Download ebooks file Foundation mathematics for computer science: a visual approach 3rd edition john

Page 1


https://ebookmass.com/product/foundation-mathematics-forcomputer-science-a-visual-approach-3rd-edition-john-vince/

Instant digital products (PDF, ePub, MOBI) ready for you

Download now and discover formats that fit your needs...

Mathematics for Computer Graphics (Undergraduate Topics in Computer Science), 6th Edition 2022 John Vince

https://ebookmass.com/product/mathematics-for-computer-graphicsundergraduate-topics-in-computer-science-6th-edition-2022-john-vince/

ebookmass.com

Calculus for Computer Graphics, 3rd Edition John Vince

https://ebookmass.com/product/calculus-for-computer-graphics-3rdedition-john-vince/

ebookmass.com

Mathematics and Computer Science, Volume 1 Sharmistha Ghosh

https://ebookmass.com/product/mathematics-and-computer-sciencevolume-1-sharmistha-ghosh/

ebookmass.com

The Marriage Act 1st Edition John Marrs

https://ebookmass.com/product/the-marriage-act-1st-edition-john-marrs/

ebookmass.com

Holmes, Margaret and Poe James Patterson

https://ebookmass.com/product/holmes-margaret-and-poe-james-patterson/

ebookmass.com

Wound Care: A Collaborative Practice Manual for Health Professionals (Sussman, Wound Care) 4th Edition, (Ebook PDF)

https://ebookmass.com/product/wound-care-a-collaborative-practicemanual-for-health-professionals-sussman-wound-care-4th-edition-ebookpdf/ ebookmass.com

Captivated Stephanie Morris

https://ebookmass.com/product/captivated-stephanie-morris/

ebookmass.com

Gregory Palamas And The Making Of Palamism In The Modern Age First Edition. Edition Norman Russell

https://ebookmass.com/product/gregory-palamas-and-the-making-ofpalamism-in-the-modern-age-first-edition-edition-norman-russell/

ebookmass.com

The Art of Avoiding Your Werewolf (Wildwood Book 1) Lola Glass

https://ebookmass.com/product/the-art-of-avoiding-your-werewolfwildwood-book-1-lola-glass/

ebookmass.com

Flood forecasting : a global perspective 1st Edition Adams

https://ebookmass.com/product/flood-forecasting-a-globalperspective-1st-edition-adams/

ebookmass.com

John Vince Foundation Mathematics for Computer Science

A Visual Approach

Third Edition

JohnVince FoundationMathematics forComputerScience

AVisualApproach

ThirdEdition

ISBN978-3-031-17410-0ISBN978-3-031-17411-7(eBook) https://doi.org/10.1007/978-3-031-17411-7

1st edition:©SpringerInternationalPublishingSwitzerland2015 2nd &3rd editions:©SpringerNatureSwitzerlandAG2020,2023

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Thisbookisdedicatedtomywifeandbest friend,Heidi.

Preface

Computerscienceisaverylargesubject,andgraduatespursueawidevarietyof careers,includingprogramming,systemsdesign,cryptography,websitedesign,realtimesystems,computeranimation,computergames,datavisualisation,etc.Consequently,itisimpossibletowriteamathematicsbookthatcaterstoallofthesecareer paths.Nevertheless,Ihaveattemptedtodescribearangeofmathematicaltopicsthat Ibelievearerelevant,andhavehelpedmeduringmyowncareerincomputerscience. Thebook’ssubtitle‘AVisualApproach’reflectstheimportanceIplaceoncoloured illustrationsandfunctiongraphs,ofwhichthereareover210and90tables.Many chapterscontainavarietyofworkedexamples.

Thisthirdeditionremainsanintroductorytext,andisaimedatstudentsstudying foranundergraduatedegreeincomputerscience.Therearenownineteenchaptersonnumbers,counting,algebra,logic,combinatorics,probability,modulararithmetic,trigonometry,coordinatesystems,determinants,vectors,complexnumbers, matrices,geometricmatrixtransforms,differentiation,integration,areaandvolume, whichshouldprovidereaderswithasolidfoundation,uponwhichmoreadvanced topicsofmathematicscanbestudied.

Ihavereferencedthekeypeoplebehindthevariousmathematicaldiscoveries covered,whichIhopeaddsahumandimensiontothesubject.Ihavefounditvery interestingandentertainingtodiscoverhowsomemathematiciansridiculedtheir fellowpeers,whentheycouldnotcomprehendthesignificanceofanewinvention.

ThereisnowayIcouldhavewrittenthisbookwithouttheassistanceoftheInternet andmybookspreviouslypublishedbySpringerVerlag.Inparticular,Iwouldliketo acknowledgeWikipediaandRichardElwes’excellentbook Maths1001.Iprepared thisbookonanAppleiMac,using LaTeX 2e ,PagesandtheGrapherpackage, andwouldrecommendthiscombinationtoanyoneconsideringwritingabookon mathematics.Idohopeyouenjoyreadingthisbook,andthatyouaretemptedto studymathematicstoadeeperlevel.

Breinton,Herefordshire,UK October2022

JohnVince

1VisualMathematics

2.5.1TheArithmeticofPositiveandNegative

2.7.9QuaternionsandOctonions.....................19

2.8.5InfinityofPrimes..............................24

2.8.6MersenneNumbers............................25

3.2.2BinaryNumbers...............................32

3.2.3OctalNumbers................................33 3.2.4HexadecimalNumbers.........................33

3.3ConvertingDecimaltoBinary,OctalandHexadecimal.......34

3.3.1ConvertingDecimaltoBinary...................34

3.3.2ConvertingDecimaltoOctal....................35

3.3.3ConvertingDecimaltoHexadecimal.............36

3.4ConvertingBetweenBinaryandOctalNumbers.............38

3.5ConvertingBetweenBinaryandHexadecimalNumbers......39

3.6AddingandSubtractingBinaryNumbers...................41

3.6.1AddingBinaryNumbers........................41

3.6.2SubtractingBinaryNumbersUsingTwo’s Complement..................................42

3.7AddingandSubtractingDecimalNumbers..................42

3.7.1AddingDecimalNumbers......................42

3.7.2SubtractingDecimalNumbersUsingTen’s Complement..................................43

3.8AddingandSubtractingOctalNumbers....................44

3.8.1AddingOctalNumbers.........................44

3.8.2SubtractingOctalNumbersUsingEight’s Complement..................................44 3.9Summary..............................................45

3.10WorkedExamples.......................................45

3.10.1ConvertaDecimalNumberintoBinary...........45

3.10.2ConvertaDecimalNumberintoBinaryUsing anAlgorithm.................................45

3.10.3ConvertaBinaryNumberintoDecimal...........46

3.10.4ConvertaBinaryNumberintoOctal.............46

3.10.5ConvertanOctalNumberintoBinary............46

3.10.6ConvertanOctalNumberintoHexadecimal.......46

3.10.7ConvertaHexadecimalNumberintoOctal........47

3.10.8ConvertaDecimalNumberintoOctal............47

3.10.9ConvertaDecimalNumberintoOctalUsing anAlgorithm.................................47

3.10.10ConvertaDecimalNumberintoHexadecimal.....48

3.10.11AddBinaryNumbers..........................48

3.10.12SubtractBinaryNumbers.......................49

3.10.13AddOctalNumbers............................49

4.7.4FunctionDomainsandRanges..................63

5Logic

5.3.1LogicalConnectives...........................74

5.4LogicalPremises........................................75

5.4.1MaterialEquivalence...........................75

5.4.2Implication...................................76

5.4.3Negation.....................................77

5.4.4Conjunction..................................77

5.4.5InclusiveDisjunction...........................78

5.4.6ExclusiveDisjunction..........................79 5.4.7Idempotence..................................79 5.4.8Commutativity................................79

5.4.9Associativity..................................80

5.4.10Distributivity.................................82

5.4.11deMorgan’sLaws.............................83

5.4.12Simplification.................................83

5.4.13ExcludedMiddle..............................84

5.4.14Contradiction.................................85

5.4.15DoubleNegation..............................85

5.4.16ImplicationandEquivalence....................85

5.4.17Exportation...................................86

5.4.18Contrapositive................................86

5.4.19ReductioAdAbsurdum........................87

5.4.20ModusPonens................................88

5.4.21ProofbyCases................................89

5.5SetTheory.............................................91

5.5.1EmptySet....................................91

5.5.2MembershipandCardinalityofaSet.............91

5.5.3Subsets,SupersetsandtheUniversalSet..........92

5.5.4SetBuilding..................................92

5.5.5Union........................................93

5.5.6Intersection...................................94

5.5.7RelativeComplement..........................94

5.5.8AbsoluteComplement.........................96

5.5.9PowerSet....................................96

5.6WorkedExamples.......................................97

5.6.1TruthTables..................................97

5.6.2SetBuilding..................................97

5.6.3Sets.........................................99

5.6.4PowerSet....................................99

6Combinatorics ................................................101

6.1Introduction............................................101

6.2Permutations...........................................101

6.3PermutationsofMultisets................................104

6.4Combinations...........................................105

6.5WorkedExamples.......................................107

6.5.1Eight-PermutationsofaMultiset.................107

6.5.2Eight-PermutationsofaMultiset.................108

6.5.3NumberofPermutations........................109

6.5.4NumberofFive-CardHands....................109

6.5.5HandShakeswith100People...................109

6.5.6PermutationsofMISSISSIPPI...................110

7Probability ...................................................111

7.1Introduction............................................111

7.2DefinitionandNotation..................................111

7.2.1IndependentEvents............................113

7.2.2DependentEvents.............................113

7.2.3MutuallyExclusiveEvents......................114

7.2.4InclusiveEvents...............................115

7.2.5ProbabilityUsingCombinations.................115

7.3WorkedExamples.......................................117

7.3.1ProductofProbabilities........................117

7.3.2BookArrangements............................118

7.3.3WinningaLottery.............................118

7.3.4RollingTwoDice..............................118

7.3.5TwoDiceSumto7............................118

7.3.6TwoDiceSumto4............................119

7.3.7DealingaRedAce.............................119

7.3.8SelectingFourAcesinSuccession...............119

7.3.9SelectingCards...............................119

7.3.10SelectingFourBallsfromaBag.................120

7.3.11FormingTeams...............................120

7.3.12DealingFiveCards............................121

8ModularArithmetic

8.1Introduction............................................123

8.2InformalDefinition......................................123

8.3Notation...............................................123

8.4Congruence............................................124

8.5NegativeNumbers.......................................125

8.6ArithmeticOperations...................................125

8.6.1SumsofNumbers.............................126

8.6.2Products.....................................127

8.6.3MultiplyingbyaConstant......................127

8.6.4CongruentPairs...............................128

8.6.5MultiplicativeInverse..........................128

8.6.6ModuloaPrime...............................130

8.6.7Fermat’sLittleTheorem........................133

8.7ApplicationsofModularArithmetic.......................133

8.7.1ISBNParityCheck............................133

8.7.2IBANCheckDigits............................134

8.8WorkedExamples.......................................136

8.8.1NegativeNumbers.............................136

8.8.2SumsofNumbers.............................136

8.8.3RemaindersofProducts........................137

8.8.4MultiplicativeInverse..........................138

8.8.5ProductTableforModulo13....................138

8.8.6ISBNCheckDigit.............................139 Reference.....................................................139

9Trigonometry

9.1Introduction............................................141 9.2Background............................................141

9.3UnitsofAngularMeasurement............................141

9.4TheTrigonometricRatios................................142

9.4.1DomainsandRanges...........................145

9.5InverseTrigonometricRatios.............................145

9.6TrigonometricIdentities..................................147

9.7TheSineRule..........................................148

9.8TheCosineRule........................................148

9.9Compound-AngleIdentities..............................149

9.9.1Double-AngleIdentities........................150

9.9.2Multiple-AngleIdentities.......................151

9.9.3Half-AngleIdentities...........................152

9.10PerimeterRelationships..................................153

9.11WorkedExamples.......................................153

9.11.1DegreestoRadians............................153

9.11.2SineRule.....................................154

9.11.3CosineRule..................................154

9.11.4CompoundAngle..............................155

9.11.5Double-AngleIdentity.........................155

9.11.6PerimeterRelationship.........................156

10CoordinateSystems ...........................................157

10.1Introduction............................................157

10.2Background............................................157

10.3TheCartesianPlane.....................................158

10.4FunctionGraphs........................................158

10.5ShapeRepresentation....................................159

10.5.12DPolygons..................................159

10.5.2AreasofShapes...............................160

10.6TheoremofPythagorasin2D.............................161

10.6.1PythagoreanTriples............................161 10.73DCartesianCoordinates................................162

10.7.1TheoremofPythagorasin3D...................163

10.8PolarCoordinates.......................................163

10.9SphericalPolarCoordinates..............................164

10.10CylindricalCoordinates..................................165

10.11BarycentricCoordinates..................................166

10.12HomogeneousCoordinates...............................167

10.13WorkedExamples.......................................167

10.13.1AreaofaShape...............................167

10.13.2DistanceBetweenTwoPoints...................168

10.13.3PolarCoordinates.............................168

10.13.4SphericalPolarCoordinates.....................169

10.13.5CylindricalCoordinates........................169

10.13.6BarycentricCoordinates........................170 Reference.....................................................171

11Determinants

11.3LinearEquationswithTwoVariables.......................174 11.4LinearEquationswithThreeVariables.....................178

11.4.1Sarrus’sRule.................................184

11.5MathematicalNotation...................................184

11.5.1Matrix.......................................185

11.5.2OrderofaDeterminant.........................185

11.5.3ValueofaDeterminant.........................185

11.5.4PropertiesofDeterminants......................187

11.6WorkedExamples.......................................188

11.6.1DeterminantExpansion.........................188

11.6.2ComplexDeterminant..........................188

11.6.3SimpleExpansion.............................189

11.6.4SimultaneousEquations........................189

12Vectors

12.32DVectors.............................................192

12.3.1VectorNotation...............................192

12.3.2GraphicalRepresentationofVectors..............193

12.3.3MagnitudeofaVector..........................194

12.43DVectors.............................................195

12.4.1VectorManipulation...........................196

12.4.2ScalingaVector...............................196

12.4.3VectorAdditionandSubtraction.................197

12.4.4PositionVectors...............................198

12.4.5UnitVectors..................................199

12.4.6CartesianVectors..............................199

12.4.7Products.....................................200

12.4.8ScalarProduct................................200

12.4.9TheDotProductinLightingCalculations.........202

12.4.10TheScalarProductinBack-FaceDetection........203

12.4.11TheVectorProduct............................204

12.4.12TheRight-HandRule..........................209

12.5DerivingaUnitNormalVectorforaTriangle...............209

12.6SurfaceAreas...........................................210

12.6.1Calculating2DAreas..........................211 12.7Summary..............................................212

12.8WorkedExamples.......................................212

12.8.1PositionVector................................212

12.8.2UnitVector...................................212

12.8.3VectorMagnitude.............................213

12.8.4AngleBetweenTwoVectors....................213

12.8.5VectorProduct................................213

13.2RepresentingComplexNumbers..........................215

13.2.1ComplexNumbers.............................215

13.2.2RealandImaginaryParts.......................216

13.2.3TheComplexPlane............................216

13.3ComplexAlgebra.......................................216

13.3.1AlgebraicLaws...............................216

13.3.2ComplexConjugate............................218

13.3.3ComplexDivision.............................220

13.3.4Powersof i ...................................221

13.3.5RotationalQualitiesof i ........................222

13.3.6ModulusandArgument........................224

13.3.7ComplexNorm................................226

13.3.8ComplexInverse..............................227

13.3.9ComplexExponentials.........................228

13.3.10deMoivre’sTheorem..........................232

13.3.11 n thRootofUnity..............................234

13.3.12 n thRootsofaComplexNumber.................235

13.3.13LogarithmofaComplexNumber................236

13.3.14RaisingaComplexNumbertoaComplex Power........................................237

13.3.15VisualisingSimpleComplexFunctions...........239

13.3.16TheHyperbolicFunctions......................243

13.4Summary..............................................244

13.5WorkedExamples.......................................244

13.5.1ComplexAddition.............................244

13.5.2ComplexProducts.............................245

13.5.3ComplexDivision.............................245

13.5.4ComplexRotation.............................245

13.5.5PolarNotation................................246

13.5.6RealandImaginaryParts.......................246

13.5.7MagnitudeofaComplexNumber................247

13.5.8ComplexNorm................................247

13.5.9ComplexInverse..............................248

13.5.10deMoivre’sTheorem..........................248 13.5.11 n thRootofUnity..............................249

13.5.12RootsofaComplexNumber....................250

13.5.13LogarithmofaComplexNumber................251

13.5.14RaisingaNumbertoaComplexPower...........251 References....................................................251

14Matrices

14.4MatrixNotation.........................................258

14.4.1MatrixDimensionorOrder.....................259

14.4.2SquareMatrix.................................259

14.4.3ColumnVector................................259

14.4.4RowVector...................................259

14.4.5NullMatrix...................................260

14.4.6UnitMatrix...................................260

14.4.7Trace........................................261

14.4.8DeterminantofaMatrix........................262

14.4.9Transpose....................................262

14.4.10SymmetricMatrix.............................263

14.4.11AntisymmetricMatrix..........................265

14.5MatrixAdditionandSubtraction..........................267

14.5.1ScalarMultiplication...........................268 14.6MatrixProducts.........................................268

14.6.1RowandColumnVectors.......................268

14.6.2RowVectorandaMatrix.......................269

14.6.3MatrixandaColumnVector....................270

14.6.4SquareMatrices...............................271

14.6.5RectangularMatrices..........................272

14.7InverseMatrix..........................................273

14.7.1InvertingaPairofMatrices.....................280

14.8OrthogonalMatrix......................................281

14.9DiagonalMatrix........................................282

14.10WorkedExamples.......................................282

14.10.1MatrixInversion...............................282

14.10.2IdentityMatrix................................283

14.10.3SolvingTwoEquationsUsingMatrices...........284

14.10.4SolvingThreeEquationsUsingMatrices..........285

14.10.5SolvingTwoComplexEquations................286

14.10.6SolvingThreeComplexEquations...............287

14.10.7SolvingTwoComplexEquations................288

14.10.8SolvingThreeComplexEquations...............289

15.2.22DScaling...................................295

15.2.32DReflections................................297

15.2.42DShearing..................................299

15.2.52DRotation..................................300

15.2.62DScaling...................................303

15.2.72DReflection.................................304

15.2.82DRotationAboutanArbitraryPoint............305 15.33DTransforms..........................................306

15.3.13DTranslation................................306

15.3.23DScaling...................................306

15.3.33DRotation..................................307

15.3.4RotatingAboutanAxis........................311

15.3.53DReflections................................312

15.4RotatingaPointAboutanArbitraryAxis...................313

15.4.1Matrices.....................................313

15.5DeterminantofaTransform..............................316

15.6PerspectiveProjection...................................317

15.7WorkedExamples.......................................320

15.7.12DScaleandTranslate.........................320

15.7.22DRotation..................................321

15.7.3DeterminantoftheRotateTransform.............322

15.7.4DeterminantoftheShearTransform..............322

15.7.5Yaw,PitchandRollTransforms.................322

15.7.6RotationAboutanArbitraryAxis................323

15.7.73DRotationTransformMatrix..................324

15.7.8PerspectiveProjection..........................325

16.4.4GraphicalInterpretationoftheDerivative.........334

16.7DifferentiatingImplicitFunctions.........................349

16.8DifferentiatingExponentialandLogarithmicFunctions.......352

16.9.3Differentiatingsec.............................359 16.9.4Differentiatingcot.............................360

16.9.5Differentiatingarcsin,arccosandarctan..........361

16.9.6Differentiatingarccsc,arcsecandarccot..........362

16.10DifferentiatingHyperbolicFunctions.......................362

16.10.1Differentiatingsinh,coshandtanh...............364

16.11HigherDerivatives......................................366

16.12HigherDerivativesofaPolynomial........................366

16.13IdentifyingaLocalMaximumorMinimum.................369

16.14PartialDerivatives.......................................370

16.14.1VisualisingPartialDerivatives...................373 16.14.2MixedPartialDerivatives.......................375

16.15ChainRule.............................................376

16.16TotalDerivative.........................................378

16.17PowerSeries...........................................379

16.18WorkedExamples.......................................382

16.18.1Antiderivative1...............................382

16.18.2Antiderivative2...............................382

16.18.3DifferentiatingSumsofFunctions...............383

16.18.4DifferentiatingaFunctionProduct...............383

16.18.5DifferentiatinganImplicitFunction..............383

16.18.6DifferentiatingaGeneralImplicitFunction........384

16.18.7LocalMaximumorMinimum...................385

16.18.8PartialDerivatives.............................386

16.18.9MixedPartialDerivative1......................386

16.18.10MixedPartialDerivative2......................387

16.18.11TotalDerivative...............................387

17Calculus:Integration ..........................................389

17.1Introduction............................................389

17.2IndefiniteIntegral.......................................389 17.3IntegrationTechniques...................................390

17.3.1ContinuousFunctions..........................390

17.3.2DifficultFunctions.............................391 17.4TrigonometricIdentities..................................392

17.4.1ExponentNotation.............................395

17.4.2CompletingtheSquare.........................396

17.4.3TheIntegrandContainsaDerivative..............398

17.4.4ConvertingtheIntegrandintoaSeries ofFractions...................................400

17.4.5IntegrationbyParts............................401

17.4.6IntegrationbySubstitution......................405 17.4.7PartialFractions...............................408 17.5Summary..............................................410 17.6WorkedExamples.......................................410

17.6.1IntegratingaFunctionContainingitsOwn Derivative....................................410

17.6.2DividinganIntegralintoSeveralIntegrals.........412

17.6.3IntegratingbyParts1..........................412

17.6.4IntegratingbyParts2..........................413

17.6.5IntegratingbySubstitution1....................415

17.6.6IntegratingbySubstitution2....................416

17.6.7IntegratingbySubstitution3....................417

17.6.8IntegratingwithPartialFractions................417

18Area .........................................................419

18.1Introduction............................................419

18.2AreaUnderaGraph.....................................419

18.3CalculatingAreas.......................................419

18.4PositiveandNegativeAreas..............................428

18.5AreaBetweenTwoFunctions.............................430

18.6Areaswiththey-Axis....................................432

18.7AreawithParametricFunctions...........................433

18.8TheRiemannSum......................................435

18.9SurfaceofRevolution....................................437

18.9.1SurfaceAreaofaCylinder......................438

18.9.2SurfaceAreaofaRightCone...................439

18.9.3SurfaceAreaofaSphere.......................442

18.9.4SurfaceAreaofaParaboloid....................443

18.10SurfaceAreaUsingParametricFunctions...................445

18.11DoubleIntegrals........................................447

18.12Jacobians..............................................448

18.12.11DJacobian..................................449

18.12.22DJacobian..................................450

18.12.33DJacobian..................................455

18.13DoubleIntegralsforCalculatingArea......................458 18.14Summary..............................................463 18.14.1SummaryofFormulae.........................463 19Volume .......................................................465 19.1Introduction............................................465

19.2SolidofRevolution:Disks................................465

19.2.1VolumeofaCylinder..........................467

19.2.2VolumeofaRightCone........................467

19.2.3VolumeofaRightConicalFrustum..............470 19.2.4VolumeofaSphere............................471 19.2.5VolumeofanEllipsoid.........................472

19.2.6VolumeofaParaboloid.........................474

19.3SolidofRevolution:Shells...............................475

19.3.1VolumeofaCylinder..........................476

19.3.2VolumeofaRightCone........................477

19.3.3VolumeofaSphere............................478

19.3.4VolumeofaParaboloid.........................479

19.4VolumeswithDoubleIntegrals............................481

19.4.1ObjectswithaRectangularBase.................482

19.4.2RectangularBox..............................482

19.4.3RectangularPrism.............................483

19.4.4CurvedTop...................................484

19.4.5ObjectswithaCircularBase....................485

19.4.6Cylinder.....................................485

19.4.7TruncatedCylinder............................486

19.5VolumeswithTripleIntegrals.............................488

19.5.1RectangularBox..............................489

19.5.2VolumeofaCylinder..........................490

19.5.3VolumeofaSphere............................492

19.5.4VolumeofaCone.............................493

Chapter1

VisualMathematics

1.1Introduction

Thisopeningchapteraddressesfivetopicsrelatedtotheauthor’swritingstyle.

1.2VisualBrainsVersusAnalyticBrains

Iconsidermyselfa visual person,aspictureshelpmeunderstandcomplexproblems. Ialsodon’tfindittoodifficulttovisualiseobjectsfromdifferentviewpoints.I rememberlearningaboutelectrons,neutronsandprotonsforthefirsttime,whereour planetarysystemprovidedasimplemodeltovisualisethehiddenstructureofmatter. Mymentalimageofelectronswasoneofsmallorangespheres,spinningarounda small,centralnucleuscontainingblueprotonsandgreyneutrons.Andalthoughthis visualmodelisseriouslyflawed,itprovidedafirststeptowardsunderstandingthe structureofmatter.

Asmyknowledgeofmathematicsgrew,this,too,wasimagebased.Equations werecurvesandsurfaces,simultaneousequationswereintersectingorparallellines, etc.,andwhenIembarkeduponcomputerscience,Ifoundanaturalapplication formathematics.Forme,mathematicsisavisualscience,althoughIdoappreciate thatmanyprofessionalmathematiciansneedonlyaformal,symbolicnotationfor constructingtheirworld.Suchpeopledonotrequirevisualscaffolding—theyseem tobeabletomanipulateabstractmathematicalconceptsatasymboliclevel.Their booksdonotrequireillustrationsordiagrams—Greeksymbols,upside-downand back-to-frontLatinfontsaresufficienttoannotatetheirideas.

Today,whenreadingpopularsciencebooksonquantumtheory,Istilltrytoform imagesof3Dfieldsofenergyandprobabilityoscillatinginspace—tonoavail—andI haveacceptedthathumanknowledgeofsuchphenomenaisbestlefttoamathematical description.Nevertheless,mathematicians,suchasSirRogerPenrose,knowthe importanceofvisualmodelsincommunicatingcomplexmathematicalideas.His

©SpringerNatureSwitzerlandAG2023

J.Vince, FoundationMathematicsforComputerScience, https://doi.org/10.1007/978-3-031-17411-7_1

book TheRoadtoReality (Penrose 2004)isdecoratedwithbeautiful,informative, hand-drawnillustrations,whichhelpreadersunderstandthemathematicsofscience. InthisbookIrelyheavilyonimagestocommunicateanidea.Theyaresimpleand arethefirststeponaladdertowardsunderstandingadifficultidea.Eventually,when that Eureka momentarrives,thatmomentwhenyousaytoyourself,‘Iunderstand whatyouaresaying,’theimagebecomescloselyassociatedwiththemathematical notation.

1.3LearningMathematics

IwasfortunateinmystudiesinthatIwastaughtbypeopleinterestedinmathematics, andtheirinterestrubbedoffonme.Ifeelsorryforchildrenwhohavegivenup onmathematics,simplybecausetheyarebeingtaughtbyteacherswhoseprimary subjectisnotmathematics.Iwasnevertooconcernedabouttheusesofmathematics, althoughappliedmathematicsisofspecialinterest.

Oneoftheproblemswithmathematicsisitsincrediblebreadthanddepth.It embraceseverythingfrom2Dgeometry,calculus,topology,statistics,complexfunctionstonumbertheoryandpropositionalcalculus.Allofthesesubjectscanbestudiedsuperficiallyortoamind-numbingcomplexity.Fortunately,nooneisrequired tounderstandeverything,whichiswhymathematicianstendtospecialiseinoneor twoareasanddevelopaspecialistknowledge.

1.4WhatMakesMathematicsDifficult?

‘Whatmakesmathematicsdifficult?’isalsoadifficultquestiontoanswer,butone thathastobeaskedandanswered.Therearemanyanswerstothisquestion,and Ibelievethatproblemsbeginwithmathematicalnotationandhowtoreadit;how toanalyseaproblemandexpressasolutionusingmathematicalstatements.Unlike learningaforeignlanguage—whichIfindverydifficult—mathematicsisalanguage thatneedstobelearnedbydiscoveringfactsandbuildinguponthemtodiscovernew facts.Consequently,agoodmemoryisalwaysanadvantage,aswellasasenseof logic.

Mathematicscanbedifficultforanyone,includingmathematicians.Forexample, whentheideaof √ 1wasoriginallyproposed,itwascriticisedandlookeddown uponbymathematicians,mainlybecauseitspurposewasnotfullyunderstood.Eventually,ittransformedtheentiremathematicallandscape,includingphysics.Similarly, whentheGermanmathematicianGeorgCantor(1845–1919),publishedhispapers onsettheoryandtransfinitesets,somemathematicianshoundedhiminadisgraceful manner.TheGermanmathematicianLeopoldKronecker(1823–1891),calledCantora‘scientificcharlatan’,a‘renegade’,anda‘corrupterofyouth’,anddideverythingtohinderCantor’sacademiccareer.Similarly,theFrenchmathematicianand

physicistHenriPoincaré(1854–1912),calledCantor’sideasa‘gravedisease’,whilst theAustrian-BritishphilosopherandlogicianLudwigWittgenstein(1889–1951) complainedthatmathematicsis‘riddenthroughandthroughwiththepernicious idiomsofsettheory.’Howwrongtheyallwere.Today,settheoryisamajorbranchof mathematicsandhasfounditswayintoeverymathcurriculum.Sodon’tbesurprised todiscoverthatsomemathematicalideasareinitiallydifficulttounderstand—you areingoodcompany.

1.5DoesMathematicsExistOutsideOurBrains?

Manypeoplehaveconsideredthequestion‘Whatismathematics?’Somemathematiciansandphilosophersarguethatnumbersandmathematicalformulaehave somesortofexternalexistenceandarewaitingtobediscoveredbyus.Personally, Idon’tacceptthisidea.Ibelievethatweenjoysearchingforpatternsandstructure inanythingthatfindsitswayintoourbrains,whichiswhywelovepoetry,music, storytelling,art,singing,architecture,science,aswellasmathematics.Thepiano, forexample,isaninstrumentforplayingmusicusingdifferentpatternsofnotes. Whenthepianowasinvented—afewhundredyearsago—themusicofChopin, LisztandRachmaninoffdidnotexistinanyform—ithadtobecomposedbythem. Similarly,bybuildingasystemforcountingusingnumbers,wehaveanamazingtool forcomposingmathematicalsystemsthathelpusmeasurequantity,structure,space andchange.Suchsystemshavebeenappliedtotopicssuchasfluiddynamics,optimisation,statistics,cryptography,gametheoryprobabilitytheory,andmanymore. Iwillattempttodevelopthissameideabyshowinghowtheconceptofnumber, andthevisualrepresentationofnumberrevealsallsortsofpatterns,thatgiveriseto numbersystems,algebra,trigonometry,geometry,analyticgeometryandcalculus. Theuniversedoesnotneedanyofthesemathematicalideastorunitsmachinery,but weneedtheseideastounderstanditsoperation.

1.6SymbolsandNotation

Oneofthereasonswhymanypeoplefindmathematicsinaccessibleisduetoits symbolsandnotation.Let’slookatsymbolsfirst.TheEnglishalphabetpossessesa reasonablerangeoffamiliarcharactershapes:

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

whichfindtheirwayintoeverybranchofmathematicsandphysics,andpermit ustowriteequationssuchas E = mc 2

Itisimportantthatwhenweseeanequation,weareabletoreaditaspartofthetext. Inthecaseof E = mc 2 ,thisisreadas‘ E equals m , c squared’,where E standsfor energy, m formass,and c thespeedoflight.Inthecaseof A = π r 2 ,thisisreadas‘ A equalspi, r squared’,where A standsforarea, π theratioofacircle’scircumference toitsdiameter,and r thecircle’sradius.Greeksymbols,whichhappentolooknice andimpressive,havealsofoundtheirwayintomanyequations,andoftendisruptthe flowofreading,simplybecausewedon’tknowtheirEnglishnames.Forexample, theEnglishtheoreticalphysicistPaulDirac(1902–1984)derivedanequationfora movingelectronusingthesymbols αi and β ,whichare4 × 4matrices,where

andisreadas

‘thesumoftheproductsalpha-i beta,andbetaalpha-i ,equalszero.’

Althoughwewillnotcomeacrossmovingelectronsinthisbook,wewillhave tobefamiliarwiththefollowingGreeksymbols:

alpha

beta

xi

gamma o omicron

delta

pi epsilon

zeta

eta

theta

iota

kappa

lambda

mu

rho

sigma

tau

upsilon

phi

chi

psi

omega andsomeupper-casesymbols:

Gamma

Delta

Theta

Lambda

Xi

Pi.

Sigma

Upsilon

Phi

Psi

Omega

Beingabletoreadanequationdoesnotmeanthatweunderstandit—butwearea littlecloserthanjustbeingabletostareatajumbleofsymbols!Therefore,infuture, whenIintroduceanewmathematicalobject,Iwilltellyouhowitshouldberead.

Reference

PenroseR(2004)Theroadtoreality:acompleteguidetothelawsoftheuniverse.Cape

Chapter2

Numbers

2.1Introduction

Thischapterrevisesthesetsofnumbersemployedinmathematicssuchasnatural,integer,rational,irrational,real,algebraic,transcendental,imaginary,complex, quaternionsandoctonions.Italsodescribeshowthesenumbersbehaveinthecontext ofthreelaws:commutative,associativeandthedistributivelaw.

Asprimenumbersfindtheirwayintoallaspectsofcryptography,thechapter introducesthefundamentaltheoremofarithmetic,primenumberdistribution,perfect numbersandMersennenumbers.Thechapterconcludeswiththeconceptofinfinity andsomeworkedexamples.

2.2Counting

Ourbrain’svisualcortexpossessessomeincredibleimageprocessingfeatures.For example,childrenknowinstinctivelywhentheyaregivenlesssweetsthananother child,andadultsknowinstinctivelywhentheyareshort-changedbyaParisiantaxi driver,ordrivenaroundtheArcdeTriumphseveraltimes,onthewaytotheairport!

Intuitively,wecanassesshowmanydonkeysareinafieldwithoutcountingthem, andgenerally,weseemtoknowwithinasecondortwo,whethertherearejustafew, dozens,orhundredsofsomething.Butwhenaccuracyisrequired,onecan’tbeat counting.Butwhatiscounting?

Wellnormally,wearetaughttocountbyourparentsbyfirst,memorisingthe countingwords one,two,three,four,five,six,seven,eight,nine,ten,etc.,andsecond, associatingthemwithourfingers,sothatwhenaskedtocountthenumberofdonkeys inapicturebook,eachdonkeyisassociatedwithacountingword.Wheneach donkeyhasbeenidentified,thenumberofdonkeysequalsthelastwordmentioned. However,thisstillassumesthatweknowthemeaningof one,two,three,four, etc.Memorisingthesecountingwordsisonlypartoftheproblem—gettingthem

©SpringerNatureSwitzerlandAG2023

J.Vince, FoundationMathematicsforComputerScience, https://doi.org/10.1007/978-3-031-17411-7_2

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.