Deterministic and stochastic modeling in computational electromagnetics dragan poljak 2024 scribd do

Page 1


Poljak

Visit to download the full and correct content document: https://ebookmass.com/product/deterministic-and-stochastic-modeling-in-computation al-electromagnetics-dragan-poljak/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Deterministic Numerical Modeling of Soil Structure Interaction 1st Edition Stephane Grange

https://ebookmass.com/product/deterministic-numerical-modelingof-soil-structure-interaction-1st-edition-stephane-grange/

Computational Geo-electromagnetics: Methods, Models, and Forecasts: Volume 5 1st Edition Viacheslav V. Spichak

https://ebookmass.com/product/computational-geo-electromagneticsmethods-models-and-forecasts-volume-5-1st-edition-viacheslav-vspichak/

Applied Modeling Techniques and Data Analysis 2: Financial, Demographic, Stochastic and Statistical Models and Methods, Volume 8 Yannis Dimotikalis

https://ebookmass.com/product/applied-modeling-techniques-anddata-analysis-2-financial-demographic-stochastic-and-statisticalmodels-and-methods-volume-8-yannis-dimotikalis/

Multiphysics Modeling: Numerical Methods and Engineering Applications: Tsinghua University Press Computational Mechanics Series 1st Edition Cen

https://ebookmass.com/product/multiphysics-modeling-numericalmethods-and-engineering-applications-tsinghua-university-presscomputational-mechanics-series-1st-edition-cen/

Stochastic Modeling: A Thorough Guide to Evaluate, PreProcess, Model and Compare Time Series with MATLAB Software First Edition

https://ebookmass.com/product/stochastic-modeling-a-thoroughguide-to-evaluate-pre-process-model-and-compare-time-series-withmatlab-software-first-edition-hossein-bonakdari/

Computational Fluid Mechanics and Heat Transfer (Series in Physical

https://ebookmass.com/product/computational-fluid-mechanics-andheat-transfer-series-in-physical/

Engineering Electromagnetics 9th Edition William H. Hayt

https://ebookmass.com/product/engineering-electromagnetics-9thedition-william-h-hayt/

High voltage direct current transmission : converters, systems and DC grids Second Edition Dragan Jovcic

https://ebookmass.com/product/high-voltage-direct-currenttransmission-converters-systems-and-dc-grids-second-editiondragan-jovcic/

Applications of Deep Learning in Electromagnetics: Teaching Maxwell's equations to machines Maokun Li

https://ebookmass.com/product/applications-of-deep-learning-inelectromagnetics-teaching-maxwells-equations-to-machines-maokunli/

DeterministicandStochasticModeling inComputationalElectromagnetics

IEEEPress

445HoesLane Piscataway,NJ08854

IEEEPressEditorialBoard

SarahSpurgeon, EditorinChief

JónAtliBenediktssonBehzadRazaviJeffreyReed AnjanBoseJimLykeDiomidisSpinellis JamesDuncan AminMoeness DesineniSubbaramNaidu

HaiLi BrianJohnson AdamDrobot TomRobertazzi AhmetMuratTekalp

DeterministicandStochasticModeling inComputationalElectromagnetics

IntegralandDifferentialEquationApproaches

DraganPoljakandAnna Šušnjara UniversityofSplit Croatia

Copyright©2024byTheInstituteofElectricalandElectronicsEngineers,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.

PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany formorbyanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise, exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers, MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requests tothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley& Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronline athttp://www.wiley.com/go/permission.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley& Sons,Inc.and/oritsaffiliatesintheUnitedStatesandothercountriesandmaynotbeused withoutwrittenpermission.Allothertrademarksarethepropertyoftheirrespectiveowners. JohnWiley&Sons,Inc.isnotassociatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere appropriate.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechanged ordisappearedbetweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublisher norauthorsshallbeliableforanylossofprofitoranyothercommercialdamages,including butnotlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,please contactourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidethe UnitedStatesat(317)572-3993orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsin printmaynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts, visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationData

Names:Poljak,D.(Dragan),author.| Šušnjara,Anna,author.

Title:Deterministicandstochasticmodelingincomputational electromagnetics:integralanddifferentialequationapproaches/ DraganPoljak,Anna Šušnjara.

Description:Hoboken,NewJersey:Wiley,[2024]|Includesindex.

Identifiers:LCCN2023037537(print)|LCCN2023037538(ebook)|ISBN 9781119989240(hardback)|ISBN9781119989257(adobepdf)|ISBN 9781119989264(epub)

Subjects:LCSH:Electromagnetism–Mathematicalmodels.|Stochasticmodels. Classification:LCCQC760.P6252024(print)|LCCQC760(ebook)|DDC 537.01/515–dc23/eng/20231017

LCrecordavailableathttps://lccn.loc.gov/2023037537

LCebookrecordavailableathttps://lccn.loc.gov/2023037538

CoverImageandDesign:Wiley

Setin9.5/12.5ptSTIXTwoTextbyStraive,Pondicherry,India

Toourbelovedones

Contents

AbouttheAuthors xv

Preface xvii

PartISomeFundamentalPrinciplesinFieldTheory 1

1LeastActionPrincipleinElectromagnetics 3

1.1HamiltonPrinciple 4

1.2Newton’sEquationofMotionfromLagrangian 7

1.3Noether’sTheoremandConservationLaws 8

1.4EquationofContinuityfromLagrangian 12

1.5LorentzForcefromGaugeInvariance 16 References 18

2FundamentalEquationsofEngineeringElectromagnetics 21

2.1DerivationofTwo-CanonicalMaxwell’sEquation 21

2.2DerivationofTwo-DynamicalMaxwell’sEquation 22

2.3IntegralFormofMaxwell’sEquations,ContinuityEquations,and LorentzForce 25

2.4PhasorFormofMaxwell’sEquations 27

2.5Continuity(Interface)Conditions 29

2.6PoyntingTheorem 30

2.7ElectromagneticWaveEquations 32

2.8PlaneWavePropagation 35

2.9HertzDipoleasaSimpleRadiationSource 37

2.9.1Determinationofthe Q-Factor 40

2.10WireAntennasofFiniteLength 41

2.10.1DipoleAntennas 42

2.10.2PocklingtonIntegro-DifferentialEquationforStraightThinWire 43 References 45

3VariationalMethodsinElectromagnetics 47

3.1AnalyticalMethods 47

3.1.1CapacityofInsulatedChargedSphere 47

3.1.2SphericalGroundingResistance 49

3.2VariationalBasisforNumericalMethods 51

3.2.1Poisson’sEquation 51

3.2.2ScalarPotentialIntegralEquation(SPIE) 52

3.2.3CorrelationBetweenVariationalPrincipleandWeightedResidual (Galerkin)Approach 53

3.2.4RitzMethod 53 References 54

4OutlineofNumericalMethods 57

4.1VariationalBasisforNumericalMethods 60

4.2TheFiniteElementMethod 61

4.2.1BasicConceptsofFEM – One-DimensionalFEM 62

4.2.2Two-DimensionalFEM 66

4.2.3Three-DimensionalFEM 73

4.3TheBoundaryElementMethod 77

4.3.1ConstantBoundaryElements 80

4.3.2LinearandQuadraticElements 83

4.3.3QuadraticElements 84

4.3.4NumericalSolutionofIntegralEquationsOverUnknownSources 85 References 86

PartIIDeterministicModeling 87

5WireConfigurations – FrequencyDomainAnalysis 89

5.1SingleWireinthePresenceofaLossyHalf-Space 89

5.1.1HorizontalDipoleAboveaHomogeneousLossyHalf-Space 89

5.1.1.1Integro-differentialEquationFormulation 90

5.1.1.2NumericalSolutionofthePocklingtonEquation 91

5.1.1.3ComputationalExample 95

5.1.2HorizontalDipoleBuriedinaHomogeneousLossyHalf-Space 96

5.1.2.1PocklingtonIntegro-differentialEquationFormulation 97

5.1.2.2NumericalSolutionofthePocklingtonEquation 98

5.1.2.3ComputationalExample 99

5.2HorizontalDipoleAboveaMulti-layeredLossyHalf-Space 100

5.2.1IntegralEquationFormulation 101

5.2.2RadiatedField 106

5.2.3NumericalResults 108

5.3WireArrayAboveaMultilayer 125

5.3.1Formulation 129

5.3.2NumericalProcedures 130

5.3.3ComputationalExamples 133

5.4WiresofArbitraryShapeRadiatingOveraLayeredMedium 150

5.4.1CurvedSingleWireinFreeSpace 154

5.4.2CurvedSingleWireinthePresenceofaLossyHalf-space 155

5.4.3MultipleCurvedWires 156

5.4.3.1NumericalSolutionProcedures 160

5.4.3.2ComputationalExamples 162

5.4.4ElectromagneticFieldCouplingtoArbitrarilyShapedAboveground Wires 166

5.4.4.1FormulationviaaSetofCoupledIntegro-differentialEquations 167

5.4.4.2NumericalSolutionofCoupledPocklingtonEquations 169

5.4.4.3ComputationalExample 170

5.4.5BuriedWiresofArbitraryShape 176

5.4.5.1Formulation 176

5.4.5.2NumericalProcedure 181

5.4.5.3ComputationalExamples 182

5.5ComplexPowerofArbitrarilyShapedThinWireRadiatingAbove aLossyHalf-Space 186

5.5.1TheoreticalBackground 189

5.5.2NumericalResults 193 References 202

6WireConfigurations – TimeDomainAnalysis 207

6.1SingleWireAboveaLossyGround 208

6.1.1CaseofPerfectlyConducting(PEC)GroundandDielectric Half-Space 213

6.1.2ModifiedReflectionCoefficientfortheCaseofanImperfect Ground 214

6.2NumericalSolutionofHallenEquationviatheGalerkin–Bubnov IndirectBoundaryElementMethod(GB-IBEM) 222

6.2.1ComputationalExamples 226

6.3ApplicationtoGround-PenetratingRadar 228

6.3.1TransientFieldduetoDipoleRadiationReflectedfromtheAir–Earth Interface 231

7.3.1TheoreticalBackground 318 x Contents

6.3.1.1NumericalEvaluationProcedure 232

6.3.1.2NumericalResults 234

6.3.2TransientFieldTransmittedintoaLossyGroundDuetoDipole Radiation 235

6.3.2.1NumericalEvaluationoftheTransmittedField 241

6.3.2.2NumericalResults 242

6.4SimplifiedCalculationofSpecificAbsorptioninHumanTissue 246

6.4.1CalculationofSpecificAbsorption 247

6.4.2NumericalResults 249

6.5TimeDomainEnergyMeasures 255

6.6TimeDomainAnalysisofMultipleStraightWiresaboveaHalf-Spaceby MeansofVariousTimeDomainMeasures 260

6.6.1TheoreticalBackground 261

6.6.1.1TimeDomainEnergyMeasuresandPowerMeasure 263

6.6.1.2RootMeanSquareValueofCurrentDistribution 263

6.6.2NumericalResults 264

6.6.2.1Configuration1 265

6.6.2.2Configuration2 267

6.6.2.3Configuration3 270

6.6.2.4Configuration4 270

6.6.2.5Configuration5 272

6.6.2.6Configuration6 277 References 280

7Bioelectromagnetics – ExposureofHumansinGHzFrequency Range 285

7.1AssessmentofSabinaPlanarSingleLayerTissue 286

7.1.1AnalysisofDipoleAntennainFrontofPlanarInterface 287

7.1.2CalculationofAbsorbedPowerDensity 290

7.1.3ComputationalExamples 291

7.2AssessmentofTransmittedPowerDensityinaSingleLayerTissue 295

7.2.1Formulation 296

7.2.2ResultsforCurrentDistribution 300

7.2.2.1ResultsforTransmittedField,VPD,andTPD 301

7.2.2.2DifferentDistancefromtheInterface 302

7.2.2.3DifferentAntennaLength 309

7.2.2.4DifferentFrequencies 316

7.3Assessmentof Sab inaMultilayerTissueModel 318

7.3.2Results 320

7.4AssessmentofTransmittedPowerDensityinthePlanarMultilayer TissueModel 325

7.4.1Formulation 325

7.4.2Results 327

7.4.2.1Two-LayerModel 327

7.4.2.2Three-LayerModel 329

7.4.2.3SkinDepthandSaturationDepth 333 References 337

8MultiphysicsPhenomena 339

8.1Electromagnetic-ThermalModelingofHumanExposuretoHF Radiation 340

8.1.1ElectromagneticDosimetry 340

8.1.2ThermalDosimetry 342

8.1.3ComputationalExamples 346

8.2Magnetohydrodynamics(MHD)ModelsforPlasma Confinement 348

8.2.1TheGrad-ShafranovEquation 348

8.2.1.1AnalyticalSolution 350

8.2.1.2AnalyticalResults 353

8.2.1.3SolutionbytheFiniteDifferenceMethod(FDM) 354

8.2.1.4SolutionbytheFiniteElementMethod(FEM) 356

8.2.1.5ComputationalExamples 358

8.2.2TransportPhenomenaModeling 359

8.2.2.1TransportEquations 361

8.2.2.2CurrentDiffusionEquationandEquilibriuminTokamaks 361

8.2.2.3FEMSolutionofCDE 364

8.2.2.4AnalyticalSolutionProcedure 367

8.2.2.5NumericalResults 368

8.3ModelingoftheSchrodingerEquation 370

8.3.1DerivationoftheSchrodingerEquation 371

8.3.2AnalyticalSolutionoftheSchrodingerEquation 372

8.3.3FDMSolutionoftheSchrodingerEquation 373

8.3.4FEMSolutionoftheSchrodingerEquation 374

8.3.5NeuralNetworkApproachtotheSolutionoftheSchrodinger Equation 375 References 381

PartIIIStochasticModeling 385

9MethodsforStochasticAnalysis 387

9.1UncertaintyQuantificationFramework 388

9.1.1UncertaintyQuantification(UQ)ofModelInputParameters 388

9.1.2UncertaintyPropagation(UP) 389

9.1.3MonteCarloMethod 391

9.2StochasticCollocationMethod 393

9.2.1ComputationofStochasticMoments 393

9.2.2InterpolationApproaches 394

9.2.3CollocationPointsSelection 396

9.2.4MultidimensionalStochasticProblems 397

9.2.4.1TensorProduct 397

9.2.4.2SparseGrids 398

9.2.4.3Stroud’sCubatureRules 399

9.3SensitivityAnalysis 402

9.3.1 “One-at-a-Time” (OAT)Approach 402

9.3.2ANalysisOfVAriance(ANOVA)-BasedMethod 403 References 404

10Stochastic –DeterministicElectromagneticDosimetry 407

10.1InternalStochasticDosimetryforaSimpleBodyModelExposedto Low-FrequencyField 408

10.2InternalStochasticDosimetryforaSimpleBodyModelExposedto ElectromagneticPulse 413

10.3InternalStochasticDosimetryforaRealisticThree-Compartment HumanHeadExposedtoHigh-FrequencyPlaneWave 417

10.4IncidentFieldStochasticDosimetryforBaseStationAntenna Radiation 423 References 430

11Stochastic –DeterministicThermalDosimetry 433

11.1StochasticSensitivityAnalysisofBioheatTransferEquation 434

11.2StochasticThermalDosimetryforHomogeneousHumanBrain 437

11.3StochasticThermalDosimetryforThree-CompartmentHuman Head 447

11.4StochasticThermalDosimetrybelow6GHzfor5GMobile CommunicationSystems 450 References 457

12Stochastic–DeterministicModelinginBiomedicalApplicationsof ElectromagneticFields 459

12.1TranscranialMagneticStimulation 460

12.2TranscranialElectricStimulation 466

12.2.1CylinderRepresentationofHumanHead 467

12.2.2AThree-CompartmentHumanHeadModel 469

12.2.3ANine-CompartmentHumanHeadModel 472

12.3Neuron’sActionPotentialDynamics 481

12.4RadiationEfficiencyofImplantableAntennas 488 References 498

13Stochastic–DeterministicModelingofWireConfigurationsinFrequency andTimeDomain 503

13.1Ground-PenetratingRadar 503

13.1.1TheTransientCurrentInducedAlongtheGPRAntenna 504

13.1.2TheTransientFieldTransmittedintoaLossySoil 508

13.2GroundingSystems 515

13.2.1TestCase#1:SoilAndLightingPulseParametersareRandom Variables 518

13.2.2TestCase#2:SoilandElectrodeParametersareRandomVariables 519

13.2.3TestCase#3:Soil,Electrode,andLightingPulseParametersareRandom Variables 520

13.3AirTrafficControlSystems 523

13.3.1RunwayCoveredwithSnow 526

13.3.2RunwayCoveredwithVegetation 529 References 530

14ANoteonStochasticModelingofPlasmaPhysicsPhenomena 535

14.1TokamakCurrentDiffusionEquation 535 References 543

Index 545

AbouttheAuthors

DraganPoljak (SeniorMember,IEEE)receivedthePh.D.degreeinelectrical engineeringfromtheUniversityofSplit,Croatia,in1996.Heiscurrentlyafull professorwiththeDepartmentofElectronicsandComputing,UniversityofSplit. HeisalsoinvolvedinITERPhysicsEUROfusionCollaborationandinthe CroatianCenterforExcellenceinResearchforTechnologySciences.Hehas publishedmorethan160journalsand250conferencepapersandauthoredsome books,e.g.twobyWiley,Hoboken,NJ,USA,andonebyElsevier,St.Louis,MO, USA.Hisresearchinterestsincludecomputationalelectromagnetics(electromagneticcompatibility,bioelectromagnetics,andplasmaphysics).FromMay2013to June2021,hewasamemberoftheBoardoftheCroatianScienceFoundation.He isamemberoftheEditorialBoardofEngineeringAnalysiswithBoundary Elements,MathematicalProblemsinEngineering,andIETScience,Measurement andTechnology.Hewasawardedseveralprizesforhisachievements,suchasthe URSIYoungScientistsAwardin1999,theNationalPrizeforSciencein2004,the CroatianSectionofIEEEAnnualAwardin2016,theTechnicalAchievement AwardoftheIEEEEMCSocietyin2019,andtheGeorgeGreenMedalfrom theUniversityofMississippiin2021.Heisactiveinafewworkinggroupsof theIEEE/InternationalCommitteeonElectromagneticSafety(ICES)Technology Committee95SC6EMFDosimetryModeling.

Anna Šušnjara receivedherPhDdegreeinelectricalengineeringfromthe UniversityofSplit,Croatia,in2021.Sheiscurrentlyapostdocresearcheratthe FacultyofElectricalEngineering,MechanicalEngineeringandNavalArchitecture,UniversityofSplit.Herresearchinterestsincludenumericalmodeling, uncertaintyquantification,andsensitivityanalysisincomputationalelectromagnetics.Dr. ŠušnjaraisinvolvedinITERphysicsEUROfusioncollaboration.From 2015to2021,shewasamemberofEUROfusionworkpackageforcodedevelopmentinEuropeanTransportSolver(ETS),whilefrom2021,shehasbeena memberofIFMIF-DONESproject.Dr. ŠušnjaraisamemberofIEEEandBIOEM

societies.ShecurrentlyservesasVicePresidentofIEEEEMCCroatianchapter.To date,Dr. Šušnjarahas(co)authored19journalandmorethan40conference papers.Sheservesasareviewerforsevenjournalsandtwoconferences. Dr. Šušnjaragavelecturesaboutcomputationalelectromagneticsatseveral Europeanacademicinstitutionsandtutorialsatinternationalscientific conferences.Shewasawardedseveralprizesforherachievements.In2023,she receivedtheURSIYoungScientistAwardatthe35thURSIGASSinSapporo, Japan.ShewasalsoawardedtheNationalPrizeforScienceandtheUniversity ofSplitPrizeforSciencein2021and2022,respectively.In2016,shereceived thebestposterpaperawardatBioEMconferenceinGhent,Belgium,andspent onemonthatPolitecnicodiTorinoasSPI2016YoungInvestigatorTraining Programawardee.

Preface

Mostofthecomputationalmodelsusedinengineeringelectromagneticsare deterministicinnature,i.e.onedealswithanexactsetofinputdatainasense ofeithermaterialpropertiesorgeometry.However,inmanyscenarios,there areproblemswithuncertaintyintheinputdatasetassomesystemproperties arepartlyorentirelyunknown.Therefore,astochasticapproachisrequiredto determinetherelevantstatisticsaboutthegivenresponses,thusprovidingthe assessmentoftherelatedconfidenceintervalsinthesetofnumericalresults obtainedasanoutputofagivendeterministicmodel.Ofparticularinterestare nonintrusivestochasticapproachesthatcouldbeeasilycoupledwithwidelyused well-establisheddeterministicmodels,byefficientlypostprocessingnumerical resultsarisingfromdeterministicmodels.

Thegoalofthisbookistodemonstratetheefficiencyofparalleluseofdeterministicandstochasticmodelsfeaturingcombinationofwell-establishedanalytical/ numericalmethodswithstochasticanalysistechniques.Thenonintrusivestochasticapproachpresentedinthebookcanbereadilyincorporatedintomajorityof computationalelectromagnetics(CEM)modelswithlittleeffortaimingtoquickly provideamoredetailedinsightintotherelationshipbetweentheinputparameters andtheoutputofinterest.

Avarietyofexamplesthroughoutthebookarepresentedtoclearlydemonstrate theefficiencyofdeterministic-stochasticapproachesinCEMmodels,andareferencelistisgivenattheendofeachchapter.Thebookprovidescomputational examplesillustratingsuccessfulapplicationofstochasticcollocation(SC)techniqueintheareasofground-penetratingradars(GPRs),groundingsystems,radiationfrom5Gsystems,humanexposuretoelectromagneticfields,transcranial magneticstimulation(TMS),transcranialelectricstimulation(TES),transient analysisofburiedwires,anddesignofinstrumentallandingsystem(ILS).

Thebookisdividedintothreeparts.PartIoutlinesthefundamentalsof classicalelectromagneticsandbasicsofnumericalmodeling.PartIIdealswith deterministicmodelspertainingtoanalysisofthinwiresinbothfrequencyand

xviii Preface

timedomains,humanexposuretoelectromagneticfieldsinGHzfrequencyrange, andmultiphysicsphenomenasuchasplasmaconfinementintokamak.Finally, PartIIIisentirelydevotedtostochasticmodelingcoveringadetaileddescription ofSCmethodandsensitivityanalysis.PartIIIalsocontainsanumberofapplicationsarisingfromelectromagnetic-thermaldosimetry,biomedicalapplications, electromagneticcompatibility(EMC),GPRs,groundingsystems,airtrafficcontrol systems,andtransportphenomenaintokamak.

Thematerialgiveninthisbookisdominantlybasedonpaperspreviouslypublishedbytheauthors,suitablymodifiedtopresenttheresultsinauniformdesign andformat.Additionalrelatedmaterialisplannedtobepreparedaimingtocompletesomedetailsandextensionsofthepublishedwork.Anextensivereference listofotherrelatedworkisalsoincluded.Thegoalistoprovideareferenceon thedeterministic-stochasticmodelingindifferentareasofCEMcoveringfrequencyandtimedomainanalysesofwireantennasandtheirvariousapplications, EMC,computationalmodelsoflinesandcables,lightning,groundingsystems, GPRs,magnetohydrodynamics,bioelectromagnetics,andbiomedicalapplications ofelectromagneticfields.

Asthebookcoversmultidisciplinaryphenomena,suchaselectromagneticthermaldosimetry,magnetohydrodynamics,andplasmaphysics,theauthors hopeitcouldbeofinteresttomultidisciplinaryresearchers,engineers,physicists, andmathematicians.

TheAuthors Split,Croatia,2023

SomeFundamentalPrinciplesinFieldTheory

LeastActionPrincipleinElectromagnetics

Lawsofnaturearegovernedbyfollowingfundamentalprinciples – theaction principle,locality,Lorentzinvariance,andgaugeinvariance[1].Hamilton’sprinciple,ortheleastactionprinciple,isoriginallydevelopedforclassicalmechanics statingthataparticle,amongallofthetrajectoriesbetweenfixedtimeinstants t1 and t2,followsthepathwhichminimizesthe action.Actionisdefinedastimeintegralofthedifferencebetweenthekineticenergyandpotentialenergy,respectively.Thus,Hamilton’sprinciplesomehowrequiresthetimeaveragesofthe kineticenergyandpotentialenergytodistributeasequallyaspossible(equipartition)[2].Inclassicalmechanics,Hamilton’sprincipleandNewton’ssecondlaw representequivalentformulations.

AnextensionofHamilton’sprinciplefromclassicalmechanicstoclassicalelectromagneticscanbeundertakenstartingwiththeanalysisofthemotionofsingle chargedparticle[3].NextstepistoconstructaLagrangianfortheelectromagnetic fieldbyextendingtheLagrangianpertainingtoclassicalmechanics.FromthecorrespondingLagrangians,featuringNoether’stheoremandgaugeinvariance,itis possibletoderiveequationofcontinuityforthecharge,Lorentzforce,and Maxwell’sequations,whichcanbefoundelsewhere,e.g.[2–5].

Generally,whenafunctionalisextremal,Noether’stheoremyieldstheconservationlaw.Thus,invarianceofthesystemunderatimetranslationresultsinthe energyconservation.Itisalsoworthnotingthatspacetranslationinvariance correspondstotheconservationoflinearmomentum,rotationinvariancecorrespondstotheconservationofangularmomentum,whilegaugeinvarianceyields thechargeconservation[1,2].

Thesederivationsarerecentlyreviewedin[6–8].

ThischapterfirstdealswithderivationofcontinuityequationandLorentz force,andaderivationofMaxwell’sequationsfromtheelectromagneticfield

DeterministicandStochasticModelinginComputationalElectromagnetics:IntegralandDifferential EquationApproaches,FirstEdition.DraganPoljakandAnna Šušnjara.

©2024TheInstituteofElectricalandElectronicsEngineers,Inc. Published2024byJohnWiley&Sons,Inc.

4 1LeastActionPrincipleinElectromagnetics

functionaliscarriedout.Finally,avariationalbasisofnumericalsolution methodsinelectromagneticsisdiscussed.

1.1HamiltonPrinciple

Hamiltonvariationalprinciplerepresentsnotonlythebasisofmodernanalytical dynamicsbutalsoofuniversalphysicallaws,i.e.fundamentallawsofclassical physicscanbeunderstoodintermsofaction.

ThissectionfirstdealswithHamilton’svariationalprincipleinmechanics, Newton’sequationofmotion,andNoether’stheorem.Thenthevariational principleinelectromagneticsisdiscussed.

Forsimplicity,asystemwithonedegreeoffreedomrepresentedbyageneralized coordinate q isconsideredtogetherwithrelatedfunctionofposition,velocity,and time Lq, q, t where q denotesthetimederivative.

Thetaskistodeterminehowapointparticleshouldmoveinthisonedimensionalspacesothatthetimeintegralof L isminimizedcomparedwith theintegralovertheconceivablepathsbetweenthesamestartingandendpoints, asdepictedinFig.1.1.Thesolutionisgivenbystating q asafunctionoftime q = q(t).

Tocompareallpathshavingthesamestartingandendpoints,thevariationof function q iszeroatbothends[1–4]

i.e.allalternativesstartatinstant t1 andarrivetogetheratinstant t2.

Theminimumconditionisthengivenbyafunctional F expressedintermsofthe integral[1–4]

Figure1.1 Thevariedfunction q(t).

Inclassicalmechanics,function L isreferredtoasLagrangianandisexpressedas L = W kin W pot

3 where Wkin and Wpot arethekineticenergyandpotentialenergy,respectively. Accordingtothecalculusofvariation,thefunctionalapproachesminimumvalue

whenitsvariationvanishes,i.e.:

whichcanalsobewrittenas

Therefore,function q(t)minimizesfunctional(1.2)or(1.4),respectively,andit follows

Forthesimplestcasegivenby Lq, q, t thevariationoffunction L isgivenby

Andbyperformingsomefurthermathematicalmanipulation,onereadily obtains

As δq =0attheendsofthepath,thesecondtermattheright-handsideautomaticallyvanishes. 1.1HamiltonPrinciple 5

Furthermore,accordingtothe fundamentallemma ofvariationalcalculus[4] thefirstintegraltermattheright-handsideof(1.9)vanishesifthefollowingconditionissatisfied

ItisworthnotingthatthesecondorderdifferentialEq.(1.10)relatestheposition q forthetime t,andalsodeterminesthetruepathofthesystemwhentwoend positionsandtimesaregiven.ThisequationisknownasLagrange–Eulerequation ofmotion[1,2].

Inthecaseofasinglefunctionofmultiplevariables, Lqk , qk , ξ, t (1.10)becomes

Finally,iffewfunctionsofmultipleindependentvariables Lqk

considered,itfollows

which,forexample,pertainstothree-dimensionalproblemsinelectromagnetics.

Hamiltonvariationalprinciplecanbeconsideredagenerallawnotonlyfor particledynamicsbutalsoforthedynamicsofcontinuousmaterials.

Anextensiontothree-dimensionalproblemsincontinuousmaterials,i.e.for physicalfields,thevariationalprinciplecorrespondingtoEq.(1.6)isgivenby

where Ld istheso-calledLagrangedensitydefinedas

andhasaunitofenergypervolume.

Itisworthnotingthatthevariationalprincipleisaninvariantforcoordinate transformations[1].

1.2Newton’sEquationofMotionfromLagrangian 7

1.2Newton ’sEquationofMotionfromLagrangian

Lagrangianinclassicalmechanicsforaparticlewithmass m withdisplacement r

attime tL0 r , dr dt , t isoftheform

where dr dt istheparticlevelocityand W pot r standsforpotentialenergy(notdue toelectromagneticfield).

Thecorrespondingaction F0 relatedtoLagrangian(1.15)isgivenbyintegral

Nowvaryingtheaction(1.16)

Itcanbewrittenas:

anditfollows:

whichsimplygives:

Ifmass m isregardedasconstantquantity,right-handsideof(1.21)represents thecomponentsofmechanicalforce:

Asthemechanicalforceisdefinedasanegativegradientofthepotentialenergy

onesimplyobtainsasetofNewton’sequationsofmotion

wheretheright-handsideof(1.24)representsaforceactingontheparticle.

1.3Noether’sTheoremandConservationLaws

Therearephysicalquantitiesthatdonotchangethroughoutthetimedevelopment ofphysicalsystems.Thesequantitiesarestatedtobeconservedundercertainconditionswhicharegovernedbyconservationlaws.Itcanbeshownthatconservationlawsareaconsequenceofthesymmetrypropertiesofaphysicalsystem (invariancepropertiesofasystemunderagroupoftransformations[2,9]).The symmetrypropertiesofthesystemandconservationlawsareconnectedwith Noether’stheorem,e.g.[2,9].

Let uk(x)(k =1,2,…n)beasetofdifferentiablefunctionsoftheindependentvariable x andlet vk(x)bethefirstderivatives,i.e.itcanbewrittenas

NowLagrangian L isdefinedasafunctionof x,and n functionsof uk and n functionsof vk

Ifoneconsidersaninfinitesimaltransformation T

1.3Noether’sTheoremandConservationLaws 9

Furthermore,under T,oneconsequentlyhas:

Nowassumingthefunctional S = Ω Ldx

tobeinvariantunder T sothatthetransformation(1.30)whichmapstheinterval Ω into Ω doesnotchange,itfollows

Performingsomemathematicalmanipulations,oneobtainsthefollowing expression

Finally,Noether’stheoremstatesthatiffunctional S isinvariantundertheinfinitesimalone-parametergroupoftransformations T,thenthesetof n equations

simplygives

i.e.itcanbewrittenas

namely,theexpressionisindependentof x variable.

Ontheotherhand,Newton’sequationofmotioncanbeexpressedintermsof Lagrangianbeingafunctionofthegeneralizedcoordinates qk (k =1,2, …, n)and theirderivatives,i.e.

whichisequivalenttotherequest

Furthermore,Hamilton’sprinciple(theleastactionprinciple),whichstates thatsolutions qk ofthesystemofmasspointsforwhichtheintegralin(C6)is anextremumcontrarytoallfunctions qk

Ifonecompares(1.34)with(1.35)with δx =0and δuk =0,itfollowsthatthese statementsareidenticalNamely,itcanbewrittenas

i.e.theleft-handsideisaconstantofmotion.

Asanytimetranslationisexpressedas δt 0and δqk =0,thefollowingexpressionisobtained

statingthatHamiltonian H whichisequaltothetotalenergyofthesystem(sumof kineticenergyandpotentialenergy)isconstantofthemotion.

Inotherwords,timetranslationsymmetrycorrespondstotheconservationof energy.Therefore,Noether’stheoremstatesthatforasystemwithtimetranslation symmetry,theenergyofthesystemisconserved.

TheenergyconservationcanbedemonstratedbyusingLagrangianand Hamiltonianinclassicalmechanicsforone-dimensionalcase.

Thus,Lagrangianisoftheform

whileHamiltonianofthesystem,accordingto(1.40),isthen

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.