Instant download Partition of unity methods: the extended finite element method st¿phane bordas pdf

Page 1


of Unity Methods: The

Visit to download the full and correct content document: https://ebookmass.com/product/partition-of-unity-methods-the-extended-finite-elemen t-method-stphane-bordas/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Extended finite element and meshfree methods 1st

Edition Timon Rabczuk

https://ebookmass.com/product/extended-finite-element-andmeshfree-methods-1st-edition-timon-rabczuk/

Finite Element Method: Physics and Solution Methods

Sinan Muftu

https://ebookmass.com/product/finite-element-method-physics-andsolution-methods-sinan-muftu/

Introduction to the Finite Element Method 4E 4th

Edition Reddy

https://ebookmass.com/product/introduction-to-the-finite-elementmethod-4e-4th-edition-reddy/

Computational Methods for Fracture in Porous Media: Isogeometric and Extended Finite Element Methods 1st Edition Renã© De Borst

https://ebookmass.com/product/computational-methods-for-fracturein-porous-media-isogeometric-and-extended-finite-elementmethods-1st-edition-rena-de-borst/

A First Course in the Finite Element Method 6 Enhanced SI Edition Daryl L. Logan

https://ebookmass.com/product/a-first-course-in-the-finiteelement-method-6-enhanced-si-edition-daryl-l-logan/

Application of Control Volume Based Finite Element Method (CVFEM) for Nanofluid Flow and Heat Transfer 1st Edition Mohsen Sheikholeslami

https://ebookmass.com/product/application-of-control-volumebased-finite-element-method-cvfem-for-nanofluid-flow-and-heattransfer-1st-edition-mohsen-sheikholeslami/

The Inclusion-Based Boundary Element Method (iBEM) Huiming Yin

https://ebookmass.com/product/the-inclusion-based-boundaryelement-method-ibem-huiming-yin/

Static and Dynamic Analysis of Engineering Structures: Incorporating the Boundary Element Method Levon G. Petrosian

https://ebookmass.com/product/static-and-dynamic-analysis-ofengineering-structures-incorporating-the-boundary-element-methodlevon-g-petrosian/

Finite element analysis-aided seismic behavior examination of modular underground arch bridge Toan Van Nguyen

https://ebookmass.com/product/finite-element-analysis-aidedseismic-behavior-examination-of-modular-underground-arch-bridgetoan-van-nguyen/

PartitionofUnityMethods

PartitionofUnityMethods

StéphaneP.A.Bordas

UniversityofLuxembourg,Luxembourg,UK

AlexanderMenk

RobertBoschGmbH,Germany

SundararajanNatarajan

Indian InstituteofTechnologyMadras,India

Thiseditionfirstpublished2024

© 2024JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmitted,inanyformorbyanymeans, electronic,mechanical,photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowtoobtainpermissiontoreuse materialfromthistitleisavailableat http://www.wiley.com/go/permissions

Therightofeditornamestobeidentifiedastheauthorsoftheeditorialmaterialinthisworkhasbeenassertedinaccordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO198SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationaboutWileyproductsvisitusat www.wiley.com

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand.Somecontentthatappearsinstandardprintversions ofthisbookmaynotbeavailableinotherformats.

Trademarks: WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc.and/oritsaffiliatesintheUnited Statesandothercountriesandmaynotbeusedwithoutwrittenpermission.Allothertrademarksarethepropertyoftheirrespectiveowners. JohnWiley&Sons,Inc.isnotassociatedwithanyproductorvendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty

Whilethepublisherandauthorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentationsorwarrantieswithrespectto theaccuracyorcompletenessofthecontentsofthisworkandspecificallydisclaimallwarranties,includingwithoutlimitationanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentatives,writtensales materialsorpromotionalstatementsforthiswork.Thisworkissoldwiththeunderstandingthatthepublisherisnotengagedinrendering professionalservices.Theadviceandstrategiescontainedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaspecialist whereappropriate.Thefactthatanorganization,website,orproductisreferredtointhisworkasacitationand/orpotentialsourceoffurther informationdoesnotmeanthatthepublisherandauthorsendorsetheinformationorservicestheorganization,website,orproductmay provideorrecommendationsitmaymake.Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappeared betweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

AcataloguerecordforthisbookisavailablefromtheLibraryofCongress

HardbackISBN:9780470667088;ePubISBN:9781118535882;ePDFISBN:9781118535899

CoverDesign:Wiley

CoverImage:CourtesyofAuthors

Setin9.5/12.5ptSTIXTwoTextbyIntegraSoftwareServicesPvt.Ltd,Pondicherry,India

Contents

ListofContributors xi

Preface xiii

Acknowledgments xv

1Introduction 1

1.1TheFiniteElementMethod 2

1.2SuitabilityoftheFiniteElementMethod 9

1.3SomeLimitationsoftheFEM 11

1.4TheIdeaofEnrichment 16

1.5Conclusions 19 References 21

2AStep-by-StepIntroductiontoEnrichment 23

2.1HistoryofEnrichmentforSingularitiesandLocalizedGradients 25

2.1.1Enrichmentbythe“MethodofSupplementarySingularFunctions” 25

2.1.2FiniteElementwithaSingularity 31

2.1.3PartitionofUnityEnrichment 33

2.1.4MeshOverlayMethods 35

2.1.5EnrichmentforStrongDiscontinuities 36

2.2WeakDiscontinuitiesforOne-dimensionalProblems 38

2.2.1ConventionalFiniteElementSolution 41

2.2.2eXtendedFiniteElementSolution 44

2.2.3eXtendedFiniteElementSolutionwithNodalSubtraction/Shifting 54

2.2.4Solution 55

2.3StrongDiscontinuitiesforOne-dimensionalProblem 58

2.4Conclusions 61 References 61

3PartitionofUnityRevisited 67

3.1Completeness,Consistency,andReproducingConditions 67

3.2PartitionofUnity 68

3.3Enrichment 69

3.3.1DescriptionofGeometryofEnrichmentFeatures 71

3.3.2ChoiceofEnrichmentFunctions 75

3.3.3Impositionofboundaryconditions 80

3.3.4NumericalIntegrationoftheWeakForm 86

3.4NumericalExamples 86

3.4.1One-DimensionalMultipleInterface 86

3.4.2Two-DimensionalCircularInhomogeneity 89

3.4.3InfinitePlatewithaCenterCrackUnderTension 91

3.5Conclusions 95 References 96

4AdvancedTopics 99

4.1SizeoftheEnrichmentZone 99

4.2NumericalIntegration 100

4.2.1PolarIntegration 100

4.2.2EquivalentPolynomialIntegration 101

4.2.3ConformalMapping 102

4.2.4StrainSmoothinginXFEM 104

4.3BlendingElementsandCorrections 108

4.3.1BlendingBetweenDifferentPartitionsofUnity 108

4.3.2InterpolationErrorinBlendingElements 109

4.3.3AddressingBlendingPhenomena 113

4.4PreconditioningTechniques 116

4.4.1TheFirstPreconditionerProposedfortheXFEM 117

4.4.2AdomainDecompositionPreconditionerfortheXFEM 117 References 123

5Applications 125

5.1LinearElasticFractureinTwoDimensionswithXFEM 125

5.1.1InclinedCrackinTension 126

5.1.2ExampleofaCrackInclusionInteractionProblem 126

5.1.3EffectoftheDistanceBetweentheCrackandtheInclusion 127

5.2NumericalEnrichmentforAnisotropicLinearElasticFractureMechanics 130

5.3CreepandCrackGrowthinPolycrystals 133

5.4FatigueCrackGrowthSimulations 138

5.5RectangularPlatewithanInclinedCrackSubjectedtoThermo-MechanicalLoading 140 References 142

6Recovery-BasedErrorEstimationandBoundinginXFEM 145

6.1Introduction 145

6.2ErrorEstimationintheEnergyNorm.TheZZErrorEstimator 147

6.2.1TheSPRTechnique 148

6.2.2TheMLSApproach 149

6.3Recovery-basedErrorEstimationinXFEM 151

6.3.1TheSPR-CXTechnique 151

6.3.2TheXMLSTechnique 161

6.3.3TheMLS-CXTechnique 163

6.3.4OntheRolesofEnhancedRecoveryandAdmissibility 169

6.4RecoveryTechniquesinErrorBounding.PracticalErrorBounds. 174

6.5ErrorEstimationinQuantitiesofInterest 179

6.5.1Recovery-basedEstimatesfortheErrorinQuantitiesofInterest 179

6.5.2TheStressIntensityFactorasQoI:ErrorEstimation 181 References 187

7 ��-FEM:AnEfficientSimulationToolUsingSimpleMeshesforProblemsinStructure MechanicsandHeatTransfer 191

7.1Introduction 191

7.2LinearElasticity 194

7.2.1DirichletConditions 195

7.2.2MixedBoundaryConditions 199

7.3LinearElasticitywithMultipleMaterials 204

7.4LinearElasticitywithCracks 208

7.5HeatEquation 212

7.6ConclusionsandPerspectives 214 References 215

8eXtendedBoundaryElementMethod(XBEM)forFractureMechanicsandWaveProblems 217

8.1Introduction 217

8.2ConventionalBEMFormulation 218

8.2.1Elasticity 219

8.2.2HelmholtzWaveProblems 222

8.3ShortcomingsoftheConventionalFormulations 226

8.4PartitionofUnityBEMFormulation 228

8.5XBEMforAccurateFractureAnalysis 228

8.5.1WilliamsExpansions 228

8.5.2LocalXBEMEnrichmentatCrackTips 229

8.5.3Results 231

8.5.4AuxiliaryEquationsandDirectEvaluationofStressIntensityFactors 232

8.5.5FractureinAnisotropicMaterials 234

8.5.6Conclusions 235

8.6XBEMforShortWaveSimulation 235

8.6.1BackgroundtotheDevelopmentofPlaneWaveEnrichment 235

8.6.2PlaneWaveEnrichment 236

8.6.3EvaluationofBoundaryIntegrals 238

8.6.4CollocationStrategyandSolution 238

8.6.5Results 239

8.6.6ChoiceofBasisFunctions 240

8.6.7ScatteringfromSharpCorners 242

8.7ConditioninganditsControl 243

8.8Conclusions 245 References 245

9CombinedExtendedFiniteElementandLevelSetMethod(XFE-LSM)for FreeBoundaryProblems 249

9.1Motivation 249

9.2TheLevelSetMethod 250

9.2.1TheLevelSetRepresentationoftheEmbeddedInterface 250

9.2.2TheBasicLevelSetEvolutionEquation 251

9.2.3VelocityExtension 252

9.2.4LevelSetFunctionUpdate 254

9.2.5CouplingtheLevelSetMethodwiththeXFEM 255

9.3BiofilmEvolution 256

9.3.1Biofilms 257

9.3.2BiofilmModeling 257

9.3.3Two-DimensionalModel 258

9.3.4SolutionStrategy 260

9.3.5VariationalForm 261

9.3.6EnrichmentFunctions 262

9.3.7InterfaceConditions 263

9.3.8InterfaceSpeedFunction 264

9.3.9AccuracyandConvergence 265

9.3.10NumericalResults 266

9.4Conclusion 269 Acknowledgment 269 References 269

10XFEMfor3DFractureSimulation 273

10.1Introduction 273

10.2GoverningEquations 274

10.3XFEMEnrichmentApproximation 275

10.4VectorLevelSet 280

10.5ComputationofStressIntensityFactor 282

10.5.1BrittleMaterial 282

10.5.2DuctileMaterial 286

10.6NumericalSimulations 288

10.6.1ComputationofFractureParameters 288

10.6.2FatigueCrackGrowthinCompactTensionSpecimen 297

10.7Summary 300 References 300

11XFEMModelingofCrackedElastic-PlasticSolids 303

11.1Introduction 303

11.2ConventionalvonMisesPlasticity 303

11.2.1ConstitutiveModel 303

11.2.2AsymptoticCrackTipFields 305

11.2.3XFEMEnrichment 307

11.2.4NumericalImplementation 308

11.2.5RepresentativeResults 309

11.3StrainGradientPlasticity 312

11.3.1ConstitutiveModel 313

11.3.2AsymptoticCrackTipFields 314

11.3.3XFEMEnrichment 316

11.3.4NumericalImplementation 317

11.3.5RepresentativeResults 319

11.4Conclusions 323 References 324

12AnIntroductiontoMultiscaleanalysiswithXFEM 329

12.1Introduction 329

12.1.1TypesofMultiscaleAnalysis 329

12.2MolecularStatics 330

12.2.1AtomisticPotentials 332

12.2.2Asimple1DHarmonicPotentialExample 333

12.2.3TheLennard-JonesPotential 335

12.2.4TheEmbeddedAtomMethod 335

12.3HierarchicalMultiscaleModelsofElasticBehavior–TheCauchy-BornRule 336

12.4CurrentMultiscaleAnalysis–TheBridgingDomainMethod 338

12.5TheeXtendedBridgingDomainMethod 340

12.5.1SimulationofaCrackUsingXFEM 342

References 344

Index 345

ListofContributors

StéphaneCotin UniversitedeStrasburg,Strasburg France

RavindraDuddu SchoolofEngineering,VanderbiltUniversity Nashville,USA

MichelDuprez UniversitedeStrasburg,Strasburg France

OctavioAndrésGonzález-Estrada EscueladeIngenieríaMecánicaColombia

JuanJoséRódenasGarcía UniversidadPolitecnicaDeValencia Valencia,Spain

RobertGracie UniversityofWaterloo,Ontario,Canada

VanessaLleras IMAG,UnivMontpellier,CNRS,Montpellier,France

AlexeiLozinski LaboratoiredeMathématiques,Universitéde Franche-Comté,BesançonCedex,France

EmilioMartínez-Pañeda ImpericalCollege,London,UK

IndraVirSingh IndianInstituteofTechnologyRoorkee Uttarakhand,India

JonTrevelyan DurhamUniversity,Durham,UK

KillianVuillemot LaboratoiredeMathématiques,Universitéde Franche-Comté,BesançonCedex,France

Preface

Thisbookhasbeenamovingtargetforthepast13years(2009–2022).Wearedelightedtoseeitsfirstedition published.Wetellthestoryofextensionstothefiniteelementmethodwhicharenowgloballyaccepted,andimplementedinindustrialsimulationsoftware.Thebookreliesontheexpertiseoftheauthorsandborrowsadditional know-howandexperiencefromchapterscontributedfromleadingexpertsinrelatedmethods.Thismakesthis bookthemostcompleteaccountofenrichmentmethods,bothinfiniteelementsandboundaryelementmethods. Wealsodiscussthecriticallyimportanttopicoferrorestimationandadaptivityaswellaspracticalapplications.

Thisbookhasalongandcomplexhistory,typicalofacademicresearch.Theideaforthebookwasbornaround 2007,whenAlexanderMenk,thenfundedbyBoschGmbH,wasaPhDstudentwithStéphaneBordasinGlasgow. Theoriginalideawastofocusontheextendedfiniteelementmethod,butbecamealotmoreambitiousasthe authorsinvestigatedotherdiscretizationmethods,industrializedtheirwork,andcollaboratedwithotherresearch groups.

Westartbyanintroductionontheoriginofenrichedmethods,startingwithglobalenrichmentoffiniteelement methodsorspecializedenrichments(e.g.forfracturemechanics),introducedinthe1970s.Weexplainhowlocal enrichmentmethodstookprecedence,withtheintroductionofpartitionofunitymethodsinthe1990s.Wegive detailson apriori errorestimates(Cea’slemma),toexplainhowenrichmentpalliateslimitationsofpolynomial approximationsofnon-smoothsolutions.

Bystartingwiththenotionofpartitionofunity,wemotivatehowarbitraryfunctionscanbeexactlyreproduced bytheapproximationspacebymultiplyingthisfunctionwithapartitionofunity.Wecomparethisapproachto othermethods,putforwardwithinthecontextofmeshfreemethods,suchasintrinsicenrichmentofmovingleast squares.

Enrichmenttechniquesrequirespecialtreatmentstosupportthegeneralityoftheenrichmentfunctionsused, whicharenotnecessarilycontinuous,norevenpolynomial.Wethereforediscussandcomparedifferentoptions fornumericalintegration,indetail.Thelocalityofenrichmentimpliestheexistenceofinterfacesbetweenenriched andnon-enrichedregions,withinthedomainwhichcanleadtodecreasedoptimalityinconvergencerates,inaccuracies,andspuriousoscillationsinthesolutionclosetotheinterface.Wedescribepossibilitiestoovercomethese difficulties.

Aftertacklingtheseadvancedtopics,wediscussawidevarietyofapplicationsofenrichmentschemes,including fracturemechanics,treatmentofheterogeneities,andboundarylayers.

Inordertotacklespecialtopics,weaskedexpertsinfreeboundaryproblems, aposteriori errorestimation, nonlinearmaterialmodeling,fracturesimulations,andmultiscalemethodstoprovidethereaderwithup-to-date informationonsuchimportantareasrelatedtopartitionofunityenrichment.Thebookhasachapteronanexcitingtopicrelatedtotheenrichedboundaryelementmethodforfractureandwavepropagation.Thebookendswith achapteronanexcitingtopicrelatedtomultiscalemodelingoffracture.

ThisbookisdedicatedtoourteachersandProfessors.StéphaneBordasthinksinparticularaboutMonsieur Martin(mathteacheratage10and11),MadameJanuel(mathteacheratage16),andMadameGoubet(math teacherinpreparatoryclasses),aswellasMonsieurCarsique(mathteacherinpreparatoryclasses).But,aswhen oneteaches,twolearn,thisbookisalsodedicatedtoourstudents,inparticularourPhDstudents,andtoourteamat large,whoallcontributedstronglytooureducationthroughtheirownwork,research,questionings,philosophical orotherwise.WealsothankourmentorsProfessorTedBelytschko,NenadBićanić,BhushanKarihaloo,Brian Moran,andChrisPearce.

Acknowledgments

Writingthisbookonthepartitionofunitymethodshasbeenanultramarathon,andasalong-distancerunner, Irealizethepoweroftakingsmallsteps.Iwouldliketoexpressmyheartfeltgratitudetotheindividualsand organizationswhohavesupportedmethroughoutthis15-yearjourney.

Firstandforemost,Iextendmyappreciationtomymentorsandeducatorswhoignitedmypassionforexcellence andinstilledinmetheimportanceofunderstandingtheintricatedetailsofanyfield.IamgratefultoMonsieur Martin,MadameJanuel,andMadameGoubetfortheirguidanceduringmyformativeyearsatLycéeSaintLouis inParis.Theyshowedmethebeautythatliesinmasteryandtheendlessquestforknowledge.BrianMoran,my PhDadvisor,playedapivotalrolebybelievinginmeandintroducingmetothefieldofcomputationalmechanics, particularlysolidmechanics.Hisunwaveringsupportandguidanceshapedmycareer.

ThelateTedBelytschkoremainsacherishedrolemodelwhoseleadershipandinfluencecontinuetoinspireme.I fondlyremembertheFridaygroupmeetingsatNorthwesternUniversity.BhushanKarihaloo’strustinmyabilities andhisdecisiontoentrustmewiththeleadershipoftheInstituteofMechanicsandAdvancedMaterialsinCardiff wereinstrumentalinmyprofessionalgrowth.Withouthissupport,ourachievementswouldhavebeendelayed significantly.Thankyouforhelpingmediscovermyinnerpotential.Iextendmygratitudetothehundredsofcoauthorsonourresearchpaperswhohaveenrichedmyunderstandingofdiverseresearchareas.Specialthanksgo tomyPhDstudentswhoplacedtheirtrustinmeandmyresearchgroup.Theyshowedmethat“whenoneteaches, twolearn.”Inparticular,IthankNguyenVinhPhu,myfirstMaster’sStudent,withwhomIjustco-signedabook onthematerialpointmethod.

IthankSundararajanNatarajanwhohasconsistentlyshowedmealternatewaysintolifeandwithwhomIhad longwalks,busrides,anddiscussionsinGlasgow,Cardiff,andChennai.IalsothankAlexMenk,withwhom SundararajanandIco-signthisbook.Alexwasalwaysanexampleofpragmatismmixedwithmathematicalrigor. Myheartfeltthanksgotothefundingorganizations,includingtheEU,EPSRC,andFNR(Luxembourg),for providingover€25millioninfundingforourresearch.Iamgratefultotheuniversitiesthattrustedme,including theUniversityofGlasgow,EPFL,CardiffUniversity,andespeciallytheUniversityofLuxembourg,whichallowed metoflourishattheheartofEurope.

Iwouldliketoexpressmydeepappreciationtomychildren,Iphigénie,Augustin,Anatole,andOscarBordas, whohavebeenconstantsourcesofinspiration.Eachofyouhasauniquequalitythatremindsmeofthebeauty andeleganceinmathematics,science,andknowledge.Iphigénie,yourgrowthmindset,yourgrit,competitiveness, andhumilityinthefaceofcomplexityinspiremedaily.Augustin,yourcamaraderie,simplicity,andcommitment toauthenticityandbeautyremindmeofwhattrulymatters.Anatole,yourgoodhumor,linguisticprowess,your drivetothrive,andyourunwaveringpositivesupporthavebeenmypillars.Oscar,yourperpetualoptimism,love formathematics,chess,andlogicalongwithyourinfectiouspositivitybrighteneveryinstantofmyday.Iamalso gratefultotheirmother,LaurelleDemaurex,forhersupportduringtheearlyyearsofmyresearchgroupandto

Acknowledgments

helpmebringoutthebestofmyselfbychallengingmeinwaysIdidnotanticipateIwouldbechallenged.Ialso thankherfather,Marc-OlivierDemaurex,forshowingmetheimportanceofreadingbetweenthelines.Ialso thankBeverlyJohnstonfordailyremindersofthepoweroflogicandsoundreasoningoversophism.

Finally,Ithankmyparents(PierreBordasandChristianeRenault)andgrandparents(RaymondRenault,Lucette Dusservaix,SuzanneLebobe,andAndréBordas)fortheirunwaveringsupportandforintroducingmetotheworld ofhardwork,mathematics,andscience.TheywerethebestpacersIcouldhavehopedforintheraceoflife.Iwill neverforgettheadvicegivenbymygrandfatherRaymond,hisgenerosity,harmony,strength,andpositivitywhich continuetolivewithinusandwithinmysonOscar,whobearshisname.Asaconclusion,Ileaveyouwitha profoundSufistorythathasresonatedwithmethroughoutmyjourney:“Youseeinpeoplewhatyouyourselfare. Peoplearethesameeverywhere.Therealproblemisaboutyou.Rememberthis.”

Inourpursuitofknowledgeandexcellence,weoftenlookoutwardforanswersandinspiration.However,this storyremindsusthattrueunderstandingbeginswithinourselves.Itisourownperspective,attitudes,andactions thatshapeourperceptionoftheworldandthepeopleinit.

Aswereflectontheacknowledgmentsandthejourneychronicledinthisbook,maywerememberthatour interactionswithothers,ourmentors,students,colleagues,andlovedones,areareflectionofourowninner world.Bycontinuallystrivingtoimproveourselvesandfosteringasenseofhumility,empathy,andgratitude,we canbetternavigatethecomplexitiesoflifeandcontributetothebettermentoftheworldaroundus.

Thankyoutoeveryonewhohasbeenapartofthisremarkablejourney.Yoursupport,trust,andsharedexperienceshaveenrichedmylifeandthisbookinimmeasurableways.Withheartfeltgratitudeandacommitmentto ongoinggrowth,wewouldliketohonorIvoBabuška,whopioneeredthepartitionofunitymethods.Hisclarity andsagacityhavedeeplyinspiredmeandmotivatedmetocompletethiswork.

IwouldliketothankmywifeKathrinLydiaMenkandmychildrenJuliusandMagdalenaforcontinuously supportingmewithmyworkandforallthegoodtimeswehadsofar.Ialsowouldliketothankmyparentsand mybrotherforhelpingmebecomethepersonIamtoday.LastbutnotleastIwouldliketothankStéphaneP.A. BordasforgivingmetheopportunitytobecomeactiveinacademicresearchandSundararajanNatarajanforall thefruitfuldiscussionswehadduringourtimeinGlasgow.

IwouldliketothankmyparentsGeethaNatarajanandNatarajan,mywifeRamyaChandrasekaran,andson Vaibhavforcontinuouslysupportingmewithmyworkandstandingbymeonnumerousoccasions.Iadmire Vaibhav’sabundantsourceofenergy,constantthirsttolearnanddonewthings,andespeciallytheattitude ofcarryingouttaskswithoutthefearoffailureandpursuingthemuntilsuccessisattained.Iamthankfulfor mysisterParvathi’sabundantloveandaffection.MythanksextendtoBhagirath,Nirmal,Mahalakshmi,and ChandrasekaranandShanthaChandrasekaranfortheirsupport,trust,andencouragement.Specialthanksto Youngphilosophers,Pranav,AyushandShubha.IwouldliketothankStéphaneP.A.Bordasforsupportingme throughdifferentphasesasastudent,post-doctoralresearcherandnowasanacademicresearcherandAlexander MenkforallthegoodtimeswehadduringourtimeinGlasgow.Finally,Iwouldliketothanktheomnipresent forgivingmethestrengthtoswimthroughdifferenthurdles.

SundararajanNatarajan

StéphaneP.A.Bordas
AlexanderMenk

Acknowledgments

WewouldliketothankourfriendsProfessorsStéphaneCotin,RavindraDuddu,MichelDuprez,OctavioAndrés González-Estrada,JuanJoséRódenasGarcía,RobertGracie,VanessaLleras,AlexeiLozinski,EmilioMartinezPañeda,IndraVirSingh,JonTrevelyan,andKillianVuillemotforsharingtheirexpertisebycontributing specializedtopicsonthepartitionofunitymethods.Wewouldliketothankourfriends/studentsChintanJansari, AbirElbeji,DulceCanha,SaurabhDeshpande,QiaolingMin,AravindKadhambariyil,ZhaoxiangShen,Meryem AbbadAndaloussi,GeremyLoachamínSuntaxi,VincentdeWit,ParisPapavasileiou,SofiaFarina,andEhsan Mikaeiliforextensiveproofreadingandforthenumeroussuggestionsandcorrections.

Introduction

StéphaneP.A.Bordas1,AlexanderMenk2,andSundararajanNatarajan3

1 UniversityofLuxembourg,Luxembourg,UK

2 RobertBoschGmbH,Germany

3 IndianInstituteofTechnologyMadras,India

Physicalsystemsareoftenmodeledusingpartialdifferentialequations(PDEs).Theexactsolutionorclosedformor analyticalsolutionstothesePDEsisonlyavailableinspecialcasesforspecificgeometries.Numericalmethodscan beusedtoapproximatetheexactsolutioninmoregeneralsettings.Theresultofanumericalsimulationisrarely exact.Nonetheless,computer-basednumericalsimulationhasrevolutionalizedindustrialproductdevelopment throughoutengineeringdisciplines.Whencomparingexperimentsandsimulationwiththeaimofimprovinga simulationproceduretogivemoreaccurateresults,itisnecessarytounderstandthedifferentsourcesoferror.

Figure 1.1 showsanoverviewoferrorsthatoccuratdifferentstagesofmodelingandnumericalsimulationfora givennumericalmethod.

Oneofthesenumericalmethodsiscalledthe“finiteelementmethod”(FEM).Itismostcommonlyusedin structuralmechanics,althoughthefieldofapplicationismuchbroader.ThehistoricoriginsoftheFEMcannotbe uniquelydetermined.Mathematiciansandengineersseemedtodevelopsimilarmethodssimultaneouslywhich laidthefoundationsforwhatisnowpopularlyknownastheFEM.Inthemathematicalcommunity,thedevelopmentscanbesummarizedasfollows.In1851,SchellbachobtainedanapproximatesolutiontoPlateausproblem byusingpiecewiselinearfunctionsonasurface.Variationalprinciplestosolvepartialdifferentialequationswere usedbyRitzin1909.BasedontheRitzmethod,Courantproposedatriangulationofatwo-dimensional(2D)

Figure1.1 Sourcesoferrorinsimulation.

structuretosolvetheplanetorsionproblem.ThefirstbookprovidingasolidmathematicalbasisfortheFEM isattributedtoBabuškaandAziz(BabuškaandAziz,1972).Intheengineeringcommunity,thedevelopments ofFEMaremotivatedbyphysicalanalogiestodescribecontinuousproblemsinadiscretefashion.Hrenikoff (Hrennikoff,1941)combinedtrussesandbeamstomodelplaneelasticityproblems.Turner,Clough,Martin,and Toppintroducedplaneelementsin1956.Theterm“ finiteelement”wascoinedbyCloughin1960.Thefirstbook abouttheFEMwrittenfromanengineeringperspectiveisattributedtoZienkiewicz(Zienkiewicz,1971)in1971. Wewillassumeacertainfamiliarityofthereaderwiththismethodthroughoutthebook,butwewanttoprovide ashortintroductiontotheFEMatthispoint,inordertointroducethemainnotations.

1.1 TheFiniteElementMethod

Assume Ω tobeadomainof R��,��∈{1,2,3}.Letustakealookatthefollowingboundaryvalueproblem:

where ��∶ R�� → R isanunknownscalarfieldand ��∶ R�� → R.

Equation(1.1a)isknownasPoisson’sequationwhen �� ≠ 0 andasLaplaceequationwhen �� ≡ 0.Theopen domain Ω couldbearegionin R��,boundedbya (��−1) dimensionalsurface ��Ω whoseoutwardnormalis ��. Wearelookingforascalarfunction �� thatfulfillsPoisson’sequationeverywherein Ω.Onthedomainboundary ��Ω,thefunctionshouldbezero(c.f.Equation(1.1b)).Inphysics,thisequationcanbeusedtomodelavarietyof phenomena,forexample,anelasto-staticrodunderatorsionalload,Newtoniangravity,electrostatics,diffusion, themotionofinviscidfluid,Schrödinger’sequationinQuantummechanics,themotionofbiologicalorganisms inasolutionandcanalsobeusedinsurfacereconstruction.

Here,letusassumethatthescalarfunction �� couldforinstancebeatemperaturedistribution, ��,thathas cometoanequilibrium.Then �� describestheheatsupplyinsidethedomain.Itiseasytointerprettheequation physicallyundertheseassumptions.Theheatfluxisproportionalto ∇��,thegradientof ��.Becausethesystem isinequilibrium,thesumoftheheatflowinginandoutofaninfinitesimalsubregionshouldbethesameasthe heatsuppliedbytheheatsourcesinsidethatregion.Inotherwords,thedivergenceoftheheatflux∇(∇��)should beequalto �� atanypoint,whichisequivalentto −∆�� =��.Assumingaconstanttemperaturedistributionat thedomainboundarycouldbereasonableifamaterialwithahighthermalconductivityisattachedtotheregion ofinterest.Tosimplifythings,wepostulateinEquation(1.1b)thatthisconstanttemperatureiszero.Pleasenote thatoncethisproblemissolved,onecanaddanarbitraryconstantto �� andEquation(1.1a)isstillfulfilled.Ifthe problemisposedthisway,thenanysolution �� mustbedifferentiabletwicein Ω.Thisisastrongerconditionon thechoiceof �� andmoreoverinmanysituationsthesolutionisnotdifferentiabletwice,althoughtheunderlying physicsisthesame.

Letusconsideranexample.Assumethatthetemperaturedoesnotvaryinthe ��-direction.Inthatcase,the problemcanbeposedina2Dsetting.Letthedomainbetheopenunitsquare Ω=[0,1]2.Ascalarfunction definedontheunitsquareisshowninFigure 1.2.Thefunctionispiecewiseconstant.Wetakethisfunctiontobe theheatsupply ��.Adiscontinuousheatsupplyisarealisticassumptioninseveralsituations.Onecouldimagine anelectriccurrentflowingthroughametal.Thentheheatisgeneratedateverypointinsidethemetal,butnot outside.Assumingthattheheatgenerationatsomepointisproportionaltotheelectricalcurrent,afunction �� containingjumpsreallyisphysicallymeaningful.Experimentally,onewouldmeasureatemperaturedistribution similartotheoneshowninFigure1.3.The��-componentofthegradientofthistemperaturedistributionisshown inFigure1.4.Itiseasilyobservedthatthegradientisnotdifferentiableatcertainpoints.Therefore,thetemperature distributioninFigure 1.3 isnotasolutionofEquation(1.1a),althoughitisthecorrectsolutionfromaphysical pointofview.

Apiecewiseconstantfunctionontheunitsquareasanexamplefor f.

Thismotivatesthesearchforanotherproblemdescription.Equation(1.1a)willsubsequentlybereferredtoas theclassicalformulationoftheproblemandasolutioniscalledaclassicalsolution.Toobtainanewformulation, wemultiplyequationEquation(1.1a)byascalarfunctionvdefinedonthedomainΩandintegrateoverthewhole domaintoget:

Figure1.2
Figure1.3 Temperaturedistribution.

Thefunctionvisnotcompletelyarbitrary,butfornowitsufficestoassumecertainnicepropertiessuchthatwecan performthenecessaryintegrationsanddifferentiationsinthefollowingdiscussion.Applyingpartialintegration totheleft-handsideofEquation(1.2),weobtain:

ItisobviousthatEquation(1.3)isfulfilledforanyfunction v if �� isaclassicalsolution.Letusassumethatthere isafunctionspace V whichcontainsallthefunctionsthatarephysicallyreasonable.Bythatwemeanespecially thattheclassicalsolutionisin V ifitexistsandthatallthefunctionsin V vanishattheboundary1.Oncesucha spaceisknown,theproblemcouldbestatedinthefollowingabstractform,knownastheweakform:

Weakform: Find T ∈ V,suchthatforall v ∈ V a(T, v)=(v, f) (1.4)

where a(T, v)=∫Ω(∇v)∇T dΩ and (v, f)=∫Ω vf dΩ arethesymmetricbilinearandlinearforms,respectively.

⨀ Example1. Findtheweakformforthefollowingstrongformandidentifythelinearandbilinearform:

�� d2u(x) dx2 ��u(x)+ f(x)= 0, 0 < x < 1 where ��,�� areconstantsindependentof x andsubjecttothefollowingDirichletboundaryconditions: u(0)= 1, u(1)=−2

⨀ Example2. Repeattheaboveexample,subjectedtothefollowingDirichletandNeumannboundary conditions: u(0)= 0, du dx (1)=−2.

UsingtheweakformgivesthefunctioninFigure 1.3 achanceofbeingasolutiontotheproblembecausea solutionofEquation(1.1a)needsonlyonetimecontinuouslydifferentiable.Itremainstobecheckedunderwhich circumstancesasolutionexists,andifthisisauniquesolution.Therefore,theterm“physicallymeaningful,”used wheninitiallydescribing V,needstobedefinedmoreprecisely.Todothis,weneedtoaddresstheintegrationand thedifferentiationinEquation(1.3).Tomotivatewhytheclassicalintegrationanddifferentiationoperationsare notusefulforourpurposewetakeafirststeptowardthenumericalsolutionoftheproblem.Thefunctionspace V willgenerallyhaveinfinitelymanydimensions.Tocomputeanapproximationtotheexactsolutiononecould trytosolvetheweakformulationinafinitedimensionalsubspaceof V,whichwewilldenoteby Vℎ ⊂ V.The solutionassociatedwiththisrestrictedformulationisdenotedby ��ℎ.Withoutfurtheranalysis,itisnotclearhow ��ℎ isrelatedtothesolutionofEquation(1.3).Butonecanshowthat��ℎ minimizestheerrorover Vℎ inaparticular normcalledthe“energynorm.”Theproblemthenbecomes:

1Theinterestedreaderisreferredto,e.g.BrennerandScott(2002)forconceptsoffunctionalanalysisrelevanttofiniteelementanalysis

Find��ℎ ∈ Vℎ suchthatforall vℎ ∈ Vℎ ∶ ��(��ℎ,vℎ)=(vℎ,��) (1.5)

Thereexistsabasis ��1,...,���� for Vℎ,thatis,wecanwritetheelementsof Vℎ as:

Then,certainly ��ℎ ∈ Vℎ canalsobewritteninthisform:

ℎ =∑ �� �������� (1.7)

Todeterminetheunknowncoefficients a =(��1,...,����) of ��ℎ,weinsertEquation(1.7)inEquation(1.5)and postulatethatEquation(1.5)holdsforallbasisfunctions:

∫Ω(∇��1)��∇(∑ �� ��������)dΩ=∫Ω v1��dΩ

Becauseofthelinearityoftheintegrationoperation,theseequationsareequivalenttopostulatingthat Equation(1.5)holdsforallvℎ ∈ Vℎ.Duetothelinearityofthegradientoperatorandtheintegrationoperation,we canrewriteEquation(1.8)as:

Therefore,todeterminetheunknowncoefficientsonehastosolvealinearsystemofequations:

Differentchoicesfor Vℎ arepossible.Onecouldchoose Vℎ tobethesetofallglobalpolynomialsdefinedon Ω up toacertainorder.Inthatcase,allpointsin Ω arerelatedtoeachother,andhencemostoftheentriesof �� will benon-zero.Itisdisadvantageousiftheequationsystemsbecomelarge,becausememorystoragegrowswiththe squareofthesystemsize�� andsolvinglargesystemsofequationsusingdirectsolveriscomputationallyexpensive (��(��3)).

Inpractice,largeequationsystemsaresolvedusingiterativesolvers.Iterativesolversmultiplyavectorwith �� ateachiteration.Thismultiplicationtakesalargeamountoftimeif �� isfullypopulated.Itismucheasiertodeal withsparseequationsystems,inwhichmostoftheentriesarezero.Thezeroentriesdonothavetobestoredand canbeneglectedwhenevaluatingthematrix-vectorproduct.Nowthequestiononewouldtrytoansweris:

Canwefindfunctionspaces Vℎ thatresultinsparseequationsystems?

AssumethatΩiscoveredbyatriangularmeshsuchastheoneshowninFigure1.5.Thetriangleswillbecalled elements andtheintersectionsoftheelementedgesarecalled nodes.Wecouldchoose Vℎ tobethespaceofall

Figure1.5 Meshexample.

Figure1.6 Atypicalbasisfunctionwithitsnodalsupport.

functionsthatarecontinuousin Ω,linearinsideeachelement,andvanishattheboundary.Abasisfunction ���� ∈ Vℎ isdefinedasfollows:

● ���� is1atthe ��th interiornode,i.e., ����(����)=1;

● ���� is0atallothernodes; ��, ∀��,����(����)=0;

● foreachelementthefunctionvaluescanbeobtainedbyalinearinterpolationbetweenthefunctionvaluesabove.

Together,ifchosenasdescribedabove,thebasisfunctions v�� formabasisforthespace Vℎ.Figure 1.6 showsthe basisfunctionforanode �� insideadomaincoveredbyatriangularmesh.Onecouldalsocoverthedomainwith elementswithmorethan three sides.Thishasledtothe“polygonalfiniteelementmethods.”Theshapefunctions overarbitraryelementsarecollectivelyknownas“barycentriccoordinates.”

Itisinterestingtonotethatthereisnouniquewaytorepresenttheshapefunctionsoverpolytopes.Any setoffunctionsthatsatisfytheaforementionedpropertiesisacandidatureforbasisfunctions.

Withachoiceofsuchbasisfunctions,wewouldhaveproblemsevaluatingtheelementsofmatrix ��,since thefunctions vℎ arenotdifferentiableattheelementboundaries.Wecouldneglectthisandevaluatetheintegrationandthedifferentiationonlyforpointsinsidetheelements.Theresultingmatrixwouldthenbesparse.Since thebasisfunctionsarezeroinmostelements,thesameistruefortheirgradient.Therefore,mostofthematrix entriesinEquation(1.9)arealsozero.Fromacomputationalpointofviewthisisexactlywhatisdoneinthe FEM.Pleasenotethatduetothelinearityofthebasisfunctionsinsideeachelement,theevaluationofthematrix entriescanbedoneinafewcomputationalsteps.Sincethegradientofthebasisfunctionsisconstantinsideeach element,theintegralscanbecomputedbyevaluatingthefunctiononlyatthemidpoint(Gaussquadratureof orderone).

WenowreturntothediscussionaboutthedifferentiationandtheintegrationoftermsinEquation(1.9). Weneedmodifiedoperationswhich,insomeway,neglectsubsetsof Ω withmeasurezero,suchaslinesand points.Withthoseoperationswewillbeabletoformulatetheprobleminarigorousmannersuchthatthebasis functionswejustdiscussedarepartofspace Vℎ.Forintegration,thiscanbeachievedbyusingtheLebesgue integral.

LebesgueIntegral:

TheLebesgueintegralhasthesamevalueforfunctionsthatdifferonlyonapointsetofmeasurezero. TheLebesgueintegralcanalsobeusedwithfunctionsthatareundefinedonsuchsetsandstilldeliver meaningfulvalues.Wewilldenotethespaceofallinfinitelydifferentiablefunctionsthatvanishonthe boundaryof Ω by C∞ 0 (Ω).Then,theweakderivative dv dx ofascalarfunction v(x, y) isfoundifitfulfillsforall

Thederivative dw dx isdefinedintheclassicalsense.Similarly,otherpartialderivativesofhigherordercanbe defined.Theweakderivative,ifitexists,isunique.Iftheclassicalderivativeofafunctionexists,theweak derivativeisthesame(neglectingsubsetsofmeasurezero).

Withourpiecewisepolynomialapproximationfunctions,theweakderivativeisnotdefinedattheelement boundaries,whileinsidetheelementsitcoincideswiththeclassicalderivative.Together,theLebesgueintegral andtheweakderivativemakeitpossibletoevaluateEquation(1.9)forourapproximationfunctions.Moreover, wecannowdefinethespace Vℎ.Thisspacewillbedenotedby ��1 0(Ω) andafunction v isanelementofthis spaceif:

● ∫Ω v2 dΩ canbeevaluatedintheLebesguesenseandissmallerthaninfinity;

● theweakderivativeof v exists;

● ∫Ω(��v ����)2 dΩ and ∫Ω(��v ����)2 dΩ canbeevaluatedintheLebesguesenseandaresmallerthaninfinity;

● v vanishesalongtheboundary.

Thespaceofsquare-integrablefunctionsisourstartingpoint.Postulatingthattheweakpartialderivatives existandthattheyaresquare-integrableisnecessary,otherwiseoneisnotabletoevaluatetheweakform. Postulatingthatthefunctionsvanishattheboundaryisnecessarytomakesurethattheessentialboundary conditionsarefulfilled.

Wemotivatedthedefinitionof��1 0(Ω)fromaphysicalandfromacomputationalpointofview.Butthedefinition hasmuchmorefundamentalconsequencesfromamathematicalpointofview.Onecandefineaninnerproduct, suchthatthisspacebecomesaHilbertspace.Hilbertspacesareinnerproductspacesinwhichgeometricaloperationslikeprojectionscanbegeneralized.ThismakesageometricinterpretationoftheFEM-procedurepossible. Theexactsolutionisavectorinthisspace.InthisHilbertspace,theexistenceandtheuniquenessoftheexact solutioncanbeproven.Butmoreadvancedtoolsfromfunctionalanalysisareneededforthis.Space Vℎ formsa hyperplane,andthenumericalsolutionistheprojectionoftheexactsolutionontothatplane.Therefore,insome sensethenumericalsolutionisthebestapproximationonecanget.Toincreasetheaccuracyofthenumerical solution,onemay,forexample,increasethedimensionofthehyperplanewhichwilldecreasetheerror.Inthe FEM,thisisdonebyrefiningthemesh.However,since ��1 0(Ω) isinfinitedimensionalnoteverymeshrefinement strategyresultsinconvergence.

⨀ Example3. Usingtriangularelements,writeaprogramforanFEM-solverforthePoissonproblem onarectangularsquareandaright-handsidegivenbythefunctioninFigure 1.2.Checkhowthesolution behavesfordifferentelementsizes.

⨀ Example4. Matlabs minres()-functionisaniterativesolver.Measurethetimeittakestosolve theFEM-equationsfromExercise1.1directly.Comparethiswiththetime minres() needstosolvethe equationsystem.Howdothecomputationtimeschangeifasparsematrixispassedto minres()?How doesthisdifferencebehaveifthemeshisrefined?

1.2 SuitabilityoftheFiniteElementMethod

Inthissection,wediscusstheconvergenceoftheFEM.Attheendofthissection,youshouldbeable:

● toassesswhattheconvergencerateoftheFEMdependson;

● toestimatetheerror;

● tocommentonhowitcanpossiblybeimproved.

Todothis,wereferbacktotheweakforminthefinitedimensionalspace(Equation(1.5)).Weareinterestedin therelationof ��ℎ totheexactsolution ��.Definingtheerrorduetothefiniteelementapproximation �� = �� ��ℎ.Thismeansthatforallfunctions vℎ in V0 ℎ, ��(��,vℎ)=0,or,equivalently,thattheapproximatesolution ��ℎ istheorthogonalprojectionoftheexactsolution �� on Vℎ.ThisisdepictedgeometricallyinFigure 1.7,wherein, onecanthinkof �� = �� ��ℎ asavectorialidentity.Thespacewheretheexactsolution, ��,livesisrepresented artificiallyasa3Dspace(inrealityitisaspaceofinfinitedimensions).Thefiniteelementsubspaceisaplane (dimension2).Theerror, ��,isamemberof V,andthefiniteelementsolutionamemberof Vℎ.Consideringthe righttriangleinthefigure,itcanbeimmediatelyseenthatthelengthof �� (squared)equalsthelengthof ��ℎ (squared)plusthelengthof��,squared,i.e.,��(��,��)=��(��ℎ,��ℎ)+��(��,��)2.Thisisanimportantproperty,ifweadd afunction,whichisnotinthespanof Vℎ tothebasisof Vℎ andthusincreaseitsdimension,theerrorwillalways decrease.

2ThisidentityissimilartothePythagoreantheoreminEuclideanspaces.

Figure1.7 Theorthogonal(withrespecttobilinearform a(, )) projectionoftheexactsolution u onthefiniteelementspace Vh ⊂ V isthefiniteelementsolution uh.Inthisfigure,youcanthinkof e = u uh asavectorialidentity.Inthisfigure,thespacewherethe exactsolution, u,livesisrepresentedartificiallyasa three-dimensionalspace(inrealityitisaspaceofinfinite dimensions).Thefiniteelementsubspaceisaplane(dimension2). Theerror, e,isamemberof V,andthefiniteelementsolutiona memberof Vh.Consideringtherighttriangleinthefigure,itcanbe immediatelyseenthatthelengthof u (squared)equalsthelengthof uh (squared)plusthelengthof e,squared,i.e., a(u, u)= a(uh, uh) +a(e, e).ThisidentityissimilartothePythagoreantheoremin Euclideanspaces.Interpretationoftheerror e = u uh asa projection.

GalerkinOrthogonality a(e, vh)= 0 istheGalerkinorthogonalityrelationfortheerror.FromtheGalerkin orthogonality,followsthattheGalerkinapproximationisthe“bestapproximant”withrespecttotheassociatedbilinearform a(⋅ , ⋅).Thisbestapproximationpropertymeansthatthefiniteelementsolutionisaleast squarefitoftheexactsolutioninthesenseofthebilinearform a(⋅ , ⋅).

ThesuccessoftheFEMisprobablyduetoitsrichmathematicalanalysisanditselegantframework.Thisfacilitatesaccurate apriori and aposteriori estimatesofthediscretizationerror.Here,webrieflyoutlinethe apriori errorestimates.Assumethat ‖ ‖ isanormonthefunctionspace Vℎ.Andfurthermoreassumethattheproblem hasauniquesolution(i.e.,appropriateessentialboundaryconditionsareprescribed).Then,let ��∈{⋯} bethe orderofthenorminwhichtheerrorismeasured, ℎ ameasureoftheelementsize3 , �� isthepolynomialorder (chosenas1intheexampleabove), �� theregularityoftheexactsolution ��,Cea’sLemmastatesthattheerrorof thefiniteelementapproximationinnorm ‖⋅‖ satisfiesthefollowinginequality:

Inotherwords,uptoaconstant �� whichisindependentofthemeshsize,thesolution ��ℎ isthebestpossible solutioninthechosenfunctionspace.Ifnostatementcanbemadeaboutthecontinuityoftheexactsolution, meshrefinementguaranteesatleastalinearconvergence,providedthefollowingistrue:

Theaboveconditioncanberewrittenas:

or,equivalently,

ThismeansthatthatinorderfortheFEMtoconvergeoptimallyinnorm ‖⋅‖��,wemustboth:

3TypicallythelargestelementinthemeshinFigure 1.8

Figure1.8 Themeshsize, h,isthediameterofthesmallestcircleenclosingthe largestelementinthemesh.

● selectthepolynomialorder �� largerthan (��−1).

● makesurethattheexactsolution �� ismoreregularthantheorderofthenorm ‖⋅‖��

Iftheorderofthecontinuityoftheexactsolutionishigh,increasingthepolynomialorder �� mightbeabetter strategythanrefiningthemesh.However,iftheregularityofthesolutionislow,thereisnouseincreasingthe polynomialorder��,becauseif�� issmall,then(�� ��)willremainthedeterminingterminmin(��+1−��,�� ��). ThisisfurtherdiscussedindetailinSection1.3.

Apriori estimationdiscussedabovedoesnotaccountfor:

● numericalintegrationerrortocomputethebilinearandlinearform;

● interpolatingDirichletboundaryconditions;

● approximatingtheboundary ��Ω bypiecewisepolynomialfunctions.

1.3 SomeLimitationsoftheFEM

WehaveseenearlierthattheFEMpossessesthebestapproximationproperty.TheFEMisoptimalforproblems thatareself-adjoint,viz.,ellipticorparabolicPDEs.Thisisbecause,insuchcases,itispossibletoshowthatthere existsaquadraticfunctional,theminimumofwhichcorrespondstothesolutionsofthePDEsgoverningtheproblem.However,incertainsituations(evenwithself-adjointequations)calculatinganumericalapproximationusing theFEMcanbecomeatedioustask,especiallywhentheprobleminvolvesfeaturesthatleadtosingularordiscontinuoussolutions.Inthissection,wediscussthisindetailthrough(lowvalueofregularity �� inEquation(1.11)) twoexamples.

Problemwithroughsolutions ConsiderthedomainshowninFigure1.9.Thedomainhasare-entrantcorner.Again, weconsideratemperaturedistributiononthisdomain.Thetaskistofindtheequilibriumtemperaturedistribution �� in Ω,giventhetemperaturedistribution �� ontheboundary ��Ω.Thegoverningdifferentialequationisgivenby Equation(1.1a)with ��≡0 andthescalarfunction �� isassumedtobethetemperaturedistribution.Theproblem canbetransformedintopolarcoordinateswitharadialcomponent �� andanangularcomponent ��.Themapping betweentheCartesianandthepolarcoordinatesisgivenby:

Itiseasilycheckedthatusingpolarcoordinates,Equation(1.1a)becomes:

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.