Get Dynamics of the standard model 2nd edition john f. donoghue free all chapters

Page 1


Dynamics of the Standard Model 2nd Edition John F. Donoghue

Visit to download the full and correct content document: https://ebookmass.com/product/dynamics-of-the-standard-model-2nd-edition-john-f-d onoghue/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

DYNAMICS OF THE STANDARD MODEL John F. Donoghue

https://ebookmass.com/product/dynamics-of-the-standard-modeljohn-f-donoghue/

Business Law and the Legal Environment, Standard Edition Jeffrey F. Beatty

https://ebookmass.com/product/business-law-and-the-legalenvironment-standard-edition-jeffrey-f-beatty/

Haven Emma Donoghue

https://ebookmass.com/product/haven-emma-donoghue/

(eTextbook PDF) for Kinematics and Dynamics of Machines 2nd Edition

https://ebookmass.com/product/etextbook-pdf-for-kinematics-anddynamics-of-machines-2nd-edition/

Learned

By Heart 1st Edition Emma Donoghue

https://ebookmass.com/product/learned-by-heart-1st-edition-emmadonoghue/

Fundamentals of Pediatric Imaging 2nd Edition Lane F. Donnelly

https://ebookmass.com/product/fundamentals-of-pediatricimaging-2nd-edition-lane-f-donnelly/

Dynamics of Media Writing: Adapt and Connect 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/dynamics-of-media-writing-adaptand-connect-2nd-edition-ebook-pdf/

Synergy for Clinical Excellence: The AACN Model Patient Care 2nd

https://ebookmass.com/product/synergy-for-clinical-excellencethe-aacn-model-patient-care-2nd/

Theories of Molecular Reaction Dynamics: The Microscopic Foundation of Chemical Kinetics 2nd Edition Niels E. Henriksen

https://ebookmass.com/product/theories-of-molecular-reactiondynamics-the-microscopic-foundation-of-chemical-kinetics-2ndedition-niels-e-henriksen/

DYNAMICSOFTHESTANDARDMODEL

Describingthefundamentaltheoryofparticlephysicsanditsapplications,this bookprovidesadetailedaccountoftheStandardModel,focusingontechniques thatcanproduceinformationaboutrealobservedphenomena.

ThebookbeginswithapedagogicaccountoftheStandardModel,introducing essentialtechniquessuchaseffectivefieldtheoryandpath-integralmethods.Itthen focusesontheuseoftheStandardModelinthecalculationofphysicalproperties ofparticles.Rigorousmethodsareemphasized,butotherusefulmodelsarealso described.

Thissecondeditionhasbeenupdatedtoincluderecenttheoreticalandexperimentaladvances,suchasthediscoveryoftheHiggsboson.Anewchapteris devotedtothetheoreticalandexperimentalunderstandingofneutrinos,andmajor advancesin CP violationandelectroweakphysicshavebeengivenamoderntreatment.Thisbookisvaluabletograduatestudentsandresearchersinparticlephysics, nuclearphysicsandrelatedfields.

This title, first published in 2014, has been reissued as an Open Access publication on Cambridge Core.

JohnF.Donoghue isDistinguishedProfessorintheDepartmentofPhysics, UniversityofMassachusetts.Hisresearchspansparticlephysics,quantumfield theoryandgeneralrelativity.HeisaFellowoftheAmericanPhysicalSociety.

EugeneGolowich isEmeritusProfessorintheDepartmentofPhysics, UniversityofMassachusetts.Hisresearchhasfocusedonparticletheoryandphenomenology.HeisaFellowoftheAmericanPhysicalSocietyandisarecipientof theCollegeOutstandingTeacherawardfromtheUniversityofMassachusetts.

BarryR.Holstein isEmeritusProfessorintheDepartmentofPhysics, UniversityofMassachusetts.Hisresearchisintheoverlapareaofparticleand nucleartheory.AFellowoftheAmericanPhysicalSociety,heisalsotheeditor of AnnualReviewsofNuclearandParticleScience andisalongtimeconsulting editorofthe AmericanJournalofPhysics.

CAMBRIDGEMONOGRAPHSONPARTICLEPHYSICS,NUCLEAR PHYSICSANDCOSMOLOGY

GeneralEditors:T.Ericson,P.V.Landshoff

Availabletitlesinthisseries:

3.E.LeaderandE.Predazzi: AnIntroductiontoGaugeTheoriesandModernParticlePhysics, Volume1:ElectroweakInteractions,the‘NewParticles’andthePartonModel

4.E.LeaderandE.Predazzi: AnIntroductiontoGaugeTheoriesandModernParticlePhysics, Volume2:CP-Violation,QCDandHardProcesses

6.H.GrosseandA.Martin: ParticlePhysicsandtheSchrödingerEquation

7.B.Andersson: TheLundModel

8.R.K.Ellis,W.J.StirlingandB.R.Webber: QCDandColliderPhysics

10.A.V.ManoharandM.B.Wise: HeavyQuarkPhysics

11.R.Frühwirth,M.Regler,R.K.Bock,H.GroteandD.Notz: DataAnalysisTechniquesfor High-EnergyPhysics,Secondedition

12.D.Green: ThePhysicsofParticleDetectors

13.V.N.GribovandJ.Nyiri: QuantumElectrodynamics

14.K.Winter(ed.): NeutrinoPhysics,Secondedition

15.E.Leader: SpininParticlePhysics

16.J.D.Walecka: ElectronScatteringforNuclearandNucleonStructure

17.S.Narison: QCDasaTheoryofHadrons

18.J.F.LetessierandJ.Rafelski: HadronsandQuark-GluonPlasma

19.ADonnachie,H.G.Dosch,P.V.LandshoffandO.Nachtmann: PomeronPhysicsandQCD

20.A.Hofmann: ThePhysicsofSynchrotronRadiation

21.J.B.KogutandM.A.Stephanov: ThePhasesofQuantumChromodynamics

22.D.Green: High PT PhysicsatHadronColliders

23.K.Yagi,T.HatsudaandY.Miake: Quark-GluonPlasma

24.D.M.BrinkandR.A.Broglia: NuclearSuperfluidity

25.F.E.Close,A.DonnachieandG.Shaw: ElectromagneticInteractionsandHadronicStructure

26.C.GrupenandB.A.Schwartz: ParticleDetectors,Secondedition

27.V.Gribov: StrongInteractionsofHadronsatHighEnergies

28.I.I.BigiandA.I.Sanda: CPViolation,Secondedition

29.P.JaranowskiandA.Królak: AnalysisofGravitational-WaveData

30.B.L.Ioffe,V.S.FadinandL.N.Lipatov: QuantumChromodynamics:Perturbativeand NonperturbativeAspects

31.J.M.Cornwall,J.PapavassiliouandD.Binosi: ThePinchTechniqueanditsApplicationsto Non-AbelianGaugeTheories

32.J.Collins: FoundationsofPerturbativeQCD

33.Y.V.KovchegovandE.Levin: QuantumChromodynamicsatHighEnergy

34.J.RakandM.J.Tannenbaum: High-pT PhysicsintheHeavyIonEra

35.J.F.Donoghue,E.GolowichandB.R.Holstein: DynamicsoftheStandardModel, Secondedition

DYNAMICSOFTHESTANDARD MODEL

secondedition

JOHNF.DONOGHUE

UniversityofMassachusetts

EUGENEGOLOWICH

UniversityofMassachusetts

BARRYR.HOLSTEIN

UniversityofMassachusetts

Shaftesbury Road, Cambridge CB2 8EA, United Kingdom One Liberty Plaza, 20th Floor, New York, NY 10006, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia

314–321, 3rd Floor, Plot 3, Splendor Forum, Jasola District Centre, New Delhi – 110025, India 103 Penang Road, #05–06/07, Visioncrest Commercial, Singapore 238467

Cambridge University Press is part of Cambridge University Press & Assessment, a department of the University of Cambridge.

We share the University’s mission to contribute to society through the pursuit of education, learning and research at the highest international levels of excellence.

www.cambridge.org

Information on this title: www.cambridge.org/9781009291002

DOI: 10.1017/9781009291033

© John F. Donoghue, Eugene Golowich and Barry R. Holstein 2022

This work is in copyright. It is subject to statutory exceptions and to the provisions of relevant licensing agreements; with the exception of the Creative Commons version the link for which is provided below, no reproduction of any part of this work may take place without the written permission of Cambridge University Press.

An online version of this work is published at doi.org/10.1017/9781009291033 under a Creative Commons Open Access license CC-BY-NC-ND 4.0 which permits re-use, distribution and reproduction in any medium for non-commercial purposes providing appropriate credit to the original work is given. You may not distribute derivative works without permission. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/4.0

All versions of this work may contain content reproduced under license from third parties. Permission to reproduce this third-party content must be obtained from these third-parties directly.

When citing this work, please include a reference to the DOI 10.1017/9781009291033

First published 2014 Reissued as OA 2022

A catalogue record for this publication is available from the British Library.

ISBN 978-1-009-29100-2 Hardback

ISBN 978-1-009-29101-9 Paperback

Cambridge University Press & Assessment has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

ToLincolnWolfenstein

I–4Symmetriesandnearsymmetries11

On-shellrenormalizationoftheelectriccharge35

Electricchargeasarunningcouplingconstant37

II–2QuantumChromodynamics40

SU (3)gaugesymmetry40

QCD tooneloop45

Asymptoticfreedomandrenormalizationgroup51

II–3Electroweakinteractions57

Weakisospinandweakhyperchargeassignments57

SU (2)L × U(1)Y gauge-invariantlagrangian60

Spontaneoussymmetrybreaking62

Electroweakcurrents63

II–4Fermionmixing66

Diagonalizationofmassmatrices66

Quarkmixing68

Neutrinomixing70

Quark CP violationandrephasinginvariants72

IIISymmetriesandanomalies 76

III–1SymmetriesoftheStandardModel76

III–2Pathintegralsandsymmetries79

Thegeneratingfunctional80

Noether’stheoremandpathintegrals81

III–3The U (1)axialanomaly82

Diagrammaticanalysis84

Path-integralanalysis88

III–4Classicalscaleinvarianceandthetraceanomaly95

III–5Chiralanomaliesandvacuumstructure98

The θ vacuum99

The θ term101

Connectionwithchiralrotations102

III–6Baryon-andlepton-numberviolationintheStandardModel103

IVIntroductiontoeffectivefieldtheory 106

IV–1Effectivelagrangiansandthesigmamodel106

Representationsofthesigmamodel107

Representationindependence109

IV–2Integratingoutheavyfields111

Thedecouplingtheorem111

Integratingoutheavyfieldsattreelevel112

Matchingthesigmamodelattreelevel114

IV–3Loopsandrenormalization115

IV–4Generalfeaturesofeffectivefieldtheory119 Effectivelagrangiansandsymmetries120

Powercountingandloops121

Weinberg’spower-countingtheorem122 Thelimitsofaneffectivefieldtheory123

IV–5Symmetrybreaking124

IV–6Matrixelementsofcurrents126

Matrixelementsandtheeffectiveaction127

IV–7Effectivefieldtheoryofregionsofasinglefield129

IV–8Effectivelagrangiansin QED

IV–9EffectivelagrangiansasprobesofNewPhysics138 VChargedleptons

V–3The τ lepton163

Exclusiveleptonicdecays164

Exclusivesemileptonicdecays164 Inclusivesemileptonicdecays167 Someapplicationsof τ decays168

VI–1Neutrinomass173

EquivalenceofheavyMajoranamasstoadimension-five operator175

VI–2Leptonmixing176

VI–3Theoryofneutrinooscillations179 Oscillationsinvacuum179 Oscillationsinmatter:MSWeffect181 CP violation184

VI–4Neutrinophenomenology185

Solarandreactorneutrinos: θ12 and m2 21

Atmosphericandacceleratorneutrinos: θ23 and | m2 32 |

Short-baselinestudies: θ13

VI–5TestingfortheMajorananatureofneutrinos192

VI–6Leptogenesis195

VI–7Numberoflightneutrinospecies197

Studiesatthe Z0 peak197

Astrophysicaldata197

VIIEffectivefieldtheoryforlow-energy QCD

VII–1 QCD atlowenergies200

Vacuumexpectationvaluesandmasses201

Quarkmassratios202

Pionleptonicdecay,radiativecorrections,and Fπ

VII–2Chiralperturbationtheorytooneloop209

Theorder E 4 lagrangian210

Therenormalizationprogram211

VII–3Thenatureofchiralpredictions215

Thepionformfactor215

Rareprocesses219

Pion–pionscattering223

VII–4Thephysicsbehindthe QCD chirallagrangian225

VII–5TheWess–Zumino–Wittenanomalyaction228

VII–6Theaxialanomalyand π 0 → γγ 233

VIIIWeakinteractionsofkaons 237

VIII–1Leptonicandsemileptonicprocesses237

VIII–2Thenonleptonicweakinteraction240

VIII–3Matchingto QCD atshortdistance242

Short-distanceoperatorbasis242

Perturbativeanalysis243

Renormalization-groupanalysis245

VIII–4The I = 1/2rule249

Phenomenology249

Chirallagrangiananalysis252

Vacuumsaturation253

Nonleptoniclatticematrixelements254

VIII–5Rarekaondecays255

IXMassmixingand CP violation 260

IX–1 K 0 –K 0 mixing260 CP-conservingmixing263

IX–2Thephenomenologyofkaon CP violation266

IX–3Kaon CP violationintheStandardModel269

Analysisof | |

Analysisof | |

Chiralanalysisof ( / )EWP

IX–4Thestrong CP problem273

Theparameter θ 273

Connectionswiththeneutronelectricdipolemoment275

XThe N 1 c expansion

X–1Thenatureofthelarge Nc limit278

X–2Spectroscopyinthelarge Nc limit280

X–3Goldstonebosonsandtheaxialanomaly283

X–4The OZI rule285

X–5Chirallagrangians287

XIPhenomenologicalmodels 291

XI–1Quantumnumbersof QQ and Q3 states291

Hadronicflavor–spinstatevectors291 Quarkspatialwavefunctions295 Interpolatingfields297

XI–2Potentialmodel298 Basicingredients298 Mesons300 Baryons301

Colordependenceoftheinterquarkpotential302

XI–3Bagmodel303 Staticcavity304

Spherical-cavityapproximation304

Gluonsinabag307

Thequark–gluoninteraction308 XI–4Skyrmemodel308

Sine–Gordonsoliton309

Chiral SU (2)soliton310 TheSkyrmesoliton312 Quantizationandwavefunctions314

XI–5 QCD sumrules318

Correlators319

Operator-productexpansion321

Masterequation323 Examples324

XIIBaryonproperties 330

XII–1Matrix-elementcomputations330

Flavorandspinmatrixelements330

Overlapsofspatialwavefunctions332

Connectiontomomentumeigenstates333

CalculationsintheSkyrmemodel336

XII–2Electroweakmatrixelements339

Magneticmoments339

Semileptonicmatrixelements341

XII–3Symmetrypropertiesandmasses343

Effectivelagrangiansforbaryons343

Baryonmasssplittingsandquarkmasses344

Goldberger–Treimanrelation347

Thenucleonsigmaterm348

Strangenessinthenucleon349

Quarksandnucleonspinstructure351

XII–4Nuclearweakprocesses355

Measurementof Vud 355

Thepseudoscalaraxialformfactor357

XII–5Hyperonsemileptonicdecay359

XII–6Nonleptonicdecay360 Phenomenology360 Lowest-orderchiralanalysis362

XIIIHadronspectroscopy 366

XIII–1Thecharmoniumandbottomoniumsystems366 Transitionsinquarkonium372

XIII–2Lightmesonsandbaryons376

SU (6)classificationofthelighthadrons376

Reggetrajectories379

SU (6)breakingeffects381

XIII–3Theheavy-quarklimit385

Heavy-flavoredhadronsinthequarkmodel385

Spectroscopyinthe mQ →∞ limit387

XIII–4Nonconventionalhadronstates390

Thefirstresonance– σ (440)391 Gluonia394

Additionalnonconventionalstates396

XIVWeakinteractionsofheavyquarks

XIV–1Heavy-quarkmass399

Runningquarkmass399

Thepolemassofaquark401

XIV–2Inclusivedecays403

Thespectatormodel403

Theheavy-quarkexpansion405 Thetopquark408

XIV–3Exclusivedecaysintheheavy-quarklimit409

Inclusivevs.exclusivemodelsfor b → ceνe 410

HeavyQuarkEffectiveTheoryandexclusivedecays411

XIV–4 B 0 B 0 and D 0 D 0 mixing416 B0 –B0 mixing416

mixing418

XIV–5Theunitaritytriangle420

XIV–6 CP violationin B -mesondecays421

CP-oddsignalsinducedbymixing421

Decaysto CP eigenstates423

Decaystonon-CP eigenstates426

Semileptonicasymmetries427

CP-oddsignalsnotinducedbymixing428

XIV–7Raredecaysof B mesons430

XV–1Introduction434

XV–2MassandcouplingsoftheHiggsboson435 Higgsmassterm436 Thenaturalnessproblem436 Higgscouplingconstants437

XV–3ProductionanddecayoftheHiggsboson442 Decay442 Production445

ComparisonofStandardModelexpectationswithLHCdata447

XV–4Higgscontributionstoelectroweakcorrections448 Thecorrections ρ and r 449

Custodialsymmetry450

XV–5ThequantumHiggspotentialandvacuumstability452

XV–6TwoHiggsdoublets454

XVITheelectroweaksector 458

XVI–1Neutralweakphenomenaatlowenergy458

Neutral-currenteffectivelagrangians459

Deep-inelasticneutrinoscatteringfromisoscalartargets461

Atomicparityviolationincesium462

PolarizedMøllerscattering463

XVI–2Measurementsatthe Z0 massscale464

Decaysof Z 0 intofermion–antifermionpairs466

Asymmetriesatthe Z 0 peak467

Definitionsoftheweakmixingangle469

XVI–3Some W ± properties471

Decaysof W± intofermions471

Triple-gaugecouplings472

XVI–4Thequantumelectroweaklagrangian474

Gaugefixingandghostfieldsintheelectroweaksector475

AsubsetofelectroweakFeynmanrules476

On-shelldeterminationofelectroweakparameters478

XVI–5Self-energiesofthemassivegaugebosons479

Thechargedgaugebosons W± 480

Theneutralgaugebosons Z 0 , γ 482

XVI–6Examplesofelectroweakradiativecorrections483 The

The

The Z→b b vertexcorrection488

PrecisiontestsandNewPhysics489

AppendixAFunctionalintegration 493

A–1Quantum-mechanicalformalism493

Path-integralpropagator493

Externalsources496

Thegeneratingfunctional497

A–2Theharmonicoscillator499

A–3Field-theoreticformalism502

Pathintegralswithfields502

Generatingfunctionalwithfields503

A–4Quadraticforms506

Backgroundfieldmethodtooneloop507

A–5Fermionfieldtheory509

A–6Gaugetheories512

Gaugefixing513

Ghostfields516

AppendixBAdvancedfield-theoreticmethods 520

B–1Theheatkernel520

B–2Chiralrenormalizationandbackgroundfields524

B–3PCACandthesoft-piontheorem529

B–4Matchingfieldswithdifferentsymmetry-transformation properties532

AppendixCUsefulformulae 535

C–1Numerics535

C–2Notationsandidentities535

C–3Decaylifetimesandcrosssections538

C–4Fielddimension541

C–5Mathematicsin d dimensions541

TheStandardModelisthebasisofourunderstandingofthefundamentalinteractions.Atthepresenttime,itremainsinexcellentagreementwithexperiment.It isclearthatanyfurtherprogressinthefieldwillneedtobuildonasolidunderstandingoftheStandardModel.Sincethefirsteditionwaswrittenin1992there havebeenmajordiscoveriesinneutrinophysics,in CP violation,thediscoveries ofthetopquarkandtheHiggsboson,andadramaticincreaseinprecisioninboth electroweakphysicsandin QCD.Wefeelthatthepresentisagoodmomentto updateourbook,astheStandardModelseemslargelycomplete.

Theopportunitytoreviseourbookatthistimehasalsoenabledustosurveythe progresssincethefirsteditionwenttoprint.Besidestheexperimentaldiscoveries thathavetakenplaceduringthesetwodecades,wehavebeenimpressedbythe increaseintheoreticalsophistication.Manyofthetopicswhichwerenovelatthe timeofthefirsteditionhavenowbeenextensivelydeveloped.Perturbativetreatmentshaveprogressedtohigherordersandnewtechniqueshavebeendeveloped. Tocoverallofthesecompletelywouldrequiretheexpansionofmanychapters intobook-lengthtreatments.Indeed,inmanycases,entirenewbooksdedicatedto specializedtopicshavebeenpublished.1 Ourrevisionismeantasacoherentpedagogicintroductiontothesetopics,providingthereaderwiththebasicbackground topursuemoredetailedstudieswhenappropriate.

TherehasalsobeengreatprogressonthepossibleNewPhysicswhichcould emergebeyondtheStandardModel–darkmatteranddarkenergy,grandunification,supersymmetry,extradimensions,etc.Weareatamomentwherethisphysics couldemergeinthenextroundofexperimentsattheLargeHadronCollider(LHC) aswellasinprecisionmeasurementsattheintensityfrontier.Welookforwardwith greatanticipationtothenewdiscoveriesofthenextdecade.

1 Forexample,see[BaP99,Be00,BiS00,EISW03,FuS04,Gr04,IoFL10,La10,Ma04,MaW07,Co11]

Wethankourcolleaguesandstudentsforfeedbackaboutthefirsteditionofthis book.Alistoferrataforthesecondeditionwillbemaintainedatthehomepage ofJohnDonoghueattheUniversityofMassachusetts,Amherst.Weencourage readerswhofindanymistakesinthiseditiontosubmitthemtoProfessorDonoghue atdonoghue@physics.umass.edu.

Fromtheprefacetothefirstedition

TheStandardModellagrangian LSM embodiesourknowledgeofthestrongand electroweakinteractions.Itcontainsasfundamentaldegreesoffreedomthespin one-halfquarksandleptons,thespinonegaugebosons,andthespinzeroHiggs fields.Symmetryplaysthecentralroleindeterminingitsdynamicalstructure.The lagrangianexhibitsinvarianceunder SU(3) gaugetransformationsforthestrong interactionsandunder SU(2) × U(1) gaugetransformationsfortheelectroweak interactions.Despitethepresenceof(alltoo)manyinputparameters,itisamathematicalconstructionofconsiderablepredictivepower.

Therearebooksavailablewhichdescribeindetailtheconstructionof LSM and itsquantization,andwhichdealwithaspectsofsymmetrybreaking.Wefeltthe needforabookdescribingthenextsteps,how LSM isconnectedtotheobservable physicsoftherealworld.Thereareaconsiderablevarietyoftechniques,ofdifferingrigor,whichareusedbyparticlephysiciststoaccomplishthis.Wepresenthere thosewhichhavebecomeindispensabletools.Inaddition,weattempttoconvey theinsightsand‘conventionalwisdom’whichhavebeendevelopedthroughoutthe field.Thisbookcanonlybeanintroductiontotherichescontainedinthesubject, hopefullyprovidingafoundationandamotivationforfurtherexplorationbyits readers.

Inwritingthebook,wehavebecomealltoopainfullyawarethateachtopic, indeedeachspecificreaction,hasanextensiveliteratureandphenomenology,and thatthereisalimitationtothedepththatcanbepresentedcompactly.Weemphasizeapplications,notfundamentals,ofquantumfieldtheory.Proofsofformaltopicslikerenormalizabilityorthequantizationofgaugefieldsarelefttootherbooks, asisthetopicofpartonphenomenology.Inaddition,thestudybycomputerof latticefieldtheoryisanextensiveandrapidlychangingdiscipline,whichwedo notattempttocover.Althoughitwouldbetemptingtodiscusssomeofthemany stimulatingideas,amongthemsupersymmetry,grandunification,andstringtheory,whichattempttodescribephysicsbeyondtheStandardModel,limitationsof spacepreventusfromdoingso.

Althoughthisbookbeginsgently,wedoassumethatthereaderalreadyhassome familiaritywithquantumfieldtheory.Asanaidtothosewholackfamiliaritywith path-integralmethods,weincludeapresentation,inAppendixA,whichtreatsthis

subjectinanintroductorymanner.Inaddition,weassumeaknowledgeofthebasic phenomenologyofparticlephysics.

Wehaveconstructedthematerialtobeofusetoawidespectrumofreaders whoareinvolvedwiththephysicsofelementaryparticles.Certainlyitcontains materialofinteresttoboththeoristandexperimentalistalike.Giventhetrendto incorporatetheStandardModelinthestudyofnuclei,weexpectthebooktobe ofusetothenuclearphysicscommunityaswell.Eventhestudentbeingtrainedin themathematicsofstringtheorywouldbewelladvisedtolearntherolethatsigma modelsplayinparticletheory.

Thisisagoodplacetostresssomeconventionsemployedinthisbook.Chaptersareidentifiedwithromannumerals.Incross-referencingequations,weinclude thechapternumberifthereferencedequationisinachapterdifferentfromthe pointofcitation.TheMinkowskimetricis gμν = diag {1, 1, 1, 1}.Throughout,weusethenaturalunits = c = 1,andchoose e> 0sothattheelectronhaselectriccharge e .WeemployrationalizedHeaviside–Lorentzunits,and thefine-structureconstantisrelatedtothechargevia α = e 2 /4π .Thecouplingconstantsforthe SU(3)c × SU(2)L × U(1) gaugestructureoftheStandardModel aredenotedrespectivelyas g3 ,g2 ,g1 ,andweemploycoupling-constantphase conventionsanalogoustoelectromagnetismfortheotherabelianandnonabelian covariantderivativesoftheStandardModel.Thechiralprojectionoperatorforlefthandedmasslessspinone-halfparticlesis (1 + γ5 )/2,andinanalyzingsystemsin d dimensions,weemploytheparameter ≡ (4 d)/2.Whatismeantbythe‘Fermi constant’isdiscussedinSect.V–2.

Amherst,MA,2013

I

InputstotheStandardModel

ThisbookisabouttheStandardModelofelementaryparticlephysics.Ifweset thebeginningofthemoderneraofparticlephysicsin1947,theyearthepionwas discovered,thentheensuingyearsofresearchhaverevealedtheexistenceofaconsistent,self-containedlayerofreality.Theenergyrangewhichdefinesthislayerof realityextendsuptoabout1TeVor,intermsoflength,downtodistancesoforder 10 17 cm.TheStandardModelisafield-theoreticdescriptionofstrongandelectroweakinteractionsattheseenergies.Itrequirestheinputofasmanyas28independentparameters.1 TheseparametersarenotexplainedbytheStandardModel; theirpresenceimpliestheneedforanunderstandingofNatureatanevendeeper level.Nonetheless,processesdescribedbytheStandardModelpossessaremarkableinsulationfromsignalsofsuchNewPhysics.Althoughthestronginteractions remainacalculationalchallenge,theStandardModel(generalizedfromitsoriginal formtoincludeneutrinomass)wouldappeartohavesufficientcontenttodescribe allexistingdata.2 Thusfar,itisatheoreticalstructurewhichhasworkedsplendidly.

I–1Quarksandleptons

TheStandardModelisan SU(3) × SU(2) × U(1) gaugetheorywhichisspontaneouslybrokenbytheHiggspotential.TableI–1displaysmassdeterminations [RPP12]ofthe Z 0 and W ± gaugebosons,theHiggsboson H 0 ,andtheexisting masslimitonthephoton γ

IntheStandardModel,thefundamentalfermionicconstitutentsofmatterarethe quarksandtheleptons.Quarks,butnotleptons,engageinthestronginteractions asaconsequenceoftheircolorcharge.Eachquarkandleptonhasspinone-half.

1 Therearesixleptonmasses,sixquarkmasses,threegaugecouplingconstants,threequark-mixingangles andonecomplexphase,threeneutrino-mixinganglesandasmanyasthreecomplexphases,aHiggsmass andquarticcouplingconstant,andthe QCD vacuumangle.

2 Admittedly,atthistimethesourcesof darkmatter andof darkenergy areunknown.

TableI–1. Bosonmasses.

ParticleMass(GeV/c 2 )

γ< 1 × 10 27

W ±

Z 0

H 0

80 385 ± 0 015

91.1876 ± 0.0021

126.0 ± 0.4

Collectively,theydisplayconventionalFermi–Diracstatistics.Noattemptismade intheStandardModeleithertoexplainthevarietyandnumberofquarksandleptonsortocomputeanyoftheirproperties.Thatis,theseparticlesaretakenatthis levelastrulyelementary.Thisisnotunreasonable.Thereisnoexperimentalevidenceforquarkorleptoncompositeness,suchasexcitedstatesorformfactors associatedwithintrinsicstructure.

Quarks

Therearesixquarks,whichfallintotwoclassesaccordingtotheirelectricalcharge Q.The u,c,t quarkshave Q = 2e/3andthe d,s,b quarkshave Q =− e/3, where e istheelectricchargeoftheproton.The u,c,t and d,s,b quarks areeigenstatesofthehamiltonian(‘masseigenstates’).However,becausetheyare believedtobepermanentlyconfinedentities,somethoughtmustgointoproperly definingquarkmass.Indeed,severaldistinctdefinitionsarecommonlyused.We deferadiscussionofthisissueandsimplynotethatthevaluesinTableI–2provide

FlavorMassa (GeV/c 2 )Charge I3

u(2.55+0 75 1 05 ) × 10 3 2e/31/20000

d(5.04+0 96 1 54 ) × 10 3 e/3 1/20000

s 0.105+0.025 0.035 e/30 1000

c 1.27+0.07 0.11 2e/300100

b 4.20+0 17 0 07 e/3000 10

t 173.4 ± 1.62e/300001

a The t -quarkmassisinferredfromtopquarkevents.Allothersaredeterminedin MS renormalization(cf.Sect.II–1)atscales mu,d,s (2GeV/c 2 ), mc (mc ) and mb (mb ) respectively.

TableI–2. Thequarks.

TableI–3. Theleptons.

FlavorMass(GeV/c 2 )Charge Le Lμ Lτ

νe < 0.2 × 10 8 0100

e 5 10998928(11) × 10 4 e100

νμ < 1.9 × 10 4 0010

μ 0 1056583715(35) e010

ντ < 0 01820001

τ 1 77682(16) e001

anoverviewofthequarkmassspectrum.Ausefulbenchmarkforquarkmassesis theenergyscale QCD ( severalhundredMeV)associatedwiththeconfinement phenomenon.Relativeto QCD ,the u,d,s quarksarelight,the b,t quarksare heavy,andthe c quarkhasintermediatemass.Thedynamicalbehavioroflight quarksisdescribedbythechiralsymmetryofmasslessparticles(cf.Chap.VI) whereasheavyquarksareconstrainedbytheso-calledHeavyQuarkEffective Theory(cf.Sect.XIII–3).Eachquarkissaidtoconstituteaseparate flavor,i.e. sixquarkflavorsexistinNature.The s,c,b,t quarkscarryrespectivelythe quantumnumbersofstrangeness(S ),charm(C ),bottomness(B ),andtopness(T ).

The u,d quarksobeyan SU (2)symmetry(isospin)andaredistinguishedbythe three-componentofisospin(I3 ).Theflavorquantumnumbersofeachquarkare displayedinTableI–2.

Leptons

Therearesixleptonswhichfallintotwocategoriesaccordingtotheirelectrical charge.Thechargedleptons e,μ,τ have Q =− e andtheneutrinos νe ,νμ ,ντ have Q = 0.Leptonsarealsoclassifiedintermsofthreeleptontypes:electron (νe ,e),muon (νμ ,μ),andtau (ντ ,τ).Thisfollowsfromthestructureofthecharged weakinteractions(cf.Sect.II–3)inwhichthesecharged-lepton/neutrinopairsare coupledto W ± gaugebosons.Associatedwitheachleptontypeisaleptonnumber Le ,Lμ ,Lτ .TableI–3summarizesleptonproperties.

Atthistime,thereisonlyincompleteknowledgeofneutrinomasses.Information onthemassparameters mνe ,mνμ ,mντ isobtainedfromtheirpresenceinvarious weaktransitionamplitudes.Forexample,thesinglebetadecayexperiment 3 H → 3 He + e + ν e issensitivetothemass mνe .Inlikemanner,oneconstrainsthemasses mνμ and mντ inprocessessuchas π + → μ+ + νμ and τ → 2π + π + + ντ respectively.ExistingboundsonthesemassesaredisplayedinTableI–3.

Itisknownexperimentallythatuponcreationtheneutrinos {να }≡ (νe .νμ ,ντ ) willnotpropagateindefinitelybutwillinsteadmixwitheachother.Thismeansthat thebasisofstates {να } cannotbeeigenstatesofthehamiltonian.Diagonalization oftheleptonichamiltonianiscarriedoutinSect.VI–2andyieldsthebasis {νi }≡ {ν1 ,ν2 ,ν3 } ofmasseigenstates.Informationontheneutrinomasseigenvalues m1 ,m2 ,m3 isobtainedfromneutrinooscillationexperimentsandcosmological studies.Oscillationexperiments(cf.Sects.VI–3,VI–4)aresensitivetosquaredmassdifferences.3 Throughoutthebook,weadheretothefollowingrelations,

Fromthecompilationin[RPP12],thesquared-massdifference | m2 32 | deduced fromthestudyofatmosphericandacceleratorneutrinosgives

whereasdatafromsolarandreactorneutrinosimplyasquared-massdifference roughly31timessmaller,

Thustheneutrinos ν1 and ν2 formaquasi-doublet.Onespeaksofa normal or inverted neutrinomassspectrum,respectively,forthecases4

Sincethelargestneutrinomass mlgst ,beit m2 or m3 ,cannotbelighterthanthe masssplittingofEq.(1.2),wehavethebound mlgst > 0.049eV.Finally,acombinationofcosmologicalinputscanbeemployedtoboundtheneutrinomasssum 3 i = 1 mi ,theprecisebounddependingonthechoseninputdataset.Inoneexample[deP etal.12],photometricredshiftsmeasuredfromalargegalaxysample,cosmicmicrowavebackground(CMB)dataandarecentdeterminationoftheHubble parameterareusedtoobtainthebound

1 + m2 + m3 < 0.26eV, (1.3a) whereasdatafromtheCMBcombinedwiththatfrombaryonacousticoscillations yields[Ad etal. (Planckcollab.)13]

AfurtherdiscussionoftheneutrinomassspectrumappearsinSect.VI–4.

3 Onlytwoofthemassdifferencescanbeindependent,so m2 12 + m2 23 + m2 31 = 0.

4 Thereisalsothepossibilityofa quasi-degenerate neutrinomassspectrum(m1 m2 m3 ),whichcanbe thoughtofasalimitingcaseofboththenormalandinvertedcasesinwhichtheindividualmassesare sufficientlylargetodwarfthe | m2 32 | splitting.

Quarkandleptonnumbers

Individualquarkandleptonnumbersareknowntobenotconserved,butfordifferentreasonsandwithdifferentlevelsofnonconservation.IndividualquarknumberisnotconservedintheStandardModelduetothechargedweakinteractions (cf.Sect.II–3).Indeed,quarktransitionsofthetype qi → qj + W ± inducethe decaysofmostmesonandbaryonstatesandhaveledtothephenomenologyof FlavorPhysics.Individualleptonnumberisnotconserved,asevidencedbythe observed να ↔ νβ (α,β = e,μ,τ) oscillations.Thissourceofthisphenomenonis associatedwithnonzeroneutrinomasses.Thereiscurrentlynoadditionalevidence fortheviolationofindividualleptonnumberdespiteincreasinglysensitivelimits suchasthebranchingfractionBμ →e e e + < 1.0 × 10 12 .

Existingdataareconsistentwithconservationoftotalquarkandtotallepton number,e.g.theprotonlifetimebound τp > 2 1 × 1029 yr[RPP12]andthenuclear half-lifelimit t 0νββ 1/2 [136 Xe] > 1.6 × 1025 yr[Ac etal.(EXO-200collab.)11].These conservationlawsareempirical.Theyarenotrequiredasaconsequenceofany knowndynamicalprincipleandinfactareexpectedtobeviolatedbycertainnonperturbativeeffectswithintheStandardModel(associatedwithquantumtunneling betweentopologicallyinequivalentvacua–seeSect.III–6).

I–2Chiralfermions

Consideraworldinwhichquarksandleptonshavenomassatall.Atfirst,this wouldappeartobeasurprisingsupposition.Toanexperimentalist,massisthe mostpalpablepropertyaparticlehas.Itiswhy,say,amuonbehavesdifferently fromanelectroninthelaboratory.Nonetheless,themasslesslimitiswherethe StandardModelbegins.

Themasslesslimit

Let ψ(x) beasolutiontotheDiracequationforamasslessparticle, i/∂ψ = 0 (2.1)

Wecanmultiplythisequationfromtheleftby γ5 andusetheanticommutativityof γ5 with γ μ toobtainanothersolution, i/∂γ5 ψ = 0. (2.2)

Wesuperposethesesolutionstoformthecombinations ψL = 1 2 (1 + γ5 )ψ,ψR = 1 2 (1 γ5 )ψ, (2.3)

InputstotheStandardModel

where‘1’representstheunit4 × 4matrix.Thequantities ψL and ψR aresolutions ofdefinite chirality (i.e.handedness).Foramasslessparticlemovingwithprecise momentum,thesesolutionscorrespondrespectivelytothespinbeinganti-aligned (left-handed)andaligned(right-handed)relativetothemomentum.Inotherwords, chiralitycoincideswithhelicityforzero-massparticles.Thematrices L R = (1 ± γ5 )/2arechiralityprojectionoperators.Theyobeytheusualprojectionoperator conditionsunderaddition,

andundermultiplication,

Inthemasslesslimit,aparticle’schiralityisaLorentz-invariantconcept.For example,aparticlewhichisleft-handedtooneobserverwillappearleft-handedto allobservers.Thuschiralityisanaturallabeltouseformasslessfermions,anda collectionofsuchparticlesmaybecharacterizedaccordingtotheseparatenumbers ofleft-handedandright-handedparticles.

Itissimpletoincorporatechiralityintoalagrangianformalism.Thelagrangian foramasslessnoninteractingfermionis

orintermsofchiralfields,

Thelagrangians LL,R areinvariantundertheglobalchiralphasetransformations

wherethephases αL,R areconstantandreal-valuedbutotherwisearbitrary.AnticipatingthediscussionofNoether’stheoreminSect.I–4,wecanassociateconserved particle-numbercurrentdensities J μ L,R ,

withthisinvariance.Fromthesechiralcurrentdensities,wecanconstructthevector current V μ (x),

andtheaxial-vectorcurrent Aμ (x),

= J μ L J μ R . (2.12)

Chiralcharges QL,R aredefinedasspatialintegralsofthechiralchargedensities, QL,R (t) = d 3 xJ 0 L,R (x), (2.13)

andrepresentthenumberoperatorsforthechiralfields ψL,R .Theyaretimeindependentifthechiralcurrentsareconserved.Onecansimilarlydefinethevector charge Q andtheaxial-vectorcharge Q5 ,

= d 3 xV 0 (x),Q5 (t) = d 3 xA0 (x). (2.14)

Thevectorcharge Q isthetotalnumberoperator,

= QR + QL , (2.15) whereastheaxial-vectorchargeisthenumberoperatorforthedifference

5 = QL QR (2.16)

Thevectorcharge Q andaxial-vectorcharge Q5 simplycountthesumanddifference,respectively,oftheleft-handedandright-handedparticles.

Parity,timereversal,andchargeconjugation

ThefieldtransformationsofEq.(2.9)involveparameters αL,R whichcantakeon acontinuumofvalues.Inadditiontosuchcontinuousfieldmappings,oneoften encountersavarietyof discrete transformationsaswell.Letusconsidertheoperationsofparity

andoftimereversal

asdefinedbytheireffectsonspacetimecoordinates.Theeffectofdiscretetransformationsonafermionfield ψ(x) willbeimplementedbyaunitaryoperator P forparityandanantiunitaryoperator T fortimereversal.Intherepresentationof Diracmatricesusedinthisbook,wehave

Anadditionaloperationtypicallyconsideredinconjunctionwithparityandtime reversalisthatofchargeconjugation,themappingofmatterintoantimatter,

TableI–4. ResponseofDiracbilinearsto discretemappings.

CPT

S(x)S(xP )S(xT ) P(x) P(xP ) P(xT ) J μ (x)Jμ (xP )Jμ (xT ) J μ 5 (x) J5μ (xP )J5μ (xT ) T μν (x)Tμν (xP ) Tμν (xT )

where ψ T β ≡ ψ † α γ 0 αβ (α,β = 1,..., 4).Thespacetimecoordinatesoffield ψ(x) are unaffectedbychargeconjugation.

Inthestudyofdiscretetransformations,theresponseofthenormal-ordered Diracbilinears

S(x) =: ψ(x)ψ(x) : P(x) =: ψ(x)γ5 ψ(x) : J μ (x) =: ψ(x)γ μ ψ(x) : J μ 5 (x) =: ψ(x)γ μ γ5 ψ(x) : T μν (x) =: ψ(x)σ μν ψ(x) : (2.21)

isofspecialimportancetophysicalapplications.Theirtransformationproperties appearinTableI–4.Closeattentionshouldbepaidtheretothelocationofthe indicesintheserelations.Anotherexampleofafield’sresponsetothesediscrete transformationsisthatofthephoton Aμ (x),

CAμ (x)C 1 c =−Aμ (x),PAμ (x)P 1 = Aμ (xP ),

TAμ (x)T 1 c

BeginningwiththediscussionofNoether’stheoreminSect.1–4,weshallexplore thetopicofinvariancethroughoutmuchofthisbook.Itsufficestonoteherethat theStandardModel,beingatheorywhosedynamicalcontentisexpressedinterms ofhermitian,Lorentz-invariantlagrangiansoflocalquantumfields,isguaranteed tobeinvariantunderthecombinedoperation CPT .Interestingly,however,these discretetransformationsareindividuallysymmetryoperationsonlyofthestrong andelectromagneticinteractions,butnotofthefullelectroweaksector.Wesee alreadythepossibilityforsuchbehaviorintheoccurrenceofchiralfermions ψL,R , sinceparitymapsthefields ψL,R intoeachother,

Thusanyeffect,liketheweakinteraction,whichtreatsleft-handedandrighthandedfermionsdifferently,willleadinevitablytoparity-violatingphenomena.

I–3Fermionmass

Althoughthediscussionofchiralfermionsiscastinthelimitofzeromass,fermions inNaturedoinfacthavenonzeromassandwemustaccountforthis.Inalagrangian,amasstermwillappearasahermitian,Lorentz-invariantbilinearinthefields. Forfermionfields,theseconditionsallowrealizationsreferredtoas Dirac massand Majorana mass.5

Diracmass

TheDiracmasstermforfermionfields ψL,R involvesthebilinearcouplingoffields withoppositechirality

where ψ ≡ ψL + ψR and mD istheDiracmass.TheDiracmasstermisinvariantunderthephasetransformation ψ(x) → exp( iα)ψ(x) andthusdoesnot upsetconservationofthevectorcurrent V μ = ψγ μ ψ andthecorrespondingnumberfermionoperator Q ofEq.(2.15).AllfieldsintheStandardModel,savepossiblyfortheneutrinos,haveDiracmassesobtainedfromtheirinteractionwiththe Higgsfield(cf.Sects.II–3,II–4).Althoughright-handedneutrinoshavenocouplingstotheStandardModelgaugebosons,thereisnoprincipleprohibitingtheir interactionwiththeHiggsfieldandthusgeneratingneutrinoDiracmassesinthe samemannerastheotherparticles.

Majoranamass

AMajoranamasstermisonewhichviolatesfermionnumberbycouplingtwo fermions(ortwoantifermions).IntheMajoranaconstruction,useismadeofthe charge-conjugate fields,

where C isthecharge-conjugationoperator,obeying

IntheDiracrepresentationofgammamatrices(cf.App.C),onehas C = iγ 2 γ 0 . Someusefulidentitiesinvolving ψ c include 5 Wesuppressspacetimedependenceofthefieldsinthissection.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.