Where can buy Practical rf system design (wiley – ieee) – ebook pdf version ebook with cheap price

Page 1


Practical RF System Design (Wiley –IEEE) – Ebook PDF Version

Visit to download the full and correct content document: https://ebookmass.com/product/practical-rf-system-design-wiley-ieee-ebook-pdf-versi on/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Introduction to 80×86 Assembly Language and Computer Architecture – Ebook PDF Version

https://ebookmass.com/product/introduction-to-8086-assemblylanguage-and-computer-architecture-ebook-pdf-version/

80+ Python Coding Challenges for Beginners: Python Exercises to Make You a Better Programmer. No Prior Experience Needed: 80+ Python Challenges to Launch ... Journey. Katie Millie

https://ebookmass.com/product/80-python-coding-challenges-forbeginners-python-exercises-to-make-you-a-better-programmer-noprior-experience-needed-80-python-challenges-to-launch-journeykatie-millie/

Operating System Design: The Xinu Approach, Second Edition u2013 Ebook PDF Version 2nd

https://ebookmass.com/product/operating-system-design-the-xinuapproach-second-edition-ebook-pdf-version-2nd/

Facilities Design – Ebook PDF Version

https://ebookmass.com/product/facilities-design-ebook-pdfversion/

Simplified Irrigation Design – Ebook PDF Version

https://ebookmass.com/product/simplified-irrigation-design-ebookpdf-version/

Graphic Design Solutions – Ebook PDF Version

https://ebookmass.com/product/graphic-design-solutions-ebook-pdfversion/

Streamlined ID: A Practical Guide to Instructional Design- 1st Edition -2013, Ebook PDF Version

https://ebookmass.com/product/streamlined-id-a-practical-guideto-instructional-design-1st-edition-2013-ebook-pdf-version/

Petit manuel de survie en médecine intensiveréanimation : 80 procédures en poche Nicolas Lerolle

https://ebookmass.com/product/petit-manuel-de-survie-en-medecineintensive-reanimation-80-procedures-en-poche-nicolas-lerolle/

Biological Reaction Engineering: Dynamic Modeling Fundamentals with 80 Interactive Simulation Examples 3rd Edition Elmar Heinzle

https://ebookmass.com/product/biological-reaction-engineeringdynamic-modeling-fundamentals-with-80-interactive-simulationexamples-3rd-edition-elmar-heinzle/

PRACTICALRFSYSTEM DESIGN

CONTENTS

5NOISEANDNONLINEARITY123

5.1IntermodulationofNoise/123

5.1.1Preview/124

5.1.2FlatBandpassNoise/125

5.1.3Second-OrderProducts/125

5.1.4Third-OrderProducts/130

5.2CompositeDistortion/133

5.2.1Second-OrderIMs(CSO)/134

5.2.2Third-OrderIMs(CTB)/136

5.2.3CSOandCTBExample/136

5.3DynamicRange/137

5.3.1Spurious-FreeDynamicRange/137

5.3.2OtherRangeLimitations/139

5.4OptimizingCascades/139

5.4.1CombiningParametersonOneSpreadsheet/139

5.4.2OptimizationExample/143

5.5SpreadsheetEnhancements/146

5.5.1LookupTables/146

5.5.2UsingControls/147

5.6Summary/147 Endnotes/147

6ARCHITECTURESTHATIMPROVELINEARITY149

6.1ParallelCombining/149

6.1.190◦ Hybrid/150

6.1.2180◦ Hybrid/152

6.1.3SimplePush–Pull/154

6.1.4Gain/155

6.1.5NoiseFigure/156

6.1.6CombinerTrees/156

6.1.7CascadeAnalysisofaCombinerTree/157

6.2Feedback/158

6.3Feedforward/159

6.3.1IntermodsandHarmonics/160

6.3.2Bandwidth/161

6.3.3NoiseFigure/161

6.4NonidealPerformance/162

6.5Summary/163 Endnotes/163

7FREQUENCYCONVERSION165

7.1Basics/165

7.1.1TheMixer/165

7.1.2ConversioninReceivers/167

7.1.3Spurs/168

7.1.4ConversioninSynthesizersandExciters/170

7.1.5Calculators/170

7.1.6DesignMethods/170

7.1.7Example/171

7.2SpuriousLevels/171

7.2.1DependenceonSignalStrength/171

7.2.2EstimatingLevels/173

7.2.3StrategyforUsingLevels/175

7.3Two-SignalIMs/176

7.4PowerRangeforPredictableLevels/177

7.5SpurPlot,LOReference/180

7.5.1SpreadsheetPlotDescription/180

7.5.2ExampleofaBandConversion/182

7.5.3OtherInformationonthePlot/184

7.6SpurPlot,IFReference/186

7.7ShapeFactors/196

7.7.1Definitions/197

7.7.2RFFilterRequirements/197

7.7.3IFFilterRequirements/200

7.8DoubleConversion/202

7.9OperatingRegions/203

7.9.1AdvantageousRegions/203

7.9.2LimitationonDownconversion, Two-by-Twos/206

7.9.3HigherValuesof m /209

7.10Examples/211

7.11NoteonSpurPlotsUsedinThisChapter/216

7.12Summary/216

Endnotes/217

8CONTAMINATINGSIGNALSINSEVERENONLINEARITIES219

8.1Decomposition/220

8.2HardLimiting/223

8.3SoftLimiting/223

8.4Mixers,ThroughtheLOPort/225

8.4.1AMSuppression/225

8.4.2FMTransfer/226

8.4.3Single-SidebandTransfer/226

8.4.4MixingBetweenLOComponents/228

8.4.5TroublesomeFrequencyRangesintheLO/228

8.4.6SummaryofRanges/235

8.4.7EffectonNoiseFigure/236

8.5FrequencyDividers/240

8.5.1SidebandReduction/240

8.5.2Sampling/241

8.5.3InternalNoise/242

8.6FrequencyMultipliers/242

8.7Summary/243 Endnotes/244

9PHASENOISE245

9.1DescribingPhaseNoise/245

9.2AdverseEffectsofPhaseNoise/247

9.2.1DataErrors/247

9.2.2Jitter/248

9.2.3ReceiverDesensitization/249

9.3SourcesofPhaseNoise/250

9.3.1OscillatorPhaseNoiseSpectrums/250

9.3.2IntegrationLimits/252

9.3.3RelationshipBetweenOscillator Sϕ and Lϕ /252

9.4ProcessingPhaseNoiseinaCascade/252

9.4.1FilteringbyPhase-LockedLoops/253

9.4.2FilteringbyOrdinaryFilters/254

9.4.3ImplicationofNoiseFigure/255

9.4.4TransferfromLocalOscillators/255

9.4.5TransferfromDataClocks/256

9.4.6IntegrationofPhaseNoise/258

9.5DeterminingtheEffectonData/258

9.5.1ErrorProbability/258

9.5.2ComputingPhaseVariance,Limitsof Integration/259

9.5.3EffectoftheCarrier-RecoveryLooponPhase Noise/260

9.5.4EffectoftheLooponAdditive Noise/262

9.5.5ContributionofPhaseNoisetoData Errors/263

9.5.6EffectsoftheLow-FrequencyPhase Noise/268

9.6OtherMeasuresofPhaseNoise/269

9.6.1Jitter/269

9.6.2AllanVariance/271

9.7Summary/271

Endnote/272

APPENDIXAOPAMPNOISEFACTORCALCULATIONS273

A.1InvarianceWhenInputResistorIsRedistributed/273

A.2EffectofChangeinSourceResistances/274

A.3Model/276

APPENDIXBREPRESENTATIONSOFFREQUENCYBANDS, IFNORMALIZATION279

B.1Passbands/279

B.2AcceptanceBands/279

B.3FilterAsymmetry/286

APPENDIXCCONVERSIONARITHMETIC289

C.1ReceiverCalculator/289

C.2SynthesisCalculator/291

APPENDIXEEXAMPLEOFFREQUENCYCONVERSION293

APPENDIXFSOMERELEVANTFORMULAS303

F.1Decibels/303

F.2ReflectionCoefficientandSWR/304

F.3CombiningSWRs/306

F.3.1SummaryofResults/306

F.3.2Development/307

F.3.3MaximumSWR/308

F.3.4MinimumSWR/309

F.3.5RelaxingRestrictions/309

F.4ImpedanceTransformationsinCables/310

F.5SmithChart/310

APPENDIXGTYPESOFPOWERGAIN313

G.1AvailableGain/313

G.2MaximumAvailableGain/313

G.3TransducerGain/314

G.4InsertionGain/315

G.5ActualGain/315

APPENDIXHFORMULASRELATINGTOIMsAND HARMONICS317

H.1SecondHarmonics/317

H.2Second-OrderIMs/318

H.3ThirdHarmonics/318

H.4Third-OrderIMs/319

H.5DefinitionsofTerms/320

APPENDIXICHANGINGTHESTANDARDIMPEDANCE321

I.1GeneralCase/321

I.2UnilateralModule/323

APPENDIXLPOWERDELIVEREDTOTHELOAD325

APPENDIXMMATRIXMULTIPLICATION327

APPENDIXNNOISEFACTORS—STANDARDAND THEORETICAL329

N.1TheoreticalNoiseFactor/329

N.2StandardNoiseFactor/331

N.3StandardModulesandStandardNoiseFactor/332

N.4ModuleNoiseFactorinaStandardCascade/333

N.5HowCanThisBe?/334

N.6NoiseFactorofanInterconnect/334

N.6.1NoiseFactorwithMismatch/335

N.6.2InMoreUsableTerms/336

N.6.3Verification/338

N.6.4ComparisonwithTheoreticalValue/340

N.7EffectofSourceImpedance/341

N.8RatioofPowerGains/342

Endnote/343

APPENDIXPIMPRODUCTSINMIXERS345

APPENDIXSCOMPOSITE

APPENDIXTTHIRD-ORDERTERMSATINPUTFREQUENCY353

APPENDIXVSENSITIVITIESANDVARIANCEOFNOISE

APPENDIXZNONSTANDARDMODULES363

Z.1GainofCascadeofModulesRelativetoTestedGain/363

Z.2FindingMaximumAvailableGainofaModule/366

Z.3Interconnects/367

Z.4Equivalent S Parameters/367

Z.5 S ParametersforCascadeofNonstandardModules/368 Endnote/369

REFERENCES371

Endnote/377

PREFACE

ThisbookisaboutRFsystemanalysisanddesignatthelevelthatrequiresan understandingoftheinteractionbetweenthemodulesofasystemsotheultimate performancecanbepredicted.Itdescribesconceptsthatareadvanced,thatis, beyondthosethataremorecommonlytaught,becausethesearenecessarytothe understandingofeffectsencounteredinpractice.Itisaboutansweringquestions suchas:

• Howwillthegainofacascade(agroupofmodulesinseries)beaffected bythestanding-waveratio(SWR)specificationsofitsmodules?

• Howwillnoiseonalocaloscillatoraffectreceivernoisefigureanddesensitization?

• Howdoestheeffectivenoisefigureofamixerdependonthefilteringthat precedesit?

• Howcanwedeterminethelinearityofacascadefromspecificationson itsmodules?

• Howdoweexpectintermodulationproducts(IMs)tochangewithsignal amplitudeandwhydotheysometimeschangedifferently?

• Howcanmodulesbecombinedtoreducecertainintermodulationproducts ortoturnbadimpedancematchesintogoodmatches?

• Howcanthespuriousresponsesinaconversionschemebevisualizedand howcanthemagnitudesofthespursbedetermined?Howcanthispicture beusedtoascertainfilterrequirements?

• Howdoesphasenoiseaffectsystemperformance;whatareitssourcesand howcantheeffectsbepredicted?

IwillexplainmethodslearnedovermanyyearsofRFmoduleandsystemdesign, withemphasisonthosethatdonotseemtobewellunderstood.Someareavailableintheliterature,somewerepublishedinreviewedjournals,somehave developedwithlittleexposuretopeerreview,butallhavebeenfoundtobe importantinsomeaspectofRFsystemengineering.

IwouldliketothankEricUnruhandBillBeardenforreviewingpartsof themanuscript.Ihavealsobenefitedgreatlyfromtheopportunitytoworkwith manyknowledgeablecolleaguesduringmyyearsatSylvania-GTEGovernment SystemsandatESL-TRWintheSantaClara(Silicon)Valleyandwouldlike tothankthem,andthoseexcellentcompaniesforwhichweworked,forthat opportunity.IamalsogratefulfortheeducationthatIreceivedatSantaClara andStanfordUniversities,oftenwiththehelpofthosesamecompanies.However, onlyIbeartheblameforerrorsandimperfectionsinthiswork.

Cupertino,California February,2003

GETTINGFILESFROMTHEWILEYftp ANDINTERNETSITES

Todownloadspreadsheetsthatarethebasesforfiguresinthisbook,useanftp programoraWebbrowser.

FTPACCESS

Ifyouareusinganftpprogram,typethefollowingatyourftpprompt:

ftp://ftp.wiley.com

Someprogramsmayprovidethefirst“ftp”foryou,inwhichcasetype

ftp.wiley.com

Loginasanonymous(e.g.,UserID:anonymous).Leavepasswordblank.After youhaveconnectedtotheWileyftpsite,navigatethroughthedirectorypathof: /public/sci_tech_med/rf_system

WEBACCESS

IfyouareusingastandardWebbrowser,typeURLaddressof: xix

xx GETTINGFILESFROMTHEWILEYftpANDINTERNETSITES

ftp://ftp.wiley.com

Navigatethroughthedirectorypathof: /public/sci_tech_med/rf_system

Ifyouneedfurtherinformationaboutdownloadingthefiles,youcancallWiley’s technicalsupportat201-748-6753.

SYMBOLSLISTANDGLOSSARY

Thefollowingisalistoftermsandsymbolsusedthroughoutthebook.Special meaningsthathavebeenassignedtothesymbolsaregiven,althoughthesame symbolssometimeshaveothermeanings,whichshouldbeapparentfromthe contextoftheirusage.(Forexample, A and B canbeusedforamplitudesofsine waves,inadditiontothespecialmeaningsgivenbelow.)

≡ isidenticallyequalto,ratherthanbeingequalonlyunder someparticularcondition

= isdefinedas

∼ (superscript)indicatesrms

X |y variable X withthecondition y orreferringto y

X |y 2 y 1 variable X with y between y land y 2

x angleorphaseof x

∼ low-passfilter

∼ band-passfilter

acceptancebandbandoffrequenciesbeyondthepassbandwhererejection isnotrequired;usedtoindicatetheregionbetween thepassbandandarejectionband contaminantundesiredRFpower passbandbandoffrequenciesthatpassthroughafilterwith minimalattenuationorwithlessthanaspecified attenuation

rejectionbandbandoffrequenciesthatarerejectedorreceivea specifiedattenuation(rejection) sidebandsignalinrelationtoalargersignal

GenericSymbols(appliedtoothersymbols)

*complexconjugate

|x | magnitudeorabsolutevalueof x

˘ xx isanequivalentnoisefactororgainthatcanbeusedinstandard equationstorepresentcascadeswithextrememismatches(see Section3.10.4)

ParticularSymbols

A voltagegainindB.Notethat G canaswellbeusedif impedancesarethesameorthevoltageisnormalizedto R0 . a voltagetransferratio.

|a | voltagegain(notindB)

AMamplitudemodulation

an nth-ordertransfercoefficient[seeEq.(4.1)]

aRT round-tripvoltagetransferratio

B noisebandwidth

Br RFbandwidth

Bv video,orpostdetection,bandwidth

BWbandwidth

c(n,j ) j thbinomialcoefficientfor (a + b)n (Abromowitzand Stegun,1964,p.10)

cassubscriptreferringtocascade

CATVcabletelevision

cblsubscriptreferringtocable

CSOcompositesecond-orderdistortion(Section5.2)

CTBcompositetriple-beatdistortion(Section5.2)

dBdecibels

DBMdoublybalancedmixer

dBmdecibelsreferencedto1mW

dBcdecibelsreferencedtocarrier

dBVdecibelsreferencedto1V

dBWdecibelsreferencedto1W

e voltagefromaninternalgenerator F noisefigure, F = 10dBlog10 f orfundamental(asopposed toharmonicorIM).

f noisefactor(notindB)orstandardnoisefactor(measured withstandardimpedances)orfrequency

ˆ f theoreticalnoisefactor(measuredwithspecifieddriving impedance)(seeSections3.1,N.1)

FDMfrequencydivisionmultiplex

fc centerfrequency

fosc oscillatorcenterfrequency

fI or fIF intermediatefrequency, frequencyatamixer’soutput

fL or fLO localoscillatorfrequency

FMfrequencymodulation

fm modulationfrequency

fR or fRF radiofrequency,thefrequencyatamixer’sinput

G powergain,sometimesgainingeneral,indB.

gk powergainofmodule k ,sometimesgainingeneral,notindB.

gpk powergainprecedingmodule k

H subscriptreferringtoharmonic

I ,IFintermediatefrequency,theresultofconvertingRFusinga localoscillator

i subscriptindicatingasignaltravelinginthedirectionofthe systeminput

IFintermediatefrequency,frequencyatamixer’soutput

IIPinputinterceptpoint(IPreferredtoinputlevels)

IMintermodulationproduct(intermod)

IMnnth-orderintermodorIMformodule n insubscriptindicatingasignalenteringamodule(1)attheport ofconcernor(2)attheinputport int(x) integerpartof x

IPinterceptpoint

IPn interceptpointfor nth-ordernonlinearityorformodule n

ISFDRinstantaneousspur-freedynamicrange(seeSection5.3)

k Boltzmann’sconstant

kT0 approximately4 × 10 21 W/Hz

L single-sidebandrelativepowerdensity

L,LOlocaloscillator,thegenerallyrelativelyhigh-powered, controllable,frequencyinafrequencyconversionorthe oscillatorthatprovidesit

Lϕ single-sidebandrelative powerdensityduetophasenoise

M amatrix(boldformatindicatesavectorormatrix)

m modulationindex(seeSection8.1)

˜ m rmsphasedeviationinradians masubscriptfor“maximumavailable”

MAX{a,b } thelargerof a or b

m × nm referstotheexponentoftheLOvoltageand n referstothe exponentoftheRFvoltageintheexpressionforaspurious product;ifwritten,forexample,3 × 4, m is3and n is4

N0 noisepowerspectraldensity

NT availablethermalnoisepowerspectraldensityat290K, kT0

o subscriptindicatingasignaltravelinginthedirectionofthe systemoutput.

OIPoutputinterceptpoint(IPreferredtooutputlevels)

outsubscriptindicatingasignalexitingamodule(1)attheport ofconcernor(2)attheoutputport

P powerindB.

p power(notindB).

pavail,j availablepoweratinterface j (precedingmodule j )

PMphasemodulation

pout,j outputpoweratinterface j (precedingmodule j )

PPSDphasepowerspectraldensity

PSDpowerspectraldensity

R ,RFradiofrequency,thefrequencyatamixer’sinput

R0 agreed-uponinterfaceimpedance,astandardimpedance(e.g., 50 );characteristicimpedanceofatransmissionline

RTsubscriptfor“roundtrip”

S powerspectraldensityor S parameter(seeSection2.2.1)

ˆ S sensitivity(seeSection2.5)

Sijk

S parameterofrow i andcolumn j intheparametermatrix formodule(orelement)number k

SFshapefactor,ratioofbandwidthwhereanattenuationis specifiedtopassbandwidth

SFDRspur-freedynamicrange(seeSection5.3.1)

S/N signal-to-noisepowerratio

SSBsingle-sideband;referstoasinglesignalinrelationtoalarger signal

SWRstandingwaveratio(seeSectionF.2)

T absolutetemperatureorsubscriptreferringtoconditions duringtest

T0 temperatureof290K(16.85◦ C)

Tijk

T parameter(seeSection2.2.3)ofrow i andcolumn j inthe parametermatrixformodule(orelement)number k

Tk noisetemperatureofmodule k (seeSection3.2)

UUTunitundertest

V avector(boldformatindicatesavectorormatrix)

v normalizedwavevoltage(seeSection2.2.2)orvoltage(notin dB.)

V voltageindB

ˆ

v phasorrepresentingthewavevoltage(seeSection2.2.2)

v phasorwhosemagnitudeisthermsvalueofthevoltage v =ˆv/√2(seeSection2.2.2)

vi , vin , vo , vout seeFig.2.2andSection2.2.1 ± maximum ± deviationindBofcablegain Acbl ,fromthemean f peakfrequencydeviationorfrequencyoffsetfromspectral center

ρ reflectioncoefficient(seeSectionF.2)

σ standarddeviation

σ 2 variance

τ voltagetransferratioofamatchedcable(i.e.,noreflectionsat theends)

ϕ(t)ωt + θ

Practical RF System Design. William F. Egan Copyright  2003 John Wiley & Sons, Inc.

0-471-20023-9

CHAPTER1

INTRODUCTION

Thisbookisaboutsystemsthatoperate atradiofrequencies(RF)(including microwaves)wherehigh-frequencytechniques,suchasimpedancematching,are important.ItcoverstheinteractionsoftheRFmodulesbetweentheantenna outputandthesignalprocessors.Itsgoalistoprovideanunderstandingofhow theircharacteristicscombinetodeterminesystemperformance.Thischapterisa generaldiscussionoftopicsinthebookandofthesystemdesignprocess.

1.1SYSTEMDESIGNPROCESS

Wedosystemdesignbyconceptualizingasetoffunctionalblocks,andtheir specifications,thatwillinteractinamannerthatproducestherequiredsystem performance.Todothissuccessfully,werequireimaginationandanunderstandingofthecostsofachievingthevariousspecifications.Ofcourse,wealsomust understandhowthecharacteristicsoftheindividualblocksaffecttheperformance ofthesystem.Thisisessentiallyanalysis,analysisattheblocklevel.Bythis process,wecancombineexistingblockswithnewblocks,usingthespecificationsoftheformerandcreatingspecificationsforthelatterinamannerthatwill achievethesystemrequirements.

Thespecificationsforablockgenerallyconsistoftheparametervalueswe wouldlikeittohaveplusallowedvariations,thatis,tolerances.Wewouldlike thetolerancestobezero,butthatisnotfeasiblesoweacceptvaluesthatare compromisesbetweencostsandresultingdegradationsinsystemperformance. Notuntilmoduleshavebeendevelopedandmeasureddoweknowtheirparameterstoahighdegreeofaccuracy(atleastforonecopy).Atthatpointwemight insertthemoduleparametersintoasophisticatedsimulationprogramtocompute

CHAPTER1INTRODUCTION

theexpectedcascadeperformance(orperhapsjusthookthemtogethertosee howthecascadeworks).Butitisimportantinthedesignprocesstoascertain therangeofperformancetobeexpectedfromthecascade,givenitsmodule specifications.Weneedthisabilitysowecanwritethespecifications.

Spreadsheetsareusedextensivelyinthisbookbecausetheycanbehelpfulin improvingourunderstanding,whichisourmainobjective,whilealsoproviding toolstoaidintheapplicationofthatunderstanding.

1.2ORGANIZATIONOFTHEBOOK

ItiscommonpracticetolistthemodulesofanRFsystemonaspreadsheet, alongwiththeirgains,noisefigures,andinterceptpoints,andtodesigninto thatspreadsheetthecapabilityofcomputingparametersofthecascadefrom thesemoduleparameters.Thespreadsheetthenservesasaplanforthesystem. Thenextthreechaptersaredevotedtothatprocess,onechapterforeachof theseparameter.

Atfirstitmayseemthatoverallgaincanbeeasilycomputedfromindividual gains,buttheusualimperfectimpedancematchescomplicatetheprocess.In Chapter2,wediscoverhowtoaccountfortheseimperfections,eitherexactly or,inmostcases,byfindingtherangeofsystemgainsthatwillresultfromthe rangeofmoduleparameterspermittedbytheirspecifications.

Themethodforcomputingsystemnoisefigurefrommodulenoisefigures iswellknowntomanyRFengineersbutsomesubtletiesarenot.Ideally,we usenoisefigurevaluesthatwereobtainedunderthesameinterfaceconditions asseeninthesystem.Practically,thatinformationisnotgenerallyavailable, especiallyatthedesignconceptphase.InChapter3,weconsiderhowtousethe informationthatisavailabletodeterminesystemnoisefigureandwhatvariations aretobeexpected.Wealsoconsiderhowtheeffectivenoisefiguresofmixers areincreasedbyimagenoise.Laterwewillstudyhowthelocaloscillator(LO) cancontributetothemixer’snoisefigure.

Theconceptofinterceptpoints,howtouseinterceptpointstocomputeintermodulationproducts,andhowtoobtaincascadeinterceptpointsfromthoseofthe moduleswillbestudiedinChapter4.Anomalousintermodsthatdonotfollow theusualrulesarealsodescribed.

Thecombinedeffectsofnoiseandintermodulationproductsareconsidered inChapter5.Oneresultistheconceptofspur-freedynamicrange.Anotheris theportrayalofnoisedistributionsresultingfromtheintermodulationofbands ofnoise.Thesimilaritybetweennoise bandsandbandsofsignalsbothaidsthe analysisandprovidespracticalapplicationsforit.

Havingestablishedthemeansforcomputingparametersforcascadesofmodulesconnectedinseries,inChapter6wetakeabriefjourneythroughvariousmeansofconnectingmodulesorcomponentsinparallel.Wediscoverthe advantagesthatthesevariousmethodsprovideinsuppressingspuriousoutputs andhowtheiroverallparametersarerelatedtotheparametersoftheindividualcomponents.

Then,inChapter7,weconsiderthemethodfordesignoffrequencyconverters thatusesgraphstogiveanimmediatepictureofthespursandtheirrelationships tothedesiredsignalbands,allowingustovisualizeproblemsandsolutions.We alsolearnhowtopredictspuriouslevels andthose,alongwiththerelationships betweenthespursandthepassbands,permitustoascertainfilterrequirements.

Theprocessesdescribedintheinitialchaptersarelinear,oralmostso,except forthefrequencytranslationinherentin frequencyconversion.Someprocesses, however,areseverelynonlinearand,whileperformanceistypicallycharacterized fortheonesignalthatissupposedtobepresent,weneedamethodtodetermine whathappenswhensmall,contaminating,signalsaccompanythatdesiredsignal.ThisisconsideredinChapter8.Themostimportantnonlinearityinmany applicationsisthatassociatedwiththemixer’sLO;soweemphasizethesystem effectsofcontaminantsontheLO.

Lastly,inChapter9,wewillstudyphasenoise:whereitcomesfrom,howit passesthroughasystem,andwhatareitsimportanteffectsintheRFsystem.

1.3APPENDIXES

Materialthatisnotessentialtotheflowofthemaintext,butthatisnevertheless important,hasbeenorganizedin17appendixes.Thesearedesignatedbyletters, andanattempthasbeenmadetochoosealetterthatcouldbeassociatedwith thecontent(e.g.,Gforgain,Mformatrix)asanaidtorecallingthelocation ofthematerial.Someappendixesaretutorial,providingareferenceforthose whoareunfamiliarwithcertainbackgroundmaterial,orwhomayneedtheir memoryrefreshed,withoutholdingupotherreaders.Someappendixesexpand uponthematerialinthechapters,sometimesprovidingmoredetailedexplanations orbackup.Othersextendthematerial.

1.4SPREADSHEETS

ThespreadsheetswerecreatedinMicrosoft Excelandcanbedownloadedas MicrosoftExcel97/98workbookfiles(seepagexix).Thismakesthemavailable forthereaders’ownuseandalsopresentsanopportunityforbetterunderstanding. Onecanstudytheequationsbeingusedandviewthecharts,whichappearin blackandwhiteinthetext,incoloronthecomputerscreen.Onecanalso makeuseofExcel’sTracePrecedentsfeature(see,e.g.,Fig.3.5)toillustratethe compositionofvariousequations.

1.5TESTANDSIMULATION

Ultimately,weknowhowasystemperformsbyobservingitinoperation.We couldalsoobservetheresultsofanaccuratesimulation,thatbeingonethat

producesthesameresultsasthesystem.Undersomeconditions,itmaybeeasier, quicker,ormoreeconomicaltosimulateasystemthantobuildandtestit.Even thoughtheproofofthesimulationmodelisitscorrespondencetothesystem,it canbevaluableasaninitialestimateofthesystemtobeimprovedastestdata becomesavailable.Onceconfidenceisestablished,theremaybeadvantagesin usingthemodeltoestimatesystemperformanceundervariousconditionsorto predicttheeffectofmodifications.Butmodelingandsimulatingisbasicallythe sameasbuildingandtesting.Theyarethemeansbywhichsystemperformance isverified.Firsttheremustbeasystemand,beforethat,asystemdesign.

Intheearlystagesofsystemdesignweuseageneralknowledgeoftheperformanceavailablefromvarioussystem components.Asthedesignprogresses, wegetmorespecificandbegintousethecharacteristicsofparticularrealizations ofthecomponentblocks.Wemayinitiallyhavetoestimatecertainperformance characteristics,possiblybasedonanunderstandingoftheoreticalortypicalconnectionsbetweencertainspecifications.Asthedesignprogresseswewillwant assuranceofimportantparametervalues,andwemightultimatelytestanumber ofcomponentsofagiventypetoascertaintherepeatabilityofcharacteristics. Finallywewillspecifytheperformance requiredfromthesystem’scomponent blockstoensurethesystemmeetsitsperformancerequirements.

Basedoninformationconcerningthe likelihoodofdeviationsfromdesired performanceprovidedbyoursystemdesignanalysis,wemaybeledtoaccept asmallbutnonzeroprobabilityofperformanceoutsideofthedesiredbounds. Oncethesystemhasbeenbuiltandtested,itmaybepossibletouseanaccurate simulationtoshowthattheresultsachieved,evenwithexpectedcomponent variations,arebetterthantheworstcaseimpliedbythecombinationofthe individualblockspecifications.Tobaseexpectedperformanceonsimulatedor measuredresults,ratherthanonfunctionalblockspecifications,however,requires thatwehavecontinuingcontroloverthe constructiondetailsofthecomponents ofvariouscopiesofthesystem,ratherthanmerelyensuringthattheblocks meettheirspecifications.Forexample, aparticularamplifierdesignmayproduce astablephaseshiftthathasafortuitouseffectonsystemperformance,butwe wouldhavetocontrolchangesinitsdesignandinthatofinteractingcomponents.

Anotherimportantaspectoftestisgeneralexperimentation,notconfinedtoa particulardesign,forthepurposeofverifyingthedegreeofapplicabilityoftheory tovariouspracticalcomponents.Examplesofreportsgivingsuchsupporting experimentaldatacanbeseeninEgan(2000),relativetothetheoryinChapter8, andinHenderson(1993a),relativetoChapter7.Wecanhopethatthese,andthe other,chapterswillsuggestopportunitiesforadditionalworthwhilepapers.

1.6PRACTICALSKEPTICISM

Thereisatendencyforengineeringstudentstoassumethatanythingwrittenin abookisaccurate.Thiscomesnaturallyfromourstrugglejusttoapproachthe knowledgeoftheauthorswhosebookswestudy(andtobeabletoshowthison

REFERENCES 5 exams).Withenoughexperienceinusingpublishedinformation,however,we arelikelytodevelopsomeskepticism,especiallyifweshouldspendmanyhours pursuingadevelopmentbasedonanerroneousparametervalueorperhapson aconceptthatappliesalmostuniversally—butnotinourcase.Evenreviewed journals,whichwemightexpecttobemostnearlyfreeoferrors,andclassic workscontainsourcesofsuchproblems.Butthetechnicalliteraturealsocontains valuable,evenessential,information; soahealthyskepticismisonethatleads ustoconsultitfreelyandextensivelybuttocontinuallycheckwhatwelearn. Wecheckforaccuracyinourreferencesources,foraccuracyinouruseofthe information,andtoensurethatittrulyappliestoourdevelopment.Wecheckby consideringhowconceptscorrelatewith eachother(e.g.,doesthismakesensein termsofwhatIalreadyknow),byverifyingagreementbetweenanswersobtained bydifferentmethods,andbytestingasweproceedinourdevelopments.The greaterthecostoffailure,themoreimportantisverification.Unexpectedresults canbeopportunitiestoincreaseourknowledge,butwedonotwanttopaytoo highapricefortheeducationalexperience.

1.7REFERENCES

Referencesareincludedforseveralreasons:torecognizethesources,tooffer alternatepresentationsofthematerial, ortoprovidesourcesforassociatedtopics thatarebeyondthescopeofthiswork.Theauthor–datestyleofreferencingis usedthroughoutthebook.Fromthese,onecaneasilyfindthecompletereference descriptionsintheReferencesattheendofthetext.Somenotesareplacedat theendofthechapterinwhichtheyarereferenced.

Practical RF System Design. William F. Egan

Copyright  2003 John Wiley & Sons, Inc.

ISBN: 0-471-20023-9

CHAPTER2

GAIN

Inthischapter,wedeterminetheeffectof impedancemismatches(reflections)on systemgain.Forasimplecascadeoflinearmodules(Fig.2.1),wecouldwrite theoveralltransferfunctionorratioas

and u isvoltageorcurrentorpower.Thegainis |g |,whichisthesameas g if u ispower.Thiswouldrequirethatwemeasurethevaluesof u inthecascade. Ifwemeasuretheminsomeotherenvironment,wecouldgetdifferentgains becauseofdifferingimpedancesattheinterfaces.However,itmaybedifficult tomeasure u inthecascade,andagainthatmustbemeasuredinthefinal cascadehaslimitedvalueinpredictingorspecifyingperformance.Forexample, avariationofabout ±1dBinoverallgaincanoccurforeachinterfacewhere thestanding-waveratios(SWRs)are2andachangeashighas2.5dBcanoccur whentheyare3.(SeeAppendixF.1foradiscussionofdecibels(dB).)

Hereweconsiderhowtheexpectedgainofacascadeoflinearmodulescan bedetermined,aswellasvariationsinitsgain,basedonmeasuredorspecified parametersoftheindividualmodules.Throughoutthisbook,gainsandother parametersaresogenerallyfunctions offrequencythatthefunctionalityisnot shownexplicitly.Equationswhosefrequencydependenceisnotindicatedwill applyatanygivenfrequency.

Webeginwithadescription,formodulesandtheircascades,thatapplies withoutlimitationsbutwhichrequiresdetailedknowledgeofimpedancesand

Fig.2.1 Transferfunctionsinasimplecascade.

whichcanbecomplicatedtouse.Thenwewilldiscoverawaytosimplifythe descriptionoftheoverallcascadebytakingintoaccountspecialcharacteristics ofsomeofitsparts.Thiswillleadustoastandardcascade,composedofunilateralmodulesseparatedbyinterconnects(e.g.,cables)thathavewell-controlled impedances.Theunilateralmodules,usually active,havenegligiblereversetransmission.Thepassivecablesarewellmatchedatthestandardimpedance(e.g., 50 )ofthecascadeinterfaces;thesearetheimpedancesusedincharacterizing themodules.

Itiscommontospecifythedesiredperformanceofeachmoduleplusallowed variationsfromthatideal.Thedesiredperformanceincludesagainandstandard interfaceimpedances.Theallowedvariationsaregivenbyagaintoleranceand therequireddegreeofinputandoutputimpedancematches,expressedasmaximumSWRsor,equivalently,returnlossesorreflectioncoefficientmagnitudes (seeAppendixF.2).Thesearetheparametersrequiredfordeterminationofthe performanceofthestandardcascade.Wewillalsofindwaystofitbilateral modulesintothisscheme.

Wewillalsoconsiderthecasewherethemodulesarespecifiedinterms oftheirperformancewithvariousnonstandardinterfaceimpedances(e.g., 2000 – j 500 ),andwewilldiscoverhowtocharacterizecascadesofthese modules.Forcaseswhereitmaybedesirabletoincludethesenonstandard cascadesaspartsofastandardcascade,wewilldeterminehowtodescribe theminthoseterms.

Finally,wewillstudytheuseofsensitivitiesinanalyzingcascadeperformance. ManyvarietiesofpowergainsaredescribedinAppendixG.Ifallinterfaces wereatstandardimpedancelevels(e.g.,50 everywhere),thesegainswould allbethesame,buttheusuallyunintendedmismatchesleadtodifferingvalues forgain,dependingonthedefinitionsemployed.

2.1SIMPLECASES

Insomecasesthesecomplexitiesareunimportant.Forexample,whereoperational amplifiers(opamps)areusedatlower frequencies,measurementsofvoltages atinterfacescanbepracticalandtheirlowoutputimpedancesandhighinput impedancesallowperformanceinthe voltage-amplifiercascade toduplicatewhat wasmeasuredduringtest.However,thisluxuryisrareatradiofrequencies.

Modules Cascade

Inothercases,complexitiesmaybeignoredinanefforttogetananswer withminimumeffortorwiththeavailableinformation.Thatanswermaybe adequateforthetaskathand;atleastitisbetterthannoestimate.Commonly, wesimplyassumethatgainswillbethesameaswhenamoduleorinterconnect wastestedinastandard-impedanceenvironment.Wetrytomakethissoby keepinginputandoutputimpedancesclosetothatstandardimpedancewhen designingorselectingmodules.

Whilethissimplifiedapproachcanbeuseful,wewillconsiderherehowto makeuseofadditionalinformationabout modulestogetabetterestimateof cascadeperformance,onethatincludestherangeofgainvaluestobeexpected.

2.2GENERALCASE

Tocharacterizethemodulessotheirperformanceinthesystemcanbepredicted, weneedmoreparameters,asetoffour(generallycalledtwo-portparameters;we arecharacterizingourmodulesashavingtwoports,aninputportandanoutput port)foreachmodule(Gonzalez,1984,pp.1–31;Pozar,2001,pp.47–55).We beginbyconsideringtheparametersthatwecanusetodescribethemodules.

2.2.1 S Parameters

IndividualRFmodulesareusuallydefinedbytheir S (scattering)parameters (Pozar,2001,pp.50–53;Gonzalez,1984,pp.9–10).Thiscanbedonewiththe helpofthematrix(seeAppendixMforhelpinusingmatrices),

Thesubscriptsinandoutrefertowavespropagating1 intoandoutofthemodule ateitherport(1or2).Theothersubscriptsonthevectorcomponentsindicate theinputport1oroutputport2,whereasthesubscriptoneachmatrixelement isitsrowandcolumn,respectively.Subscript1onthematrixindicatesmodule 1.Weusethesameindexforthemoduleandforitsinputport(port1here). Wecanalsowritethesubscriptsintermsofthesystemwith i or o ,referringto wavestravelingtowardtheinputortoward theoutputofthesystem,respectively. RefertoFig.2.2.Withthisnotation,Eq.(2.3)becomes

Moregenerally,forthe j thmodule,

in,3 = vo,3

out,3 = vi,3

in,4 = vi,4

Bynormalmatrixmultiplicationthen,

Thisisaconvenientformformeasurements.Itrelatessignalscoming“out”of themodule,ateitherport,tothosegoing“in”ateitherport.Wecancontrolthe inputs,ensuringthatthereisonlyonebyterminatingtheporttowhichwedo notapplyasignal,andmeasuringthetworesultingoutputs,oneateachport (Fig.2.3).Thesegiveustwoofthefourparametersandasecondmeasurement, withinputtotheotherport,givestheothertwo. Calibrated generator

Fig.2.3 Measurementsetup.

Thus,formodule1,withport2terminated(vin,2 ≡ vi 2 = 0),wemeasurethe reflectedsignalatport1togivethereflectioncoefficientforthatport,

andthetransmissioncoefficientfromport1toport2,

Thenweturnthemodulearoundandinputtoport2whileterminatingport 1,givingthereversetransmissioncoefficientandport2reflectioncoefficient, respectively:

(Weareusingbothsubscriptformshereasanaidinunderstandingtheirequivalency.)Ineachcasethe S parametersubscriptsrepresenttheportsofeffectand cause,respectively, Seffectcause ,where“effect”istheportwhere“out”occursand “cause”istheportwhere“in”occurs.

2.2.2NormalizedWaves

Wehavecalled vx (i.e., vo , vi , vout ,or vin )a“wave,”butthesymbolimplies avoltage.Itiscustomarytousenormalizedvoltageswith S parameters,and theusualwaytonormalizethemisbydivisionoftheroot-mean-square(rms) voltageby √R0 ,where R0 istherealpartofthecharacteristicimpedance Z0 of thetransmissionlineinwhichthewavesreside.Wewillassumethat Z0 isreal.2 AnRFvoltagecorrespondingto vx canberepresentedby

Thiscanbeabbreviated

where

Sometimesaphasorisemployedwhosemagnitudeistheeffective(rms)value (Hewlett-Packard,1996;Yola,1961;Kurokawa,1965):

Ournormalizedvoltage, vx =˜vx / R0 ,(2.16)

usesthisform,whichhastheadvantagethattheavailablepowerinthetraveling wavecanbeexpressedsimplyas px =|vx |2 .(2.17)

Traditionally,thesymbol an isusedfor vin,n and bn isusedfor vout,n . If,ontheotherhand,thephasoremployedinEq.(2.16)is ˆ vx ratherthan vx (Pozar,1990,p.229,1998,p.204),thepowerwillbe |vx |2 /2.Inmostcasesthe moduleparametersareratiosoftwowavesatthesameimpedance;soitmakes nodifferencewhethertheyareratiosof vx orof ˆ vx orof vx

2.2.3 T Parameters

Unfortunately,wecannotuse S matricesconvenientlyfordeterminingoverall responsebecausewecannotmultiplythemtogethertoproduceanythinguseful. Werequireamatrixequationforoveralltransferfunctionoftheform

Herethevector Vj ,representingamoduleinput,hasthesameidentifyingnumber (subscript)asthematrix Mj ,representingthemodule.Notethatweareoperating onoutputstogiveinputs.Thisisniceinthatthematricesarethenwritteninthe sameorderinwhichthemodulesaretraditionallyarrayedinadrawing(leftto rightfrominputtooutput,asinFig.2.1).Thereisalsoanevenbetterreason. Thevectoronwhichthematrixoperates(multiplies)mustcontaintheinformation neededtoproducetheresultingproduct. Unilateralmodulesthathavelittleorno reversetransmissiondonotprovidesignificantinformationabouttheoutputto theinput;thusamathematicalrepresentationinwhichthematrixoperatedonthat inputwouldnotworkwell.Ontheotherhand,allmodulesofinterestproduce outputsthatarefunctionsoftheirinputs;sothereissufficientinformationinthe vectorrepresentingtheoutputtoformtheinput.3

Equation(2.18)implies

and

inorderthat

andsoon.Allthisimpliesthat V2 representsthestatebetweenmodules1and2 sowedefinethevector

where j representstheportand o and i indicatethevoltagewavemovingright towardthesystemoutputorlefttowarditsinput,respectively.Thusthematrix connectingsuchvectorshastheform(DechampsandDyson,1986;Gonzalez, 1984,pp.11–12)

Asbefore,themoduleanditsinputhavethesamesubscript.Inmanycasesit willbemoreconvenienttomovethesubscriptfromthevectorormatrixtoits individualelements,addingthe portnumberasthelastsubscript:

Eachvector,inthisrepresentation,describestwowavesthatoccuratasingle pointinthesystemwhereas,forthe S parameters,thevectorelementsrepresented wavesfromdifferentports.4 However, S -parametermeasurementsaresimpler than T -parametermeasurements.Considerthat T121 istheratiobetweenawave enteringthemoduleatport1, vo1 ,andoneenteringitatport2, vi 2 ,while thewaveleavingitatport2, vo2 ,issettozero.Tomeasurethisdirectly,we wouldrequiretwophase-coherentgenerators,onedrivingeachport,thatwould beadjustedsotheoutputsduetoeachatport2wouldcancel.

2.2.4RelationshipsBetween S and T Parameters

Itissimplertomeasurethe S parametersandobtainthe T parametersfromthem. Forexample, T22 formodule1is

Equation(2.7)indicatesthatthecondition vo2 = 0requires

CombiningthiswithEq.(2.6)weobtain

fromwhichweobtainthe T parameterintermsof S parameters,

Byasimilarprocesswecanobtaintheothervaluesof Tij intermsofthe Sij :

andof Sij intermsof Tij ,

2.2.5Restrictionson T Parameters

Wecannowshowmorespecificallywhythe T matrixwasdesignedtogive inputasafunctionofoutput,ratherthantheconverse.Forunilateralgainin theforwarddirection, S12 = 0.Thissimplifies T22 inEq.(2.30).Ontheother hand,unilateralgaininthereversedirection, S21 = 0,causestheelementsin Eq.(2.30)tobecomeinfinite.As S21 approaches0, V2 becomesaweakfunction of V1 ,soalargenumberisrequiredtogive V1 intermsof V2 .Moreover,if forwardtransmissionissmall, vo2 maybecomeastrongerfunctionof vi 2 than of vo1 ,inwhichcase V1 becomesdependentonthedifferencebetweenthetwo componentsof V2 andsubjecttoerrorduetosmallinaccuraciesin M.Asaresult, M shouldnotrepresentaprocesswheretransmissionfrom V1 to V2 ,asdefined byEq.(2.9),issmallorzero.Forthisreason,Eq.(2.19)iswrittenasitis,since transmissiontowardthesystemoutput S21 isapurposeofasystem,andthusis expectedtobeappreciable,whereasreversetransmission S12 isoftenminimized.

2.2.6CascadeResponse

Nowwecanobtaintheoverallresponseofaseriesofmodules(acascade)by multiplyingtheirindividual T matrices.Thesequenceinwhichthematricesare arrayedmustbethesameasthesequence,frominputtooutput,oftheelements inthecascadeandtheinterface(standard)impedancesmustbethoseinwhich the S or T parametersweremeasured.Iftheparametersofadjacentmodules aredefinedfordifferentstandardimpedancesatthesameinterface,oneofthem mustberecharacterized.Thiscanbedonebyinsertinga T matrixrepresenting theimpedancetransition,asdescribedinAppendixI.

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.
Where can buy Practical rf system design (wiley – ieee) – ebook pdf version ebook with cheap price by Education Libraries - Issuu