Instant download Source separation in physical-chemical sensing christian jutten pdf all chapter

Page 1


Visit to download the full and correct content document: https://ebookmass.com/product/source-separation-in-physical-chemical-sensing-chris tian-jutten/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Source separation and machine learning Chien

https://ebookmass.com/product/source-separation-and-machinelearning-chien/

Advances in Oil-Water Separation : A Complete Guide for Physical, Chemical, and Biochemical Processes Papita Das

https://ebookmass.com/product/advances-in-oil-water-separation-acomplete-guide-for-physical-chemical-and-biochemical-processespapita-das/

Transport Processes and Separation Process Principles (Prentice Hall International Series in the Physical and Chemical Engineering Sciences) 5th Edition, (Ebook PDF)

https://ebookmass.com/product/transport-processes-and-separationprocess-principles-prentice-hall-international-series-in-thephysical-and-chemical-engineering-sciences-5th-edition-ebook-pdf/

Introductory Chemical Engineering Thermodynamics (Prentice Hall International Series in the Physical and Chemical Engineering Sciences) 2nd Edition, (Ebook PDF)

https://ebookmass.com/product/introductory-chemical-engineeringthermodynamics-prentice-hall-international-series-in-thephysical-and-chemical-engineering-sciences-2nd-edition-ebook-pdf/

Elements of Chemical Reaction Engineering (Prentice Hall International Series in the Physical and Chemical Engineering Sciences) – Ebook PDF Version

https://ebookmass.com/product/elements-of-chemical-reactionengineering-prentice-hall-international-series-in-the-physicaland-chemical-engineering-sciences-ebook-pdf-version/

MCAT chemical and physical foundations of biological systems, 2016 Hademenos

https://ebookmass.com/product/mcat-chemical-and-physicalfoundations-of-biological-systems-2016-hademenos/

Bioprocess Engineering: Basic Concepts (Prentice Hall International Series in the Physical and Chemical Engineering Sciences) 3rd Edition, (Ebook PDF)

https://ebookmass.com/product/bioprocess-engineering-basicconcepts-prentice-hall-international-series-in-the-physical-andchemical-engineering-sciences-3rd-edition-ebook-pdf/

Techniques and methods in urban remote sensing Weng

https://ebookmass.com/product/techniques-and-methods-in-urbanremote-sensing-weng/

Wearable Physical, Chemical and Biological Sensors: Fundamentals, Materials and Applications 1st Edition Eden Morales-Narvaez (Editor)

https://ebookmass.com/product/wearable-physical-chemical-andbiological-sensors-fundamentals-materials-and-applications-1stedition-eden-morales-narvaez-editor/

SourceSeparationinPhysical-ChemicalSensing

SourceSeparationinPhysical-Chemical Sensing

UniversitéGrenobleAlpes,Grenoble-INP,CNRS,GIPSA-lab France

LeonardoTomazeliDuarte UniversityofCampinas Limeira,Brazil

SaïdMoussaoui

NantesUniversité,EcoleCentraleNantes,CNRS,LS2N Nantes,France

Thiseditionfirstpublished2024.

©2024JohnWiley&SonsLtd

Allrightsreserved.Nopartofthispublicationmaybereproduced,storedinaretrieval system,ortransmitted,inanyformorbyanymeans,electronic,mechanical, photocopying,recordingorotherwise,exceptaspermittedbylaw.Adviceonhowto obtainpermissiontoreusematerialfromthistitleisavailableathttp://www.wiley.com/ go/permissions.

TherightofChristianJutten,LeonardoTomazeliDuarte,andSaïdMoussaouitobe identifiedastheauthorsoftheeditorialmaterialinthisworkhasbeenassertedin accordancewithlaw.

RegisteredOffices

JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,USA

JohnWiley&SonsLtd,TheAtrium,SouthernGate,Chichester,WestSussex,PO19 8SQ,UK

Fordetailsofourglobaleditorialoffices,customerservices,andmoreinformationabout Wileyproductsvisitusatwww.wiley.com.

Wileyalsopublishesitsbooksinavarietyofelectronicformatsandbyprint-on-demand. Somecontentthatappearsinstandardprintversionsofthisbookmaynotbeavailablein otherformats.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohn Wiley&Sons,Inc.and/oritsaffiliatesintheUnitedStatesandothercountriesandmay notbeusedwithoutwrittenpermission.Allothertrademarksarethepropertyoftheir respectiveowners.JohnWiley&Sons,Inc.isnotassociatedwithanyproductorvendor mentionedinthisbook.

LimitofLiability/DisclaimerofWarranty

Inviewofongoingresearch,equipmentmodifications,changesingovernmental regulations,andtheconstantflowofinformationrelatingtotheuseofexperimental reagents,equipment,anddevices,thereaderisurgedtoreviewandevaluatethe informationprovidedinthepackageinsertorinstructionsforeachchemical,pieceof equipment,reagent,ordevicefor,amongotherthings,anychangesintheinstructionsor indicationofusageandforaddedwarningsandprecautions.Whilethepublisherand authorshaveusedtheirbesteffortsinpreparingthiswork,theymakenorepresentations orwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthiswork andspecificallydisclaimallwarranties,includingwithoutlimitationanyimplied warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybe createdorextendedbysalesrepresentatives,writtensalesmaterialsorpromotional statementsforthiswork.Thefactthatanorganization,website,orproductisreferredto inthisworkasacitationand/orpotentialsourceoffurtherinformationdoesnotmean thatthepublisherandauthorsendorsetheinformationorservicestheorganization, website,orproductmayprovideorrecommendationsitmaymake.Thisworkissold withtheunderstandingthatthepublisherisnotengagedinrenderingprofessional services.Theadviceandstrategiescontainedhereinmaynotbesuitableforyour situation.Youshouldconsultwithaspecialistwhereappropriate.Further,readers shouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappeared betweenwhenthisworkwaswrittenandwhenitisread.Neitherthepublishernor authorsshallbeliableforanylossofprofitoranyothercommercialdamages,including butnotlimitedtospecial,incidental,consequential,orotherdamages.

LibraryofCongressCataloging-in-PublicationDataappliedfor:

HardbackISBN:9781119137221

CoverDesign:Wiley

CoverImage:©MR.Cole_Photographer/GettyImages

Contents

AbouttheEditors xiii

ListofContributors xv

Foreword xvii

Preface xxi

Notation xxiii

1OverviewofSourceSeparation 1 ChristianJutten,LeonardoTomazeliDuarte,andSaïdMoussaoui

1.1Introduction 1

1.1.1BriefIntroductiontoSourceSeparation 1

1.1.2Chapter’sOrganization 3

1.2TheProblemofSourceSeparation 3

1.2.1MathematicalDescription 3

1.2.2DifferentTypesofMixingModels 5

1.2.2.1LinearMixtures 5

1.2.2.2NonlinearMixtures 6

1.2.2.3Overdetermined,Determined,orUnderdeterminedModels 7

1.2.2.4NoisyMixtures 8

1.2.3FromSourceSeparationtoMatrixFactorization 8

1.2.3.1FactorizationAmbiguity 9

1.2.3.2DataRepresentation 10

1.2.3.3FactorizationAlgorithms 10

1.2.4EnhancedDiversity:TensorFormulationandFactorization 11

1.2.5FromSupervisedtoBlindSolutions 14

1.3StatisticalMethodsforSourceSeparation 15

1.3.1FactorizationofIndependentSources 16

1.3.2IndependentComponentAnalysis(ICA) 18

1.3.2.1ICAbyMutualInformationMinimization 18

1.3.2.2ICAbyMaximumLikelihoodEstimation 19

1.3.2.3ICAbyKurtosisMaximization 21

1.3.3MethodsBasedonSecond-OrderStatistics 22

1.4SourceSeparationProblemsinPhysical–ChemicalSensing 24

1.4.1MaterialAnalysisbySpectroscopy 24

1.4.2HyperspectralImaging 26

1.4.3ElectrochemicalSensorArrays 28

1.5SourceSeparationMethodsforChemical–PhysicalSensing 30

1.5.1Self-ModelingCurveResolution 31

1.5.2Non-NegativeMatrixFactorization 31

1.5.3BayesianSeparationApproach 33

1.5.4GeometricalApproaches 34

1.5.5TensorFactorizationMethods 35

1.6OrganizationoftheBook 35 References 36

2Optimization 43

EmilieChouzenouxandJean-ChristophePesquet

2.1IntroductiontoOptimizationProblems 43

2.1.1ProblemFormulation 43

2.1.2TheoreticalBackground 44

2.1.2.1ConvexFunctions 44

2.1.2.2DifferentiabilityandSubdifferentiability 46

2.1.3ExamplesintheContextofSourceSeparation 46

2.1.3.1Non-negativeMatrixFactorization 46

2.1.3.2IndependentComponentAnalysis 47

2.1.3.3TensorDecomposition 48

2.1.4ChapterOutline 49

2.2Majorization–MinimizationApproaches 50

2.2.1Majorization–MinimizationPrinciple 50

2.2.2MajorizationTechniques 51

2.2.3QuadraticMMMethods 57

2.2.3.1QuadraticMMAlgorithm 57

2.2.3.2Half-QuadraticMMAlgorithms 60

2.2.3.3SubspaceAccelerationStrategy 61

2.2.4VariableMetricForward–BackwardAlgorithm 63

2.2.5Block-CoordinateMMAlgorithms 66

2.2.5.1GeneralPrinciple 66

2.2.5.2Block-CoordinateQuadraticMMAlgorithm 68

2.2.5.3Block-CoordinateVMFBAlgorithm 70

2.3Primal-DualMethods 72

2.3.1LagrangeDuality 72

2.3.2AlternatingDirectionMethodofMultipliers 73

2.3.2.1BasicForm 73

2.3.2.2MinimizingaSumofMoreThanTwoFunctions 74

2.3.3Primal-DualProximalAlgorithms 75

2.3.4Primal-DualInteriorPointAlgorithm 76

2.3.4.1Primal-DualDirections 79

2.3.4.2Linesearch 80

2.3.4.3PenalizationParameterUpdate 81

2.3.4.4ResultingAlgorithm 81

2.4ApplicationtoNMRSignalRestoration 83

2.4.1QuadraticPenalization 85

2.4.2EntropicPenalization 86

2.4.3SparsityPriorintheSignalDomain 87

2.4.4SparsityPriorinaTransformedDomain 88

2.4.5SparsityPriorandRangeConstraints 89

2.4.6ConcludingRemarks 90

2.5Conclusion 91 References 92

3Non-negativeMatrixFactorization 103 DavidBrie,NicolasGillis,andSaïdMoussaoui

3.1Introduction 103

3.1.1BriefHistoricalOverview 104

3.2GeometricalInterpretationofNMFandtheNon-negative Rank 105

3.2.1Non-negativeRankFormulation 105

3.2.2ConvexConeFormulation 105

3.2.3NestedPolytopeFormulation 107

3.2.4Non-negativeRankComputation 108

3.2.5IllustrativeExamples 110

3.3UniquenessandAdmissibleSolutionsofNMF 112

3.3.1UniquenessConditions 113

3.3.2FindingtheAdmissibleSolutions 114

3.3.2.1IllustrationintheCaseofTwoSources 115

3.3.2.2IllustrationintheCaseofMoreThanTwoSources 115

3.4Non-negativeMatrixFactorizationAlgorithms 118

3.4.1StatisticalFormulationofOptimizationCriteria 118

3.4.1.1CaseofaGaussianNoise 118

3.4.1.2CaseofPoissonianDistribution 118

3.4.2IterativeFactorizationMethods 120

3.4.2.1InitializingNMFAlgorithms 121

3.4.2.2AlternatingNon-negativeLeastSquares,AnExactCoordinate DescentMethodwith2BlocksofVariables 122

3.4.2.3MultiplicativeUpdates 123

3.4.2.4AlternatingLeastSquares 124

3.4.2.5ExactCoordinateDescentMethodwith2R Blocksof Variables 124

3.4.3ConstrainedandPenalizedFactorizationMethods 126

3.4.4GeometricalApproachesandSeparability 128

3.5ApplicationsofNMFinChemicalSensing.TwoExamplesof ReducingAdmissibleSolutions 129

3.5.1PolarizedRamanSpectroscopy:ADataAugmentation Approach 130

3.5.1.1RamanDataDescription 130

3.5.1.2RamanDataProcessing 132

3.5.2UnmixingBlurredRamanSpectroscopyImages 135

3.5.2.1BlurringEffectModeling 136

3.5.2.2ApplicationtoRamanSpectroscopyImages 138

3.6Conclusions 141 References 141

4BayesianSourceSeparation 151 SaïdMoussaoui,LeonardoTomazeliDuarte,NicolasDobigeon,and ChristianJutten

4.1Introduction 151

4.2OverviewofBayesianSourceSeparation 152

4.2.1GeneralFramework 152

4.2.2ChoiceofthePriorDistributions 153

4.2.3SourceSignalandMixingMatrixEstimationfromthePosterior Distribution 155

4.2.3.1JointMaximumAPosteriori(JMAP) 155

4.2.3.2MarginalMaximum APosteriori (MMAP) 156

4.2.3.3PosteriorMean(PM)orMinimumMeanSquareError (MMSE) 157

4.2.4HierarchicalBayesianModelingandInference 158

4.3StatisticalModelsfortheSeparationintheLinearMixing 159

4.3.1MixingModel 159

4.3.2LikelihoodFunctionsintheLinearMixingCase 160

4.3.2.1GaussianNoise 160

4.3.2.2PoissonianNoise 161

4.3.3PriorsontheSourceSignalsandMixingCoefficientsin ChemicalSensing 162

4.3.3.1Non-negativityConstraint 162

4.3.3.2BoundConstraints 164

4.3.3.3Sum-to-OneConstraint 164

4.3.3.4SmoothnessConstraint 166

4.3.4ApplicationtotheSeparationofSyntheticSpectral Mixtures 166

4.3.4.1BayesianSeparationModel 168

4.3.4.2BayesianSeparationAlgorithm 170

4.3.4.3BayesianSeparationResults 170

4.4StatisticalModelsandSeparationAlgorithmsforNonlinear Mixtures 173

4.4.1NonlinearMixingModelsfromPhysical–ChemicalSensing Theory 173

4.4.1.1FirstExample.InterferenceinPotentiometricSensors 174

4.4.1.2SecondExample.IntimateMixturesinHyperspectral Imaging 175

4.4.2EmpiricalNonlinearMixingModelsUsedinSeparation Algorithms 175

4.4.2.1Post-NonlinearMixingModels 176

4.4.2.2PolynomialMixingModels 176

4.4.2.3Linear–QuadraticMixingModels 176

4.4.2.4BilinearMixingModels 177

4.5SomePracticalIssuesonAlgorithmImplementation 177

4.5.1ASimpleExample 178

4.5.1.1TheResultingGibbsSampler 180

4.6ApplicationstoCaseStudiesinChemicalSensing 182

4.6.1MonitoringofCalciumCarbonateCrystallizationUsing RamanSpectroscopy 182

4.6.1.1MixturePreparationandDataAcquisition 182

4.6.1.2MixtureAnalysisbyBayesianSourceSeparation 183

4.6.2DealingwithInterferenceIssuesinIon-SelectiveElectrode Arrays 186

4.7Conclusion 191

Appendix4.AImplementationofFunctionpostsourcesrnd viaMetropolis-HastingAlgorithm 191 References 193

x Contents

5GeometricalMethods–Illustrationwith HyperspectralUnmixing 201 JoséM.Bioucas-DiasandWing-KinMa

5.1Introduction 201

5.2HyperspectralSensing 202

5.2.1HyperspectralImaging 202

5.2.2HyperspectralUnmixing 204

5.3HyperspectralMixingModels 206

5.4LinearHUProblemFormulation 208

5.4.1Preprocessing 210

5.4.1.1DimensionReduction(DR) 210

5.4.2SignalSubspaceIdentification 211

5.4.2.1AffineSetEstimationandProjection 213

5.4.3ClassesofLinearHUProblems 216

5.4.3.1DatasetswithPurePixels.PurePixelPursuit 216

5.4.3.2DatasetsWithoutPurePixels.MinimumVolumeSimplex Estimation 217

5.4.3.3HighlyMixedDatasets.StatisticalInference 218

5.4.3.4HyperspectralUnmixingThroughSparseRegression(SR) 219

5.4.3.5SynopsisoftheLinearHUProblems 220

5.5Dictionary-BasedSemiblindHU 222

5.5.1SparseRegression 222

5.5.2SensorArrayProcessingMeetsSemiblindHU 226

5.5.3FurtherDiscussion 227

5.6MinimumVolumeSimplexEstimation 227

5.6.1VolMinOptimization 230

5.6.2Non-NegativeMatrixFactorization 233

5.6.3IllustrativeComparisonofGeometricalMethods 238

5.7Applications 239

5.7.1UnmixingExampleUnderthePurePixelAssumption 239

5.7.2UnmixingviaSparseRegression 240

5.7.3Near-InfraredHyperspectralUnmixingofPharmaceutical Tablets 242

5.8Conclusions 244 References 245

6TensorDecompositions:PrinciplesandApplicationto FoodSciences 255 JérémyCohen,RasmusBro,andPierreComon

6.1Introduction 255

6.1.1ASimplifiedDefinition 255

6.1.2Separability:AKeyConceptforTensorDecomposition Model 257

6.1.3TheFluorescenceExcitationEmissionMatrix(FEEM) 258

6.1.4StructureoftheChapter 260

6.1.4.1Note 261

6.1.4.2OtherIntroductions 261

6.2TensorDecompositions 261

6.2.1Tensor-BasedMethod,theMatrixCase 261

6.2.2CanonicalPolyadicDecomposition,PARAFAC/ CanDecomp 263

6.2.3ManipulationofTensors 266

6.2.3.1Vectorization 266

6.2.3.2Matricization 268

6.2.3.3ContractionsandCPD 269

6.2.4TheChainRule 269

6.2.5MultilinearSingularValueDecomposition 270

6.2.6Tucker 271

6.2.7PARAFAC2 272

6.2.8ApproximateDecomposition 272

6.3ConstraintsinDecompositions 273

6.3.1Non-negativity 274

6.3.1.1Non-negativeCPD 274

6.3.1.2Non-negativeTuckerDecomposition 276

6.3.2BlockDecompositions 276

6.3.3StructuredFactors 277

6.3.3.1Re-parameterization 277

6.3.3.2DictionaryConstraints 278

6.4CoupledDecompositions 279

6.4.1ExactCoupledDecomposition,AFirstApproach 280

6.4.2AGeneralFrameworkforDataFusioninTensor Decompositions 281

6.4.2.1H1:ConditionalIndependenceoftheData 282

6.4.3ExamplesofCoupledDecompositionModels 284

6.4.3.1AdvancedCoupledMatrixTensorFactorization 284

6.4.3.2ShiftPARAFACandOthers 285

6.4.3.3GSVD 286

6.5Algorithms 286

6.5.1UnconstrainedTensorDecomposition 288

6.5.1.1IterativeAlgorithmsforApproximateCPD 288

6.5.1.2DeflationandN-PLS 291

6.5.1.3ExactDecompositionMethods 293

6.5.2ConstrainedTensorDecomposition 293

6.5.2.1ConstrainedLeastSquares 293

6.5.2.2ProjectedGradientandAll-at-OnceProximalMethods 294

6.5.2.3ParametricApproaches 294

6.5.3HandlingLargeDataSets 294

6.5.3.1MultilinearSVDCompression 295

6.6Applications 297

6.6.1Preprocessing 297

6.6.2Fluorescence 298

6.6.3Chromatography 301

6.6.4OtherApplications 304 References 307

Index 325

AbouttheEditors

ChristianJutten receivedPhD(1981)andDoctor èsSciences(1987)degreesfromGrenobleInstituteofTechnology,France.HewasAssociate Professor(1982–1989),Professor(1989–2019) atUniversityGrenobleAlpes,whereheis nowEmeritusProfessorsinceSeptember 2019.Since1980s,hisresearchinterestsare inmachinelearningandsourceseparation, includingtheoryandapplications(biomedical engineering,hyperspectralimaging,chemical sensing,speech).Heisauthor/co-authorof fourbooks,125+ papersininternationaljournals,and250+ publicationsin internationalconferences.

JuttenwasavisitingprofessoratEPFL,RIKENlabs,andUniversityof Campinas.Heservedasdirectorordeputydirectorofthesignal/image processinglaboratoryinGrenoble(1993to2010),asscientificadvisorfor signal/imageprocessingattheFrenchMinistryofResearch(1996–1998), andatCNRS(2003–2006and2012–2019).

Juttenwasorganizerorprogramchairofmanyinternationalconferences, includingthefirstIndependentComponentAnalysisconferencein1999 (ICA’99)andIEEEMLSP2009.Hewasthetechnicalprogramco-chairof ICASSP2020.HewasamemberoftheIEEEMLSPandSPTMTechnical Committees.Hewasassociateeditorfor SignalProcessingandIEEETrans. onCircuitsandSystems,andguestco-editorfor IEEESignalProcessing Magazine (2014)andthe ProceedingsoftheIEEE (2015).From2021to2023, hewaseditor-in-chiefof IEEESignalProcessingMagazine.

Juttenreceivedmanyawards,e.g.bestpaperawardsofEURASIP(1992) andIEEEGRSS(2012),MedalBlondel(1997)fromtheFrenchElectrical Engineeringsociety,andoneGrandPrixoftheFrenchAcadémiedes Sciences(2016).HewaselevatedasIEEEfellow(2008),EURASIPfellow (2013),andasaSeniorMemberofInstitutUniversitairedeFrancefor

10yearssince2008.Hewastherecipientofa2012ERCAdvancedGrantfor theprojectChallengesinExtractionandSeparationofSources(CHESS).

LeonardoTomazeliDuarte receivedtheBSand MScdegreesinelectricalengineeringfromthe UniversityofCampinas(UNICAMP),Brazil, in2004and2006,respectively,andthePhD degreefromtheGrenobleInstituteofTechnology(GrenobleINP,UniversitéGrenoble Alpes),France,in2009.Since2011,hehas beenwiththeSchoolofAppliedSciences (FCA)atUNICAMP,Limeira,Brazil,where heiscurrentlyanassociateprofessor.Heis aSeniorMemberoftheIEEE.In2016,he wasaVisitingProfessorattheÉcoledeGénie Industriel(GI-GrenobleINP,France).Since2015,hehasbeenrecipientof theNationalCouncilforScientificandTechnologicalDevelopment(CNPq, Brazil)productivityresearchgrant.Since2023,heisoneoftheprincipal investigatorswithintheBrazilianInstituteofDataScience(BI0S),oneof theBrazilianAppliedResearchCentersonArtificialIntelligence.In2017, hewastherecipientofUNICAMP“ZeferinoVaz”AcademicRecognition Award(forresearchandteachingperformanceatUNICAMP).In2022,he waselectedAffiliatedMember(upto40yearsold)oftheBrazilianAcademy ofSciences(ABC).Hisresearchinterestscenteraroundthebroadareaof datascienceandlieprimarilyinthefieldsofsignalprocessing,decisionaidingandmachinelearning,andalsointheinterplaysbetweenthesefields.

SaïdMoussaoui receivedtheMEngdegreein electricalengineeringfromEcoleNationale Polytechnique,Algiers,Algeria,in2001;the MScdegreeinControl,SignalsandCommunicationfromtheUniversityHenriPoincaré, Nancy,France,in2004;andthePhDdegree inSignalandImageProcessingfromUniversitéHenriPoincaré,Nancy,France,in2005. Since2006,hehasbeenwiththeDepartment ofAutomaticsandRoboticsatEcoleCentrale NanteswhereheiscurrentlyafullProfessor. HeisamemberofthegroupofSignals,Images andSounds(SIMS)oftheLaboratoryofDigitalSciencesofNantes(LS2N, CNRSUMR6004).Hisresearchinterestsarerelatedtothefieldofsignal andimageprocessing,includingmethodologicalaspectsofstatisticalinference,numericaloptimization,andtheapplicationinvariousreal-lifecontextssuchaschemicaldataanalysis,remotesensing,andbiologicalimaging.

ListofContributors

JoséM.Bioucas-Dias InstitutodeTelecomunicacoes InstitutoSuperiorTécnico Lisboa Portugal

DavidBrie CRAN

LorraineUniversity Nancy France

RasmusBro DepartmentofFoodScience UniversityofCopenhagen Frederiksberg Denmark

EmilieChouzenoux OPIS,InriaSaclay UniversityParis-Saclay Gif-sur-Yvette

France

JérémyCohen CNRS,CREATIS

Lyon France

PierreComon CNRS GIPSA-lab UniversitéGrenobleAlpes

France

NicolasDobigeon IRIT INP-ENSEEIHT IRITUniversityofToulouse Toulouse France

LeonardoTomazeliDuarte SchoolofAppliedSciences(FCA) UniversityofCampinas Limeira Brazil

NicolasGillis DepartmentofMathematicsand OperationalResearch UniversityofMons

Mons Belgium

xvi ListofContributors

ChristianJutten

GIPSA-lab

Univ.GrenobleAlpes

CNRS,InstitutUniv.

deFrance

Grenoble France

Wing-KinMa DepartmentofElectronic Engineering

TheChineseUniversityof HongKong

HongKongSAR China

SaïdMoussaoui

LS2N,NantesUniversité EcoleCentraleNantes Nantes

France

Jean-ChristophePesquet CVN,CentraleSupélec UniversityParisSaclay

France

Foreword

InMemoriam:JoséM.Bioucas-Dias(1960–2020), aHumbleGiant

JoséManuelBioucas-Dias(1960–2020)wasaProfessoratInstitutoSuperior Técnico(IST),theengineeringschooloftheUniversityofLisbon,anda seniorresearcheratInstitutodeTelecomunicações.Afterobtaininghis PhDdegreeinElectricalandComputerEngineering,in1995,fromIST,he dedicatedhisresearchlifetotheareaofsignalandimageprocessing,in problemsrelatedtothereconstruction,restoration,andanalysisofimages. Inparticular,hefocuseddeeplyonprocessingandanalysisofremote sensingobservations,asubjectinwhichhewaswidelyconsidereda world-leadingauthority.JoséBioucas-Diascontributedtohighlyrelevant andinfluentialscientificandtechnicaladvancesinsyntheticaperture radar,interferometricradar,andhyperspectralimaging.

Figure1featuresawordcloudconstructedfromthetitlesofhisnumerous publicationsavailablefromIEEEXplore.Clearly,“hyperspectral”appears asacentraltopicofinterestandhewasindeedakeymemberofthehyperspectralimagingresearchcommunity,beitfromthegeoscienceandremote sensingpointofvieworfromthesignalandimageprocessingpointofview. Thedirectandindirectimplicationsandapplicationsofhiscontributionsare numerous,namelyintheprocessingandanalysisofsatelliteimages,whose impactonmodernsocietyisenormous.

Forhiscontributionstoimageprocessingandanalysisinremotesensing, JoséBioucas-DiaswaselevatedtoFellowoftheIEEE(InstituteofElectrical andElectronicsEngineers)in2016.In2017,hereceivedthefirst David LandgrebeAward,(Figure2a)fromtheGeoscienceandRemoteSensing Society(GRSS)oftheIEEE,withthecitation“foroutstandingcontributions inthefieldofremotesensingimageanalysis.”AccordingtotheGRSS, “theDavidLandgrebeawardisacareeraward,givenforextraordinary

xviii ForewordInMemoriam:JoséM.Bioucas-Dias(1960–2020),aHumbleGiant

Figure1 WordcloudbasedonthetitlesofallpublicationsofJoséBioucas-Dias, extractedfromIEEEXplore.

Figure2 (a)JoséBioucas-DiasreceivingtheDavidLandgrebeAward.(b)José Bioucas-Dias,generalchairofthe3rdWorkshoponHyperspectralImageand SignalProcessing,heldin2011inLisbon,Portugal. contributionsinthefieldofremoteobservationimageanalysis.”In2018he wasnamedDistinguishedLecturerbytheIEEEGRSS.

Throughouthiscareer,JoséBioucas-Diaspublishedmorethan100articles inthemostprestigiousjournalsinhisareasofwork,aswellasmorethan

ForewordInMemoriam:JoséM.Bioucas-Dias(1960–2020),aHumbleGiant xix

200articlesinallthebestsignalandimageprocessingandremotesensing conferences,wherehereceivedseveral“bestpaperawards.”Thehighinternationalimpactofhisworkisevidentintheimportantdistinctionsmentionedinthepreviousparagraph,aswellasinthefactthathewasincluded inthe2015,2019,2020,and2021editionsoftheprestigious“HighlyCited Researchers”list(byClarivateAnalytics),whichisreservedtotheworld eliteofresearcherswiththegreatestimpactintheirfields.

Hisrecognitionandprestigeintheinternationalscientificcommunityarealsoevidentinthefactthathewasinvitedtojointheeditorial boardsofthebestjournalsinthearea:the IEEETransactionsonCircuits andSystems,the IEEETransactionsonImageProcessing (inwhichhewas asenioreditor),andthe IEEETransactionsonGeoscienceandRemote Sensing.Hewasalsoaguesteditorforseveralspecialissuesintheseand otherjournals.HewastheGeneralCo-ChairofthethirdIEEEGRSS WorkshoponHyperspectralImageandSignalProcessing,Evolutionin Remotesensing((WHISPERS’2011,(Figure2b))andhasbeenamemberof program/technicalcommitteesofseveralinternationalconferences.Even morerevealingofhisrecognitionisthehighnumber(over60)ofinvited presentationshegaveatinstitutionsandprestigiousconferencesaround theworld,fromwhicharound20plenaryandkeynotepresentationsstand out.Healsoheldseveralvisitingprofessorpositions,attheinvitationof severalEuropeanuniversities:TampereUniversityofTechnology(Finland, in2008and2012),UniversitéGrenobleAlpes(France,2014),Universitéde Toulouse(France,2013and2015),UniversitàdiPavia(Italy,2016).

Inadditiontobeinganexcellentresearcher,JoséBioucas-Diaswasalsoa devotedteacherandeducator.Hesupervisedandco-supervised20PhDthesesandmorethan10post-doctoralinternshipsforresearchersfromseveral countriesaroundtheworld.AtIST,hecreatedthefirstPhDcourseininverse problemsinimageprocessingand,duringhiscareer,hetaughtmanyother courses(intheareasofsignalprocessing,telecommunications,informationandcommunicationtheory,remotesensing,tomentiononlythemost significant),alwayswithgreatdedicationandhighpedagogicalandscientificquality.Hewasalsoengagedinvariousuniversitymanagementtasks, havingjoinedtheScientificCouncilofIST.

JoséBioucas-Diaswasoneofthebrightestandmostinfluentialscientists inthefieldofremotesensingimageprocessingandanalysis.Hiscontributionswerenotonlyfundamental,butalsoofverysignificantpractical applicability.Hisgreatscientificstaturewasmatchedbyanexceptional modesty,courteousaffability,andselflessreadinesstohelpothers.Hewas anexceptionallydedicatedmentortosomanyandafantastichumanbeing, totallydrivenbyhispassionforscience,hiscreativity,andhisrigor.Hewas

xx ForewordInMemoriam:JoséM.Bioucas-Dias(1960–2020),aHumbleGiant

alwaysavailabletoengageinscientificdiscussions,sitdownwithastudent todigintoaproblemuntilitwassolvedfairandsquare,sharinghisjoyand optimism,nevergivingup.Ontheinternationalscientificscene,hewasa giant;onhisdailyinteractions,hishumilitywasastrikingfeature.Thisrare blendmadehimatrulyinspirationalhumanbeing,theperfectrolemodel, colleague,friend.

Withhisuntimelydeath,welostanoutstandingresearcher,agreateducator,andatrulygoodman.Wearetrulyhonoredtodedicatethisbookto him,highlightinghislong-lastinglegacytoourcommunity.

MárioA.T.Figueiredo InstitutodeTelecomunicações InstitutoSuperiorTécnico UniversidadedeLisboa,Portugal

JocelynChanussot GrenobleINP

UniversityofGrenobleAlpes,CNRS GIPSA-Lab,France

Preface

Sourceseparationisaveryubiquitousconceptinsignalprocessing,whose mainobjective,essentialinsignalprocessing,istorecoveraninformationof interest.Whentheacquiredsignalisamixtureofsources,e.g.,soundsfrom differentspeakersrecordedbyamicrophone,ordifferentionsmeasuredby anionsensitivesensor,duetothepoorselectivityofsensors,recovering thedifferentsources(speakersorions,inthepreviousexamples)isatricky question.Themainapproachforsolvingtheproblemistouseseveralsensorsinsteadofauniqueone.Indeed,ifthesensorsareatdifferentlocations forsounds,orwithdifferentsensitivitiesforions,eachsensorprovidesa differentinstanceofthemixtureofthesourcesand,undermildconditions, asufficientamountofinformationwillthusbeavailableforrecoveringeach source.

Withtechnologicalprogresses,sensorsaremoreandmorenumerous, common,andlowcost,andmanyphysicalquantitiesaremeasuredby arraysofsensors,sothatsourceseparationcanbeveryusefulinvarious domains.Asafewexamples,sensorshavebeenused(i)inbiomedical signalprocessing,fornoninvasivefetalelectrocardiogramextractionusing afewchestelectrodes,forextractingandlocatingbrainsourcesfrom electroencephalogramscalpelectrodesormagneticresonanceimaging, (ii)insatelliteandairborneremotesensingforestimatingthecomposition ofgroundsurface,ofplanets,oroftheuniversefromhyperspectralimages, (iii)inchemicalengineeringformeasuringthecompositionofelectrolytes basedonrecordwithion-sensitivesensorsoropticalspectrometersforthe inspectionofmolecularcompositionofmaterials.

Separatingdifferentsourcesfromasetofobservations(sensors)isstillan ill-posedsignalprocessingproblemthatcannotbehandledappropriately withoutadditionalhypothesesonthesoughtsources.Ifmutualstatistical independenceofsourcescanbeanefficientproperty,whichleadstovery powerfulclassesofalgorithms,namelyindependentcomponentanalysis,it

cannotbeusedinalldomains.Especially,forsignalscomingfromphysical/ chemicalsensors,themutualindependencepropertymaybetotallyirrelevant.Conversely,non-negativityisaverycommonpropertyforsuchsignals: itistypicalwhenmeasuringspectra,countingions,orassessingmolecular concentrationsandabundances.Inadditiontonon-negativity,sum-to-one andsparsityarealsorelevantproperties.Thesepropertiescanbeusedfor designingverypowerfulalgorithmsabletosolvethesourceseparation problem.

Thisbookproposesatourofapproachesandalgorithmsofsourceseparationinphysical/chemicalsensingapplications.Thefirstchapterpresents acomprehensiveviewofthesourceseparationproblemandpointsoutthe mainapproachesforitsresolution.Sinceallthesourceseparationalgorithmsarebasedontheoptimizationofacostfunctionconstitutedofadata fittingtermandfewregularizationtermspromotingthedesiredsourcepropertiesorimposingsomephysicalconstraints,thesecondchapterisfocused onbasicprinciplesandrecentadvancesinmathematicaloptimization theoryandalgorithms.Thefourotherchaptersaddressdifferentapproaches forsourceseparation:non-negativematrixfactorization(NMF),Bayesian estimationapproaches,geometricalformulationbasedapproaches,and tensorfactorizationmethods.Thesefourchapterspresentbothamethodologicalviewofeachapproachandexamplesofapplicationsforillustrating itsubiquitousinterestinvariousphysical/chemicalsensingapplications. Theauthorsofthechaptersofthisbookareworldwiderecognizedscientists, withastrongexpertiseandmanyvaluablecontributionsinthefieldof signalprocessingandparticularlyindevelopingsourceseparationmethods basedonvariousapproaches.Theyalsohavealong-timeexperiencein dealingwithmultidisciplinarysignalprocessingapplicationsinchemical sensing,hyperspectralimaging,andphysicalapplications.

Lifeisshortandhard.Duringthewritingofthisbook,ourfriendJosé Bioucas-Diaspassedaway,sweptawaybyillness.Alltheco-authorsofthis bookdedicatethisworktoJosé,agreatscientist,andcolleagueorfriend. OurgratefulthankstoMárioA.T.FigueiredoandJocelynChanussotfor writingtheforewordofthisbookasatributetoJosé.

Grenoble ChristianJutten LeonardoTomazeliDuarte SaïdMoussaoui

Notation

Signals,VectorsandMatrices

x columnvectorofcomponents xp ,1 ≤ p ≤ P

Diag{a} diagonalmatrixwhoseentriesarethoseofvector a

G, W , Q global,whitening,andseparatingunitarymatrices

A matrixwithcomponents Aij

A, B mixingandseparationmatrices

,  mixingandseparating(nonlinear)operators

R numberofsources

P numberofsensors

T numberofobservedsamples

s, x , y sources,observations,separatoroutputs

diag{A} vectorwhosecomponentsarethediagonalofmatrix A

OperatorsonSignals,Vectors,Matrices,Tensors,andFunctions

Q∗ complexconjugationofmatrixQ

★ convolution

QH conjugatetranspositionofmatrixQ

•j contractionoverindex j

det A determinantofmatrix A

̆

s(�� ), ̌ g Fouriertransformofsignal s(t) andof g

⊡ Hadamard(entry-wise)productbetweenarrays

◽ infimum-convolution

⊙ Khatri-Rao(column-wiseKronecker)productbetweenmatrices

⊠ Kroneckerproductbetweenmatrices

krank{A} Kruskal’srankofmatrix A

Q† pseudo-inverseofmatrixQ

rank{A} rankofmatrix A

⊗ tensorproduct

trace{A} traceofmatrix A

QT transpositionofmatrixQ

RandomVariablesandVectors,StatisticalOperators

Υ contrastfunction

̂ s estimateofquantity s

cum{x1 , … , xP } jointcumulantofvariables {x1 , … , xP }

�� jointscorefunction

K {x ; y} or K ( f (x ); f (y)) Kullbackdivergencebetween f (x ) and f (y)

 likelihood

cumR {y} marginalcumulantoforder R ofvariable y

��i marginalscorefunctionofsource si

��[x ], ��{x } mathematicalexpectationof x

I {y} or I (y) mutualinformationof y

fX (x ) or f (x ) probabilitydensityfunctionofrandom variable X

H {x } or H {px } Shannonentropyof x

Sets

ℂ complexfield

dom g domainoffunction g

epi g epigraphoffunction g

��C indicatorfunctionofset C

PC projectoronset C

ℝ realfield

 ,  sets

OperatorsforOptimization

g∗ conjugateoffunction g

|| ⋅ ||F Frobeniusnorm

proxA g (x ) proximityoperatoroffunction g withinthemetricinduced by A computedat x

∇g gradientof g

∇2 g Hessianof g

argmin C g minimumargumentof g overset C

argmax C g maximumargumentof g overset C

�� g Moreauenvelopeof g ofparameter ��

inf C g infimumof g overset C

◽ infimum-convolution

||| ||| spectralnorm

�� g(u) subdifferentialsetof g at u

sup C g supremumof g overset C

OverviewofSourceSeparation

1 GIPSA-lab,Univ.GrenobleAlpes,CNRS,InstitutUniv.,deFrance,Grenoble,France

2 SchoolofAppliedSciences(FCA),UniversityofCampinas,Limeira,Brazil

3 LS2N,NantesUniversité,EcoleCentraleNantes,Nantes,France

1.1Introduction

Thepurposeofthischapteristogiveageneraloverviewofthesourceseparationproblemanditsunderlyinghypotheses,andofmethodsandalgorithms forsolvingtheproblem,withanemphasisonthecontextofdataprocessing inphysical/chemicalsensingapplications.

1.1.1BriefIntroductiontoSourceSeparation

Sourceseparationisaverygeneralprobleminsignalprocessing,and,more generally,insensing.Infact,abasictaskinsignalprocessingconsistsin separatingusefulinformation(calledsignal)fromnon-usefulone(called noise)innoisymeasurements.Measurements(alsocalledobservations)are frequentlyobtainedthroughsensors,sensitivetosomephysicalorchemical propertiesoftheobjectwhichisanalyzed.However,thesensorselectivityis limitedsothatitsoutputdependsonvariousphenomena(calledsources).

Asafirstexample,thesignalcapturedbyamicrophoneisthesuperimpositionofsignalsemittedbyalltheacousticsourcesintheneighborhood. Similarly,thesignalmeasuredbyascalpelectrodeinelectroencephalography(EEG)isassumedtobethesuperimpositionofthesynchronous electricalactivityofneuralassemblieslocatedinvariousareasinthebrain. Inremotesensingbyhyperspectralimaging,duetolowspatialresolution, themeasuredreflectancespectrumineachpixelisanaggregationofthe reflectancespectraofallphysicalmaterialspresentinthegroundsurface

SourceSeparationinPhysical-ChemicalSensing,FirstEdition. EditedbyChristianJutten,LeonardoTomazeliDuarte,andSaïdMoussaoui. ©2024JohnWiley&SonsLtd.Published2024byJohnWiley&SonsLtd.

relatedtothispixel.Finally,inchemicalsensing,ion-sensitiveelectrodes havebeendesignedformeasuringactivityofspecificions;however,dueto alimitedselectivity,thesensoroutputdependsontheactivityofthemain ionandontheactivitiesofinterferingionswhichcanbepresentinthe solution.

Sourceseparationproblemsareconsideredinablind(unsupervised) framework,i.e.,byassumingthatonlysensormeasurements(calledmixtures)areavailable,butneitherthesourcesignalsnorthemixingprocess (thesuperimpositionintheaboveexamples)areknown.Themainconcept forsolvingblindsourceseparation(BSS)problemsisbasedon diversity, whosesimplestimplementationistousealargenumberofsensors,thus providingspatialdiversity.Solvingsourceseparationrequiresfirsttomodel theobservations,i.e.,howthesignalsreceivedbythesensorsarerelatedto thesources,andthentoaddsome(weak)priorsandhypothesesonthese sourcesinordertoensuretheir separability,andthereforetheseparation problembecomeswell-posed.

Theproblemofsourceseparationhasbeenformulatedinthemiddle of1980sbyJuttenandHérault[1]formodelingmotiondecodingin vertebrates.Then,theoreticalfoundationshavebeendevelopedmainlyin thesignalprocessingcommunitybydifferentresearcherslikeComon[2], CardosoandSouloumiac[3,4],PhamandGarat[5],PhamandCardoso [6],DelfosseandLoubaton[7],andinparallelintheNeuralNetworksand MachineLearningcommunitiesbyresearcherslikeBellandSejnowski inUSA[8],HyvärineninFinland[9],Cichocki,Amari,andtheirteamin Japan[10].

Theinterestformethodsofsourceseparationisduetoitsstrongtheoreticalfoundations[11](Chapters2–14)andtoitsverywideapplication domains[11](Chapter16).In2022,withthekeywords sourceseparation, Googlerecalledmorethan584millionentries!

Fromtheapplicationpointofview,duetoexpansionofbothlow-cost sensorsandpowerfulcomputersthatareabletoprocessveryfasthuge datasets,theproblemofsourceseparationappearsinseveraldomains,like communications[11](Chapters15and17),audioandmusicprocessing [11,12](Chapter19),biomedicalengineering[11](Chapter18),and remotesensingandhyperspectralimaging[13].Firstapplicationsofsource separationappearedinthemiddleof1990sandwerefocusedonbiomedical problems:non-invasivefetalelectrocardiogram(ECG)separation[14]in 1994andECGprocessing[15]in1996.Sourceseparationhasitssuccess stories,too.Asanexample,applyingthespectralmatchingindependent componentanalysisalgorithm[16]onthedataprovidedbythePlank spacemission,CardosowasabletoextractwonderfulimagesoftheCosmic

MicrowavesBackground,i.e.,averyearlyimageofouruniverse,whichis averyimportantmaterialforcosmologists.

Inchemicalengineering,itseemsthatsourceseparationhasbeenapplied firstfornuclearmagneticresonancespectroscopy[17]in1998,andalarger numberofworkshavebeenpublishedinmiddleof2000sasdetailedby Monakhova etal. inthereview[18].Inthiscontext,evenifMonteCarlo statisticalmethodshavebeenproposedformixtureanalysis[19],itmust benotedthatsourceseparationisstronglyrelatedtopositivematrixfactorization[20]andtoalgebraicmethodsoftensorfactorization,popularin ChemometricsandquotedPARAFAC[21].

1.1.2Chapter’sOrganization

Thischapterisageneralintroductiontothemainconceptsrelatedtosource separation.Itisorganizedasfollows.Section1.2presentsthemathematical problemofsourceseparationandafewbasicsolutionprinciples.Section1.3 focusesonsourceseparationmethodsbasedonmutualstatisticalindependence.Section1.4givessomeexamplesofthevariousapplicationsinphysics andchemistrythatcanbeformulatedinthesourceseparationframework. Section1.5isanoverviewofapproachesthatcanbeusedforsolving problemsofSection1.4.Section1.6detailstheorganizationofthebook.

1.2TheProblemofSourceSeparation

1.2.1MathematicalDescription

Letusfirstconsiderauniquesensoranddenote x (t), t = 1, … T itsoutput, atsample t.Duetothepoorselectivityofthesensor,onecanmodel x (t) asa functionof R unknownsources,denoted sr (t), r = 1, , R:

where  modelsthemixingoperator,unknowntoo. Inthesimplestcase,i.e.ifthemapping  isassumedlinear,onecould write:

Althoughthismodelissimple,wearefacedwithtwoproblems:(i)the mixingcoefficients Ar areunknown,aswellasthesources sr (t) (ii)evenif themixingcoefficients Ar wereknown,theseparationofthecontributions comingfromthevarioussourcesremainsanill-posedproblem.

1OverviewofSourceSeparation

Thefirstproblemcanbesolvedthroughmodelingoridentification methods.Modelingrequirestowritepropagationequationsofsignals fromsourcestosensors,andimplicitlytoknowthelocationsofsources andsensors.Then,identificationcanbeachievedbutitrequiresatrainingsetofmanysamples (s1 (t), … , sR (t); x (t)), t = 1, … , T ,i.e., T pairsof inputs/output,forperformingsupervisedparameterestimation.

Thesecondproblemcouldbesolvedifwehaveadditionalinformation concerningthedifferentsources.Forinstance,intheaboveexampleof acousticsourcesrecordedbyamicrophone,ifweknowthattheuseful sourceandnon-usefulonesarecharacterizedbydifferentfrequencybands, wecanseparatethembysimplespectralfiltering.Subtractionmethods[22] canbealsoused,providedthatonehasareferenceofthebackgroundnoise (i.e.non-usefulsources).

Asaconclusion,solvingthesourceseparationproblemwithauniquesensorisimpossiblewithoutverystrongpriors.

Thebasicconceptofmethodsforsolvingsourceseparationproblemsis diversity.Asimplewaytoenhancediversityistouseafewsensors,say P, insteadofonlyone.Inthatcase,ateachsample t,insteadofhavingascalar observation,wehavea P-dimensionalobservationvector x (t):

where  denotesthemultidimensionalmappingbetweenthe R sourcesand the P sensors.Denoting s(t) the R-sizevectorofsources,onecanalsowrite:

Forinstance,intheaboveexamples, spatialdiversity isobtainedbyusing severalmicrophonesorfewEEGelectrodeslocatedatdifferentplaces,or severalimagepixels,orseveralion-sensitivesensors,specifictodifferent ions.Butanotherdiversityisrequired, thesamplediversity (timediversity intheaboveexamples),i.e.,theshapesoffunctions sr (t) mustbeactually different.Thissamplediversitycanbeensuredbyassumingthatsources (consideredasrandomvariables)aremutuallyindependent,orhave differentspectraordifferentvariancetimecourses.Notethatthediscrete characterofsourcescanbeusedinstead[23].

Theproblemofsourceseparationisoftensaid blind inthesignalprocessingcommunity:inthiscontext, blind referstothefactthatweonlyhave T observations x (t),withoutapreciseknowledgeeitheronthesourcesoron themapping .Inotherwords, blind mustbeunderstoodas unsupervised inmachinelearning.Insuchacase,identificationofthemappingisnot directlypossiblesincewedonothaveinput/outputpairsformapping

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.