearstohavebeenincorporatedintothejunctionina waythatreflectsitscloseproximitytothedeletionbreakpoint regionduringreplication.Otherdeletionsseemtoberelated tothefamilyofAlu-repeats,simplerepeatsequencesthat arewidelydispersedthroughoutthegenome;onedeletion appearstohaveresultedfromasimplehomologousrecombinationbetweentworepeatsofthiskindthatareusually62kb apart.

Anumberofformsof α0 thalassemiaresultfromterminal truncationsoftheshortarmofchromosome16toasiteabout 50kbdistaltothe α globingenes.Thetelomericconsensus sequenceTTAGGGn hasbeenaddeddirectlytothesiteofthe break.Sincethesemutationsarestablyinherited,itappears thattelomericDNAaloneissufficienttostabilizetheendsof brokenchromosomes.

Quiterecently,twoothermolecularmechanismshave beenidentifiedasthecauseof α0 thalassemiawhich,though rare,mayhaveimportantimplicationsforanunderstandingofthemolecularpathologyofothergeneticdiseases.In onecase,adeletioninthe α globingeneclusterresulted inawidelyexpressedgene(LUC7L)becomingjuxtaposed toastructurallynormal α globingene.Althoughthelatter retainedallitsimportantregulatoryelements,itsexpression wassilenced.Itwasfoundinatransgenicmousemodelthat transcriptionofantisenseRNAmediatedthesilencingofthe

Fig.1.6Someofthedeletionsthatunderlie α0 and α+ thalassemia. Thecoloredrectangles beneaththe α globingeneclusterindicatethe lengthsofthedeletions.Theunshadedregions indicateuncertaintyabouttheprecisebreakpoints. Thethreesmalldeletionsatthebottomofthefigure representthecommon α+ thalassemiadeletions. HVR,highlyvariableregions.

α globingeneregion,afindingthatprovidesacompletely newmechanismforgeneticdisease.Inanothercaseof α0 thalassemia,inwhichnomoleculardefectscouldbedetected inthe α globingenecluster,again-of-functionregulatory polymorphismwasfoundintheregionbetweenthe α globin genesandtheirupstreamregulatoryelements.Thisalteration createsanewpromoter-likeelementthatinterfereswiththe normalactivationofalldownstream α-likeglobingenes. Inshort,detailedanalysisofthemolecularpathologyof the α0 thalassemiashasprovidedvaluableevidencenotonly abouthowlargedeletionsofgeneclustersarecaused,butalso aboutsomeofthecomplexmechanismsthatmayunderlie casesinwhichthe α geneclustersremainintact,butinwhich theirfunctioniscompletelysuppressed.

α+ thalassemia

Asmentionedearlier,the α+ thalassemiasresultfromthe inactivationofoneoftheduplicated α globingenes,byeither deletionorpointmutation.

�� + Thalassemiaduetogenedeletions.Therearetwocommonformsof α+ thalassemiathatareduetolossofone orotheroftheduplicated α globingenes, α3.7 and α4.2 , where3.7and4.2indicatethesizeofthedeletions.Theway inwhichthesedeletionshavebeengenerated,approximately 4kblong,wasprobablygeneratedbyanancientduplication event.Thehomologousregions,whicharedividedbysmall inserts,aredesignatedX,Y,andZ.TheduplicatedZboxes are3.7kbapartandtheXboxesare4.2kbapart.Theresult ofmisalignmentreflectstheunderlyingstructureofthe α globingenecomplex(Figure1.7).Each α genelieswithin aboundaryofhomologyandreciprocalcrossoverbetween thesesegmentsatmeiosis,achromosomeisproducedwith eitherasingle( α)ortriplicated(ααα) α globingene.As showninFigure1.7,ifacrossoveroccursbetweenhomologousZboxes3.7kbofDNAarelost,aneventwhichis describedasarightwarddeletion, α3.7 .Asimilarcrossover

Fig.1.7Mechanismsofthegenerationofthe commondeletionformsof α+ thalassemia. (a) Thenormalarrangementofthe α globingenes, withtheregionsofhomologyX,Y,andZ.(b)The crossoverthatgeneratesthe α3.7 deletion.(c)The crossoverthatgeneratesthe α4.2 deletion.

betweenthetwoXboxesdeletes4.2kb,theleftwarddeletion α4.2 .Thecorrespondingtriplicated α genearrangements arecalled αααanti3.7 and αααanti4.2 .Avarietyofdifferent pointsofcrossingoverwithintheZboxesgiverisetodifferentlengthdeletions,stillinvolving3.7kb.

Non-deletiontypesof �� + thalassemia.Thesedisorders resultfromsingleoroligonucleotidemutationsoftheparticular α globingene.Mostoftheminvolvethe α2genebut, sincetheoutputfromthislocusistwotothreetimesgreater thanthatfromthe α1gene,thismaysimplyreflectascertainmentbiasduetothegreaterphenotypiceffectand,possibly, agreaterselectiveadvantage.

Overall,thesemutationsinterferewith α globingene functioninasimilarwaytothosethataffectthe β globin genes.Theyaffectthetranscription,translation,orposttranslationalstabilityofthegeneproduct.Sincetheprinciplesarethesameasfor β thalassemia,wedonotneed todescribethemindetail,withoneexception,amutation whichhasnotbeenobservedinthe β globingenecluster. Itturnsoutthatthereisafamilyofmutationsthatinvolves the α2globingeneterminationcodon,TAA.Eachspecificallychangesthiscodonsothatanaminoacidisinserted insteadofthechainterminating.Thisisfollowedby“readthrough”of α globinmRNA,whichisnotnormallytranslateduntilanotherin-phaseterminationcodonisreached. Theresultisanelongated α chainwith31additionalresidues attheC-terminalend.Fivehemoglobinvariantsofthistype havebeenidentified.Thecommonest,HbConstantSpring, occursatahighfrequencyinmanypartsofSoutheastAsia. Itisnotabsolutelyclearwhytheread-throughofnormally untranslatedmRNAsleadstoareducedoutputfromthe α2

gene,althoughthereisconsiderableevidencethatitinsome waydestabilizesthemRNA.

α thalassemia/mentalretardationsyndromes

Thereisafamilyofmildformsof α thalassemiawhichis quitedifferenttothatdescribedintheprevioussectionand whichisassociatedwithvaryingdegreesofmentalretardation.Recentstudiesindicatethattherearetwoquitedifferent varietiesofthiscondition,oneencodedonchromosome16 (ATR-16)andtheotherontheXchromosome(ATR-X).

TheATR-16syndromeischaracterizedbyrelativelymild mentaldisabilitywithavariableconstellationoffacialand skeletaldysmorphisms.Theseindividualshavelongdeletionsinvolvingthe α globingenecluster,butremoving atleast1–2Mb.Thisconditioncanariseinseveralways, includingunbalancedtranslocationinvolvingchromosome 16,truncationofthetipofchromosome16,andthelossof the α globingeneclusterandpartsofitsflankingregionsby othermechanisms.

TheATR-Xsyndromeresultsfrommutationsinageneon theXchromosome,Xq13.1–q21.1.Theproductofthisgene isoneofafamilyofproteinsinvolvedinchromatin-mediated transcriptionalregulation.Itisexpressedubiquitouslyduringdevelopmentandatinterphaseitisfoundentirelywithin thenucleusinassociationwithpericentromericheterochromatin.Inmetaphase,itissimilarlyfoundclosetothecentromeresofmanychromosomesbut,inaddition,occursat thestalksofacrocentricchromosomes,wherethesequences forribosomalRNAarelocated.Theselocationsprovide importantcluestothepotentialroleofthisproteininthe

(b) Rightward crossover
(c) Leftward crossover

establishmentand/ormaintenanceofmethylationofthe genome.Althoughitisclearthat ATR-X isinvolvedin α globintranscription,italsomustbeanimportantplayerin earlyfetaldevelopment,particularlyoftheurogenitalsystem andbrain.Manydifferentmutationsofthisgenehavebeen discoveredinassociationwiththewidespreadmorphologicalanddevelopmentalabnormalitieswhichcharacterizethe ATR-Xsyndrome.

α thalassemiaandthemyelodysplasticsyndrome

SincethefirstdescriptionofHbH(seelatersection)inthered cellsofapatientwithleukemia,manyexamplesofthisassociationhavebeenreported.Theconditionusuallyisreflected inamildformofHbHdisease,withtypicalHbHinclusions inaproportionoftheredcellsandvaryingamountsofHbH demonstrablebyhemoglobinelectrophoresis.Thehematologicalfindingsareusuallythoseofoneorotherformofthe myelodysplasticsyndrome.Theconditionoccurspredominantlyinmalesinolderagegroups.Veryrecentlyithasbeen foundthatsomepatientswiththisconditionhavemutations involving ATR-X.Therelationshipofthesemutationstothe associatedmyelodysplasiaremainstobedetermined.

Rarerformsofthalassemiaandrelated disorders

Thereareavarietyofotherconditionsthatinvolvethe β globingeneclusterwhich,althoughlesscommonthanthe β thalassemias,providesomeimportantinformationabout mechanismsofmolecularpathologyandthereforeshouldbe mentionedbriefly.

The δβ thalassemias

Likethe β thalassemias,the δβ thalassemias,whichresult fromdefective δ and β chainsynthesis,aresubdividedinto the(δβ)+ and(δβ)0 forms.

The(δβ)+ thalassemiasresultfromunequalcrossover betweenthe δ and β globingenelociatmeiosiswiththe productionof δβ fusiongenes.Theresulting δβ fusion chainproductscombinewith α chainstoformafamilyof hemoglobinvariantscalledthehemoglobinLepores,afterthe familynameofthefirstpatientofthiskindtobediscovered. Becausethesynthesisofthesevariantsisdirectedbygenes withthe5′ sequencesofthe δ globingenes,whichhavedefectivepromoters,theyaresynthesizedatareducedrateand resultinthephenotypeofamoderatelysevereformof δβ thalassemia.

The(δβ)0 thalassemiasnearlyallresultfromlongdeletionsinvolvingthe β globingenecomplex.Sometimesthey involvethe A γ globinchainsandhencetheonlyactivelocus remainingisthe G γ locus.Inothercasesthe G γ and A γ loci

areleftintactandthedeletionsimplyremovesthe δ and β globingenes;inthesecasesboththe G γ andthe A γ globin generemainfunctional.Forsomereason,theselongdeletionsallowpersistentsynthesisofthe γ globingenesata relativelyhighlevelduringadultlife,whichhelpstocompensatefortheabsenceof β and δ globinchainproduction. Theyareclassifiedaccordingtothekindoffetalhemoglobin thatisproduced,andhenceintotwovarieties, G γ(A γδβ)0 and G γA γ(δβ)0 thalassemia;inlinewithotherformsofthalassemia,theyarebestdescribedbywhatisnotproduced: (A γδβ)0 and(δβ)0 thalassemia,respectively.Homozygotes produceonlyfetalhemoglobin,whileheterozygoteshavea thalassemicbloodpicturetogetherwithabout5–15%HbF.

Hereditarypersistenceoffetalhemoglobin

Geneticallydeterminedpersistentfetalhemoglobinsynthesisinadultlifeisofnoclinicalimportance,exceptthatits geneticdeterminantscaninteractwiththe β thalassemiasor structuralhemoglobinvariants;theresultinghighlevelofHb Fproductionoftenamelioratestheseconditions.ThedifferentformsofHPFHresultfromeitherlongdeletionsinvolvingthe δβ globingenecluster,similartothosethatcause (δβ)0 thalassemia,orpointmutationsthatinvolvethepromotersofthe G γ or A γ globingene.Intheformercasethere isno β globinchainsynthesisandthereforetheseconditionsareclassifiedas(δβ)0 HPFH.Incasesinwhichthere arepromotermutationsinvolvingthe γ globingenes,thereis increased γ globinchainproductioninadultlifeassociated withsome β and δ chainsynthesisin cis (i.e.directedbythe samechromosome)totheHPFHmutations.Thus,dependingonwhetherthepointmutationsinvolvethepromoterof the G γ or A γ globingene,theseconditionsarecalled G γβ+ HPFHand A γβ+ HPFH,respectively.

ThereisanotherfamilyofHPFH-likedisordersinwhich thegeneticdeterminantisnotencodedinthe β chaincluster.Inonecasethedeterminantencodesonchromosome6, althoughitsnaturehasnotyetbeendetermined.

Itshouldbepointedoutthatalltheseconditionsarevery heterogeneousandthatmanydifferentdeletionsorpoint mutationshavebeendiscoveredthatproducetherathersimilarphenotypesof(δβ)0 or G γ or A γβ+ HPFH.

Genotype–phenotyperelationshipsin thethalassemias

Itisnownecessarybrieflytorelatetheremarkablydiverse molecularpathologydescribedintheprevioussectionsto thephenotypesobservedinpatientswiththesediseases. Itisnotpossibletodescribeallthesecomplexissueshere. Rather,Ishallfocusonthoseaspectsthatillustratethemore generalprinciplesofhowabnormalgeneactionisreflected

inaparticularclinicalpicture.Perhapsthemostimportant questionthatIwilladdressiswhypatientswithapparently identicalgeneticlesionshavewidelydifferingdisorders, aproblemthatstillbedevilsthewholefieldofmedical genetics,eveninthemolecularera.

The β thalassemias

Aswehaveseen,thebasicdefectthatresultsfromthe200 ormoredifferentmutationsthatunderlietheseconditionsis reduced β globinchainproduction.Synthesisofthe α globin chainproceedsnormallyandhencethereisimbalanced globinchainoutputwithanexcessof α chains(Figure1.8).

Unpaired α chainsprecipitateinbothredcellprecursorsand theirprogenywiththeproductionofinclusionbodies.These interferewithnormalredcellmaturationandsurvivalina varietyofcomplexways.Theirattachmenttotheredcell

membranecausesalterationsinitsstructure,andtheirdegradationproducts,notablyheme,hemin(oxidizedheme),and iron,resultinoxidativedamagetotheredcellcontents andmembrane.Theseinteractionsresultinintramedullary destructionofredcellprecursorsandinshortenedsurvival ofsuchcellsastheyreachtheperipheralblood.Theend resultisanemiaofvaryingseverity.This,inturn,causestissuehypoxiaandtheproductionofrelativelylargeamountsof erythropoietin;thisleadstoamassiveexpansionoftheineffectivebonemarrow,resultinginbonedeformity,ahypermetabolicstatewithwastingandmalaise,andbonefragility.

Alargeproportionofhemoglobininthebloodof β thalassemicsisofthefetalvariety.Normalindividualsproduce about1%ofHbF,unevenlydistributedamongtheirredcells. Inthebonemarrowof β thalassemics,anyredcellprecursors thatsynthesize γ chainscomeunderstrongselectionbecause theycombinewith α chainstoproducefetalhemoglobin,and

Selective survival of HbF-containing precursors

Increased levels of HbF in red cells

High oxygen affinity of red cells

Denaturation Degradation

Hemolysis

Splenomegaly (pooling, plasma volume expansion)

Anemia

Destruction of RBC precursors

Ineffective erythropoiesis

Transfusion

Marrow expansion

Skeletal deformity

Increased metabolic rate

Wasting

Gout

Folate deficiency

Iron loading

Endocrine deficiencies

Cirrhosis

Cardiac failure

Erythropoietin
Fig.1.8 Thepathophysiologyof β thalassemia.

thereforethedegreeofglobinchainimbalanceisreduced. Furthermore,thelikelihoodof γ chainproductionseemsto beincreasedinahighlystimulatederythroidbonemarrow. Itseemslikelythatthesetwofactorscombinetoincreasethe relativeoutputofHbFinthisdisorder.However,ithasa higheroxygenaffinitythanHbA,andhencepatientswith β thalassemiaarenotabletoadapttolowhemoglobinlevels aswellasthosewhohaveadulthemoglobin.

Thegreatlyexpanded,ineffectiveerythronleadstoan increasedrateofironabsorption;this,combinedwithiron receivedbybloodtransfusion,leadstoprogressiveiron loadingofthetissues,withsubsequentliver,cardiac,and endocrinedamage.

Theconstantbombardmentofthespleenwithabnormal redcellsleadstoitshypertrophy.Hencethereisprogressive splenomegalywithanincreasedplasmavolumeandtrapping ofpartofthecirculatingredcellmassinthespleen.This leadstoworseningoftheanemia.Allthesepathophysiologicalmechanisms,exceptforironloading,canbereversedby regularbloodtransfusionwhich,ineffect,shutsofftheineffectivebonemarrowanditsconsequences.

Thusitispossibletorelatenearlyalltheimportantfeaturesofthesevereformsof β thalassemiatotheprimary defectinglobingeneaction.However,canwealsoexplain theirremarkableclinicaldiversity?

Phenotypicdiversity

Althoughthebulkofpatientswhoarehomozygousfor β thalassemiamutationsorcompoundheterozygotesfortwodifferentmutationshaveaseveretransfusion-dependentphenotype,therearemanyexceptions.Somepatientsofthistype haveamildercourse,requiringfeworevennotransfusions, aconditioncalled β thalassemiaintermedia.Aparticularly importantexampleofthisconditionisillustratedbytheclinicalfindingsinthosewhoinherit β thalassemiafromone parentandHbEfromtheother,adisordercalledHbE/β thalassemia.BecausethemutationthatproducesHbEalso opensupanalternativesplicesiteinthefirstexonofthe β globingene,itissynthesizedatareducedrateandtherefore behaveslikeamildformof β thalassemia.ItisthecommonesthemoglobinvariantgloballyandHbE/β thalassemiais thecommonestformofseverethalassemiainmanyAsian countries.Ithasanextraordinarilyvariablephenotype,rangingfromaconditionindistinguishablefrom β thalassemia majortooneofsuchmildnessthatpatientsgrowanddevelop quitenormallyandneverrequiretransfusion.

Overrecentyearsagreatdealhasbeenlearnedaboutsome ofthemechanismsinvolvedinthisremarkablephenotypic variability.Inshort,itreflectsboththeactionofmodifying genesandvariabilityinadaptationtoanemiaand,almostcertainly,theeffectsoftheenvironment.Giventhecomplexityof theseinteractions,itishelpfultodividethegeneticmodifiers

Table1.2 Mechanismsforthephenotypicdiversityofthe β thalassemias

Geneticmodifiers

Primary:allelesofvaryingseverity

Secondary:modifiersofglobinchainimbalance

α Thalassemia

Increased α globingenes: ααα or αααα

GenesinvolvedinunusuallyhighHbFresponse

Tertiary:modifiersofcomplications

Ironabsorption,bonedisease,jaundice,infection

Adaptationtoanemiaa

Variationinoxygenaffinity(P50 )ofhemoglobin

Variationinerythropoietinresponsetoanemia

Environmental Nutrition

Infection

Others

a Theremaybegeneticvariationintheadaptivemechanisms.

ofthe β thalassemiaphenotypeintoprimary,secondary,and tertiaryclasses(Table1.2).

Theprimarymodifiersarethedifferent β thalassemiaallelesthatcaninteracttogether.Forexample,compoundheterozygotesforasevere β0 thalassemiamutationandamilder onemayhaveanintermediateformof β thalassemiaof varyingseverity,dependingonthedegreeofreductionin β globinsynthesisundertheactionofthemilderallele.Thisis undoubtedlyonemechanismforthevaryingseverityofHb E/β thalassemia;itsimplyreflectsthevariableactionofthe β thalassemiamutationthatisinheritedtogetherwithHbE. However,thisexplanationisnotrelevantincasesinwhich patientswithidentical β thalassemiamutationshavewidely disparatephenotypes.

Thesecondarymodifiersarethosewhichdirectlyaffect thedegreeofglobinchainimbalance.Patientswith β thalassemiawhoalsoinheritoneorotherformof α thalassemia tendtohaveamilderphenotypebecauseofthereduction intheexcessof α globingenescausedbythecoexistent α thalassemiaallele.Similarly,patientswithsevereformsof thalassemiawhoinheritmore α genesthannormalbecause theirparentshavetriplicatedorquadruplicated α gene arrangementstendtohavemoreseverephenotypes.Other patientswithseverethalassemiaallelesappeartoruna mildercoursebecauseofageneticallydeterminedabilityto producemore γ globinchainsandhencefetalhemoglobin, amechanismthatalsoresultsinareduceddegreeofglobin chainimbalance.Itisnowclearthatseveralgenelociare involvedinthismechanism;thebestcharacterizedisa polymorphisminthepromoterregionofthe G γ globingene thatappearstoincreasetheoutputfromthislocusunder

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.