[FREE PDF sample] Foundation mathematics for computer science: a visual approach 3rd edition john vi

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/foundation-mathematics-for-computer-science-a-visu al-approach-3rd-edition-john-vince/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Mathematics for Computer Graphics (Undergraduate Topics in Computer Science), 6th Edition 2022 John Vince

https://ebookmass.com/product/mathematics-for-computer-graphicsundergraduate-topics-in-computer-science-6th-edition-2022-johnvince/

Calculus for Computer Graphics, 3rd Edition John Vince

https://ebookmass.com/product/calculus-for-computer-graphics-3rdedition-john-vince/

Mathematics and Computer Science, Volume 1 Sharmistha

Ghosh

https://ebookmass.com/product/mathematics-and-computer-sciencevolume-1-sharmistha-ghosh/

A Brain-Focused Foundation for Economic Science Richard B. Mckenzie

https://ebookmass.com/product/a-brain-focused-foundation-foreconomic-science-richard-b-mckenzie/

Mathematics for elementary teachers : a conceptual approach Tenth Edition. Edition Bennett

https://ebookmass.com/product/mathematics-for-elementaryteachers-a-conceptual-approach-tenth-edition-edition-bennett/

(eTextbook PDF) for Mathematical Structures for Computer Science 7th Edition

https://ebookmass.com/product/etextbook-pdf-for-mathematicalstructures-for-computer-science-7th-edition/

Computer Science Illuminated

https://ebookmass.com/product/computer-science-illuminated/

Computer architecture: a quantitative approach Sixth Edition Hennessy

https://ebookmass.com/product/computer-architecture-aquantitative-approach-sixth-edition-hennessy/

Mathematics in the Visual Arts Ruth Scheps

https://ebookmass.com/product/mathematics-in-the-visual-artsruth-scheps/

John Vince Foundation Mathematics for Computer Science

A Visual Approach

Third Edition

JohnVince FoundationMathematics forComputerScience

AVisualApproach

ThirdEdition

ISBN978-3-031-17410-0ISBN978-3-031-17411-7(eBook) https://doi.org/10.1007/978-3-031-17411-7

1st edition:©SpringerInternationalPublishingSwitzerland2015 2nd &3rd editions:©SpringerNatureSwitzerlandAG2020,2023

Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped.

Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse.

Thepublisher,theauthors,andtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressedorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade.Thepublisherremainsneutralwithregardtojurisdictional claimsinpublishedmapsandinstitutionalaffiliations.

ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSwitzerlandAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland

Thisbookisdedicatedtomywifeandbest friend,Heidi.

Preface

Computerscienceisaverylargesubject,andgraduatespursueawidevarietyof careers,includingprogramming,systemsdesign,cryptography,websitedesign,realtimesystems,computeranimation,computergames,datavisualisation,etc.Consequently,itisimpossibletowriteamathematicsbookthatcaterstoallofthesecareer paths.Nevertheless,Ihaveattemptedtodescribearangeofmathematicaltopicsthat Ibelievearerelevant,andhavehelpedmeduringmyowncareerincomputerscience. Thebook’ssubtitle‘AVisualApproach’reflectstheimportanceIplaceoncoloured illustrationsandfunctiongraphs,ofwhichthereareover210and90tables.Many chapterscontainavarietyofworkedexamples.

Thisthirdeditionremainsanintroductorytext,andisaimedatstudentsstudying foranundergraduatedegreeincomputerscience.Therearenownineteenchaptersonnumbers,counting,algebra,logic,combinatorics,probability,modulararithmetic,trigonometry,coordinatesystems,determinants,vectors,complexnumbers, matrices,geometricmatrixtransforms,differentiation,integration,areaandvolume, whichshouldprovidereaderswithasolidfoundation,uponwhichmoreadvanced topicsofmathematicscanbestudied.

Ihavereferencedthekeypeoplebehindthevariousmathematicaldiscoveries covered,whichIhopeaddsahumandimensiontothesubject.Ihavefounditvery interestingandentertainingtodiscoverhowsomemathematiciansridiculedtheir fellowpeers,whentheycouldnotcomprehendthesignificanceofanewinvention.

ThereisnowayIcouldhavewrittenthisbookwithouttheassistanceoftheInternet andmybookspreviouslypublishedbySpringerVerlag.Inparticular,Iwouldliketo acknowledgeWikipediaandRichardElwes’excellentbook Maths1001.Iprepared thisbookonanAppleiMac,using LaTeX 2e ,PagesandtheGrapherpackage, andwouldrecommendthiscombinationtoanyoneconsideringwritingabookon mathematics.Idohopeyouenjoyreadingthisbook,andthatyouaretemptedto studymathematicstoadeeperlevel.

Breinton,Herefordshire,UK October2022

JohnVince

1VisualMathematics

2.5.1TheArithmeticofPositiveandNegative

2.7.9QuaternionsandOctonions.....................19

2.8.5InfinityofPrimes..............................24

2.8.6MersenneNumbers............................25

3.2.2BinaryNumbers...............................32

3.2.3OctalNumbers................................33 3.2.4HexadecimalNumbers.........................33

3.3ConvertingDecimaltoBinary,OctalandHexadecimal.......34

3.3.1ConvertingDecimaltoBinary...................34

3.3.2ConvertingDecimaltoOctal....................35

3.3.3ConvertingDecimaltoHexadecimal.............36

3.4ConvertingBetweenBinaryandOctalNumbers.............38

3.5ConvertingBetweenBinaryandHexadecimalNumbers......39

3.6AddingandSubtractingBinaryNumbers...................41

3.6.1AddingBinaryNumbers........................41

3.6.2SubtractingBinaryNumbersUsingTwo’s Complement..................................42

3.7AddingandSubtractingDecimalNumbers..................42

3.7.1AddingDecimalNumbers......................42

3.7.2SubtractingDecimalNumbersUsingTen’s Complement..................................43

3.8AddingandSubtractingOctalNumbers....................44

3.8.1AddingOctalNumbers.........................44

3.8.2SubtractingOctalNumbersUsingEight’s Complement..................................44 3.9Summary..............................................45

3.10WorkedExamples.......................................45

3.10.1ConvertaDecimalNumberintoBinary...........45

3.10.2ConvertaDecimalNumberintoBinaryUsing anAlgorithm.................................45

3.10.3ConvertaBinaryNumberintoDecimal...........46

3.10.4ConvertaBinaryNumberintoOctal.............46

3.10.5ConvertanOctalNumberintoBinary............46

3.10.6ConvertanOctalNumberintoHexadecimal.......46

3.10.7ConvertaHexadecimalNumberintoOctal........47

3.10.8ConvertaDecimalNumberintoOctal............47

3.10.9ConvertaDecimalNumberintoOctalUsing anAlgorithm.................................47

3.10.10ConvertaDecimalNumberintoHexadecimal.....48

3.10.11AddBinaryNumbers..........................48

3.10.12SubtractBinaryNumbers.......................49

3.10.13AddOctalNumbers............................49

4.7.4FunctionDomainsandRanges..................63

5Logic

5.3.1LogicalConnectives...........................74

5.4LogicalPremises........................................75

5.4.1MaterialEquivalence...........................75

5.4.2Implication...................................76

5.4.3Negation.....................................77

5.4.4Conjunction..................................77

5.4.5InclusiveDisjunction...........................78

5.4.6ExclusiveDisjunction..........................79 5.4.7Idempotence..................................79 5.4.8Commutativity................................79

5.4.9Associativity..................................80

5.4.10Distributivity.................................82

5.4.11deMorgan’sLaws.............................83

5.4.12Simplification.................................83

5.4.13ExcludedMiddle..............................84

5.4.14Contradiction.................................85

5.4.15DoubleNegation..............................85

5.4.16ImplicationandEquivalence....................85

5.4.17Exportation...................................86

5.4.18Contrapositive................................86

5.4.19ReductioAdAbsurdum........................87

5.4.20ModusPonens................................88

5.4.21ProofbyCases................................89

5.5SetTheory.............................................91

5.5.1EmptySet....................................91

5.5.2MembershipandCardinalityofaSet.............91

5.5.3Subsets,SupersetsandtheUniversalSet..........92

5.5.4SetBuilding..................................92

5.5.5Union........................................93

5.5.6Intersection...................................94

5.5.7RelativeComplement..........................94

5.5.8AbsoluteComplement.........................96

5.5.9PowerSet....................................96

5.6WorkedExamples.......................................97

5.6.1TruthTables..................................97

5.6.2SetBuilding..................................97

5.6.3Sets.........................................99

5.6.4PowerSet....................................99

6Combinatorics ................................................101

6.1Introduction............................................101

6.2Permutations...........................................101

6.3PermutationsofMultisets................................104

6.4Combinations...........................................105

6.5WorkedExamples.......................................107

6.5.1Eight-PermutationsofaMultiset.................107

6.5.2Eight-PermutationsofaMultiset.................108

6.5.3NumberofPermutations........................109

6.5.4NumberofFive-CardHands....................109

6.5.5HandShakeswith100People...................109

6.5.6PermutationsofMISSISSIPPI...................110

7Probability ...................................................111

7.1Introduction............................................111

7.2DefinitionandNotation..................................111

7.2.1IndependentEvents............................113

7.2.2DependentEvents.............................113

7.2.3MutuallyExclusiveEvents......................114

7.2.4InclusiveEvents...............................115

7.2.5ProbabilityUsingCombinations.................115

7.3WorkedExamples.......................................117

7.3.1ProductofProbabilities........................117

7.3.2BookArrangements............................118

7.3.3WinningaLottery.............................118

7.3.4RollingTwoDice..............................118

7.3.5TwoDiceSumto7............................118

7.3.6TwoDiceSumto4............................119

7.3.7DealingaRedAce.............................119

7.3.8SelectingFourAcesinSuccession...............119

7.3.9SelectingCards...............................119

7.3.10SelectingFourBallsfromaBag.................120

7.3.11FormingTeams...............................120

7.3.12DealingFiveCards............................121

8ModularArithmetic

8.1Introduction............................................123

8.2InformalDefinition......................................123

8.3Notation...............................................123

8.4Congruence............................................124

8.5NegativeNumbers.......................................125

8.6ArithmeticOperations...................................125

8.6.1SumsofNumbers.............................126

8.6.2Products.....................................127

8.6.3MultiplyingbyaConstant......................127

8.6.4CongruentPairs...............................128

8.6.5MultiplicativeInverse..........................128

8.6.6ModuloaPrime...............................130

8.6.7Fermat’sLittleTheorem........................133

8.7ApplicationsofModularArithmetic.......................133

8.7.1ISBNParityCheck............................133

8.7.2IBANCheckDigits............................134

8.8WorkedExamples.......................................136

8.8.1NegativeNumbers.............................136

8.8.2SumsofNumbers.............................136

8.8.3RemaindersofProducts........................137

8.8.4MultiplicativeInverse..........................138

8.8.5ProductTableforModulo13....................138

8.8.6ISBNCheckDigit.............................139 Reference.....................................................139

9Trigonometry

9.1Introduction............................................141 9.2Background............................................141

9.3UnitsofAngularMeasurement............................141

9.4TheTrigonometricRatios................................142

9.4.1DomainsandRanges...........................145

9.5InverseTrigonometricRatios.............................145

9.6TrigonometricIdentities..................................147

9.7TheSineRule..........................................148

9.8TheCosineRule........................................148

9.9Compound-AngleIdentities..............................149

9.9.1Double-AngleIdentities........................150

9.9.2Multiple-AngleIdentities.......................151

9.9.3Half-AngleIdentities...........................152

9.10PerimeterRelationships..................................153

9.11WorkedExamples.......................................153

9.11.1DegreestoRadians............................153

9.11.2SineRule.....................................154

9.11.3CosineRule..................................154

9.11.4CompoundAngle..............................155

9.11.5Double-AngleIdentity.........................155

9.11.6PerimeterRelationship.........................156

10CoordinateSystems ...........................................157

10.1Introduction............................................157

10.2Background............................................157

10.3TheCartesianPlane.....................................158

10.4FunctionGraphs........................................158

10.5ShapeRepresentation....................................159

10.5.12DPolygons..................................159

10.5.2AreasofShapes...............................160

10.6TheoremofPythagorasin2D.............................161

10.6.1PythagoreanTriples............................161 10.73DCartesianCoordinates................................162

10.7.1TheoremofPythagorasin3D...................163

10.8PolarCoordinates.......................................163

10.9SphericalPolarCoordinates..............................164

10.10CylindricalCoordinates..................................165

10.11BarycentricCoordinates..................................166

10.12HomogeneousCoordinates...............................167

10.13WorkedExamples.......................................167

10.13.1AreaofaShape...............................167

10.13.2DistanceBetweenTwoPoints...................168

10.13.3PolarCoordinates.............................168

10.13.4SphericalPolarCoordinates.....................169

10.13.5CylindricalCoordinates........................169

10.13.6BarycentricCoordinates........................170 Reference.....................................................171

11Determinants

11.3LinearEquationswithTwoVariables.......................174 11.4LinearEquationswithThreeVariables.....................178

11.4.1Sarrus’sRule.................................184

11.5MathematicalNotation...................................184

11.5.1Matrix.......................................185

11.5.2OrderofaDeterminant.........................185

11.5.3ValueofaDeterminant.........................185

11.5.4PropertiesofDeterminants......................187

11.6WorkedExamples.......................................188

11.6.1DeterminantExpansion.........................188

11.6.2ComplexDeterminant..........................188

11.6.3SimpleExpansion.............................189

11.6.4SimultaneousEquations........................189

12Vectors

12.32DVectors.............................................192

12.3.1VectorNotation...............................192

12.3.2GraphicalRepresentationofVectors..............193

12.3.3MagnitudeofaVector..........................194

12.43DVectors.............................................195

12.4.1VectorManipulation...........................196

12.4.2ScalingaVector...............................196

12.4.3VectorAdditionandSubtraction.................197

12.4.4PositionVectors...............................198

12.4.5UnitVectors..................................199

12.4.6CartesianVectors..............................199

12.4.7Products.....................................200

12.4.8ScalarProduct................................200

12.4.9TheDotProductinLightingCalculations.........202

12.4.10TheScalarProductinBack-FaceDetection........203

12.4.11TheVectorProduct............................204

12.4.12TheRight-HandRule..........................209

12.5DerivingaUnitNormalVectorforaTriangle...............209

12.6SurfaceAreas...........................................210

12.6.1Calculating2DAreas..........................211 12.7Summary..............................................212

12.8WorkedExamples.......................................212

12.8.1PositionVector................................212

12.8.2UnitVector...................................212

12.8.3VectorMagnitude.............................213

12.8.4AngleBetweenTwoVectors....................213

12.8.5VectorProduct................................213

13.2RepresentingComplexNumbers..........................215

13.2.1ComplexNumbers.............................215

13.2.2RealandImaginaryParts.......................216

13.2.3TheComplexPlane............................216

13.3ComplexAlgebra.......................................216

13.3.1AlgebraicLaws...............................216

13.3.2ComplexConjugate............................218

13.3.3ComplexDivision.............................220

13.3.4Powersof i ...................................221

13.3.5RotationalQualitiesof i ........................222

13.3.6ModulusandArgument........................224

13.3.7ComplexNorm................................226

13.3.8ComplexInverse..............................227

13.3.9ComplexExponentials.........................228

13.3.10deMoivre’sTheorem..........................232

13.3.11 n thRootofUnity..............................234

13.3.12 n thRootsofaComplexNumber.................235

13.3.13LogarithmofaComplexNumber................236

13.3.14RaisingaComplexNumbertoaComplex Power........................................237

13.3.15VisualisingSimpleComplexFunctions...........239

13.3.16TheHyperbolicFunctions......................243

13.4Summary..............................................244

13.5WorkedExamples.......................................244

13.5.1ComplexAddition.............................244

13.5.2ComplexProducts.............................245

13.5.3ComplexDivision.............................245

13.5.4ComplexRotation.............................245

13.5.5PolarNotation................................246

13.5.6RealandImaginaryParts.......................246

13.5.7MagnitudeofaComplexNumber................247

13.5.8ComplexNorm................................247

13.5.9ComplexInverse..............................248

13.5.10deMoivre’sTheorem..........................248 13.5.11 n thRootofUnity..............................249

13.5.12RootsofaComplexNumber....................250

13.5.13LogarithmofaComplexNumber................251

13.5.14RaisingaNumbertoaComplexPower...........251 References....................................................251

14Matrices

14.4MatrixNotation.........................................258

14.4.1MatrixDimensionorOrder.....................259

14.4.2SquareMatrix.................................259

14.4.3ColumnVector................................259

14.4.4RowVector...................................259

14.4.5NullMatrix...................................260

14.4.6UnitMatrix...................................260

14.4.7Trace........................................261

14.4.8DeterminantofaMatrix........................262

14.4.9Transpose....................................262

14.4.10SymmetricMatrix.............................263

14.4.11AntisymmetricMatrix..........................265

14.5MatrixAdditionandSubtraction..........................267

14.5.1ScalarMultiplication...........................268 14.6MatrixProducts.........................................268

14.6.1RowandColumnVectors.......................268

14.6.2RowVectorandaMatrix.......................269

14.6.3MatrixandaColumnVector....................270

14.6.4SquareMatrices...............................271

14.6.5RectangularMatrices..........................272

14.7InverseMatrix..........................................273

14.7.1InvertingaPairofMatrices.....................280

14.8OrthogonalMatrix......................................281

14.9DiagonalMatrix........................................282

14.10WorkedExamples.......................................282

14.10.1MatrixInversion...............................282

14.10.2IdentityMatrix................................283

14.10.3SolvingTwoEquationsUsingMatrices...........284

14.10.4SolvingThreeEquationsUsingMatrices..........285

14.10.5SolvingTwoComplexEquations................286

14.10.6SolvingThreeComplexEquations...............287

14.10.7SolvingTwoComplexEquations................288

14.10.8SolvingThreeComplexEquations...............289

15.2.22DScaling...................................295

15.2.32DReflections................................297

15.2.42DShearing..................................299

15.2.52DRotation..................................300

15.2.62DScaling...................................303

15.2.72DReflection.................................304

15.2.82DRotationAboutanArbitraryPoint............305 15.33DTransforms..........................................306

15.3.13DTranslation................................306

15.3.23DScaling...................................306

15.3.33DRotation..................................307

15.3.4RotatingAboutanAxis........................311

15.3.53DReflections................................312

15.4RotatingaPointAboutanArbitraryAxis...................313

15.4.1Matrices.....................................313

15.5DeterminantofaTransform..............................316

15.6PerspectiveProjection...................................317

15.7WorkedExamples.......................................320

15.7.12DScaleandTranslate.........................320

15.7.22DRotation..................................321

15.7.3DeterminantoftheRotateTransform.............322

15.7.4DeterminantoftheShearTransform..............322

15.7.5Yaw,PitchandRollTransforms.................322

15.7.6RotationAboutanArbitraryAxis................323

15.7.73DRotationTransformMatrix..................324

15.7.8PerspectiveProjection..........................325

16.4.4GraphicalInterpretationoftheDerivative.........334

16.7DifferentiatingImplicitFunctions.........................349

16.8DifferentiatingExponentialandLogarithmicFunctions.......352

16.9.3Differentiatingsec.............................359 16.9.4Differentiatingcot.............................360

16.9.5Differentiatingarcsin,arccosandarctan..........361

16.9.6Differentiatingarccsc,arcsecandarccot..........362

16.10DifferentiatingHyperbolicFunctions.......................362

16.10.1Differentiatingsinh,coshandtanh...............364

16.11HigherDerivatives......................................366

16.12HigherDerivativesofaPolynomial........................366

16.13IdentifyingaLocalMaximumorMinimum.................369

16.14PartialDerivatives.......................................370

16.14.1VisualisingPartialDerivatives...................373 16.14.2MixedPartialDerivatives.......................375

16.15ChainRule.............................................376

16.16TotalDerivative.........................................378

16.17PowerSeries...........................................379

16.18WorkedExamples.......................................382

16.18.1Antiderivative1...............................382

16.18.2Antiderivative2...............................382

16.18.3DifferentiatingSumsofFunctions...............383

16.18.4DifferentiatingaFunctionProduct...............383

16.18.5DifferentiatinganImplicitFunction..............383

16.18.6DifferentiatingaGeneralImplicitFunction........384

16.18.7LocalMaximumorMinimum...................385

16.18.8PartialDerivatives.............................386

16.18.9MixedPartialDerivative1......................386

16.18.10MixedPartialDerivative2......................387

16.18.11TotalDerivative...............................387

17Calculus:Integration ..........................................389

17.1Introduction............................................389

17.2IndefiniteIntegral.......................................389 17.3IntegrationTechniques...................................390

17.3.1ContinuousFunctions..........................390

17.3.2DifficultFunctions.............................391 17.4TrigonometricIdentities..................................392

17.4.1ExponentNotation.............................395

17.4.2CompletingtheSquare.........................396

17.4.3TheIntegrandContainsaDerivative..............398

17.4.4ConvertingtheIntegrandintoaSeries ofFractions...................................400

17.4.5IntegrationbyParts............................401

17.4.6IntegrationbySubstitution......................405 17.4.7PartialFractions...............................408 17.5Summary..............................................410 17.6WorkedExamples.......................................410

17.6.1IntegratingaFunctionContainingitsOwn Derivative....................................410

17.6.2DividinganIntegralintoSeveralIntegrals.........412

17.6.3IntegratingbyParts1..........................412

17.6.4IntegratingbyParts2..........................413

17.6.5IntegratingbySubstitution1....................415

17.6.6IntegratingbySubstitution2....................416

17.6.7IntegratingbySubstitution3....................417

17.6.8IntegratingwithPartialFractions................417

18Area .........................................................419

18.1Introduction............................................419

18.2AreaUnderaGraph.....................................419

18.3CalculatingAreas.......................................419

18.4PositiveandNegativeAreas..............................428

18.5AreaBetweenTwoFunctions.............................430

18.6Areaswiththey-Axis....................................432

18.7AreawithParametricFunctions...........................433

18.8TheRiemannSum......................................435

18.9SurfaceofRevolution....................................437

18.9.1SurfaceAreaofaCylinder......................438

18.9.2SurfaceAreaofaRightCone...................439

18.9.3SurfaceAreaofaSphere.......................442

18.9.4SurfaceAreaofaParaboloid....................443

18.10SurfaceAreaUsingParametricFunctions...................445

18.11DoubleIntegrals........................................447

18.12Jacobians..............................................448

18.12.11DJacobian..................................449

18.12.22DJacobian..................................450

18.12.33DJacobian..................................455

18.13DoubleIntegralsforCalculatingArea......................458 18.14Summary..............................................463 18.14.1SummaryofFormulae.........................463 19Volume .......................................................465 19.1Introduction............................................465

19.2SolidofRevolution:Disks................................465

19.2.1VolumeofaCylinder..........................467

19.2.2VolumeofaRightCone........................467

19.2.3VolumeofaRightConicalFrustum..............470 19.2.4VolumeofaSphere............................471 19.2.5VolumeofanEllipsoid.........................472

19.2.6VolumeofaParaboloid.........................474

19.3SolidofRevolution:Shells...............................475

19.3.1VolumeofaCylinder..........................476

19.3.2VolumeofaRightCone........................477

19.3.3VolumeofaSphere............................478

19.3.4VolumeofaParaboloid.........................479

19.4VolumeswithDoubleIntegrals............................481

19.4.1ObjectswithaRectangularBase.................482

19.4.2RectangularBox..............................482

19.4.3RectangularPrism.............................483

19.4.4CurvedTop...................................484

19.4.5ObjectswithaCircularBase....................485

19.4.6Cylinder.....................................485

19.4.7TruncatedCylinder............................486

19.5VolumeswithTripleIntegrals.............................488

19.5.1RectangularBox..............................489

19.5.2VolumeofaCylinder..........................490

19.5.3VolumeofaSphere............................492

19.5.4VolumeofaCone.............................493

Chapter1

VisualMathematics

1.1Introduction

Thisopeningchapteraddressesfivetopicsrelatedtotheauthor’swritingstyle.

1.2VisualBrainsVersusAnalyticBrains

Iconsidermyselfa visual person,aspictureshelpmeunderstandcomplexproblems. Ialsodon’tfindittoodifficulttovisualiseobjectsfromdifferentviewpoints.I rememberlearningaboutelectrons,neutronsandprotonsforthefirsttime,whereour planetarysystemprovidedasimplemodeltovisualisethehiddenstructureofmatter. Mymentalimageofelectronswasoneofsmallorangespheres,spinningarounda small,centralnucleuscontainingblueprotonsandgreyneutrons.Andalthoughthis visualmodelisseriouslyflawed,itprovidedafirststeptowardsunderstandingthe structureofmatter.

Asmyknowledgeofmathematicsgrew,this,too,wasimagebased.Equations werecurvesandsurfaces,simultaneousequationswereintersectingorparallellines, etc.,andwhenIembarkeduponcomputerscience,Ifoundanaturalapplication formathematics.Forme,mathematicsisavisualscience,althoughIdoappreciate thatmanyprofessionalmathematiciansneedonlyaformal,symbolicnotationfor constructingtheirworld.Suchpeopledonotrequirevisualscaffolding—theyseem tobeabletomanipulateabstractmathematicalconceptsatasymboliclevel.Their booksdonotrequireillustrationsordiagrams—Greeksymbols,upside-downand back-to-frontLatinfontsaresufficienttoannotatetheirideas.

Today,whenreadingpopularsciencebooksonquantumtheory,Istilltrytoform imagesof3Dfieldsofenergyandprobabilityoscillatinginspace—tonoavail—andI haveacceptedthathumanknowledgeofsuchphenomenaisbestlefttoamathematical description.Nevertheless,mathematicians,suchasSirRogerPenrose,knowthe importanceofvisualmodelsincommunicatingcomplexmathematicalideas.His

©SpringerNatureSwitzerlandAG2023

J.Vince, FoundationMathematicsforComputerScience, https://doi.org/10.1007/978-3-031-17411-7_1

book TheRoadtoReality (Penrose 2004)isdecoratedwithbeautiful,informative, hand-drawnillustrations,whichhelpreadersunderstandthemathematicsofscience. InthisbookIrelyheavilyonimagestocommunicateanidea.Theyaresimpleand arethefirststeponaladdertowardsunderstandingadifficultidea.Eventually,when that Eureka momentarrives,thatmomentwhenyousaytoyourself,‘Iunderstand whatyouaresaying,’theimagebecomescloselyassociatedwiththemathematical notation.

1.3LearningMathematics

IwasfortunateinmystudiesinthatIwastaughtbypeopleinterestedinmathematics, andtheirinterestrubbedoffonme.Ifeelsorryforchildrenwhohavegivenup onmathematics,simplybecausetheyarebeingtaughtbyteacherswhoseprimary subjectisnotmathematics.Iwasnevertooconcernedabouttheusesofmathematics, althoughappliedmathematicsisofspecialinterest.

Oneoftheproblemswithmathematicsisitsincrediblebreadthanddepth.It embraceseverythingfrom2Dgeometry,calculus,topology,statistics,complexfunctionstonumbertheoryandpropositionalcalculus.Allofthesesubjectscanbestudiedsuperficiallyortoamind-numbingcomplexity.Fortunately,nooneisrequired tounderstandeverything,whichiswhymathematicianstendtospecialiseinoneor twoareasanddevelopaspecialistknowledge.

1.4WhatMakesMathematicsDifficult?

‘Whatmakesmathematicsdifficult?’isalsoadifficultquestiontoanswer,butone thathastobeaskedandanswered.Therearemanyanswerstothisquestion,and Ibelievethatproblemsbeginwithmathematicalnotationandhowtoreadit;how toanalyseaproblemandexpressasolutionusingmathematicalstatements.Unlike learningaforeignlanguage—whichIfindverydifficult—mathematicsisalanguage thatneedstobelearnedbydiscoveringfactsandbuildinguponthemtodiscovernew facts.Consequently,agoodmemoryisalwaysanadvantage,aswellasasenseof logic.

Mathematicscanbedifficultforanyone,includingmathematicians.Forexample, whentheideaof √ 1wasoriginallyproposed,itwascriticisedandlookeddown uponbymathematicians,mainlybecauseitspurposewasnotfullyunderstood.Eventually,ittransformedtheentiremathematicallandscape,includingphysics.Similarly, whentheGermanmathematicianGeorgCantor(1845–1919),publishedhispapers onsettheoryandtransfinitesets,somemathematicianshoundedhiminadisgraceful manner.TheGermanmathematicianLeopoldKronecker(1823–1891),calledCantora‘scientificcharlatan’,a‘renegade’,anda‘corrupterofyouth’,anddideverythingtohinderCantor’sacademiccareer.Similarly,theFrenchmathematicianand

physicistHenriPoincaré(1854–1912),calledCantor’sideasa‘gravedisease’,whilst theAustrian-BritishphilosopherandlogicianLudwigWittgenstein(1889–1951) complainedthatmathematicsis‘riddenthroughandthroughwiththepernicious idiomsofsettheory.’Howwrongtheyallwere.Today,settheoryisamajorbranchof mathematicsandhasfounditswayintoeverymathcurriculum.Sodon’tbesurprised todiscoverthatsomemathematicalideasareinitiallydifficulttounderstand—you areingoodcompany.

1.5DoesMathematicsExistOutsideOurBrains?

Manypeoplehaveconsideredthequestion‘Whatismathematics?’Somemathematiciansandphilosophersarguethatnumbersandmathematicalformulaehave somesortofexternalexistenceandarewaitingtobediscoveredbyus.Personally, Idon’tacceptthisidea.Ibelievethatweenjoysearchingforpatternsandstructure inanythingthatfindsitswayintoourbrains,whichiswhywelovepoetry,music, storytelling,art,singing,architecture,science,aswellasmathematics.Thepiano, forexample,isaninstrumentforplayingmusicusingdifferentpatternsofnotes. Whenthepianowasinvented—afewhundredyearsago—themusicofChopin, LisztandRachmaninoffdidnotexistinanyform—ithadtobecomposedbythem. Similarly,bybuildingasystemforcountingusingnumbers,wehaveanamazingtool forcomposingmathematicalsystemsthathelpusmeasurequantity,structure,space andchange.Suchsystemshavebeenappliedtotopicssuchasfluiddynamics,optimisation,statistics,cryptography,gametheoryprobabilitytheory,andmanymore. Iwillattempttodevelopthissameideabyshowinghowtheconceptofnumber, andthevisualrepresentationofnumberrevealsallsortsofpatterns,thatgiveriseto numbersystems,algebra,trigonometry,geometry,analyticgeometryandcalculus. Theuniversedoesnotneedanyofthesemathematicalideastorunitsmachinery,but weneedtheseideastounderstanditsoperation.

1.6SymbolsandNotation

Oneofthereasonswhymanypeoplefindmathematicsinaccessibleisduetoits symbolsandnotation.Let’slookatsymbolsfirst.TheEnglishalphabetpossessesa reasonablerangeoffamiliarcharactershapes:

a,b,c,d,e,f,g,h,i,j,k,l,m,n,o,p,q,r,s,t,u,v,w,x,y,z A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U,V,W,X,Y,Z

whichfindtheirwayintoeverybranchofmathematicsandphysics,andpermit ustowriteequationssuchas E = mc 2

Itisimportantthatwhenweseeanequation,weareabletoreaditaspartofthetext. Inthecaseof E = mc 2 ,thisisreadas‘ E equals m , c squared’,where E standsfor energy, m formass,and c thespeedoflight.Inthecaseof A = π r 2 ,thisisreadas‘ A equalspi, r squared’,where A standsforarea, π theratioofacircle’scircumference toitsdiameter,and r thecircle’sradius.Greeksymbols,whichhappentolooknice andimpressive,havealsofoundtheirwayintomanyequations,andoftendisruptthe flowofreading,simplybecausewedon’tknowtheirEnglishnames.Forexample, theEnglishtheoreticalphysicistPaulDirac(1902–1984)derivedanequationfora movingelectronusingthesymbols αi and β ,whichare4 × 4matrices,where

andisreadas

‘thesumoftheproductsalpha-i beta,andbetaalpha-i ,equalszero.’

Althoughwewillnotcomeacrossmovingelectronsinthisbook,wewillhave tobefamiliarwiththefollowingGreeksymbols:

alpha

beta

xi

gamma o omicron

delta

pi epsilon

zeta

eta

theta

iota

kappa

lambda

mu

rho

sigma

tau

upsilon

phi

chi

psi

omega andsomeupper-casesymbols:

Gamma

Delta

Theta

Lambda

Xi

Pi.

Sigma

Upsilon

Phi

Psi

Omega

Beingabletoreadanequationdoesnotmeanthatweunderstandit—butwearea littlecloserthanjustbeingabletostareatajumbleofsymbols!Therefore,infuture, whenIintroduceanewmathematicalobject,Iwilltellyouhowitshouldberead.

Reference

PenroseR(2004)Theroadtoreality:acompleteguidetothelawsoftheuniverse.Cape

Chapter2

Numbers

2.1Introduction

Thischapterrevisesthesetsofnumbersemployedinmathematicssuchasnatural,integer,rational,irrational,real,algebraic,transcendental,imaginary,complex, quaternionsandoctonions.Italsodescribeshowthesenumbersbehaveinthecontext ofthreelaws:commutative,associativeandthedistributivelaw.

Asprimenumbersfindtheirwayintoallaspectsofcryptography,thechapter introducesthefundamentaltheoremofarithmetic,primenumberdistribution,perfect numbersandMersennenumbers.Thechapterconcludeswiththeconceptofinfinity andsomeworkedexamples.

2.2Counting

Ourbrain’svisualcortexpossessessomeincredibleimageprocessingfeatures.For example,childrenknowinstinctivelywhentheyaregivenlesssweetsthananother child,andadultsknowinstinctivelywhentheyareshort-changedbyaParisiantaxi driver,ordrivenaroundtheArcdeTriumphseveraltimes,onthewaytotheairport!

Intuitively,wecanassesshowmanydonkeysareinafieldwithoutcountingthem, andgenerally,weseemtoknowwithinasecondortwo,whethertherearejustafew, dozens,orhundredsofsomething.Butwhenaccuracyisrequired,onecan’tbeat counting.Butwhatiscounting?

Wellnormally,wearetaughttocountbyourparentsbyfirst,memorisingthe countingwords one,two,three,four,five,six,seven,eight,nine,ten,etc.,andsecond, associatingthemwithourfingers,sothatwhenaskedtocountthenumberofdonkeys inapicturebook,eachdonkeyisassociatedwithacountingword.Wheneach donkeyhasbeenidentified,thenumberofdonkeysequalsthelastwordmentioned. However,thisstillassumesthatweknowthemeaningof one,two,three,four, etc.Memorisingthesecountingwordsisonlypartoftheproblem—gettingthem

©SpringerNatureSwitzerlandAG2023

J.Vince, FoundationMathematicsforComputerScience, https://doi.org/10.1007/978-3-031-17411-7_2

inthecorrectsequenceistherealchallenge.Theincorrectsequence one,two,five, three,nine,four,etc.,introducesanelementofrandomnessintoanycalculation,but practicemakesperfect,andit’susefultomasterthecorrectsequencebeforegoing touniversity!

2.3SetsofNumbers

A set isacollectionofdistinctobjectscalledits elements or members.Forexample, eachsystemofnumberbelongstoasetwithgivenaname,suchas N forthenatural numbers, R forrealnumbers,and Q forrationalnumbers.Whenwewanttoindicate thatsomethingiswhole,realorrational,etc.,weusethenotation

∈ N

whichreads‘n isamemberof(∈)theset N’,i.e. n isawholenumber.Similarly,

∈ R

standsfor‘ x isarealnumber.’

A well-orderedset possessesauniqueorder,suchasthenaturalnumbers N. Therefore,if P isthewell-orderedsetofprimenumbersand N isthewell-ordered setofnaturalnumbers,wecanwrite P ={2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,

Bypairingtheprimenumbersin P withthenumbersin N,wehave {2, 1}, {3,

,...

andwecanreasonthat2isthe1stprime,and3isthe2ndprime,etc.However,we stillhavetodeclarewhatwemeanby1, 2, 3, 4, 5,etc.,andwithoutgettingtoo philosophical,Iliketheideaofdefiningthemasfollows.Theword one,represented by1,standsforone-nessofanything:onefinger,onehouse,onetree,onedonkey,etc. Theword two,representedby2,is‘onemorethanone.’Theword three,represented by3,is‘onemorethantwo,’andsoon.

Wearenowinapositiontoassociatesomemathematicalnotationwithournumbersbyintroducingthe + and = signs.Weknowthat + means add,butitalsocan standfor more.Wealsoknowthat = means equal,anditcanalsostandfor isthe sameas.Thusthestatement

2 = 1 + 1 isreadas‘twoisthesameasonemorethanone.’

whichisreadas‘threeisthesameasonemorethantwo.’Butaswealreadyhavea definitionfor2,wecanwrite

Developingthisidea,andincludingsomeextracombinations,wehave

andcanbecontinuedwithoutlimit.Thenumbers,1,2,3,4,5,6,etc.,arecalled naturalnumbers,andaretheset N.

2.4Zero

Theconceptofzerohasawell-documentedhistory,whichshowsthatithasbeenused bydifferentculturesoveraperiodoftwo-thousandyearsormore.ItwastheIndian mathematicianandastronomerBrahmagupta(598-c.–670)whoarguedthatzero wasjustasvalidasanynaturalnumber,withthedefinition: theresultofsubtracting anynumberfromitself.However,eventoday,thereisnouniversalagreementasto whetherzerobelongstotheset N,consequently,theset N0 standsforthesetof naturalnumbersincludingzero.

Intoday’spositionaldecimalsystem,whichisa placevaluesystem,thedigit 0isaplaceholder.Forexample,203standsfor:twohundreds,notensandthree units.Although0 ∈ N0 ,itdoeshavespecialpropertiesthatdistinguishitfromother membersoftheset,andBrahmaguptaalsogaverulesshowingthisinteraction.

If x ∈ N0 ,thenthefollowingrulesapply:

addition: x + 0 = x

subtraction: x 0 = x

multiplication: x × 0 = 0 × x = 0

division:0/ x = 0

undefineddivision: x /0

Theexpression0/0iscalledan indeterminateform,asitispossibletoshowthat underdifferentconditions,especiallylimitingconditions,itcanequalanything.So forthemoment,wewillavoidusingituntilwecovercalculus.

2.5NegativeNumbers

Whennegativenumberswerefirstproposed,theywerenotacceptedwithopenarms, asitwasdifficulttovisualise 5ofsomething.Forinstance,ifthereare5donkeys inafield,andtheyareallstolen,thefieldisnowempty,andthereisnothingwe candointhearithmeticofdonkeystocreateafieldof 5donkeys.However,in appliedmathematics,numbershavetorepresentallsortsofquantitiessuchastemperature,displacement,angularrotation,speed,acceleration,etc.,andwealsoneed toincorporateideassuchasleftandright,upanddown,beforeandafter,forwards andbackwards,etc.Fortunately,negativenumbersareperfectforrepresentingallof theabovequantitiesandideas.

Considertheexpression4 x ,where x ∈ N0 .When x takesoncertainvalues, wehave

andunlessweintroducenegativenumbers,weareunabletoexpresstheresultof 4 5.Consequently,negativenumbersarevisualisedasshowninFig. 2.1,where the numberline showsnegativenumberstotheleftofthenaturalnumbers,which are positive,althoughthe + signisomittedforclarity. -6-5-4-3-2-10123456

Fig.2.1 Thenumberline

Movingfromlefttoright,thenumberlineprovidesanumericalcontinuumfrom largenegativenumbers,throughzero,towardslargepositivenumbers.Inanycalculationwecouldagreethatanglesabovethehorizonarepositive,andanglesbelow thehorizon,negative.Similarly,amovementforwardsispositive,andamovement backwardsisnegative.Sonowweareabletowrite

withoutworryingaboutcreatingimpossibleconditions.

2.5.1TheArithmeticofPositiveandNegativeNumbers

Onceagain,Brahmaguptacompiledalltherules,Tables 2.1 and 2.2,supportingthe addition,subtraction,multiplicationanddivisionofpositiveandnegativenumbers. Therealflyintheointment,beingnegativenumbers,whichcauseproblemsfor children,mathteachersandoccasionalaccidentsformathematicians.Perhaps,the oneruleweallrememberfromourschooldaysisthat‘twonegativesmakeapositive.’

Anotherproblemwithnegativenumbersariseswhenweemploythesquare-root function.Astheproductoftwopositiveornegativenumbersresultsinapositive result,thesquare-rootofapositivenumbergivesrisetoapositive and anegativeanswer.Forexample, √4 =±2. Thismeansthatthesquare-rootfunctiononly appliestopositivenumbers.Nevertheless,itdidnotstoptheinventionofthe imaginary unit i ,where i 2 =−1.However, i isnotanumber,butanoperator,andis describedlater.

Table2.1 Rulesforaddingandsubtractingpositiveandnegativenumbers

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.