Thermal and optical remote sensing john o odindi all chapter instant download

Page 1


Thermal and Optical Remote Sensing John O

Odindi

Visit to download the full and correct content document: https://ebookmass.com/product/thermal-and-optical-remote-sensing-john-o-odindi/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Optical Remote Sensing of Land Surface. Techniques and Methods 1st Edition Nicolas Baghdadi

https://ebookmass.com/product/optical-remote-sensing-of-landsurface-techniques-and-methods-1st-edition-nicolas-baghdadi/

Bio-optical Modeling and Remote Sensing of Inland Waters 1st Edition Edition D.R. Mishra

https://ebookmass.com/product/bio-optical-modeling-and-remotesensing-of-inland-waters-1st-edition-edition-d-r-mishra/

Remote sensing digital image analysis Sixth Edition John Alan Richards

https://ebookmass.com/product/remote-sensing-digital-imageanalysis-sixth-edition-john-alan-richards/

Atmospheric Remote Sensing Abhay Kumar Singh

https://ebookmass.com/product/atmospheric-remote-sensing-abhaykumar-singh/

Techniques and methods in urban remote sensing Weng

https://ebookmass.com/product/techniques-and-methods-in-urbanremote-sensing-weng/

Remote Sensing Digital Image Analysis 6th ed. 2022

Edition John A. Richards

https://ebookmass.com/product/remote-sensing-digital-imageanalysis-6th-ed-2022-edition-john-a-richards/

Remote Sensing of Ocean and Coastal Environments Meenu Rani

https://ebookmass.com/product/remote-sensing-of-ocean-andcoastal-environments-meenu-rani/

Hyperspectral Remote Sensing: Theory and Applications

Prem Chandra Pandey

https://ebookmass.com/product/hyperspectral-remote-sensingtheory-and-applications-prem-chandra-pandey/

Atmospheric Remote Sensing: Principles and Applications

Abhay Kumar Singh

https://ebookmass.com/product/atmospheric-remote-sensingprinciples-and-applications-abhay-kumar-singh/

Thermal and Optical Remote Sensing

www.mdpi.com/journal/remotesensing

Edited by

John O. Odindi, Elhadi Adam, Elfatih M. Abdel-Rahman and Yuyu Zhou

ThermalandOpticalRemoteSensing: EvaluatingUrbanGreenSpacesand UrbanHeatIslandsinaChanging Climate

Editors

JohnO.Odindi

ElhadiAdam

ElfatihM.Abdel-Rahman

YuyuZhou

Editors

JohnO.Odindi

UniversityofKwaZulu-Natal SouthAfrica

ElhadiAdam Universityofthe Witwatersrand SouthAfrica

ElfatihM.Abdel-Rahman InternationalCentreofInsect PhysiologyandEcology (ICIPE) Kenya

YuyuZhou IowaStateUniversity USA

EditorialOffice MDPI

St.Alban-Anlage66 4052Basel,Switzerland

ThisisareprintofarticlesfromtheSpecialIssuepublishedonlineintheopenaccessjournal RemoteSensing (ISSN2072-4292)(availableat:https://www.mdpi.com/journal/remotesensing/ special issues/RS Urban Green UHI).

Forcitationpurposes,citeeacharticleindependentlyasindicatedonthearticlepageonlineandas indicatedbelow:

LastName,A.A.;LastName,B.B.;LastName,C.C.ArticleTitle. JournalName Year, VolumeNumber, PageRange.

ISBN978-3-0365-6275-9(Hbk) ISBN978-3-0365-6276-6(PDF)

CoverimagecourtesyofGettyImages

©2023bytheauthors.ArticlesinthisbookareOpenAccessanddistributedundertheCreative CommonsAttribution(CCBY)license,whichallowsuserstodownload,copyandbuildupon publishedarticles,aslongastheauthorandpublisherareproperlycredited,whichensuresmaximum disseminationandawiderimpactofourpublications.

ThebookasawholeisdistributedbyMDPIunderthetermsandconditionsoftheCreativeCommons licenseCCBY-NC-ND.

Contents

AbouttheEditors vii

Prefaceto”ThermalandOpticalRemoteSensing:EvaluatingUrbanGreenSpacesand UrbanHeatIslandsinaChangingClimate” ix

XiangyuLi,GuixinZhang,ShanyouZhuandYongmingXu Step-By-StepDownscalingofLandSurfaceTemperatureConsideringUrbanSpatial MorphologicalParameters

Reprintedfrom: RemoteSens. 2022, 14,3038,doi:10.3390/rs14133038 1

WenhaoZhu,JiabinSun,ChaobinYang,MinLiu,XinliangXuandCaoxiangJi HowtoMeasuretheUrbanParkCoolingIsland?APerspectiveofAbsoluteandRelative IndicatorsUsingRemoteSensingandBufferAnalysis

Reprintedfrom: RemoteSens. 2021, 13,3154,doi:10.3390/rs13163154 ................. 19

Tshilidzi Manyanya, Janne Teerlinck, Ben Somers, Bruno Verbist and Nthaduleni Nethengwe

Sentinel-Based Adaptation of the Local Climate Zones Framework to a South African Context

Reprintedfrom: RemoteSens. 2022, 14,3594,doi:10.3390/rs14153594 35

TerenceDarlingtonMushore,OnisimoMutangaandJohnOdindi DeterminingtheInfluenceofLongTermUrbanGrowthonSurfaceUrbanHeatIslandsUsing LocalClimateZonesandIntensityAnalysisTechniques

Reprintedfrom: RemoteSens. 2022, 14,2060,doi:10.3390/rs14092060

AliS.Alghamdi,AhmedIbrahimAlzhraniandHumudHadiAlanazi LocalClimateZonesandThermalCharacteristicsinRiyadhCity,SaudiArabia

Reprintedfrom: RemoteSens. 2021, 13,4526,doi:10.3390/rs13224526

MeilingZhou,LinlinLu,HuadongGuo,QihaoWeng,ShisongCao,ShuangchengZhang andQingtingLi

UrbanSprawlandChangesinLand-UseEfficiencyintheBeijing–Tianjin–HebeiRegion,China from2000to2020:ASpatiotemporalAnalysisUsingEarthObservationData

59

81

Reprintedfrom: RemoteSens. 2021, 13,2850,doi:10.3390/rs13152850 99 KangningLi,YunhaoChenandShengjunGao ComparativeAnalysisofVariationsandPatternsbetweenSurfaceUrbanHeatIslandIntensity andFrequencyacross305ChineseCities

Reprintedfrom: RemoteSens. 2021, 13,3505,doi:10.3390/rs13173505 ................. 117

BaohuiMu,XiangZhao,JiachengZhao,NaijingLiu,LongpingSi,QianWang,NaSun,etal. QuantitativelyAssessingtheImpactofDrivingFactorsonVegetationCoverChangeinChina’s 32MajorCities

Reprintedfrom: RemoteSens. 2022, 14,839,doi:10.3390/rs14040839 135 AbdelaliGourfi,AudeNusciaTa¨ıbi,SalimaSalhi,MustaphaElHannaniandSaidBoujrouf TheSurfaceUrbanHeatIslandandKeyMitigationFactorsinAridClimateCities,Caseof Marrakesh,Morocco

Reprintedfrom: RemoteSens. 2022, 14,3935,doi:10.3390/rs14163935 157

TerenceMushore,JohnOdindiandOnisimoMutanga “Cool”RoofsasaHeat-MitigationMeasureinUrbanHeatIslands:AComparativeAnalysis UsingSentinel2andLandsatData

Reprintedfrom: RemoteSens. 2022, 14,4247,doi:10.3390/rs14174247 ................. 179

ThuThiNguyen,HarryEslick,PaulBarber,RichardHarperandBernardDell CoolingEffectsofUrbanVegetation:TheRoleofGolfCourses

Reprintedfrom: RemoteSens. 2022, 14,4351,doi:10.3390/rs14174351

AbouttheEditors

JohnO.Odindi

JohnO.OdindiholdsaPhDinEnvironmentalGeographywithfocusonterrestrialremote sensing.HeisafullprofessorandformerHeadofDisciplineofGeographyandEnvironmental SciencesattheUniversityofKwaZulu-Natal,SouthAfrica.Hismaininterestsareurbangreenspaces andurbanmicroclimateusingoptical,thermalandRadardatasets,remotesensingofaboveground biomass,localandregionalcarbonmodelling,remotesensingofrangelandnutritivevalueandcrop yield,remotesensingofplantinvasivespeciesandcropdiseasemodelling.Hiscurrentprojects include;Dronebasedhighspatialresolutioncropphenotyping,Datascienceforglobalhealth andclimatechange,Earthobservationbigdatascience,Ecosystem/urbanheatislandnexususing remotelysenseddatasets,TheintegratedpestmanagementstrategyforfoodsecurityinEastern Africa(FAW-IPM)andtheAfricanreferencelaboratory(withsatellitestations)forthemanagement ofpollinatorbeediseasesandpestsforfoodsecurity.ProfessorOdindihasbeenpreviouslyselected asoneofthe52AfricanresearcherswithoutstandingcontributiontoGeo-informationandEarth Observationonthecontinent.HeisaBrownInternationalAdvancedResearchInstitute(BIARI) fellowoftheWatsonInstitute,BrownUniversity,RhodeIsland,USA.

ElhadiAdam

ElhadiAdam(Professor)holdsaPhDinEnvironmentalSciencewithaspecificfocuson hyperspectralremotesensing.Hisexpertiseliesintheapplicationsofremotesensinginapplied environmentalscienceandprecisionagriculture.Heisinterestedinvegetationmappingand monitoringbyintegratingfield-based,airborneandspace-bornehyperspectralremotesensorsfor detectingsubtlepatternsinnaturalvegetationandcrops.Hefocusesonbiochemicalconcentration, invasivespeciesmapping,wetlandhealth,herbaceousbiomassdistributionandcharacterizationof heterogeneouslandscapes.Hiscurrentresearchprojectisdevelopingasupportinformationsystem toprovideabroaderrangeofagronomically-relevantinformationaboutcropbiophysicalstatusand leafbiochemistryusingremotesensingtechniquesandmachinelearningalgorithms.ProfAdam’s currentresearchalsofocusesondetectingandmappingdiseaseoncropsandquantifyingforest fragmentationanditsimpactonbiodiversityandecosystemservices.

ElfatihM.Abdel-Rahman

ElfatihM.Abdel-Rahman(ResearchScientist)holdsaPhDinEnvironmentalScienceswith over14yearsofexperienceinworkingwithmultidisciplinaryteamsofEnvironmentalScientists, Agronomists,Entomologists,PlantPathologists,VectorScientists,MathematicalModelers,Computer Scientists,Engineers,GeographersandSocialScientists.Heusesremotesensing,Earthobservation andgeospatialmodellingtoolstoimprovethemanagementofcomplexagro-naturalandurban systemsandtoenhancecroprisksmonitoring,forecastingandearlywarningsystems.Thisextensive experience,coupledwithhisbackgroundasanAgronomistandauniversityAssociateProfessor, giveshimanexcellentfoundationtocarryoutvariousremotesensingandgeospatialmodelling taskstodevelopadvisorytoolsforimprovingthehealthofhuman,plant,animal,andenvironment. Hiscurrentresearchanddevelopmentprojectsfocusonassessingtheeffectoflandscapedynamics andclimatechangeonagriculturalpests,malariaandtsetsevectors,cropyieldusingsatellitedata, datascienceandmachinelearningalgorithms.HeisamemberoftheEditorialAdvisoryBoardof ISPRSJournalofPhotogrammetryandRemoteSensingandtheEditorialBoardsoftheInternational

JournalofTropicalSciences,andFrontiersinMulti-andHyper-SpectralImaging.Dr.Abdel-Rahman ranksamongthebest10%scientistswhoapplyremotesensingandGISinagricultureinAfrica.He isaBrownInternationalAdvancedResearchInstitute(BIARI)fellowoftheWatsonInstitute,Brown University,RhodeIsland,USA.

YuyuZhou

YuyuZhouisanAssociateProfessorintheDepartmentofGeologicalandAtmosphericSciences atIowaStateUniversity,USA.HeholdsaBachelorofSciencedegreeinGeographyandMasterof SciencedegreeinRemoteSensingfromBeijingNormalUniversityandaPh.D.inEnvironmental SciencesfromtheUniversityofRhodeIsland.DrZhou’sgeneralfocusisthequantificationof spatiotemporalpatternsofenvironmentalchangeanddevelopingmodelingmechanismstobridge thedrivingforces(bothnaturalandsocioeconomicfactors)andconsequencesofenvironmental changesothattheimpactsofhumanactivitiesonenvironmentcanbeeffectivelymeasured,modeled, andevaluated.Specifically,hisresearchfocusesandinterestincludetheapplicationofremote sensing,GIS,IntegratedAssessmentModelling,andspatialanalysisinecosystem,environmental, andsocialsciences,includinginterdisciplinaryareas:Energysources,demand,climatechange impact,highspatialandtemporalenergyandemissionsmodelling,hydrologyandecosystem modelling.HewasawardedaNASALand-CoverLand-UseChange(LCLUC)ResearchGrantfor EarlyCareerScientisttostudyglobalurbanexpansioninthecontextofclimatechange.Hepreviously workedasaGeographicalScientistattheJointGlobalChangeResearchInstitute,apartnershipofthe PacificNorthwestNationalLaboratory(PNNL)andtheUniversityofMaryland.

Prefaceto”ThermalandOpticalRemoteSensing: EvaluatingUrbanGreenSpacesandUrbanHeat IslandsinaChangingClimate”

Urbanization,typifiedbyland-use-land-covertransformationisamajorcauseofbio-physical, thermodynamic,surfaceenergyandmicro-andmacroclimateperturbations.Thesechanges commonlyresultinenvironmentaldeteriorationthatinturnadverselyaffectsbio-physicalprocesses andqualityofurbanlife.Amajorconsequenceofurbanizationisthehigherthermalvalues comparedtothesurroundingperi-urbanandruralareas,causingtheUrbanHeatIsland(UHI) effect.Inrecentdecades,above-averageheatduringsummerhasbecomeprevalentinglobalcities, atrendthatisexpectedtocontinue.ItisanticipatedthattheintensifyingUHIeffect,inconcert withincreasinganthropogenicactivities,willexacerbatethevulnerabilityofurbanlandscapesto climate-relateddisasterssuchasfloodsandheatwaves.Hence,UHIshavebecomeaninvaluable themeinenvironmentalresearch.Arecentproliferationofopticalandthermalremotelysensed datasetsoffersgreatpotentialforunderstandingtherelationshipbetweentheurbanizationprocesses andtheirrespectivebio-physicalandclimaticimplications.Thisbookfocusesonthetheoretical principlesandpracticaladoptionofremotesensingapproachesanddatasetsinunderstandingthe nexusbetweenurbanization,naturallandscapes,urbanmicro-climate,andclimatechange.This bookprovidesabasisforunderstandingurbanecologicalandnaturalpatterns,criticalforthe managementofurbanphysical,ecologicalandsocialprocesses.Specifically,understandingpast, current,andfutureLandSurfaceTemperature(LST)patternsanddriversiscriticalfor,among others,urbanenvironmentalmanagement,urbanspatialplanning,theoptimalandsustainableuseof urbanlandscapesandclimatechangemitigation.Thebook’sfirsttwochaptersexplorethepotential ofdownscalingremotelysenseddataandimprovedfeatureextractiontodeterminetheeffectof urbansurfacetypesonthermalcharacteristics.ChapteroneadoptsaStep-by-StepRandomForest Downscaling-Morphological(SSRFD-M)modeltorelatenaturalsurfacestoLST,whilechaptertwo proposestheabsoluteandrelativeindicatorsforthedetailedderivationoflandscapefeaturesand thermalvaluesusingGeofen2(GF-2)andLandsat8ThermalInfra-Red(TIR),respectively.Chapter threetofiveadoptthestandardizedLocalClimateZone(LCZ)typologytorelateurbanlandscape featuretypestothermalcharacteristics.ChapterthreeandfourusetheWorldUrbanDatabaseand AccessPortalTool(WUDAPT)andtheLCZframeworkinSouthAfrica(CapeTown,Thohoyandou andEastLondon)andZimbabwe(Bulawayo),respectively,whilechapterfiverelatesseasonalLCZ todaytimeLSTinRiyadh,SaudiArabia.Chaptersixtonineinvestigatemulti-cityurbanLULC andthecontributionoftheclimate,urbanizationandCO2 toUHIinmultiplecities.Chaptersix proposesaLandsatimagerytimeseriesapproachinGoogleEarthEngineplatformtomapbuilt-up areasin305cities,whilechaptersevencomparesSurfaceUrbanHeatIsland(SUHI)inrelationtothe SUHIfraction’skeydriversin305Chinesecities.Chaptereightdeterminesacriticalcompetitive pointofArtificialSurfaces(AS)andUrbanBlue-GreenSpace(UBGS)onLSTin28cities,while chapterninerelatestheGlobalLandSurfaceSatellite(GLASS)FractionalVegetationCover(FVC) toCO2 ,urbanization,andclimatein32majorcities.Chaptertentotwelveinvestigatearangeof UHI-mitigationapproaches.Chapter10exploresthevalueofurbangreenspacesinmitigatingUHI inMarrakesh,Morocco,whilechaptereleveninvestigatestheroleroofcoloursinassimilatingsurface temperature.Usingvegetation’smorphologicalSpatialPatterAnalysis(MSPA),chaptertwelve adoptsArborCamTM multispectralhigh-resolutionimagerytodeterminetheroleofgolfcoursesin

assimilatingurbanLST.Thisbookshouldbeofinteresttobothspecialistsandgeneralistsinterested in,amongothers,urbanplanning,ecologicalconservation,theurbanmicro-climate,atmospheric science,environmentalmanagement,andclimatechange.

remote sensing

Article

Step-By-StepDownscalingofLandSurfaceTemperature ConsideringUrbanSpatialMorphologicalParameters

XiangyuLi 1 ,GuixinZhang 2, *,ShanyouZhu 1 andYongmingXu 1

Citation: Li,X.;Zhang,G.;Zhu,S.; Xu,Y.Step-By-StepDownscalingof LandSurfaceTemperature ConsideringUrbanSpatial MorphologicalParameters. Remote Sens. 2022, 14,3038.https:// doi.org/10.3390/rs14133038

AcademicEditors:YuyuZhou, ElhadiAdam,JohnOdindiand ElfatihAbdel-Rahman

Received:21May2022

Accepted:21June2022

Published:24June2022

Publisher’sNote: MDPIstaysneutral withregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffiliations.

Copyright: ©2022bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).

1 SchoolofRemoteSensingandGeomaticsEngineering,NanjingUniversityofInformationScience andTechnology,Nanjing210044,China;lxyxzs@nuist.edu.cn(X.L.);zsyzgx@nuist.edu.cn(S.Z.); xym30@nuist.edu.cn(Y.X.)

2 SchoolofGeographicalSciences,NanjingUniversityofInformationScienceandTechnology, Nanjing210044,China

* Correspondence:001631@nuist.edu.cn

Abstract: Landsurfacetemperature(LST)isoneofthemostimportantparametersinurbanthermal environmentalstudies.Comparedtonaturalsurfaces,thesurfaceofurbanareasismorecomplex,and thespatialvariabilityofLSTishigher.Therefore,itisimportanttoobtainahigh-spatial-resolution LSTforurbanthermalenvironmentalresearch.Atpresent,downscalingstudiesaremostlyperformed fromalowspatialresolutiondirectlytoanotherhighresolution,whichoftenresultsinloweraccuracy withalargerscalespan.First,astep-by-steprandomforestdownscalingLSTmodel(SSRFD)is proposedinthisstudy.Inourwork,the900-mresolutionSentinel-3LSTwassequentiallydownscaled to450m,150mand30mbySSRFD.Then,urbanspatialmorphologicalparameterswereintroduced intoSSRFD,abbreviatedasSSRFD-M,tocompensateforthedeficiencyofremote-sensingindicesas drivingfactorsinurbandownscalingLST.TheresultsshowedthattheRMSEvalueoftheSSRFD resultswasreducedfrom2.6 ◦ Cto1.66 ◦ Ccomparedtothedirectrandomforestdownscalingmodel (DRFD);theRMSEvalueoftheSSRFD-Mresultsinbuilt-upareas,suchasGulouandQinhuai District,wasreducedbyapproximately0.5 ◦ C.WealsofoundthattheunderestimationofLSTcaused byconsideringonlyremote-sensingindicesinplacessuchasflowerbedsandstreetswasimprovedin theSSRFD-Mresults.

Keywords: step-by-stepdownscalingofLST;landsurfacetemperature;urbanspatialmorphology

1.Introduction

Asanimportantphysicalvariabledrivingtheenergyexchangebetweenthesurface andtheatmosphere,thesurfacetemperature(LST)isoneofthekeyparametersfor studying theenergybalanceofthesurfaceatglobalorregionalscales.Currently,LSTiswidely usedto assesssurfacemoistureanddroughtlevels[1–4],calculateurbanheatislandintensity [5–7] andsimulatesurfaceenergyexchange[8–11].Inurbanareas,thespatialandtemporal heterogeneityofurbansurfacetemperatureisobviousduetotheextremelycomplex surface,thestrongdifferencesinthree-dimensionalspatialgeometryandthevarietyof surfacecomponentsandtypes.Therefore,studiesoftheurbanthermalenvironmentand otherurban-relatedresearchfieldsusuallyrequireLSTdatawithahigherspatiotemporal resolution.

TheLSTdataobtainedbythermalinfraredremote-sensingtechnologygenerallyhave theproblemofconflictingspatialandtemporalresolutions.Forexample,theModerate ResolutionImagingSpectroradiometer(MODIS)LSTproducthasahightemporalresolution,butthespatialresolutionisonly1000m;Sentinel-3operatesthroughabinaryorbit withatemporalresolutionoffewerthan0.9days,butthespatialresolutionoftheLST productisalso1000m;thelandsurfacetemperatureproductretrievedfromLandsatTIRS hasaspatialresolutionof100m,buttherevisitperiodisaslongas16days.Togetherwith theinfluenceofclouds,theavailablevalidLandsatLSTdataareevenfurtherdiminished.

High-temporal-resolutiondataaredifficulttogenerateforrefinedsurfacetemperature studiesatanurbanscaleduetotheirlowspatialresolution,whilethehighspatialresolution LSTdataareunabletostudythevariationpatternofLSTintimeduetotheirlowtemporal resolution.Tosolvethecontradictionofspatialandtemporalresolutionsofremote-sensing thermaldata,scholarshaveproposedalargenumberoftechnicalmethodsfromvarious perspectives,suchasimageprocessingandstatisticalregression,toobtainlandsurface temperaturedatawithhighspatialandtemporalresolutions.

ThestatisticalregressionmethodhasgainedwideapplicationinLSTdownscaling studiesduetoitslowcomputationalcomplexityandsatisfactorydownscalingresults.The applicationofthismethodhasbecomerelativelymatureinsuburbanandmountainousareaswithsimplelandcoversatalargespatialscale[12,13].However,therearetwoproblems thatcannotbeignoredwhenapplyingthestatisticalmethodtourbanareaswithcomplex landsurfacetypes.Firstly,thelargerthespatialresolutionspanofthedownscaling,the lowertheaccuracytendstobe.Fromtheavailablethermalinfraredremote-sensingdata, therearelotsofLSTproductswithahighertemporalresolutionatabout1000-mspatial resolution.Whentheyaredownscaledtothe100-mleveloreventhe10-mlevel,thespatial resolutionofthedownscaledLSTdiffersfromtheoriginalresolutionbyafactorof10or even100,andthedownscaledaccuracydecreasesasthespatialresolutionincreases.The mainreasonforthisproblemisthattheassumptionofa“constantspatialscalerelationship” betweenLSTandthedrivingfactordoesnotholdwhentheresolutiondifferenceislarge. Secondly,thetraditionaltwo-dimensionalremote-sensingspectralindicesandsurface parametersarenotsufficienttoaccuratelydescribethespatialpatternofanurbansurface. Currently,commonlyusedremote-sensingindicesfordownscalingmodels,suchasthe normalizeddifferencevegetationindex(NDVI),normalizeddifferencemoistureindex (NDMI),normalizeddifferencewaterindex(NDWI)andnormalizeddifferencebuilding index(NDBI)[14]usesurfaceparametersincludingtheDEM,slope,slopedirection,latitude,longitudeandsurfacecovertype[15,16],aswellasmultispectraldata[17]describing thevegetationcover,moisturestatusandtopographicreliefofthelandsurfacefromthe two-dimensionalperspective.Incontrast,citiesaredominatedbybuildingsandimperviouspavements,buttheinfluenceofthethree-dimensionalmorphologicalstructureon locallandsurfacetemperatureislessconsidered.Infact,alargenumberofstudieshave demonstratedthaturbanspatialmorphologicalparameterssuchastheskyviewfactor (SVF),frontalareaindex(FAI)andbuildingdensity(BD)arecloselyrelatedtoLST[18–21], meaningtheyneedtobeconsideredindownscalingmodels.

Toaddresstheabovetwoproblems,thisstudyaimedtodevelopastep-by-stepLST downscalingmethodbyfurtherconsideringurbanspatialmorphologicalparametersto obtaintheurbanlandsurfacetemperatureataspatialresolutionof30mwithhighaccuracy. ThepapertakesthecentralurbanareaofNanjing,JiangsuProvince,Chinaasthestudyarea, andselectsmulti-sourceremote-sensingdata,three-dimensionalspatialdistributiondata ofurbanbuildingstodownscaletheSentinel-3LSTwiththespatialresolutionof1000m totheresolutionsof450,150and30mstep-by-stepusingsurface2Dand3Dparameters asdrivingfactors.ThedownscalingresultsareevaluatedbyLandsatTIRSLSTatthe resolutionof30m.Then,theinfluenceofurbanspatialmorphologicalparametersonland surfacetemperaturedownscalingisdiscussed.Thestep-by-stepLSTdownscalingmethod changesthetraditionalstudiesthatdirectlydownscaleLSTfromalowspatialresolutionto ahighone,selectingseveralspatialresolutionsfortheintermediatedownscalingprocess. Theintermediatedownscalingprocessisequivalenttosupplementingthemodelwiththe landsurfaceinformationandreducingthedifferenceinspatialresolution,thusensuring thatthestatisticalregressionmodelvarieslesswiththespatialscale.

2.ResearchReview

Alotofresearchhasbeencarriedoutonlandsurfacetemperaturedownscalingby scholarsaroundtheworld.ThemainmethodsusedforLSTdownscalingcanbedividedinto twocategories:image-basedspatiotemporalfusionandkernel-drivendownscalingmethods.

Theimagefusionmethodobtainsahighspatialandtemporalresolutionlandofsurface temperaturebyconstructingamodeltogeneratefusedimages,basedonthecombined weightofspectral,temporalandspatialinformation,byselectingsimilarimagesinthe spatiotemporalneighborhoodtobefused.Unlikethestatisticaldownscalingmethod,the imagefusionmethoddoesnotdirectlymodeltherelationshipbetweenlandsurfacetemperatureandinfluencingparametersatlow-spatial-resolutionscales.Classical algorithmsareas follows.Wengetal.[22]improvedtheSTARFMmodel toestablishtherelationship between MODISandTMradiometricbrightnessbylinearspectralmixinganalysis,andproposeda spatiotemporaladaptivefusionalgorithm(SADFAT)forlandsurfacetemperaturedownscaling.Wuetal.[23]proposedaspatiotemporalintegratedtemperaturefusionmodel(STITFM) forestimatinghigh-spatiotemporal-resolutionLSTfrommulti-scalepolarandgeostationary orbitingsatelliteobservations.Theimagefusion-basedapproachesassumethattheradiative brightnessforsimilarpixelsbehavesconsistentlyatanyspatialresolution,whileinpractice, theradiativebrightnesswillinevitablyvaryinspaceandtime.So,thisapproachgenerally performspoorlyinurbanareaswithhigh-spatial-heterogeneitycharacteristics.

Kernel-drivendownscalingmethodscanbeclassifiedintophysicalmodelsandstatisticalregressionmethodsaccordingtowhetherthemodelisphysicallymeaningfulor not.PhysicaldownscalingmethodsestablishtherelationshipbetweenLSTandauxiliary databyusingthephysicalmechanismofamixturepixelandthethermalradiationprinciple.Inthisway,low-spatial-resolutionpixelsaredecomposedtomultiplesubpixelsto obtainthehigh-spatial-resolutionLST.Forexample,L.JandMoore[24]developedthe pixelblockintensitymodulation(PBIM)methodtoimprovethespatialinformationin thelow-spatial-resolutionthermalinfraredbandbyusingmultispectraldatawithahigh spatialresolution.Nichol[25]proposedtheemissivitymodulation(EM)modeltoimprove thespatialresolutionofthermalradiationbyusinglandsurfaceemissivityandlandcover data.Wangetal.[26]downscaledMODISLSTtoa30-mresolutionbasedonthethermal decompositionequation.However,thedesignofphysicalmodelsisusuallydifficultand themodelsarecomputationallycomplexandtime-consuming.

Thebasicprincipleofastatisticalregressionmethodistoassumethattherelationship betweenlandsurfacetemperatureanddrivingfactorsdoesnotchangewiththespatial scale.Astatisticalregressionmodelisbuiltusingthelow-spatial-resolutionLSTandthe drivers, afterwhichthehigh-spatial-resolutiondriversareaddedtothemodeltopredictthe high-spatial-resolutionLSTs.Uptonow,thestatisticalregressionmethodisthemostwidely usedmethodinLSTspatialdownscalingstudies.Basedonthenumberofdrivingfactors, statisticalregressionmethodscanbedividedintosingle-andmulti-factormodels.For example,DistradmodelsusedNDVIasthedriver[27],andtheTsHARPmodelused vegetationcoverinsteadofNDVI[28].Inaddition,Anthonyetal.[29]developedahigh-resolution urbanthermalfusion(HUTS)techniquetodownscaleLandsatTIRSto30mbasedonNDVI andsurfacealbedo.Lacerdaetal.[30]usedtheTsHARPmodelto downscaletheMODIS LSTtoahighspatialresolutionof10m.Vaculiketal.[31]downscaledthe GOES-RLST withtheresolutionof2000mto30mbyestablishingalinearrelationshipbetweenNDVI andLST.J.M.etal.[32]modifiedtheTsHARPalgorithmtodownscaleMODISLSTdata coveringoneSpanishfarm.However,single-factormodelsareonlyapplicabletoaregion withhighvegetationcover;theydonotperformwellinurbanoraridareas,limitedbythe predictorvariables.Multi-factormodelswithmultipleremote-sensingindicesandland surfaceparametersasdrivingfactorsweregraduallyproposedandapplied.Forexample, Liuetal.proposedtheG_DistradmodelbyaddingNDBIandNDWItothetraditional Distradmodel[14].Pereiraetal.[33]proposedageographicallyweightedregressionmodel (GWRK)byusingNDVIandmultispectraldatatodownscaletheASTERthermalinfrared dataforthenaturalregionsandurbanareasofPantanal,Brazil.Consideringthecomplex nonlinearrelationshipsbetweenlandsurfacetemperatureandvariousgeophysicalparametersinurbanareas[12,13],thethree-layerstructural(TLC)model[34],neuralnetwork[35], supportvectormachines[6],randomforests[36]andothermultivariatenonlinearstatistical modelshavebeencontinuouslydevelopedandappliedtourbanLSTdownscalingstudies.

RandomforestmodelshavebeenwidelyusedinurbanLSTdownscalingstudiesinrecent yearsbecauseoftheirlowmodelcomplexity,fasttrainingspeedandabilitytoeffectively avoidoverfittingproblems.Lietal.[36]comparedthreemachinelearningalgorithms, randomforest(RF),supportvectormachine(SVM)andartificialneuralnetwork(ANN),to thetraditionalTsHARPmethodinbothurbanandsuburbanareasofBeijing,andfound thattheLSTdownscalingaccuracyofthemachinelearningalgorithmwashigherthan thatoftheTsHARPalgorithm.Wangetal.[37]comparedthedownscalingresultsfrom amultiplelinearregressionmodel(MRL),TsHARPmodelandrandomforest(RF),and foundthattheRFmodelismoresuitableforheterogeneoussurfacessuchasurbanareas. Ebrahimyetal.[38]usedanadaptiverandomforestregressionmethodtodownscale MODISLSToverIranto30mintheGEEplatform.Njuketal.[39]proposedanimproved downscalingmethodforlow-resolutionthermaldatabasedonminimizingthespatial meanbiasofrandomforest,andtheresultsdemonstratedthatthemethodreducesthe inherentmeanbiasintheLSTdownscalingprocessandismoresuitableforLSTdownscalingapplicationsincomplexenvironments.Here,wecomprehensivelyanalyzedmost landsurfacetemperaturedownscalingmethodsandbuiltglobalmodelsandassumedthat thestatisticalrelationshipswerespatiallyinvariant,however,globalmodelsmayproduce largeerrorsinlocalareaapplications.Inrecentyears,manyscholarshavedevotedtheir worktousinglocalmodelstocapturethespatialnon-stationarycharacteristicsofland surfacevariables,andthenestablishedthelocalrelationshipsbetweenLSTandinfluencing factorstoimprovetheaccuracyofLSTdownscaling[15].

3.MaterialsandMethods

3.1.StudyArea

ThecentralurbanregionofNanjing,JiangsuProvince,Chinawaschosenasthestudy areabecauseitcontainsavarietyofunderlyingsurfacetypessuchasbuildings,vegetation andwaterbodies,whichhelpstocarryoutlandsurfacetemperaturedownscalingstudiesof complexgroundcovertypes.Figure 1 presentsatrue-colorimageandbuildingdistribution mapofthestudyareaataspatialresolutionof10m.

Figure1. Sentinel-2true-colorcompositeimageandbuildingdataofthestudyarea(blueline representsthemainurbanareaofNanjing;redlinesrepresentthestudyareaboundaries).

Thestudyareaincludesseveralurbanadministrativedistricts,includingtheQixia, Xuanwu,Gulou,QinhuaiandJianyeDistricts,withanareaofapproximately18 × 18km2 ThestudyareaislocatedinthecentralregionofthelowerYangtzeRiver,withgeographic coordinatesbetween31◦ 14 Nand32◦ 37 Nand118◦ 22 Eand119◦ 14”E.Thetotalbuilt-up areaisapproximately823km2 .Althoughthestudyareaisnearahillyarea,thetopography isflat,andtherearemanylowhillsandgentlehills.Nanjinghasahumidsubtropical climatewithfourdistinctseasons,abundantrainfallandsignificanttemperaturedifferences betweenwinterandsummer.Theaverageannualprecipitationis1106mm,andtheaverage annualtemperatureis15.4 ◦ C.Nanjinghadapopulationof10,312,200attheendof2019, witharesidentpopulationof8.5million,including7.072millioninurbanareas,andan urbanizationrateof83.2%.Nanjingisoneoftheeconomic-centercitiesinChina,witha regionalGDPof$1.6billionin2021.

3.2.Data

TheSentinel-3LSTproductata1000-mspatialresolutionfordownscalingand Sentinel-2 multispectralimagedataweredownloadedfromtheESAwebsite(https://scihub.copernicus. eu/dhus/#/home,accessedon14May2022).TheLandsatLSTproductata30-mspatial resolutionforvalidationofdownscalingresultswasdownloadedfromtheUSGSwebsite (https://earthexplorer.usgs.gov/,accessedon30December2021).Sentinel-2visiblelight andshortwaveinfraredbands(B2–B4,B8,B11andB12)wereusedtocalculatenormalized remote-sensingspectralindices.Nanjingdowntownbuildingandwinddatawereusedto calculateurbanspatialmorphologicalparameters.Nanjingwinddatafrom2016to2020 wereusedtocalculatethewinddirectionfrequency,whichweredownloadedfromthe ChinaAirQualityOnlineMonitoringandAnalysisPlatform(https://www.aqistudy.cn/ historydata/,accessedon14May2022).Thedetailsofallthedatainvolvedinthisstudy arepresentedasfollows.

3.2.1.LandsatLSTProduct

LandsatLSTproductsweregeneratedbyEROSbasedonasingle-channelinversion algorithm,byusingtheLandsatC2L1thermalinfraredbandandotherancillarydata[40,41]. LandsatLSTproductswereresampledfrom100to30mforreleasetousersbyEROSusing thenearest-neighborresamplingmethod.TheLandsatLSTimagesusedinthisstudywere imagedat10:37a.m.on4October2021,withorbitalrow/columnnumbers120/038[42].

3.2.2.Sentinel-3LSTProduct

TheSentinelseriesisanEarthobservationsatellitemissionoftheEuropeanCopernicus program.Sentinel-3carriesavarietyofpayloads,suchasOLCI(seaandlandcolorimeter) andSLSTR(seaandlandsurfacetemperatureradiometer),whicharemainlyusedfor high-precisionmeasurementsoftheseasurfacetopography,seaandsurfacetemperatures, oceanwatercolorandsoilproperties[43].Both3Aand3Bsatellitesinorbithaverevisit periodsoflessthanonedayforareaswithin30◦ latitudeoftheequator.SLSTRhassix solarreflectionbands(S1–S6)andfourthermalinfraredbands(S7–S9,F1,F2)withspatial resolutionsof500and1000m,respectively.TheSentinel-3LSTproductsareproduced byasplit-windowalgorithmusingthreebandsofS7–S9andotherauxiliarydata,and theproductsareaccurateto1K.TheLSTproductofSentinel-3BSLSTRwasselectedfor thisstudy,withanimagingtimeof10:04amon4October2021.TheSentinelLSTwas resampledtoaspatialresolutionof900mbyusingthebilinearinterpolationmethodfor downscalinginthisstudytomatchthereferenceLSTwithaspatialresolutionof30m.

3.2.3.Sentinel-2MultispectralData

Sentinel-2isamultispectralhigh-resolutionimagingsatellitewithtwosatellitesin orbit,2Aand2B,witharevisitperiodoffivedays[44].Eachsatellitecarriesamultispectral imager(MSI),whichcancover13spectralbandswithgroundresolutionsof10,20and 60mandanamplitudeof290km.Theblue,green,red,andnear-infraredbandsneededfor

thisstudyaretheB2,B3,B4andB8bandsoftheSentinel-2satellite,eachwitharesolution of10m.B11andB12areshortwaveinfraredbandswitharesolutionof20m,resampledto 10mtomatchthevisiblebands.

3.2.4.UrbanBuildingData

ThebuildingdatausedinthisstudywereprovidedbyUrbanDataCorps,obtainedin around2012.UrbanDataCorpsisrankedinthetop10inthebig-datafieldaccordingtothe 2017ChinaBigDataDevelopmentReportpublishedbytheNationalInformationCenterof China.UrbanDataCorpscanprovideavarietyofhigh-precisiondataforurbanresearch.

Thebuildingvectordatacontainthepolygonofthebuildingdistribution,building floordataandbuildingheightdatainashapefileformatwiththeWGS-84coordinate system.Comparingtheurbanbuildingdistributiondatawithsatelliteimagesin2012, wefoundthatthebuildinglocationandoutlinehighlyoverlapwiththesatelliteimages, andthebuildingfloornumberisalsoveryconsistentwiththefieldsurveyresults,which indicatesthehighaccuracyofthebuildingdistributiondata.Thefieldsurveyfoundthat thegroundcovertypesinmostofthestudyareas,suchasGulouDistrictandQinhuai District,didnotchangesignificantlybetween2012and2021,exceptforQixiaDistrict. Inthisstudy,thebuildingvectordataintheshapefileformatwerefirstlyconvertedto rasterdataintheTIFformatwithaspatialresolutionof10m.Afterthat,theurbanspatial morphologicalparameterswerecalculatedbasedonthebuildingrasterdataandother auxiliarydatausingcorrespondingformulas.

3.3.CalculationoftheDownscalingDrivingFactor

3.3.1.CalculationoftheRemote-SensingSpectralIndex

TheL2A-levelsurfacereflectancedatafromSentinel-2Bwereselectedforthisstudyto calculateremotelysensedspectralindicesthatarecloselyrelatedtosurfacetemperature, includingthemodifiednormalizeddifferencewaterindex(MNDWI),normalizeddifferencebuildingindex(NDBI),normalizeddifferencebuilt-upandsoilindex(NDBSI)[28], normalizeddifferencemoistureindex(NDMI),normalizeddifferencevegetationindex (NDVI)andsoiladjustedvegetationindex(SAVI).Thecalculationprocesswasperformed usingSNAP8.0,aprofessionalpieceofsoftwarefordata-processingintheSentinelseries. ThecalculationformulaisshowninTable 1

Table1. Remote-sensingspectralindicesrequiredfordownscalingandcalculationformulas.

Var.DescriptionEquations MNDWI Improvethenormalizeddifferencewaterbodyindextohighlightwater bodyinformation

NDBI Normalizethedifferencebuildingindextohighlightbuilding information

NDBSIIndicatethedegreeofdrynessofthegroundsurface[45]

NDMIIndicatethevegetationmoisture

NDVIHighlightvegetationinformation

SAVI Reducethesensitivityofvegetationindicestochangesinreflectanceof differentsoils

Notes: ρ1–ρ12denotethesurfacereflectanceofSentinel-2bands1–12.

3.3.2.CalculationofUrbanSpatialMorphologicalParameters

ThebuildingvectordataofNanjingwereconvertedtorasterdatawitha10-mresolutiontocalculateurbanspatialmorphologicalparametersincludingthebuildingdensity (BD),frontalareadensity(FAD),floorarearatio(FAR),meanheight(MH)andskyview

2022, 14,3038

factor(SVF).TheSVFwascalculatedbytherasteralgorithm.Theinfluenceofbuildings withinaradiusof100mwasconsideredwhencalculatingtheSVFofeachpixel.FADwas calculatedusingthebuildingrasterdataandthewinddirectionfrequencydatabyaselfdevelopedrasteralgorithmwithaplotareaof100 × 100m2 .Otherspatialmorphological parameters,suchasBD,FARandMH,werecalculatedusing10-mbuildingrasterdataand thecorrespondingequationsinTable 2 withaplotareaof100 × 100m2 .

Table2. UrbanspatialmorphologicalparametersrequiredforLSTdownscaling.

Var.DescriptionEquations

BDBuildingDensity

FADFrontalAreaDensity

= ∑ n

Ai A T Aiindicatesthe ithbuildingareaandATindicatesthecalculatedplotarea

λf(z) indicatestheweightedfrontalareadensity(FAD); A ( θ ) proj ( z ) indicatestheprojectedareaatacertainheight z inthewinddirection θ, Pθ ,i indicatesthefrequencyofthewinddirection θ , i =1,...,16

FARFloorAreaRatio FAR = ∑ n i 1 Fi × Ai A T Fi indicatesthei thbuildingfloornumberand A i indicatesthe ithbuildingarea

MHMeanHeight

MH = ∑ n i 1 Hi n

Hi indicatesthe ithbuildingheightand n indicatesthenumberofbuildings

SVFSkyViewFactor Ψ sky = 1 360/ α ∑ i =1 sin2 β × ( α /360) β = tan 1 ( H / X )

ψsky indicatesSVF, β indicatesthebuildingheightangle, H indicatesthebuilding height, X indicatesthecalculatedradiusandissetto100minthisstudy

Note:ExceptforSVF,theplotareaATcalculatedbyallotherparameterstakesthevalueof100 × 100m.

3.4.DownscalingLSTMethodBasedonRandomForest

Thecoreideaofsurfacetemperaturedownscalingistheinvarianceoftherelationship betweenLSTanddrivingfactorsatdifferentspatialresolutionssothatthestatistical relationshipbetweenLSTandtheregressionkernelatalowresolutioncanbeappliedto ahighspatialresolutiontocompletethedownscalingprocess.Thespecificformulasare asfollows:

where varc denotesthelow-resolutionexplanatoryvariable, varf denotesthehigh-resolution explanatoryvariable, Tc denotesthelow-resolutionLST, Tc ’denotesthepredictedlowresolutionLST, Δ T denotesthesimulationresidualand Tf ’denotesthepredictedhighresolutionLST.

ThisstudyusedtherandomforestalgorithmtoconstructtheLSTdownscalingmodel. Randomforestisanintegrateddecisiontree-basedlearningalgorithmproposedbyBreiman in2001asasupervisedlearningalgorithm[32].Thealgorithmusesthebootstrapresamplingmethodtorandomlyselectsamplesfromthetrainingsampleset.Theextracted bootstrapsamplesaretrainedseparatelyforeachdecisiontree,andanalgorithmforrandomlyselectingasubsetoffeaturesisintroducedintheprocessofsplittingthenodesof thedecisiontree.Thepredictionresultsofeachdecisiontreearecountedandvotedon toobtainthefinalpredictionresultsoftheinputdata.Therandomforestalgorithmhas strongernoiseimmunitythanotheralgorithmsbecauseoftheintroductionofrandomly selectedtrainingsamplesandrandomlyselectedfeaturesubsetsthatmakethecorrelation

amongeachdecisiontreesmaller.Therandomforestalgorithmisbetterathandlingnonlinearproblemsthantraditionalstatisticalregressionalgorithms.Aslongasthenumberof decisiontreesissufficient,therandomforestalgorithmcaneffectivelyavoidtheoverfitting problem,andthetrainingspeedisfaster.Therandomforestalgorithmcanexaminethe interactionbetweenfeaturesduringthetrainingprocessandoutputthefeatureimportance, whichisareferenceforanalyzingthedegreeofinfluenceoffeatures.Inthisstudy,the experimentaldatasetwasdividedintotrainingandvalidationdatasetsaccordingtothe ratioof8:2.Themainparametersthatneedtobesetmanuallytobuildarandomforest downscalingmodelusingthePycharmplatformincludethenumberofdecisiontrees (n_estimators)andthemaximumnumberoffeatures(max_features).n_estimatorsrefersto thenumberofdecisiontreesbuiltintherandomforest,whichwassetto700aftertestingin thisstudy.max_featurereferstothemaximumnumberoffeaturesselectedwhenbuilding eachdecisiontree,whichwassettolog(n_estimators)inthisstudy.Otherparameterswere settodefaultvalues.

3.5.Step-By-StepRandomForestDownscalingMethod(SSRFD)

Whenthespatialresolutionspansalargerrange,thedownscalingresultscannot accuratelycharacterizethespatialdistributionofLST,whichtendstounderestimatethe surfacetemperatureinbuildingareasandoverestimateitforwaterbodiesandvegetated areas.Thisstudyproposedastep-by-stepdownscalingLSTmethodbasedontherandom forestmodel(SSRFD),whichachievesasignificantincreaseinthespatialresolutionof LSTwithoutexcessivelossofaccuracythroughmultiple,small-scalespatialresolution downscalingprocesses.DuringtheSSRFDmodel’swork,eachintermediatedownscaling addsadditionalandfinersurfaceinformationtothemodel.Inthisway,modelsaretrained toaccuratelyexpresstherelationshipbetweenlandsurfacetemperatureanddrivingfactors.

Inthisstudy,thedirectrandomforestdownscaling(DRFD)methodwasperformedto directlydownscale900-mSentinel-3LSTtoa30-mresolution,andthentwodownscaling methodswereconductedusingtheproposedSSRFDmethod.Thefirstmethod,named SSRFD,downscaledthe900-mSentinel-3LSTto30mafter450mand150msequentially, wheretheSSRFDwasdrivenbythesixremote-sensingindicesmentionedabove.Thesecondmethod,namedSSRFD-M,downscaled900-mSentinel-3LSTto30mbythesame processthroughSSRFD,wherefiveadditionalurbanspatialmorphologicalparameters wereaddedastheSSRFDdriverfactors.Afterthat,LSTdownscalingresultsofDRFD, SSRFDandSSRFD-Mwerecomparedata30-mspatialresolution,whichwereallevaluatedbyusingthe30-mLandsat-8LSTasthereference.Moreover,theinfluenceofurban spatialmorphologicalparametersonLSTwasanalyzedbasedonSSRFD-Mata30-m spatialresolution.

3.6.AccuracyEvaluationMethods

Pearson’scorrelationcoefficient(r),themeanabsoluteerror(MAE)androotmean squareerror(RMSE)wereusedtocomprehensivelyevaluatethedownscalingresults. Meanwhile,themaximum/minimum,mean(Mean)andstandarddeviation(SD)were calculatedtoevaluatethespatialvariabilitycharacteristicsofLSTimagesbeforeandafter downscaling.TheSDcanreflectthespatialvariabilityofthermalfeatures.

4.Results

4.1.ComparisonoftheResultsObtainedwithSSRFDandDRFD ToreducedatadifferencescausedbydifferentsensorsandLSTinversionalgorithms andincreasethecomparabilityandverifiabilitybetweenLandsat-8andSentinel-3LST products,asimplelinearcorrectionwasappliedtoSentinel-3LSTbeforethedownscaling work.Afterperformingthelinearitycorrection,themaximum,minimumandmeanvalues ofSentinel-3LSTchangedfrom38.80,27.57and35.18 ◦ Cto41.25,30.84and37.90 ◦ C, respectively,whichwereclosertoLandsatLSTintherangeofvalues.TheRMSEofthe

twoLSTproductschangedfrom3.22to1.59 ◦ C,indicatingthatthesystematicdifferences betweenSentinel-3LSTandLandsatLSTwerereducedtosomeextent.

ComparativeplotsofthedownscalingresultsaregiveninFigure 2,wherethe900-m Sentinel-3LSTwasdownscaledto30musingtheDRFDmethodandSSRFDmethod.ComparingFigure 2b,cwithFigure 2a,bothresultscapturedfinerspatialdiscrepancycharacteristicsandtexturefeatures,andtheresultingLSTdistributionisbasicallyconsistentwith LandsatLST.However,accordingtoFigure 2b,therearelargeareasofhigh-temperature regionsinthestudyarea.TheresultsobtainedwithDRFDasawholearesignificantly overestimated.Forexample,theregionsalongthenorthwesterncoastoftheYangtze River,XuanwuLakeandZijinshanMountainshowobvioustemperatureoverestimation errors.Thedifferencecharacteristicsbetweenthehigh-temperatureregionandthesub-hightemperatureregionarelessclearlyexpressedthanLandsatLSTinFigure 2a.Incontrastto Figure 2b,theresultsobtainedwithSSRFD(Figure 2c)capturedthespatialdistribution differencesandtexturalcharacteristicsmoreaccurately.Thedistributioncharacteristicsof boththebuildinghigh-temperaturezoneandthewaterandvegetationlow-temperature zoneareingoodagreementwithFigure 2a.Overall,theresultsobtainedwithDRFDshow anoverallunderestimationofthehigh-temperatureregionandanoverestimationofthe low-temperatureregion,whichcannotaccuratelydepictthespatialdistributionpatternof LSTinthestudyarea.

Figure2. SpatialdistributionofLSTat30-mspatialresolution.(a)LandsatreferenceLST.(b)DownscaledLSTresultsofDRFD.(c)DownscaledLSTresultsofSSRFD.

Thestatistics(Table 3)showthattheresultsfromDRFD,withanSDof2.64,are0.82 lowerthanLandsatLST,buttheirmeanvalueis1.41 ◦ ChigherthanLandsatLST.Thisis consistentwiththeperformanceoftheDRFDresultsinFigure 2b,whichfurtherillustrates theoverallhighsurfacetemperaturepredictedbyDRFD.Incomparison,themaximum, meanandSDoftheresultsfromSSRFDare50.76,36.78and3.73 ◦ C,respectively,which onlydifferfromthecorrespondingindexofLandsatLSTbyapproximately0.3 ◦ C.In summary,thedownscalingresultsofSSRFDaremoreaccurate,whichisalsodemonstrated inFigure 3

Table3. StatisticalvaluesofLSTdownscaledfromDRFD,SSRFDmethodsandLandsatreference LSTdataata30-mresolution.

Figure3. HistogramofdownscaledLSTandLandsatLSTat30-mresolution(blackcubesreferto LandsatLST,redcirclesrefertodownscaledLSTobtainedbytheSSRFDmethod,bluetrianglesrefer todownscaledLSTobtainedbytheDRFDmethod).

AccordingtoFigure 3,ThehistogramcurvesofSSRFDresultsfitbetterwiththatofthe LandsatLST,astheybothhaveclear“peak”valuesbetween27.5–29and37–39 ◦ C,which indicatesthattheSSRFDresultsarereasonableoverall.TheDRFDresultsdiffersignificantly fromtheLandsatLSTintermsofhistogramshapecharacteristics,datadistributioninterval anddatavaluerange,e.g.,the“peaks”oftheresultsfromDRFDaredistributedbetween 40and41 ◦ C.Overall,Figure 3 showsthatthedensetemperatureintervaloftheimage elementdistributionofDRFDishigherthanthatofSSRFDLSTandLandsatLST. Furthermore,thecorrespondingscatterplotsofthetwodownscalingresultsfrom SSRFDandDRFDwithLandsatLSTaregiveninFigure 4a,b,respectively.Accordingto Figure 4,thecorrelationrvaluebetweentheDRFDresultsandLandsatLSTis0.6,while theSSRFDresultsimprovethisto0.81.TheMAEandRMSEvaluesoftheDRFDresultsare 2and2.6 ◦ C,respectively,whiletheSSRFDresultsdecreaseto1and1.66 ◦ C,respectively. ThisindicatesthatusingtheSSRFDmethodcanobtainahigher-accuracyLSTthanthe DRFDmethodwhenthespatialresolutionspansalargerange.

(a) (b)

Figure4. ScatterplotsofthecorrelationanalysisbetweendownscaledLSTandLandsatreferenceLST ata30-mresolution.(a)DownscaledLSTofSentinel-3fromDRFDmethod.(b)DownscaledLSTof Sentinel-3fromSSRFDmethod.

4.2.InfluenceofUrbanSpatialMorphologicalParametersonDownscalingLST

4.2.1.AnalysisoftheOverallDownscalingResultsintheStudyArea

ToevaluatetheinfluenceofurbanspatialmorphologicalparametersonLSTdownscaling,thefivespatialmorphologicalparameterscalculatedinTable 2 wereintroduced intothedrivingfactorsofSSRFDtodownscaleSentinel-3LSTfromaspatialresolutionof 900to30m.ThedownscalingresultswerealsovalidatedbyLandsatLST.

Figure 5a,bshowsthecorrelationplotsofLandsatLSTwiththeresultsfromSSRFD andSSRFD-M,respectively,ata30-mspatialresolution,whererimprovesfrom0.81to0.85 andRMSEdecreasesfrom1.66to1.44 ◦ Cafteraddingthespatialmorphologicalparameters. ThestatisticalhistogramsofLandsatLSTanddownscalingresultsaregiveninFigure 6. ComparedtotheSSRFDresult,SSRFD-MismorematchedwithLandsatLSTindistribution shape,especiallybetween35and40 ◦ Cwherebuildingsandconcretepavementsaremainly distributed.Otherwise,thefeatureswithtemperaturesbetween28and35 ◦ Caremainly vegetationandwaterbodies.Thecurvesofthetwodownscalingresultsinthisinterval arehigherthanLandsatLST,indicatingthattheremaybesomeLSToverestimationin downscalingresultsforvegetationandwaterbodyareas.Combinedwiththeanalysisof Figure 5,weconcludethattheSSRFD-MmodelperformsbetterthanSSRFD,especiallyfor densebuildingareas.

Figure5. ScatterplotsofthecorrelationanalysisbetweendownscaledLSTandLandsatLSTonthe overallregionata30-mresolution.(a)SSRFDresult.(b)SSRFD-Mresult.

Figure6. HistogramofdownscaledLSTandLandsatLSTata30-mresolution(blackcubesreferto LandsatLST,redcirclesrefertotheSSRFDresultsandbluetrianglesrefertotheSSRFD-Mresults).

4.2.2.AnalysisofRegionalDownscalingResultsintheStudyArea

InSection 4.2.1,wefoundthatthespatialmorphologicalparametershavesome favorableeffectsontheLSTdownscaling,especiallyforbuildingareas.However,we remainedunawareofhowtheurbanspatialmorphologicalparametersaffecttheLST downscalingresultsfordifferentlocationswithinthestudy.Inthissection,weintend todiscussthedownscalingresultsforfivesubregionsata30-mresolutiontofurther analyzetheroleofurbanspatialmorphologicalparametersinthedownscalingprocess. ThedistributionofcorrelationsbetweenthedownscalingresultsandLandsatLSTfor fivesubdistricts,Qixia,Gulou,Xuanwu,QinhuaiandJianye,aregiveninFigure 7.The influenceofurbanspatialmorphologicalfeaturesonLSTdownscalingcanbefurther verifiedbecauseofthecomplexityoftheurbangroundcovertypesconsidered.

Figure7. ScatterplotofcorrelationanalysisbetweendownscaledLSTandLandsatLSTataspatial resolutionof30m(downscaledLSTsobtainedfromSSRFDandSSRFD-Mcorrespondtotheleftand rightpanelsin a–e).

Figure 7a–cshowsthatthervalueoftheSSRFD-MdownscalingresultsfortheGulou, QinhuaiandJianyeDistrictsimprovesfrom0.44,0.51and0.34to0.61,0.68and0.45,respectively,whiletheRMSEvaluedecreasesfrom1.73,1.69and1.81 ◦ Cto1.22,1.21and 1.41 ◦ C,respectively.Accordingtothestatisticalanalysisofdifferentareas,allthreeareas arelocatedinadenseareaofmiddle-risebuildings[33],wherebuildingsandimpervious surfacesdominateandthevegetationdistributionisrelativelylowandsparse.There-

fore,theLSTdistributioniscloselyrelatedtothespatialmorphologicalcharacteristicsof buildings.ThesefiguresallexhibitthatthedownscalingresultsofSSRFDunderestimated theLSTforsomeregionsbetween35and40 ◦ C.AccordingtoFigure 7d,randRMSE valueschangedfrom0.78and1.30 ◦ Cto0.83and1.14 ◦ Cbeforeandafterconsidering spatialmorphologicalparametersinXuanwuDistrict,respectively,withaslightlysmaller improvementinaccuracyrelativetotheGulouandQinhuaiDistricts.Statistically,among theXuanwuDistrictcoveredbythestudyarea,non-built-upareassuchasZhongShan ScenicAreaandXuanwuLakeaccountforapproximately50%ofthedistrict.Therefore, theinclusionofspatialmorphologicalparametershaslessinfluenceonthedownscaling resultsoftheseareas.IfthedownscalingresultsofbuildingareasinXuanwuDistrictare countedseparately,theRMSEofSSRFD-Mdecreasesfrom1.96to1.17 ◦ Ccomparedto theSSRFDresults,whichprovesthatSSRFD-Mcaneffectivelyimprovethedownscaling effectindensebuildingareas.Figure 7eindicatesthattheSSRFD-MresultsforQixia onlyimproved/decreasedrandRMSEvaluesby0.02/0.06 ◦ C,respectively,comparedto SSRFD.ThereasonforthisismainlythedifferenceinyearsbetweenSentinel-3LSTdata andbuildingdata.ThetypeoflandsurfacecoverinsomeregionsofQixiahaschanged significantly.Forexample,theeasternsideofNingluoExpresswayandthenorthernsideof QixiaAvenuehavechangedfromnaturalsurfacestobuildingandroadtypes.Thebuilding datausedcannotaccuratelyexpressthespatialmorphologicalcharacteristicsoftheseareas andcannoteffectivelyimprovetheaccuracyofLSTdownscaling.Inaddition,wefound thataspatialresolutionof30mmaynotbesufficienttoshowthesurfacetemperature distributionpatterninsidecomplexbuildingareas.

Wefurtherselectedfivebuilding-denseareasnearthewesternsideofXuanwuLake, Xinjiekou,NanjingMuseum,NanjingForestryUniversityandtheOlympicSportsCenter, fordownscalingresultscomparison,asshownbyA,B,C,DandEinFigure 8a,respectively. Acomparativeanalysisofthedownscalingresultswithandwithoutincludingspatial morphologicalparameterswascarriedout,andtheresultsareshowninFigure 8b.When comparingthelocaldownscalingresultsofSSRFDwithSSRFD-M,itcanbefoundthat theregionalLSTofthevegetation-coveredregionsinthebuilt-upareachangedafter consideringthespatialmorphologicalparameters.AccordingtotheSSRFDresultsof A1–E1,vegetation-coveredareasnearbuildings,suchasstreetsplantedwithtreesand flowerbeds,showedaclearlow-temperaturezone(approximately30–33 ◦ C),whichwas5–8 ◦ Clowerthanthesurfacetemperatureofnearbybuildingareas(approximately 35–40 ◦ C). Incontrast,thetemperatureinthecorrespondingregionsillustratedbyA2–E2wasonly approximately3–5 ◦ Clowerthanthatofthenearbybuildings.Noobviouslow-temperature regionsappearedinA2–E2,whichweremoreconsistentwiththeLandsatLST.Therefore, thisstudyinfersthattheunderestimationofLSTgeneratedbytheSSRFDusingonly remote-sensingspectralindiceswaspartiallyeliminatedinSSRFD-M.

4.3.ParameterImportanceAnalysisofLSTDownscaling

Theimportanceofeachdriverat90-,450-,150-and30-mresolutionscalculatedby therandomforestmodelisshowninFigure 9.AccordingtoFigure 9a,theNDBIhasthe highest importanceata900-mresolutionwithoutspatialmorphologicalparameters,which indicatesthattheNDBIissignificantlycorrelatedwithLSTinurbanareas.Withthe increaseinspatialresolution,theimportanceoftheNDBItendstodecrease,anditdrops tothelowestvalue(25%)ata30-mresolution.Vegetationmoistureisanimportantfactor affectingLSTinurbanareasatanyspatialresolutionbecausetheimportanceoftheNDMI ismaintainedat28–30%asthespatialresolutionchanges.TheimportanceoftheMNDWI increasesfrom11to15%,andtheNDVIincreasesfrom8%to11%,whichindicatesthatthe contributionofwaterbodiesandvegetationtoLSTincreasesastheresolutionincreases. Thereasoncouldbethatsomesmallerlakes,greenareasandnarrowriversareidentified atahighspatialresolution.Figure 9bshowsthattheoverallimportanceoftheremotesensingindexdidnotchangesignificantlyintheSSRFD.Amongthespatialmorphological parameters,theimportanceofBD,FAD,FARandMHdecreasedwithincreasingspatial

resolution,whiletheSVFincreasedfromapproximately3%toapproximately6%.The reasonforthisisthattheregionalspatialmorphologicalparameters,suchasBD,FAD andFAR,calculatedbyasinglesize(100 × 100m),cannotrepresentfinerarchitectural information.Therefore,theregionalspatialmorphologicalparametersarelessrelevantto LSTastheresolutionincreases.AsshowninFigure 9a,b,comparedtootherremote-sensing indices(allvariationswereinarangeof1–3%),therewasasignificantdecreaseinthe importanceoftheNDBIatlowerresolutionsof900and450m,from30and29%inFigure 9a to22and23%inFigure 9b,respectively.Thespatialmorphologicalparametersatalow resolutiontosomeextentcompensatedforthedeficiencyoftheNDBIinthedescriptionof thespatialmorphologicalfeaturesofbuildings.

Figure8. SpatialdistributionofthedownscaledLSTattheresolutionof30minfivelocalitiesofthe studyarea(in b,A1–E1refertothedownscaledLSTfromSSRFD,andA2–E2refertothedownscaled LSTfromSSRFD-M).(a)LandsatLST.(b)thedownscaledLSTforrepresentative5localarea.

Figure9. Importanceofeachdriveratspatialresolutionsof900,450,150and30m.(a)Nospatial morphologicalparametersadded.(b)Spatialmorphologicalparametersadded.

5.Discussion

Withrespecttothescaleeffectofthelandsurfacetemperaturedownscalingmodel, Puetal.[46,47]concludedthatthe“constantscalerelationship”betweenLSTanddriving factorsdoesnotholdundercertainconditions.ComparingFigure 2awithFigure 2bfor

(a) (b)

themainurbanareaofNanjing,whenthespatialresolutionspans30times,thedirect downscalingresultscannotaccuratelyrepresentthespatialdistributionoflandsurface temperature,andtherootmeansquareerrorofthetraditionalDRFDmodelis2.6 ◦ C (Figure 4a).ThisissimilartoLSTdownscalingresultsindifferentregionssuchasthat coveredbyNjukietal.[39]inKenya,Valdesetal.[13]inanaridAntarcticrivervalley, Zhuetal.[15]inBeijingandEbrahimyetal.[38]inIran.WhentheSentinel-3LSTwas downscaledto450,300,150and30musingtheDRFDmethod,respectively,theresearch processrevealedaphenomenonwherergraduallydecreaseswhileRMSEincreasesasthe spatialresolutionspanincreasesstep-by-step,whichisconsistentwith Zhuetal.(2020)[14] andCao(2020)[48].Usingthestep-by-stepdownscalingmodel(SSRFD),therootmean squareerroroftheLSTdownscalingforthewholestudyareadecreasesto1.66 ◦ C,and theaccuracyimprovesbyabout1 ◦ C(Figure 4b).Tangetal.[16]conductedasecond downscalingprocedureusingtheLSTspatialfeaturesextractedfromtheinitialdownscaling resultsandobtainedahigheraccuracyofdownscalingresult,similartotheresultsofthis study.Thestep-by-stepdownscalingmethodreducesthespatialresolutiondifference beforeandafterdownscalingbyaddinganintermediateLSTdownscalingprocessbetween low(e.g.,1km)andhighresolutions(e.g.,30m),fromwhichwecanapproximatethatthe statisticaldownscalingmodeldoesnotchangewithsmallerscales.TheSSRFDcanobtain ahigheraccuracyforLSTdownscalingandismoresuitablefordownscalingstudiesin urbanareaswithcomplexsurfacecoverageandhigh-LSTspatialheterogeneity.However, 900mwasusedastheinitialresolutioninthestudy,andthestep-by-stepdownscalingof resolutionwasperformedsubjectivelybyintegermultiplesof2,3and5.Toobtainbetter LSTdownscalingresults,furtherstudiesmaybeneededtodeterminetheoptimalspatial resolutionchangeduringstepwisedownscaling.

Inrecentyears,duetothecontinuousdevelopmentofspatialdata-acquisitiontechnology,urban3Dspatialdistributiondataarebecomingmoreandmorerefinedandcanbe betterusedtocalculatevariousurbanspatialmorphologicalparametersatdifferentscales. Therearemoreandmorestudiesselectingurbanmorphologicalparameterstoanalyzethe urbanthermalenvironment.Forexample,Middeletal.[19]validatedtheeffectsofurban morphologyandlandscapetypeonlocalmicroclimatezonesinthesemi-aridregionof Phoenix,Arizona;Qaidetal.[20]furtherexploredtheeffectofSVFonthethermalenvironmentofstreetswithdifferentorientations;Wongetal.,Lietal.andNicholetal.studiedthe characteristicsofurbanspatialmorphologyinKowloonPeninsula,HongKongandconfirmedthattheurbanspatialmorphologyprofoundlyaffectstheurbanmicroclimate[49]. Basedontheresultsofthesestudies,itappearsthatthespatiotemporalvariabilityofthe urbanthermalenvironmentiscloselyrelatedtothespatialmorphologicalparameters,and theinfluentialroleofthesethree-dimensionalparametersneedstobeconsideredin-depth inurbanLSTdownscalingstudies.Inthisstudy,basedonthetraditionaltwo-dimensional surfaceparametersofthedownscalingmodel,fivespatialmorphologicalparameters,SVF, FAD,FAR,BDandMH,wereaddedtodownscaletheSentinel-3LSTtoahighspatial resolutionof30m.Itwasfoundthattheurbanspatialmorphologicalparametersdidaffect thespatialdistributionofLST,especiallyforthebuilt-upareas.

Thedownscalingerrorsinthefivebuilding-denseareasdecreasedby0.51,0.48,0.4, 0.16and0.06 ◦ C(Figure 7).Analysisoftheimportanceofthedrivingfactorsshowedthat theimportanceoftheurbanspatialmorphologicalparameterswaslowerthanthatofthe 2Dremote-sensingspectralindex(Figure 9).ThereasonmaybethatthefactorsforBD, FAD,FARandMHwerecalculatedthroughamovingwindowof100 × 100m,makingit difficulttoaccuratelydescribethe3Dspatialfeaturesatahighspatialresolutionof30m. Comparedtotheotherfourspatialmorphologicalparameters,SVFcanbecalculatedpixel bypixel,anditsimportancegraduallybecomeslargerasthespatialresolutionincreases, whichgenerallyindicatesthattheroleofurbanspatialmorphologicalparameterscannot beneglectedforLSTdownscalingathigherspatialresolutionsthan30m.Lietal.[17] andLiuetal.[50]alsomentionedthenecessityofconsideringurbanspatialmorphological parametersinurbanLSTdownscaling.

Intermsofdownscalingaccuracyvalidation,duetothelackofreallandsurface temperaturewithahigherspatialresolution,wejustdownscaledLSTtotheresolutionof 30m.IfthereareLSTsatahighspatialresolution,suchasthedatacollectedbythermal infraredsensorsloadedonunmannedaerialvehiclesorfieldmeasurementtemperature probes,LSTdownscalingforahigherspatialresolutioncouldbeperformedtofurther discusstheinfluenceofmorphologicalparameters.

Finally,aglobalrandomforestdownscalingmodelwasestablishedinthestudy. Consideringthecharacteristicsofdifferenturbanregionsandestablishingsub-regionallocal modelstoimproveLSTdownscalingaccuracyneedtobefurtherdiscussed.Forexample, Stewartetal.[51]proposedtoestablishlocalurbanclimatezonesbyconsideringbuilding andlandcovertypes,anapproachthatcanbeusedtodownscaleLSTforvariousclimate zones.Moreaccuratedownscalingresultsmaybeobtainedbyfurtheranalysisofthe relationshipbetweenLSTandurbanspatialmorphologicalparametersbasedonlocal urbanclimatezones.

6.Conclusions

ThisstudycarriedoutdownscalingLSTinurbanareasusingtheSSRFDandDRFD methods,andthedownscalingeffectsofthetwomethodswerecomparedandanalyzed. Urbanspatialmorphologicalparameterswereintroducedinthedrivertoverifytheirrole inhigh-spatial-resolutiondownscalingLST.Fromtheaboveinvestigations,thefollowing conclusionsweredrawn:

(1) The900-mLSTwasdownscaledstep-by-stepontheorderof450,150and30m. ComparedtotheresultsobtainedwithDRFD,thervaluebetweentheSSRFDresults andLandsatLSTwasimprovedby0.21,andtheRMSEvaluewasreducedby0.94 ◦ C. TheSSRFDresultsmoreaccuratelycapturedthespatialdistributioncharacteristicsof thesurfacetemperature,includingthehigh-temperaturezoneofbuildingsandthe low-temperaturezoneofwaterandvegetation.Theunderestimation/overestimation phenomenonofDRFDresultinginlargeerrorsinthehigh/lowtemperaturezonewas avoidedorattenuatedwhenusingtheSSRFDmethod.

(2) TheresultsobtainedwithSSRFD-Mwerepartiallysignificantlyimprovedinthe Gulou,QinhuaiandJianyebuilt-upareascomparedtoSSRFD,inwhichrandRMSE valuesimproved/decreasedbyapproximately0.15and0.46 ◦ C,respectively.The phenomenonoflow-temperaturezonesinvegetation-coveredareaswhenonlyremotesensingspectralindiceswereusedwasimproved.TheSSRFD-Mresultstosome extentcompensatedforthedeficiencyofremote-sensingspectralindicesusedfor urbanLSTdownscaling.

Inthisstudy,900mwasusedastheinitialresolution,anddownscalingwascarried outinintegermultiplesof2,3and5.Furtherresearchisneededtodeterminetheoptimal downscalingresolutionchangemultiplestoobtainbetterdownscalingresults.Inaddition, thispaperestablishedarandomforestdownscalingLSTmodelforthestudyareaasa whole,whileurbanclimatezonescouldbedividedaccordingtobuildingandlandcover types.Moreaccuratedownscalingresultsmaybeobtainedbyfurtheranalysisofthe relationshipbetweenLSTandurbanspatialmorphologicalparametersbasedonurban localclimatezones.

AuthorContributions: Conceptualization,G.Z.andX.L.;methodology,G.Z.andS.Z.;software,X.L.; validation,Y.X.;datacuration,X.L.;writing—originaldraftpreparation,X.L.;writing—reviewand editing,G.Z.andY.X.;projectadministration,G.Z.;fundingacquisition,S.Z.andY.X.Allauthors havereadandagreedtothepublishedversionofthemanuscript.

Funding: ThisresearchwassupportedbytheNationalNaturalScienceFoundationofChina (42171101,41871028).

DataAvailabilityStatement: Notapplicable.

RemoteSens. 2022, 14,3038

Acknowledgments: TheauthorswouldliketoacknowledgetheUnitedStatesGeologicalSurveyfor theprovisionoftheLandsat-8LSTproduct,andtheEuropeanSpaceAgencyfortheprovisionofthe Sentinel-3LSTproductandSentinel-2remote-sensingdata.

ConflictsofInterest: Theauthorsdeclarenoconflictofinterest.

References

1. Jaafar,H.;Mourad,R.;Schull,M.AGlobal30-mETModel(HSEB)UsingHarmonizedLandsatandSentinel-2,MODISandVIIRS: ComparisontoECOSTRESSETandLST. RemoteSens.Environ. 2022, 274,112995.[CrossRef]

2. Paolini,G.;Escorihuela,M.J.;Bellvert,J.;Merlin,O.DisaggregationofSMAPSoilMoistureat20mResolution:Validationand Sub-FieldScaleAnalysis. RemoteSens. 2022, 14,167.[CrossRef]

3. Joshi,R.C.;Ryu,D.;Sheridan,G.J.;Lane,P.N.J.ModelingVegetationWaterStressovertheForestfromSpace:Temperature VegetationWaterStressIndex(TVWSI). RemoteSens. 2021, 13,4635.[CrossRef]

4. Chu,H.-J.;Wijayanti,R.F.;Jaelani,L.M.;Tsai,H.-P.TimeVaryingSpatialDownscalingofSatellite-BasedDroughtIndex. Remote Sens. 2021, 13,3693.[CrossRef]

5. Baqa,M.F.;Lu,L.;Chen,F.;Nawaz-ul-Huda,S.;Pan,L.;Tariq,A.;Qureshi,S.;Li,B.;Li,Q.CharacterizingSpatiotemporal VariationsintheUrbanThermalEnvironmentRelatedtoLandCoverChangesinKarachi,Pakistan,from2000to2020. Remote Sens. 2022, 14,2164.[CrossRef]

6. Sismanidis,P.;Bechtel,B.;Perry,M.;Ghent,D.TheSeasonalityofSurfaceUrbanHeatIslandsacrossClimates. RemoteSens. 2022, 14,2318.[CrossRef]

7. Niu,L.;Zhang,Z.;Peng,Z.;Jiang,Y.;Liu,M.;Zhou,X.;Tang,R.ResearchonChina’ssurfaceurbanheatislanddriversandits spatialheterogeneity. ChinaEnviron.Sci. 2021, 13,4428.

8. Romaguera,M.;Vaughan,R.G.;Ettema,J.;Izquierdo-Verdiguier,E.;Hecker,C.A.;vanderMeer,F.D.DetectingGeothermal AnomaliesandEvaluatingLSTGeothermalComponentbyCombiningThermalRemoteSensingTimeSeriesandLandSurface ModelData. RemoteSens.Environ. 2018, 204,534–552.[CrossRef]

9. Hrisko,J.;Ramamurthy,P.;Yu,Y.;Yu,P.;Melecio-Vázquez,D.UrbanAirTemperatureModelUsingGOES-16LSTandaDiurnal RegressiveNeuralNetworkAlgorithm. RemoteSens.Environ. 2020, 237,111495.[CrossRef]

10. Westermann,S.;Langer,M.;Boike,J.SpatialandTemporalVariationsofSummerSurfaceTemperaturesofHigh-ArcticTundraon Svalbard—ImplicationsforMODISLSTBasedPermafrostMonitoring. RemoteSens.Environ. 2011, 115,908–922.[CrossRef]

11. Mahour,M.;Tolpekin,V.;Stein,A.;Sharifi,A.AComparisonofTwoDownscalingProcedurestoIncreasetheSpatialResolution ofMappingActualEvapotranspiration. ISPRSJ.Photogramm.RemoteSens. 2017, 126,56–67.[CrossRef]

12.Bartkowiak,P.;Castelli,M.;Notarnicola,C.DownscalingLandSurfaceTemperaturefromMODISDatasetwithRandomForest ApproachoverAlpineVegetatedAreas. RemoteSens. 2019, 11,1319.[CrossRef]

13. LezamaValdes,L.-M.;Katurji,M.;Meyer,H.AMachineLearningBasedDownscalingApproachtoProduceHighSpatioTemporalResolutionLandSurfaceTemperatureoftheAntarcticDryValleysfromMODISData. RemoteSens. 2021, 13,4673. [CrossRef]

14. Zhu,J.;Zhu,S.;Yu,F.;Zhang,G.;Xu,Y.AdownscalingmethodforERA5reanalysislandsurfacetemperatureoverurbanand mountainareas. Natl.RemoteSens.Bull. 2021, 25,1778–1791.

15. Zhu,X.;Song,X.;Leng,P.;Hu,R.Spatialdownscalingoflandsurfacetemperaturewiththemulti-scalegeographicallyweighted regression. Natl.RemoteSens.Bull. 2021, 25,1749–1766.

16. Tang,K.;Zhu,H.;Ni,P.SpatialDownscalingofLandSurfaceTemperatureoverHeterogeneousRegionsUsingRandomForest RegressionConsideringSpatialFeatures. RemoteSens. 2021, 13,3645.[CrossRef]

17. Li,N.;Wu,H.;Luan,Q.LandSurfaceTemperatureDownscalinginUrbanArea:ACaseStudyofBeijing. Natl.RemoteSens.Bull. 2021, 25,1808–1820.

18.Golany,G.S.UrbanDesignMorphologyandThermalPerformance. Atmos.Environ. 1996, 30,455–465.[CrossRef]

19. Middel,A.;Häb,K.;Brazel,A.J.;Martin,C.A.;Guhathakurta,S.ImpactofUrbanFormandDesignonMid-AfternoonMicroclimate inPhoenixLocalClimateZones. Landsc.UrbanPlan. 2014, 122,16–28.[CrossRef]

20. Qaid,A.;Lamit,H.B.;Ossen,D.R.;Rasidi,M.H.EffectofthePositionoftheVisibleSkyinDeterminingtheSkyViewFactor onMicrometeorologicalandHumanThermalComfortConditionsinUrbanStreetCanyons. Theor.Appl.Climatol. 2018, 131, 1083–1100.[CrossRef]

21. Xiong,Y.;Peng,F.;Zou,B.SpatiotemporalInfluencesofLandUse/CoverChangesontheHeatIslandEffectinRapidUrbanization Area. Front.EarthSci. 2019, 13,614–627.[CrossRef]

22. Weng,Q.;Fu,P.;Gao,F.GeneratingDailyLandSurfaceTemperatureatLandsatResolutionbyFusingLandsatandMODISData. RemoteSens.Environ. 2014, 145,55–67.[CrossRef]

23. Wu,P.;Shen,H.;Zhang,L.;Göttsche,F.-M.IntegratedFusionofMulti-ScalePolar-OrbitingandGeostationarySatelliteObservationsfortheMappingofHighSpatialandTemporalResolutionLandSurfaceTemperature. RemoteSens.Environ. 2015, 156, 169–181.[CrossRef]

24. Guo,L.J.;Moore,J.M.PixelBlockIntensityModulation:AddingSpatialDetailtoTMBand6ThermalImagery. InternationalJ. RemoteSens. 1998, 19,2477–2491.[CrossRef]

RemoteSens. 2022, 14,3038

25. Nichol,J.AnEmissivityModulationMethodforSpatialEnhancementofThermalSatelliteImagesinUrbanHeatIslandAnalysis. Photogramm.Eng.RemoteSens. 2009, 75,547–556.[CrossRef]

26. Wang,J.;Schmitz,O.;Lu,M.;Karssenberg,D.ThermalUnmixingBasedDownscalingforFineResolutionDiurnalLandSurface TemperatureAnalysis. ISPRSJ.Photogramm.RemoteSens. 2020, 161,76–89.[CrossRef]

27. Kustas,W.P.;Norman,J.M.;Anderson,M.C.;French,A.N.EstimatingSubpixelSurfaceTemperaturesandEnergyFluxesfromthe VegetationIndex-RadiometricTemperatureRelationship. RemoteSens.Environ. 2003, 85,429–440.[CrossRef]

28. Agam,N.;Kustas,W.P.;Anderson,M.C.;Li,F.;Neale,C.M.U.AVegetationIndexBasedTechniqueforSpatialSharpeningof ThermalImagery. RemoteSens.Environ. 2007, 107,545–558.[CrossRef]

29. Dominguez,A.;Kleissl,J.;Luvall,J.C.;Rickman,D.L.High-ResolutionUrbanThermalSharpener(HUTS). RemoteSens.Environ. 2011, 115,1772–1780.[CrossRef]

30. Lacerda,L.N.;Cohen,Y.;Snider,J.;Huryna,H.;Liakos,V.;Vellidis,G.FieldScaleAssessmentoftheTsHARPTechnique forThermalSharpeningofMODISSatelliteImagesUsingVENμSandSentinel-2-DerivedNDVI. RemoteSens. 2021, 13,1155. [CrossRef]

31. Vaculik,A.F.;RachidBah,A.;Norouzi,H.;Beale,C.;Valentine,M.;Ginchereau,J.;Blake,R.DownscalingofSatelliteLand SurfaceTemperatureDataOverUrbanEnvironments.InProceedingsoftheIEEEInternationalGeoscienceandRemoteSensing Symposium,Yokohama,Japan,28July–2August2019;pp.7475–7477.

32. Sánchez,J.M.;Galve,J.M.;González-Piqueras,J.;López-Urrea,R.;Niclòs,R.;Calera,A.Monitoring10-mLSTfromthe CombinationMODIS/Sentinel-2,ValidationinaHighContrastSemi-AridAgroecosystem. RemoteSens. 2020, 12,1453.[CrossRef]

33. Pereira,O.J.R.;Melfi,A.J.;Montes,C.R.;Lucas,Y.DownscalingofASTERThermalImagesBasedonGeographicallyWeighted RegressionKriging. RemoteSens. 2018, 10,633.[CrossRef]

34. Guo,F.;Hu,D.;Schlink,U.ANewNonlinearMethodforDownscalingLandSurfaceTemperaturebyIntegratingGuidedand GaussianFiltering. RemoteSens.Environ. 2022, 271,112915.[CrossRef]

35. Guijun,Y.;Ruiliang,P.;Wenjiang,H.;Jihua,W.;Chunjiang,Z.ANovelMethodtoEstimateSubpixelTemperaturebyFusing Solar-ReflectiveandThermal-InfraredRemote-SensingDatawithanArtificialNeuralNetwork. IEEETrans.Geosci.RemoteSens. 2010, 48,2170–2178.[CrossRef]

36. Li,W.;Ni,L.;Li,Z.-L.;Duan,S.-B.;Wu,H.EvaluationofMachineLearningAlgorithmsinSpatialDownscalingofMODISLand SurfaceTemperature. IEEEJ.Sel.Top.Appl.EarthObs.RemoteSens. 2019, 12,2299–2307.[CrossRef]

37. Wang,R.;Gao,W.;Peng,W.DownscaleMODISLandSurfaceTemperatureBasedonThreeDifferentModelstoAnalyzeSurface UrbanHeatIsland:ACaseStudyofHangzhou. RemoteSens. 2020, 12,2134.[CrossRef]

38. Ebrahimy,H.;Aghighi,H.;Azadbakht,M.;Amani,M.;Mahdavi,S.;Matkan,A.A.DownscalingMODISLandSurfaceTemperature ProductUsinganAdaptiveRandomForestRegressionMethodandGoogleEarthEnginefora19-YearsSpatiotemporalTrend AnalysisOverIran. IEEEJ.Sel.Top.Appl.EarthObs.RemoteSens. 2021, 14,2103–2112.[CrossRef]

39.Njuki,S.M.;Mannaerts,C.M.;Su,Z.AnImprovedApproachforDownscalingCoarse-ResolutionThermalDatabyMinimizing theSpatialAveragingBiasesinRandomForest. RemoteSens. 2020, 12,3507.[CrossRef]

40. Malakar,N.K.;Hulley,G.C.;Hook,S.J.;Laraby,K.;Cook,M.;Schott,J.R.AnOperationalLandSurfaceTemperatureProductfor LandsatThermalData:MethodologyandValidation. IEEETrans.Geosci.RemoteSens. 2018, 56,5717–5735.[CrossRef]

41. Cook,M.;Schott,J.R.;Mandel,J.;Raqueno,N.DevelopmentofanOperationalCalibrationMethodologyfortheLandsatThermal DataArchiveandInitialTestingoftheAtmosphericCompensationComponentofaLandSurfaceTemperature(LST)Product fromtheArchive. RemoteSens. 2014, 6,11244–11266.[CrossRef]

42. LSDS-1619_Landsat-8-9-C2-L2-ScienceProductGuide-v4.pdf.Availableonline: https://d9-wret.s3.us-west-2.amazonaws.com/ assets/palladium/production/s3fspublic/media/files/LSDS-1619_Landsat-8-9-C2-L2-ScienceProductGuide-v4.pdf (accessed on30December2021).

43. SLSTR_Level-2_LST_ATBD.pdf.Availableonline: https://sentinel.esa.int/documents/247904/0/SLSTR_Level-2_LST_ATBD. pdf/8a4322ef-c7e0-4abc-9cac-8f5fd69e1fd7 (accessedon14May2022).

44. S2-PDGS-TAS-DI-PSD-V14.9.pdf.Availableonline: https://sentinel.esa.int/documents/247904/4756619/S2-PDGS-TAS-DIPSD-V14.9.pdf/3d3b6c9c-4334-dcc4-3aa7-f7c0deffbaf7 (accessedon14May2022).

45.Xu,H.Aremotesensingurbanecologicalindexanditsapplication. ActaEcol.Sin. 2013, 33,7853–7862.

46. Pu,R.AssessingScalingEffectinDownscalingLandSurfaceTemperatureinaHeterogenousUrbanEnvironment. Int.J.Appl. EarthObs.Geoinf. 2021, 96,102256.[CrossRef]

47. Pu,R.;Bonafoni,S.ReducingScalingEffectonDownscaledLandSurfaceTemperatureMapsinHeterogenousUrbanEnvironments. RemoteSens. 2021, 13,5044.[CrossRef]

48.Cao,C.;Yang,Y.DownscalingMulti-resolutionLandsurfaceTemperatureResearch. Mod.Surv.Mapp. 2018, 41,3–8.

49. Wong,M.S.;Nichol,J.;Ng,E.AStudyofthe“WallEffect”CausedbyProliferationofHigh-RiseBuildingsUsingGISTechniques. Landsc.UrbanPlan. 2011, 102,245–253.[CrossRef]

50. Liu,Y.;Xu,Y.;Zhang,F.;Shu,W.InfluenceofBeijingSpatialMorphologyontheDistributionofUrbanHeatIsland. ActaGeogr. Sin. 2021, 76,1662–1679.

51. Stewart,I.D.;Oke,T.R.LocalClimateZonesforUrbanTemperatureStudies. Bull.Am.Meteorol.Soc. 2012, 93,1879–1900. [CrossRef]

remote sensing

Article

HowtoMeasuretheUrbanParkCoolingIsland?APerspective ofAbsoluteandRelativeIndicatorsUsingRemoteSensingand BufferAnalysis

WenhaoZhu 1 ,JiabinSun 1 ,ChaobinYang 1,2,3, *,MinLiu 2 ,XinliangXu 4 andCaoxiangJi 5

1 SchoolofCivilandArchitecturalEngineering,ShandongUniversityofTechnology,Zibo255000,China; 20507020762@stumail.sdut.edu.cn(W.Z.);20507020766@stumail.sdut.edu.cn(J.S.)

2 ShanghaiKeyLabforUrbanEcologicalProcessesandEco-Restoration,EastChinaNormalUniversity, Shanghai200241,China;mliu@re.ecnu.edu.cn

3 ResearchCenterforEco-EnvironmentalSciences,ChineseAcademyofSciences,Beijing100085,China

4 StateKeyLaboratoryofResourcesandEnvironmentalInformationSystem,InstituteofGeographicSciences andNaturalResourcesResearch,ChineseAcademyofSciences,Beijing100101,China;xuxl@lreis.ac.cn

5 ShenyangMeteorologicalBureau,Shenyang110168,China;verio@sina.com

* Correspondence:yangchaobin@sdut.edu.cn

Citation: Zhu,W.;Sun,J.;Yang,C.; Liu,M.;Xu,X.;Ji,C.HowtoMeasure theUrbanParkCoolingIsland?A PerspectiveofAbsoluteandRelative IndicatorsUsingRemoteSensingand BufferAnalysis. RemoteSens. 2021, 13, 3154.https://doi.org/10.3390/ rs13163154

AcademicEditors:YuyuZhou,Elhadi Adam,JohnOdindiandYuji Murayama

Received:23June2021

Accepted:3August2021

Published:9August2021

Publisher’sNote: MDPIstaysneutral withregardtojurisdictionalclaimsin publishedmapsandinstitutionalaffiliations.

Copyright: ©2021bytheauthors. LicenseeMDPI,Basel,Switzerland. Thisarticleisanopenaccessarticle distributedunderthetermsand conditionsoftheCreativeCommons Attribution(CCBY)license(https:// creativecommons.org/licenses/by/ 4.0/).

Abstract: Urbanparkshavebeenproventocoolthesurroundingenvironment,andcanthusmitigate theurbanheatislandtoanextentbyformingaparkcoolingisland.However,acomprehensive understandingofthemechanismofparkcoolingislandsisstillrequired.Therefore,westudied 32urbanparksinJinan,Chinaandproposedabsoluteandrelativeindicatorstodepictthedetailed featuresoftheparkcoolingisland.High-spatial-resolutionGF-2imageswereusedtoobtainthe landcoverofparks,andLandsat8TIRimageswereusedtoexaminethethermalenvironment byapplyingbufferanalysis.Linearstatisticalmodelsweredevelopedtoexploretherelationships betweenparkcharacteristicsandtheparkcoolingisland.Theresultsshowedthattheaverageland surfacetemperature(LST)ofurbanparkswasapproximately3.6 ◦ Clowerthanthatofthestudy area,withthelargesttemperaturedifferenceof7.84 ◦ Coccurringduringsummerdaytime,whilethe averageparkcoolingareawasapproximately120.68ha.Theparkcoolingislandcouldbeclassified intofourcategories—regular,declined,increased,andothers—basedonthechangingfeaturesof thesurroundingLSTs.Parkarea(PA),parkperimeter(PP),waterareaproportion(WAP),andpark shapeindex(PSI)weresignificantlynegativelycorrelatedwiththeparkLST.Wealsofoundthat WAP,PP,andgreenness(characterizedbythenormalizeddifferencevegetationindex(NDVI))were threeimportantfactorsthatdeterminedtheparkcoolingisland.However,therelationshipbetween PAandtheparkcoolingislandwascomplex,astheresultsindicatedthatonlyparkslargerthana thresholdsize(20hainourstudy)wouldprovidealargercoolingeffectwiththeincreaseinpark size.Inthiscase,increasingtheNDVIoftheparksbyplantingmorevegetationwouldbeamore sustainableandeffectivesolutiontoformastrongerparkcoolingisland.

Keywords: parkcoolingisland;drivingfactors;landsurfacetemperate;bufferanalysis;Jinan

1.Introduction

Theworldiscurrentlyexperiencingrapidurbanizationandindustrialization,which hasledtodramaticchangesinthelanduse,landcover,andlocalclimaticconditions, therebyexacerbatingurbanheatisland(UHI)effects[1–4].ThenegativeeffectsfromUHIs havesignificantlyincreasedtheenergyconsumptionforcooling,physicaldiscomfort,and evendeath[5–7].Itisprojectedthat60%oftheworld’spopulationwillliveincitiesby2030, andmakingcitiesinclusive,safe,resilient,andsustainableisoneofthe17goalsproposed bytheUnitedNationstotransformourworld[8].Inrecentyears,studiesonalleviating theUHIeffecthavebecomemorepopularthanitsspatial–temporalmonitoring[9–12]. Urbanparks,whichusuallyhaveacombinationofblueandgreenspaces,areamongthe

,3154.https://doi.org/10.3390/rs13163154https://www.mdpi.com/journal/remotesensing

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.