Instant ebooks textbook Calculus for computer graphics, 3rd edition john vince download all chapters

Page 1


Calculus for Computer Graphics, 3rd Edition John

Vince

Visit to download the full and correct content document: https://ebookmass.com/product/calculus-for-computer-graphics-3rd-edition-john-vince /

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Mathematics for Computer Graphics (Undergraduate Topics in Computer Science), 6th Edition 2022 John Vince

https://ebookmass.com/product/mathematics-for-computer-graphicsundergraduate-topics-in-computer-science-6th-edition-2022-johnvince/

Foundation Mathematics for Computer Science: A Visual Approach 3rd Edition John Vince

https://ebookmass.com/product/foundation-mathematics-forcomputer-science-a-visual-approach-3rd-edition-john-vince/

Quaternions for Computer Graphics

https://ebookmass.com/product/quaternions-for-computer-graphics-c h%e8%ae%a1%e7%ae%97%e6%9c%ba%e5%9b%be%e5%bd%a2%e5%ad%a6%e4%b8%ad%e

john-vince-%e9%83%ad%e9%a3%9e/

Complete Guide to

Graphics:

Modeling and Animation: Volume1 9th Edition John M. Blain

https://ebookmass.com/product/the-complete-guide-to-blendergraphics-computer-modeling-and-animation-volume1-9th-editionjohn-m-blain/

Computer graphics with Open GL. 4th Edition Donald D. Hearn

https://ebookmass.com/product/computer-graphics-with-open-gl-4thedition-donald-d-hearn/

The Complete Guide to Blender Graphics: Computer Modeling and Animation: Volume 2 9th Edition John M. Blain

https://ebookmass.com/product/the-complete-guide-to-blendergraphics-computer-modeling-and-animation-volume-2-9th-editionjohn-m-blain/

Solutions to Calculus for JEE (Advanced), 3rd edition

G. Tewani

https://ebookmass.com/product/solutions-to-calculus-for-jeeadvanced-3rd-edition-g-tewani/

Calculus II 3rd Edition Mark Zegarelli

https://ebookmass.com/product/calculus-ii-3rd-edition-markzegarelli/

Differential Calculus for JEE Main and Advanced (3rd edition) Vinay Kumar

https://ebookmass.com/product/differential-calculus-for-jee-mainand-advanced-3rd-edition-vinay-kumar/

Calculus for Computer Graphics

Third Edition

CalculusforComputerGraphics

JohnVince CalculusforComputer Graphics

ThirdEdition

ISBN978-3-031-28116-7ISBN978-3-031-28117-4(eBook) https://doi.org/10.1007/978-3-031-28117-4

1st edition:©Springer-VerlagLondon2013

2nd &3rd editions:©SpringerNatureSwitzerlandAG2019,2023

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Preface

Calculusisoneofthosesubjectsthatappearstohavenoboundaries,whichiswhy somebooksaresolargeandheavy!SowhenIstartedwritingthefirsteditionofthis book,Iknewthatitwouldnotfallintothiscategory.Itwouldbearound200pages longandtakethereaderonagentlejourneythroughthesubject,withoutplacingtoo manydemandsontheirknowledgeofmathematics.

Thesecondeditionreviewedtheoriginaltext,correctedafewtypos,andincorporatedthreeextrachapters.Ialsoextendedthechapteronarclengthtoincludethe parameterisationofcurves.

Inthisthirdedition,Ihavereviewedthetext,correctedafewtypos,and incorporatednewchaptersonvectordifferentialoperatorsandsolvingdifferential equations.

Theobjectiveofthebookremainsthesame:toinformthereaderaboutfunctions andtheirderivatives,andtheinverseprocess:integration,whichcanbeusedfor computingareaandvolume.Theemphasisongeometrygivesthebookrelevance tothecomputergraphicscommunityandhopefullywillprovidethemathematical backgroundforprofessionalsworkingincomputeranimation,gamesandallieddisciplinestoreadandunderstandotherbooksandtechnicalpaperswherethedifferential andintegralnotationisfound.

Thebookdividesinto18chapters,withtheobligatorychapterstointroduceand concludethebook.Chapter 2 reviewstheideasoffunctions,theirnotationandthe differenttypesencounteredineverydaymathematics.Thiscanbeskippedbyreaders alreadyfamiliarwiththesubject.

Chapter 3 introducestheideaoflimitsandderivatives,andhowmathematicians haveadoptedlimitsinpreferencetoinfinitesimals.Mostauthorsintroduceintegration asaseparatesubject,butIhaveincludeditinthischaptersothatitisseenasan antiderivative,ratherthansomethingindependent.

Chapter 4 looksatderivativesandantiderivativesforawiderangeoffunctions suchaspolynomial,trigonometric,exponentialandlogarithmic.Italsoshowshow functionsums,products,quotientsandfunctionofafunctionaredifferentiated.

Chapter 5 covershigherderivativesandhowtheyareusedtodetectalocal maximumandminimum.

Chapter 6 coverspartialderivatives,whichalthougheasytounderstand,havea reputationforbeingdifficult.Thisispossiblyduetothesymbolsused,ratherthan theunderlyingmathematics.Thetotalderivativeisintroducedhereasitisrequired inalaterchapter.

Chapter 7 introducesthestandardtechniquesforintegratingdifferenttypesof functions.Thiscanbealargesubject,andIhavedeliberatelykepttheexamples simple,inordertokeepthereaderinterestedandontopofthesubject.

Chapter 8 showshowintegrationrevealstheareaunderagraphandtheconcept oftheRiemannSum.Theideaofrepresentingareaorvolumeasthelimitingsumof somefundamentalunitsiscentraltounderstandingcalculus.

Chapter 9 dealswitharclength,andusesavarietyofworkedexamplestocompute thelengthofdifferentcurvesandtheirparameterisation

Chapter 10 showshowsingleanddoubleintegralsareusedtocomputethesurface areaofdifferentobjects.ItisalsoaconvenientpointtointroduceJacobians,which, hopefully,Ihavemanagedtoexplainconvincingly.

Chapter 11 showshowsingle,doubleandtripleintegralsareusedtocompute thevolumeoffamiliarobjects.Italsoshowshowthechoiceofacoordinatesystem influencesasolution’scomplexity.

Chapter 12 coversvector-valuedfunctions,andprovidesashortintroductionto thisverylargesubject.

Chapter 13 isnew,andcoversthreedifferentialoperators:grad,divandcurl.

Chapter 14 showshowtocalculatetangentandnormalvectorsforavarietyof curvesandsurfaces,whichareusefulinshadingalgorithmsandphysically-based animation.

Chapter 15 showshowdifferentialcalculusisusedtomanagegeometriccontinuity inB-splinesandBéziercurves.

Chapter 16 looksatthecurvatureofcurvessuchasacircle,helix,parabolaand parametricplanecurves.Italsoshowshowtocomputethecurvatureof2Dquadratic andcubicBéziercurves.

Chapter 17 isnew,andexploresafewtechniquesforsolvingfirst-orderdifferential equations.

IusedSpringer’sexcellentauthor’s LATEX developmentkitonmyAppleiMac, whichissofastthatIcreateanentirebookin3or4seconds,justtochangeasingle character!Thisbookcontainsaroundtwohundredcolourillustrationstoprovide astrongvisualinterpretationforderivatives,antiderivativesandthecalculationof arclength,curvature,tangentvectors,areaandvolume.IusedApple’s Grapher applicationformostofthegraphsandrenderedimages,and Pages forthediagrams.

ThereisnowayIcouldhavewrittenthisbookwithouttheInternetandseveral excellentbooksoncalculus.OneonlyhastoGoogle‘WhatisaJacobian?’toreceive overathousandentriesinabout1second!YouTubealsocontainssomehighlyinformativepresentationsonvirtuallyeveryaspectofcalculusonecouldwant.SoIhave spentmanyhourswatching,absorbinganddisseminatingvideos,lookingforvital piecesofinformationthatarekeytounderstandingatopic.

ThebooksIhavereferredtoinclude: TeachYourselfCalculus byHughNeil, CalculusofOneVariable byKeithHirst, InsideCalculus byGeorgeExner, Short

Calculus bySergeLang, DifferentialEquations byAllanStruthersandMerlePotter, andmyall-timefavourite: MathematicsfromtheBirthofNumbers byJanGullberg. Iacknowledgeandthankalltheseauthorsfortheinfluencetheyhavehadonthis book.Oneotherbookthathashelpedmeis DigitalTypographyUsing LATEX by ApostolosSyropoulos,AntonisTsolomitisandNickSofroniou.

Writinganybookcanbealonelyactivity,andfindingsomeonewillingtoreadan earlydraft,andwhoseopiniononecantrust,isextremelyvaluable.Consequently,I thankDr.TonyCrillyforhisvaluablefeedbackafterreadingtheoriginalmanuscript. Tonyidentifiedflawsinmyreasoningandinconsistentnotation,andIhaveincorporatedhissuggestions.However,Itakefullresponsibilityforanymistakesthatmay havefoundtheirwayintothispublication.

Finally,IthankHelenDesmond,EditorforComputerScience,SpringerUK,for hercontinuingprofessionalsupport.

Breinton,Herefordshire,UK February2023

JohnVince

1Introduction ..................................................1

1.1WhatIsCalculus?........................................1

1.2WhereIsCalculusUsedinComputerGraphics?..............2

1.3WhoElseShouldReadThisBook?.........................3

1.4WhoInventedCalculus?...................................3

2Functions .....................................................5

2.1Introduction.............................................5

2.2Expressions,Variables,ConstantsandEquations..............5

2.3Functions...............................................6

2.3.1ContinuousandDiscontinuousFunctions.............7

2.3.2LinearGraphFunctions............................8

2.3.3PeriodicFunctions................................9

2.3.4PolynomialFunctions.............................10

2.3.5FunctionofaFunction.............................10

2.3.6OtherFunctions..................................11

2.4AFunction’sRateofChange...............................11

2.4.1SlopeofaFunction...............................11

2.4.2DifferentiatingPeriodicFunctions...................15

2.5Summary...............................................18

3LimitsandDerivatives .........................................19

3.1Introduction.............................................19 3.2SomeHistoryofCalculus.................................19

3.3SmallNumericalQuantities................................20

3.4EquationsandLimits.....................................21

3.4.1QuadraticFunction................................21

3.4.2CubicEquation...................................23

3.4.3FunctionsandLimits..............................25

3.4.4GraphicalInterpretationoftheDerivative............26

3.4.5DerivativesandDifferentials.......................27

3.4.6IntegrationandAntiderivatives.....................29

3.6.1LimitingValueofaQuotient1......................31

3.6.2LimitingValueofaQuotient2......................32

3.6.3Derivative.......................................32

3.6.4SlopeofaPolynomial.............................33

3.6.5SlopeofaPeriodicFunction........................33

3.6.6IntegrateaPolynomial.............................34

4DerivativesandAntiderivatives

4.1Introduction.............................................35

4.2DifferentiatingGroupsofFunctions.........................36

4.2.1SumsofFunctions................................36 4.2.2FunctionofaFunction.............................38 4.2.3FunctionProducts................................42

4.2.4FunctionQuotients................................45

4.2.5Summary:GroupsofFunctions.....................47

4.3DifferentiatingImplicitFunctions...........................48

4.4DifferentiatingExponentialandLogarithmicFunctions........52

4.4.1ExponentialFunctions.............................52

4.4.2LogarithmicFunctions.............................54

4.4.3Summary:ExponentialandLogarithmicFunctions....56

4.5DifferentiatingTrigonometricFunctions.....................57

4.5.1Differentiatingtan................................57

4.5.2Differentiatingcsc................................58

4.5.3Differentiatingsec................................59

4.5.4Differentiatingcot................................60

4.5.5Differentiatingarcsin,arccosandarctan..............61

4.5.6Differentiatingarccsc,arcsecandarccot..............62

4.5.7Summary:TrigonometricFunctions.................63

4.6DifferentiatingHyperbolicFunctions........................63

4.6.1Differentiatingsinh,coshandtanh..................66

4.6.2Differentiatingcosech,sechandcoth................68

4.6.3Differentiatingarsinh,arcoshandartanh.............70

4.6.4Differentiatingarcsch,arsechandarcoth.............72

4.6.5Summary:HyperbolicFunctions....................73

4.7Summary...............................................73

5HigherDerivatives ............................................75

5.1Introduction.............................................75

5.2HigherDerivativesofaPolynomial.........................75

5.3IdentifyingaLocalMaximumorMinimum..................78

5.4DerivativesandMotion...................................81

5.5Summary...............................................84

5.5.1SummaryofFormulae.............................84

6PartialDerivatives ............................................85

6.1Introduction.............................................85

6.2PartialDerivatives........................................85

6.2.1VisualisingPartialDerivatives......................88

6.2.2MixedPartialDerivatives..........................89

6.3ChainRule..............................................92

6.4TotalDerivative..........................................94

6.5Second-OrderandHigherPartialDerivatives.................95

6.6Summary...............................................95

6.6.1SummaryofFormulae.............................95

6.7WorkedExamples........................................96

6.7.1PartialDerivative.................................96

6.7.2FirstandSecond-OrderPartialDerivatives...........96

6.7.3MixedPartialDerivative...........................97

6.7.4ChainedPartialDerivatives.........................97

6.7.5TotalDerivative..................................98

7IntegralCalculus ..............................................101

7.1Introduction.............................................101

7.2IndefiniteIntegral........................................101

7.3StandardIntegrationFormulae.............................102

7.4IntegratingTechniques....................................102

7.4.1ContinuousFunctions.............................102

7.4.2DifficultFunctions................................104

7.4.3TrigonometricIdentities...........................104

7.4.4ExponentNotation................................108

7.4.5CompletingtheSquare............................108

7.4.6TheIntegrandContainsaDerivative.................110

7.4.7ConvertingtheIntegrandintoaSeriesofFractions....113

7.4.8IntegrationbyParts...............................114

7.4.9IntegratingbySubstitution.........................122

7.4.10PartialFractions..................................126

7.5Summary...............................................129

7.6WorkedExamples........................................130

7.6.1TrigonometricIdentities...........................130

7.6.2ExponentNotation................................130

7.6.3CompletingtheSquare............................130

7.6.4TheIntegrandContainsaDerivative.................131

7.6.5ConvertingtheIntegrandintoaSeriesofFractions....131

7.6.6IntegrationbyParts...............................132

7.6.7IntegratingbySubstitution.........................132

7.6.8PartialFractions..................................133

8AreaUnderaGraph

8.2CalculatingAreas........................................135

8.3PositiveandNegativeAreas...............................143

8.4AreaBetweenTwoFunctions..............................145

8.5Areaswiththe y -Axis.....................................147

8.6AreawithParametricFunctions............................148

8.7BernhardRiemann.......................................150

8.7.1DomainsandIntervals.............................150

8.7.2TheRiemannSum................................151

8.8Summary...............................................152

9.3.1ArcLengthofaStraightLine.......................156

9.3.2ArcLengthofaCircle.............................156

9.3.3ArcLengthofaParabola..........................157

9.3.4ArcLengthof y = x 3 2 .............................161

9.3.5ArcLengthofaSineCurve........................162

9.3.6ArcLengthofaHyperbolicCosineFunction.........163

9.3.7ArcLengthofParametricFunctions.................164

9.3.8ArcLengthofaCircle.............................165

9.3.9ArcLengthofanEllipse...........................166

9.3.10ArcLengthofaHelix.............................167

9.3.11ArcLengthofa2DQuadraticBézierCurve..........168

9.3.12ArcLengthofa3DQuadraticBézierCurve..........170

9.3.13ArcLengthParameterisationofa3DLine............172

9.3.14ArcLengthParameterisationofaHelix..............175

9.3.15PositioningPointsonaStraightLineUsing aSquareLaw....................................176

9.3.16PositioningPointsonaHelixCurveUsing aSquareLaw....................................178

9.3.17ArcLengthUsingPolarCoordinates.................179

9.4Summary...............................................182

9.4.1SummaryofFormulae.............................182

9.5WorkedExamples........................................183

9.5.1ArcLengthofaStraightLine.......................183

9.5.2ArcLengthofaCircle.............................184

9.5.3ArcLengthof y = 2 x 3 2 ............................184

9.5.4ArcLengthofaHelix.............................185 References....................................................186

10SurfaceArea ..................................................187

10.2.1SurfaceAreaofaCylinder.........................189

10.2.2SurfaceAreaofaRightCone.......................189

10.2.3SurfaceAreaofaSphere...........................192

10.2.4SurfaceAreaofaParaboloid.......................193

10.3SurfaceAreaUsingParametricFunctions....................195 10.4DoubleIntegrals.........................................197 10.5Jacobians...............................................198

10.7.1SummaryofFormulae.............................210 10.8WorkedExamples........................................212

10.8.1SurfaceAreaofaCylinder.........................212

10.8.2SurfaceAreaSweptOutbyaFunction...............212

10.8.3DoubleIntegrals..................................213

11.1Introduction.............................................215

11.2SolidofRevolution:Disks.................................215

11.2.1VolumeofaCylinder..............................216

11.2.2VolumeofaRightCone...........................217

11.2.3VolumeofaRightConicalFrustum.................219

11.2.4VolumeofaSphere...............................221

11.2.5VolumeofanEllipsoid............................221

11.2.6VolumeofaParaboloid............................223

11.3SolidofRevolution:Shells................................224

11.3.1VolumeofaCylinder..............................225

11.3.2VolumeofaRightCone...........................226

11.3.3VolumeofaHemisphere...........................227

11.3.4VolumeofaParaboloid............................228

11.4VolumeswithDoubleIntegrals.............................229

11.4.1ObjectswithaRectangularBase....................231

11.4.2RectangularBox..................................231

11.4.3RectangularPrism................................232

11.4.4CurvedTop......................................233

11.4.5ObjectswithaCircularBase.......................234

11.4.6Cylinder.........................................234

11.4.7TruncatedCylinder...............................235

11.5VolumeswithTripleIntegrals..............................236 11.5.1RectangularBox..................................237

11.5.2VolumeofaCylinder..............................238

11.5.3VolumeofaSphere...............................241

11.5.4VolumeofaCone.................................242 11.6Summary...............................................243

11.6.1SummaryofFormulae.............................243

11.7WorkedExamples........................................244

11.7.1VolumeofaCylinder..............................244

11.7.2VolumeofaRightCone...........................245

11.7.3QuadraticRectangularPrism.......................245 11.7.4CurvedTop......................................246

11.7.5CylinderwithaCurvedTop........................248

12Vector-ValuedFunctions .......................................249 12.1Introduction.............................................249

12.2DifferentiatingVectorFunctions............................249

12.2.1VelocityandSpeed................................250

12.2.2Acceleration.....................................252

12.2.3RulesforDifferentiatingVector-ValuedFunctions.....252

12.3IntegratingVector-ValuedFunctions........................253

12.3.1DistanceFallenbyanObject.......................254

12.3.2PositionofaMovingObject........................255 12.4Summary...............................................255

12.4.1SummaryofFormulae.............................255

12.5.1DifferentiatingaPositionVector....................256

12.5.2SpeedofanObjectatDifferentTimes...............257

12.5.3VelocityandAccelerationofanObject atDifferentTimes................................257

12.5.4DistanceFallenbyanObject.......................258 12.5.5PositionofaMovingObject........................258

13.4.1GradientofaScalarFieldin

13.4.3SurfaceNormalVectors............................270

13.8WorkedExamples........................................281

13.8.1GradientofaScalarField..........................281

13.8.2NormalVectortoanEllipse........................281

13.8.3DivergenceofaVectorField.......................283

13.8.4CurlofaVectorField.............................283

14TangentandNormalVectors ...................................285

14.1Introduction.............................................285

14.2Notation................................................285

14.3TangentVectortoaCurve.................................286

14.4NormalVectortoaCurve.................................288

14.4.1UnitTangentandNormalVectorstoaLine...........290

14.4.2UnitTangentandNormalVectorstoaParabola.......292

14.4.3UnitTangentandNormalVectorstoaCircle..........294

14.4.4UnitTangentandNormalVectorstoanEllipse........296

14.4.5UnitTangentandNormalVectorstoaSineCurve.....298

14.4.6UnitTangentandNormalVectorstoaCoshCurve.....300

14.4.7UnitTangentandNormalVectorstoaHelix..........302

14.4.8UnitTangentandNormalVectorstoaQuadratic BézierCurve.....................................303

14.5UnitTangentandNormalVectorstoaSurface................306

14.5.1UnitNormalVectorstoaBilinearPatch..............306

14.5.2UnitNormalVectorstoaQuadraticBézierPatch......307

14.5.3UnitTangentandNormalVectortoaSphere..........310

16.2.4ParametricPlaneCurve............................335

16.2.5CurvatureofaGraph..............................337

16.2.6Curvatureofa2DQuadraticBézierCurve............338

16.2.7Curvatureofa2DCubicBézierCurve...............339

16.4.1CurvatureofaCircle..............................342

16.4.2CurvatureofaHelix..............................342 17SolvingDifferentialEquations

17.2WhatIsaDifferentialEquation?............................343 17.3BasicConcepts..........................................344

17.5.2CompoundInterest................................355

17.5.3RadiocarbonDating...............................357

Chapter1 Introduction

1.1WhatIsCalculus?

Whatiscalculus?Wellthisisaneasyquestiontoanswer.Basically,calculushas twoparts: differential and integral.Differentialcalculusisusedforcomputinga function’srateofchangerelativetooneofitsarguments.Generally,onebeginswith afunctionsuchas f ( x ),andas x changes,acorrespondingchangeoccursin f ( x ). Differentiatingf ( x ) withrespectto x ,producesasecondfunction f ( x ),whichgives therateofchangeof f ( x ) forany x .Forexample,andwithoutexplainingwhy,if f ( x ) = x 2 ,then f ( x ) = 2 x ,andwhen x = 3, f ( x ) ischanging2 × 3 = 6times fasterthan x .Whichisratherneat!

Inpractice,onealsowrites y = x 2 ,oreven y = f ( x ),whichmeansthatdifferentiatingisexpressedinavarietyofways

thusfor y = f ( x ) = x 2 ,wecanwrite

Integralcalculusreversestheoperation,where integratingf ( x ),produces f ( x ), orsomethingsimilar.Butsurely,calculuscan’tbeaseasyasthis,you’reasking yourself?Well,therearesomeproblems,whichiswhatthisbookisabout.Tobegin with,notallfunctionsareeasilydifferentiated,astheymaycontainhiddeninfinities anddiscontinuities.Somefunctionsareexpressedasproductsorquotients,andmany functionspossessmorethanoneargument.Allthese,andotherconditions,mustbe addressed.Furthermore,integratingafunctionproducessomeusefulbenefits,such ascalculatingtheareaunderagraph,thelengthofcurves,andthesurfaceareaand volumeofobjects.Butmoreofthislater.

©SpringerNatureSwitzerlandAG2023 J.Vince, CalculusforComputerGraphics, https://doi.org/10.1007/978-3-031-28117-4_1

Butwhyshouldwebeinterestedinratesofchange?Well,saywehaveafunction thatspecifiesthechangingvelocityofanobjectovertime,thendifferentiatingthe functiongivestherateofchangeofthefunctionovertime,whichistheobject’s acceleration.Andknowingtheobject’smassandacceleration,wecancomputethe forceresponsiblefortheobject’sacceleration.Therearemanymorereasonsfor havinganinterestinratesofchange,whichwillemergeinthefollowingchapters.

1.2WhereIsCalculusUsedinComputerGraphics?

Ifyouarelucky,youmayworkincomputergraphicswithouthavingtousecalculus, butsomepeoplehavenochoicebuttounderstandit,anduseitintheirwork.For example,weoftenjointogethercurvedlinesandsurfaces.Figure 1.1 showstwo abuttingcurves,wherethejoinisclearlyvisible.Thisisbecausetheslopeinformation attheendofthefirstcurve,doesnotmatchtheslopeinformationatthestartofthe secondcurve.Byexpressingthecurvesasfunctions,differentiatingthemgivestheir slopesatanypointintheformoftwootherfunctions.Theseslopefunctionscanalso bedifferentiated,andbyensuringthattheoriginalcurvespossessthesamederivatives atthejoin,aseamlessjoiniscreated.Thesameprocessisusedforabuttingtwoor moresurfacepatches.

Calculusfindsitswayintootheraspectsofcomputergraphicssuchasdigital differentialanalysers(DDAs)fordrawinglinesandcurves,interpolation,curvature, arc-lengthparametrisation,fluidanimation,rendering,animation,modelling,etc.In laterchaptersIwillshowhowcalculuspermitsustocalculatesurfacenormalsto curvesandsurfaces,andthecurvatureofdifferentcurves.

Fig.1.1 Twoabutting curveswithoutmatching slopes

1.3WhoElseShouldReadThisBook?

Whoelseshouldreadthisbook?Iwouldsaythatalmostanyonecouldreadthisbook. Basically,calculusisneededbymathematicians,scientists,physicists,engineers, etc.,andthisbookisjustanintroductiontothesubject,withabiastowardscomputer graphics.

1.4WhoInventedCalculus?

Morethanthree-hundredyearshavepassedsincetheEnglishastronomer,physicist andmathematicianIsaacNewton(1643–1727)andtheGermanmathematicianGottfriedLeibniz(1646–1716)publishedtheirtreatiesdescribingcalculus.Socalled ‘infinitesimals’playedapivotalroleinearlycalculustodeterminetangents,areaand volume.Incorporatingincrediblysmallquantities(infinitesimals)intoanumerical solution,meansthatproductsinvolvingthemcanbeignored,whilstquotientscould beretained.Thefinalsolutiontakestheformofaratiorepresentingthechangeofa function’svalue,relativetoachangeinitsindependentvariable.

Althoughinfinitesimalquantitieshavehelpedmathematiciansformorethantwothousandyearssolveallsortsofproblems,theywerenotwidelyacceptedasarigorousmathematicaltool.Inthelatterpartofthe19thcentury,theywerereplaced byincrementalchangesthattendtowardszerotoformalimitidentifyingsome desiredresult.ThiswasmainlyduetotheworkoftheGermanmathematicianKarl Weierstrass(1815–1897),andtheFrenchmathematicianAugustin-LouisCauchy (1789–1857).

Inspiteofthebasicideasofcalculusbeingrelativelyeasytounderstand,ithas areputationforbeingdifficultandintimidating.Ibelievethattheproblemliesin thebreadthanddepthofcalculus,inthatitcanbeappliedacrossawiderange ofdisciplines,fromelectronicstocosmology,wherethenotationoftenbecomes extremelyabstractwithmultipleintegrals,multi-dimensionalvectorspacesand matricesformedfrompartialdifferentialoperators.InthisbookIintroducethereader tothoseelementsofcalculusthatarebotheasytounderstandandrelevanttosolving variousmathematicalproblemsfoundincomputergraphics.

Ontheonehand,perhapsyouhavestudiedcalculusatsometime,andhavenot hadtheopportunitytouseitregularlyandbecomefamiliarwithitsways,tricksand analyticaltechniques.Inwhichcase,thisbookcouldawakensomedistantmemory andrevealasubjectwithwhichyouwereoncefamiliar.Ontheotherhand,thismight beyourfirstjourneyintotheworldoffunctions,limits,differentialsandintegrals—in whichcase,youshouldfindthejourneyexciting!

Chapter2 Functions

2.1Introduction

Inthischapterthenotionofafunctionisintroducedasatoolforgeneratingone numericalquantityfromanother.Inparticular,welookatequations,theirvariables andanypossiblesensitiveconditions.Thisleadstowardtheideaofhowfastafunction changesrelativetoitsindependentvariable.Thesecondpartofthechapterintroduces twomajoroperationsofcalculus:differentiating,anditsinverse,integrating.Thisis performedwithoutanyrigorousmathematicalunderpinning,andpermitsthereader todevelopanunderstandingofcalculuswithoutusinglimits.

2.2Expressions,Variables,ConstantsandEquations

Oneofthefirstthingswelearninmathematicsistheconstructionof expressions,such as2( x + 5) 2,using variables, constants andarithmetic operators.Thenextstep istodevelopanequation,whichisamathematicalstatement,insymbols,declaring thattwothingsareexactlythesame(orequivalent).Forexample,(2.1)istheequation representingthesurfaceareaofasphere

where S and r arevariables.Theyarevariablesbecausetheytakeondifferentvalues, dependingonthesizeofthesphere. S dependsuponthechangingvalueof r ,andto distinguishbetweenthetwo, S iscalledthe dependentvariable,and r the independent variable.Similarly,(2.2)istheequationforthevolumeofatorus

©SpringerNatureSwitzerlandAG2023

J.Vince, CalculusforComputerGraphics, https://doi.org/10.1007/978-3-031-28117-4_2

wherethe dependentvariableV dependsonthetorus’sminorradius r andmajor radius R ,whichareboth independentvariables.Notethatbothformulaeinclude constants4, π and2.Therearenorestrictionsonthenumberofvariablesorconstants employedwithinanequation.

2.3Functions

Theconceptofafunctionisthatofa dependentrelationship.Someequationsmerely expressanequality,suchas19 = 15 + 4,butafunctionisaspecialtypeofequationinwhichthevalueofonevariable(thedependentvariable)dependson,andis determinedby,thevaluesofoneormoreothervariables(theindependentvariables). Thus,intheequation

onemightsaythat S isafunctionof r ,andintheequation

V isafunctionof r and R . Itisusualtowritetheindependentvariables,separatedbycommas,inbrackets immediatelyafterthesymbolforthedependentvariable,andsothetwoequations aboveareusuallywritten

and

Theorderoftheindependentvariablesisimmaterial.

Mathematically,thereisnodifferencebetweenequationsandfunctions,itissimplyaquestionofnotation.However,whenwedonothaveanequation,wecanusethe ideaofafunctiontohelpusdevelopone.Forexample,noonehasbeenabletofind anequationthatgeneratesthe n thprimenumber,butIcandeclareafunction P (n ) thatpretendstoperformthisoperation,suchthat P (1) = 2, P (2) = 3, P (3) = 5, etc.Atleastthisimaginaryfunction P (n ),permitsmetomoveforwardandreflect uponitspossibleinnerstructure.

Amathematicalfunction must haveaprecisedefinition.It must bepredictable, andideally,workunderallconditions.

Weareallfamiliarwithmathematicalfunctionssuchassin x ,cos x ,tan x , √ x , etc.,where x istheindependentvariable.Suchfunctionspermitustoconfidently

writestatementssuchas

withoutworryingwhethertheywillalwaysprovideacorrectanswer.

Weoftenneedtodesignafunctiontoperformaspecifictask.Forinstance,ifI requireafunction y ( x ) tocompute x 2 + x + 6,theindependentvariableis x andthe functioniswritten

suchthat

2.3.1ContinuousandDiscontinuousFunctions

Understandably,afunction’svalueissensitivetoitsindependentvariables.A simple square-rootfunction,forinstance,expectsapositiverealnumberasitsindependent variable,andregistersanerrorconditionforanegativevalue.Ontheotherhand,a usefulsquare-rootfunctionwouldacceptpositiveandnegativenumbers,andoutput arealresultforapositiveinputandacomplexresultforanegativeinput.

Anotherdangerconditionisthepossibilityofdividingbyzero,whichisnot permissibleinmathematics.Forexample,thefollowingfunction y ( x ) isundefined for x = 1,andcannotbedisplayedonthegraphshowninFig. 2.1

whichiswhymathematiciansincludeadomainofdefinitioninthespecificationof afunction

Fig.2.1 Graphof y = ( x 2 + 1)/( x 1) showingthediscontinuityat x = 1

( x ) = x 2 + 1 x 1 for x = 1

Wecancreateequationsorfunctionsthatleadtoallsortsofmathematicalanomalies.Forexample,(2.3)createsthecondition0/0when x = 4

Similarly,mathematicianswouldwrite(2.3)as

Suchconditionshavenonumericalvalue.However,thisdoesnotmeanthatthese functionsareunsound—theyarejustsensitivetospecificvaluesoftheirindependent variable.Fortunately,thereisawayofinterpretingtheseresults,aswewilldiscover inthenextchapter.

2.3.2LinearGraphFunctions

Lineargraphfunctions areprobablythesimplestfunctionswewilleverencounter andarebaseduponequationsoftheform

Fig.2.2 Graphof y = 0.5 x + 2

Fig.2.3 Graphof y = 5sin x y = mx + c .

Forexample,thefunction y ( x ) = 0.5 x + 2isshownasagraphinFig. 2.2,where 0.5istheslope,and2istheinterceptwiththe y -axis.

2.3.3PeriodicFunctions

Periodicfunctions arealsorelativelysimpleandemploythetrigonometricfunctions sin,cosandtan.Forexample,thefunction y ( x ) = 5sin x isshownovertherange 4π< x < 4π asagraphinFig. 2.3,wherethe5istheamplitudeofthesinewave, and x istheangleinradians.

Fig.2.4 Graphof f ( x ) = 4 x 4 5 x 3 8 x 2 + 6 x 12

2.3.4PolynomialFunctions

Polynomialfunctions taketheform f ( x ) = an x n + an 1 x n 1 + an 2 x n 2 +···+ a2 x 2 + a1 x + a0

where n takesonsomevalue,and an areassortedconstants.Forexample,thefunction f ( x ) = 4 x 4 5 x 3 8 x 2 + 6 x 12isshowninFig. 2.4.

2.3.5FunctionofaFunction

Inmathematicsweoftencombinefunctionstodescribesomerelationshipsuccinctly. Forexample,thetrigonometricfunction f ( x ) = sin (2 x + 1)

isa functionofafunction.Herewehave2 x + 1,whichcanbeexpressedasthe function u ( x ) = 2 x + 1 andtheoriginalfunctionbecomes f (u ( x )) = sin (u ( x )).

Wecanincreasethedepthoffunctionstoanylimit,andinthenextchapterwe considerhowsuchdescriptionsareuntangledandanalysedincalculus.

2.3.6OtherFunctions

Youareprobablyfamiliarwithotherfunctionssuchasexponential,logarithmic, complex,vector,recursive,etc.,whichcanbecombinedtogethertoencodesimple equationssuchas

orsomethingmoredifficultsuchas

2.4AFunction’sRateofChange

Mathematiciansareparticularlyinterestedintherateatwhichafunctionchanges relativetoitsindependentvariable.Evenyouwouldbeinterestedinthischaracteristic inthecontextofyoursalaryorpensionannuity.Forexample,Iwouldliketoknow ifmypensionfundisgrowinglinearlywithtime;whetherthereissomesustained increasinggrowthrate;ormoreimportantly,ifthefundisdecreasing!Thisiswhat calculusisabout—itenablesustocalculatehowafunction’svaluechanges,relative toitsindependentvariable.

Thereasonwhycalculusappearsdaunting,isthatthereissuchawiderange offunctionstoconsider:linear,periodic,complex,polynomial,imaginary,rational, exponential,logarithmic,vector,etc.However,wemustnotbeintimidatedbysuch awidespectrum,asthemajorityoffunctionsemployedincomputergraphicsare relativelysimple,andthereareplentyoftextsthatshowhowspecificfunctionsare tackled.

2.4.1SlopeofaFunction

Inthelinearequation

y = mx + c

theindependentvariableis x ,but y isalsoinfluencedbytheconstant c ,which determinestheinterceptwiththe y -axis,and m ,whichdeterminesthegraph’sslope.

Fig.2.5 Graphof y = mx + 2fordifferentvaluesof m

3 y = -2x + 1 y = 0.5x2-2x + 1 y = 0.5x2

Fig.2.6 Graphof y = 0 5 x 2 2 x + 1showingitstwocomponents

Figure 2.5 showsthisequationwith4differentvaluesof m .Foranyvalueof x ,the slopealwaysequals m ,whichiswhatlinearmeans.

Inthequadraticequation

y = ax 2 + bx + c

y isdependenton x ,butinamuchmoresubtleway.Itisacombinationoftwo components:asquarelawcomponent ax 2 ,andalinearcomponent bx + c .Figure 2.6 showsthesetwocomponentsandtheirsumfortheequation y = 0 5 x 2 2 x + 1. Foranyvalueof x ,theslopeisdifferent.Figure 2.7 identifiesthreeslopesonthe graph.Forexample,when x = 2, y =−1,andtheslopeiszero.When x = 4, y = 1,

1

3 slope = slope2 = -2 slope=0

Fig.2.7 Graphof y = 0 5 x 2 2 x + 1showingthreegradients -3-2-10123456

Fig.2.8 Linearrelationshipbetweenslopeand x andtheslopelooksasthoughitequals2.Andwhen x = 0, y = 1,theslopelooks asthoughitequals 2.

Eventhoughwehaveonlythreesamples,let’splotthegraphoftherelationship between x andtheslope m ,asshowninFig. 2.8.Assumingthatothervaluesofslope lieonthesamestraightline,thentheequationrelatingtheslope m to x is

m = x 2.

Summarising:wehavediscoveredthattheslopeofthefunction

f ( x ) = 0 5 x 2 2 x + 1

changeswiththeindependentvariable x ,andisgivenbythefunction

f ( x ) = x 2.

Notethat f ( x ) istheoriginalfunction,and f ( x ) (pronounced fprime of x )isthe functionfortheslope,whichisaconventionoftenusedincalculus.

Rememberthatwehavetakenonlythreesampleslopes,andassumedthatthere isalinearrelationshipbetweentheslopeand x .Ideally,weshouldhavesampledthe graphatmanymorepointstoincreaseourconfidence,butIhappentoknowthatwe areonsolidground!

Calculusenablesustocomputethefunctionfortheslopefromtheoriginalfunction.i.e.tocompute f ( x ) from f ( x )

Readerswhoarealreadyfamiliarwithcalculuswillknowhowtocompute(2.6)from (2.5),butforotherreaders,thisisthetechnique:

1.Takeeachtermof(2.5)inturnandreplace ax n by nax n 1

2.Therefore0.5 x 2 becomes x .

3. 2 x ,whichcanbewritten 2 x 1 ,becomes 2 x 0 ,whichis 2. 4.1isignored,asitisaconstant.

5.Collectingupthetermswehave f ( x ) = x 2.

Thisprocessiscalled differentiating afunction,andiseasyforthistypeofpolynomial.Soeasyinfact,wecandifferentiatethefollowingfunctionwithoutthinking

Thisisanamazingrelationship,andisoneofthereasonswhycalculusissoimportant. Ifwecandifferentiateapolynomialfunction,surelywecanreversetheoperation andcomputetheoriginalfunction?Wellofcourse!Forexample,if f ( x ) isgivenby f ( x ) = 6 x 2 + 4 x + 6(2.7)

thenthisisthetechniquetocomputetheoriginalfunction:

1.Takeeachtermof(2.7)inturnandreplace ax n by 1 n +1 ax n +1 .

2.Therefore6 x 2 becomes2 x 3 .

3.4 x becomes2 x 2 . 4.6becomes6 x

Fig.2.9 Asinecurveovertherange0◦ to360◦

5.Introduceaconstant C whichmighthavebeenpresentintheoriginalfunction. 6.Collectingupthetermswehave

Thisprocessiscalled integrating afunction.Thuscalculusisaboutdifferentiating andintegratingfunctions,whichsoundsrathereasy,andinsomecasesitistrue.The problemisthebreadthoffunctionsthatariseinmathematics,physics,geometry, cosmology,science,etc.Forexample,howdowedifferentiateorintegrate

f ( x ) = sin x + x cosh x cos2 x ln x 3 ?

Personally,Idon’tknow,buthopefully,thereisasolutionsomewhere.

2.4.2DifferentiatingPeriodicFunctions

Nowlet’strydifferentiatingthesinefunctionbysamplingitsslopeatdifferentpoints. Figure 2.9 showsasinecurveovertherange0◦ to360◦ .Strictlyspeakingweshould beusingradians,whichimpliesthattherangeis0to2π .However,whenthescales fortheverticalandhorizontalaxesareequal,theslopeis1at0◦ and360◦ .Theslope iszeroat90◦ and270◦ ,and 1at180◦ .Figure 2.10 plotstheseslopevaluesagainst x andconnectsthemwithstraightlines. ItshouldbeclearfromFig. 2.9 thattheslopeofthesinewavedoesnotchange linearlyasshowninFig. 2.10.Theslopestartsat1,andforthefirst20◦ ,orso,slowly fallsaway,andthencollapsestozero,asshowninFig. 2.11,whichisacosinewave

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.