Download ebooks file Connected vehicular systems: communication, control, and optimization ge guo al

Page 1


Connected Vehicular Systems: Communication, Control, and Optimization Ge Guo

Visit to download the full and correct content document: https://ebookmass.com/product/connected-vehicular-systems-communication-controland-optimization-ge-guo/

More products digital (pdf, epub, mobi) instant download maybe you interests ...

Tidal Energy Systems: Design, Optimization and Control

1st Edition

https://ebookmass.com/product/tidal-energy-systems-designoptimization-and-control-1st-edition/

Tidal Energy Systems: Design, Optimization and Control Vikas Khare

https://ebookmass.com/product/tidal-energy-systems-designoptimization-and-control-vikas-khare/

Merging Optimization and Control in Power Systems : Physical and Cyber Restrictions in Distributed Frequency Control and Beyond 1st Edition Feng Liu

https://ebookmass.com/product/merging-optimization-and-controlin-power-systems-physical-and-cyber-restrictions-in-distributedfrequency-control-and-beyond-1st-edition-feng-liu/

Instrumentation

And Control Systems Reddy

https://ebookmass.com/product/instrumentation-and-controlsystems-reddy/

Blast Furnace Ironmaking: Analysis, Control, and Optimization Ian Cameron

https://ebookmass.com/product/blast-furnace-ironmaking-analysiscontrol-and-optimization-ian-cameron/

Instrumentation and Control Systems William Bolton

https://ebookmass.com/product/instrumentation-and-controlsystems-william-bolton/

978-0134407623 Modern Control Systems (13th Edition)

https://ebookmass.com/product/978-0134407623-modern-controlsystems-13th-edition/

Introduction to linear control systems Bavafa-Toosi

https://ebookmass.com/product/introduction-to-linear-controlsystems-bavafa-toosi/

GATE 2019 Electronics and Communication Engineering

Trishna Knowledge Systems

https://ebookmass.com/product/gate-2019-electronics-andcommunication-engineering-trishna-knowledge-systems/

ConnectedVehicularSystems

ConnectedVehicularSystems

Communication,Control,andOptimization

GeGuo

TheStateKeyLaboratoryofSyntheticalAutomation forProcessIndustries,NortheasternUniversity

TheSchoolofControlEngineering,Northeastern UniversityatQinhuangdao,China

ShixiWen

SchoolofInformationandEngineering

TheKeyLaboratoryofAdvancedDesignandIntelligentComputing, MinistryofEducation,DalianUniversity,China

Copyright©2024byJohnWiley&Sons,Inc.Allrightsreserved.

PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey. PublishedsimultaneouslyinCanada.

Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans, electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptaspermittedunderSection107or108 ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwrittenpermissionofthePublisher,orauthorization throughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive, Danvers,MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requeststothe PublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111River Street,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission.

Trademarks:WileyandtheWileylogoaretrademarksorregisteredtrademarksofJohnWiley&Sons,Inc.and/orits affiliatesintheUnitedStatesandothercountriesandmaynotbeusedwithoutwrittenpermission.Allother trademarksarethepropertyoftheirrespectiveowners.JohnWiley&Sons,Inc.isnotassociatedwithanyproductor vendormentionedinthisbook.

LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthis book,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthis bookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityorfitnessforaparticularpurpose.No warrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategies containedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate. Further,readersshouldbeawarethatwebsiteslistedinthisworkmayhavechangedordisappearedbetweenwhenthis workwaswrittenandwhenitisread.Neitherthepublishernorauthorsshallbeliableforanylossofprofitoranyother commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.

Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomer CareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat(317)572-3993 orfax(317)572-4002.

Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbe availableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteatwww.wiley.com.

LibraryofCongressCataloging-in-PublicationData

Names:Guo,Ge(OfDongbeidaxue(1993)),author.|Wen,Shixi,author.

Title:Connectedvehicularsystems:communication,control,and optimization/GeGuo,ShixiWen.

Description:Hoboken,NewJersey:Wiley,[2024]|Includesindex.

Identifiers:LCCN2023022911(print)|LCCN2023022912(ebook)|ISBN 9781394205462(cloth)|ISBN9781394205479(adobepdf)|ISBN 9781394205486(epub)

Subjects:LCSH:Automatedvehicles.|Intelligenttransportationsystems.

Classification:LCCTL152.8.G862024(print)|LCCTL152.8(ebook)|DDC 629.04/6–dc23/eng/20230601

LCrecordavailableathttps://lccn.loc.gov/2023022911

LCebookrecordavailableathttps://lccn.loc.gov/2023022912

CoverDesign:Wiley

CoverImage(s):©kanwang/GettyImages

Setin9.5/12.5ptSTIXTwoTextbyStraive,Pondicherry,India

Contents

Preface ix Acknowledgments xiii

PartIVehicularPlatoonCommunicationandControl 1

1ControlwithVaryingCommunicationRange 3

1.1Introduction 3

1.2ProblemFormulation 5

1.3SwitchingControlofConnectedVehicles 9

1.4SimulationsandExperiments 16

1.5ConclusionsandFutureWork 23 References 24

2ControlSubjecttoCommunicationInterruptions 26

2.1Introduction 26

2.2ProblemFormulation 27

2.3MixedCACC-ACCControl 28

2.4Finite-TimeSliding-ModeControl 32

2.5NumericalSimulations 34

2.6ConclusionsandFutureWork 39 References 41

3ControlandCommunicationTopologyAssignment 42

3.1Introduction 42

3.2ProblemStatement 44

3.3CommunicationTopologyandControlCo-Design 48

3.4SimulationStudies 57

3.5ConclusionsandFutureWork 70 References 70

4ControlwithCommunicationDelayandSwitchingTopologies 72

4.1Introduction 72

4.2ProblemFormulation 73

4.3StabilityAnalysis 77

4.4ControllerSynthesis 82

4.5SimulationStudies 86

4.6ConclusionsandFutureWork 95

References 96

5ControlwithEvent-TriggeredCommunication 97

5.1Introduction 97

5.2ProblemFormulation 99

5.3Event-TriggeredCommunicationandPlatoonControl 104

5.4SimulationStudy 107

5.5ConclusionsandFutureWork 119

References 120

PartIIPerformanceGuaranteeUnderActuatorLimitation 121

6AdaptiveFault-TolerantControlwithActuatorSaturation 123

6.1Introduction 123

6.2SystemModelingandProblemFormulation 124

6.3QuadraticSpacingPolicyandAdaptivePID-TypeSlidingSurface 127

6.4ControllerDesignandStabilityandAnalysis 128

6.5SimulationResults 135

6.6ConclusionsandFutureWork 139

References 142

7Fault-TolerantControlwithInputQuantizationandDeadZone 143

7.1Introduction 143

7.2SystemModelingandProblemFormulation 144

7.3ImprovedQuadraticSpacingPolicyandAdaptivePID-TypeSlidingSurface 148

7.4ControllerDesignandStabilityAnalysis 149

7.5SimulationResults 155

7.6ConclusionsandFutureWork 157

References 163

8PrescribedPerformanceConcurrentControl 165

8.1Introduction 165

8.2ProblemFormulation 166

8.3ControllerDesignGuaranteedPrescribedPerformance 168

8.4SimulationStudies 175

8.5ConclusionsandFutureWork 179

References 179

9AdaptiveSlidingModeControlwithPrescribedPerformance 181

9.1Introduction 181

9.2ProblemFormulation 181

9.3ModelTransformation 184

9.4VehiclesTrackingControllerDesign 185

9.5SimulationStudies 190

9.6ConclusionsandFutureWork 197 References 198

PartIIISpeedTrajectoryPlanningandControl 199

10SpeedPlanningandTrackingControlofVehicles 201

10.1Introduction 201

10.2ProblemFormulations 202

10.3SpeedPlanning 205

10.4SpeedTrackingControllerDesign 207

10.5SimulationandExperiments 213

10.6ConclusionsandFutureWork 221 References 224

11AnalyticalSolutionforSpeedPlanningandTrackingControl 225

11.1Introduction 225

11.2SystemModelingandProblemFormulation 226

11.3SpeedOptimizationBasedonPMP 228

11.4SpeedTrackingControlandStringStability 232

11.5SimulationStudies 237

11.6ConclusionsandFutureWork 240 References 241

12SpeedPlanningandSliding-ModeControltoReduceIntervehicleSpacing 242

12.1Introduction 242

12.2ProblemStatement 243

12.3IntervehicleSpacingOptimization 246

12.4Sliding-ModeControllerDesign 250

12.5SimulationStudies 253

12.6ConclusionsandFutureWork 265 References 266

13TrajectoryPlanningandPID-TypeSliding-ModeControltoReduceIntervehicle Spacing 268

13.1Introduction 268

13.2ProblemDescription 269

13.3DistributedTrajectoryOptimization 271

13.4PID-TypeSliding-ModeControllerDesign 275

13.5SimulationResults 278

13.6ConclusionsandFutureWork 288 References 288

14TrajectoryPlanningandFixed-TimeTerminalSliding-ModeControl 290

14.1Introduction 290

14.2ProblemFormulation 291

14.3VehiclesTrajectoryOptimization 293

14.4Fixed-TimeTrackingControlDesign 297

14.5NumericalSimulations 301

14.6ConclusionsandFutureWork 307

References 307

Index 309

Preface

Withtheubiquitousapplicationofvehicle-to-vehicle(V2V)andvehicle-to-infrastructure(V2I) communicationtechnologies,connectedandautomatedvehicles(CAVs)arecapableofgathering andsharingroadandtrafficinformationandevenvehiclestateswithneighboringvehicles.Inparticular,enabledbytheinformationshared,CAVsallowautomatedvehiclemotion,carfollowing, cooperateddrivingandplatooning,andvehicle-trafficsignalcooperativecontrol.Therefore,CAVs arebelievedtobeapromisingtechnologytodelivergreatersafetyandmobilitybenefitstothenew generationofintelligenttransportationsystems(ITSs)withincreaseddrivingsafety,ridecomfort, trafficefficiency,andthroughput,alongwithreducedcongestion,accidents,emissions,andair pollution.However,theoperationofCAVsandtheassociatedITSsdependsheavilyontimely andreliableinformationgatheringandsharing,properdecision-making,andeffectiveactuation ofthedrivingdecision.However,criticalchallengingissuesarefacingCAVsfromallaspects includingsensing,communication,controldesign,andcommandactuating,which,ifnot properlyaddressed,canresultinsafetyrisksandlosses.

ThisbookcontainsourresearchadvancesinthepastdecadeintheanalysisandsynthesisofCAV systemsfromallaspectsoftrajectoryplanning,cooperativecontrol,andcommunication.Thefocus ofthisbookisonthedevelopmentofmathematicalmodelsandmethodologiesfortrajectoryoptimizationandtrackingcontrol,communicationsconflictresolution,cooperativecontrolsubjectto communicationconstraints,andsensor/actuatorfailures/faultsforCAVsfromdifferentperspectives.Thisbookiscomposedof14chapters.Thecontentsaredividedintothreeparts,with Chapter1 – Chapter5asPartI,Chapter6 – Chapter9asPartII,andChapter10 – Chapter14 asPartIII,respectively,concernedwithcooperativevehicularcommunicationandcontrol,performanceguaranteeunderactuatorlimitations,andspeedtrajectoryplanningandtrackingcontrol ofCAVs.

Chapter1 studiestheplatooncontrolproblemsubjecttovaryingcommunicationrangewitha constant-spacingpolicy.Accordingtotheconnectivitystatusbetweentheleaderandeachfollower, connectedvehiclescontrolismodeledasaswitchedplatooncontrolsystemwithaconnectivitystatus-matrix-dependentcontroller.Byusingswitchedsystemtheory,aseriesofsufficientconditions areobtainedasacriterionforthestabilityanalysisandcontrolsynthesisoftheleaderfollowing platoon.Basedontheobtainedconditions,ausefulcontrolalgorithmisproposedforconnected vehicles.Foreachobtainedconnectivity-status-matrix-dependentcontroller,thestringstability andazerosteady-statespacingerrorcanbeguaranteedbyadditionalconditions.

Chapter2 investigatesplatooningofconnectedvehiclesconsideringcommunicationinterruptionandlatency.Foraheterogeneousplatoonofvehicles,ahybridreferencemodelwithcooperativeadaptivecruisecontrol(CACC)andadaptivecruisecontrol(ACC)isestablished.Thenanovel CACC-ACCswitchingcontrolmethodissuggested,whichactivateseitheraCACCschemeoran

x Preface

augmentedACCstrategydependingonthestatusofcommunications.Byintroducingaplatoon statetrackingerrorsystem,acontrolalgorithmisderivedusingfinite-timesliding-modecontrol theory,whichcanrobustlyguaranteestringstabilityandzerosteady-statespacingerroroftheconnectedvehicles.

Chapter3 studiestheco-designproblemofplatoon controllerandinter-vehiclecommunicationtopology(IVCT)inLTE-V2Vnetworks. Thecommunicationassignmentisachieved basedonthecooperativeawarenessmessagedisseminationmechanism.Asampled-datafeedbackcontrollerisproposedforconnectedvehicl estoeliminatetheeffectofstochasticpacket dropoutsandexternaldisturbance,wherethecontrollergaindependsontheIVCT.Toguaranteethestabilityrequirementofconnectedvehicleswiththeminimizedcostfunction,aunifiedcontrolframeworkisestablishedtojointlydeterminetheoptimalIVCTfromallthe availableonesandtheassociatedfeedbackcontrollergain.Thisco-designprocedureisbased ontheoptimalcontrolanddynamicprogrammingtechnique,wherebothfixedandperiodic switchingIVCTsareavailable.Ausefulalgor ithmisproposedtoimplementtheestablished co-designframework.

Chapter4 addressestheplatooncontrolprobleminasampled-datasetupwithswitchingcommunicationtopologyandtransmissiondelays.Atrackingerror-basedsampled-datacontrolmethod isproposed,wheretheneighboringvehicle’sstateinformationistransmittedviatheVANETwith communicationdelay.ByrepresentingtheswitchingcommunicationtopologybyaMarkovian chain,theconnectedvehicularcontrolsystemismodeledasaMarkovianswitchingtime-delaysystemwithdisturbance.InthecontextofMarkovianjumpingsystemtheory,acontrolmethodologyis obtainedforconnectedvehiclestoguaranteethatthetrackingerrorscanbestabilizedmean-square exponentiallywithagivendisturbanceattenuationlevel.Thecontrollersofconnectedvehicleswith bothfixedandvariablegainsaresuggested.Theresultsareextendedtocoverpartiallyunknown transitionratesoftheMarkovchains.

Chapter5 studiestheco-designproblemconsideringadynamicevent-triggeredcommunication mechanism(DECM).UndertheDECM,thetransmissionsofsampledvelocityandacceleration fromaprecedingvehicletothecontrollercanbesignificantlyreduced.Asampled-dataplatoon controllerisdesignedbasedonthetrackingerror(spacingerror,velocityerror,andacceleration error).SufficientconditionsforthestabilityoftheCACCsystemareobtainedfortheDECM-based sampled-datafeedbackcontroller.Accordingtotheobtainedconditions,parameterdesigncriteria areestablishedfortheDECMtoguaranteethestableperformanceofconnectedvehiclescontrol systems.

Chapter6 addressesafault-tolerantcontrolproblemforconnectedvehiclessubjecttoactuator faultsandsaturation.Tocompensatefortheeffectsofactuatorfaultsandsaturation,anadaptive fault-tolerantcontrolmethodisproposedbasedonnonlinearvehicledynamicsandanewquadratic spacingpolicy.Theimprovedquadraticspacingpolicyisintroducedtoremovetheassumptionof zeroinitialspacingerrors.Thenonlinearvehicledynamicsisapproximatedbyaradialbasisfunctionneuralnetwork(RBFNN).Theadaptivefault-tolerantcontrolmethodisdevelopedinthecontextofthePID-typesliding-modecontroltechniqueandprovedtobecapableofguaranteeing individualvehiclestability,stringstability,andtrafficflowstability.

Chapter7 revisitsthefault-tolerantcontrolproblemforconnectedvehiclesconsideringactuator faults,inputquantization,anddead-zonenonlinearity.Theoccurrenceofactuatorfaultsmaycause abruptvelocityandaccelerationchange,whichmayyieldaviolationofthespacingpolicy.So,an improvedquadraticspacingpolicyreflectingtheeffectofactuatorfaultisproposed,whichremoves theconditionofzeroinitialspacingerrors.Then,anadaptivefault-tolerantcontrolschemeisdevelopedbyemployingRBFNNandPID-typesliding-modecontrolmethod.

Chapter8 investigatesprescribedperformanceconcurrentcontrol(PPCC)ofconnectedvehicles withunknownparameters,disturbances,andactuatorsaturation.Acloserspacingpolicyisintroducedtoachievestringstabilitywithavirtualleader-bidirectionalinformationflow.Basedona newtransformedtrackingerrorfunctionandanauxiliarysystemintroducedtodealwithactuator saturation,adistributedadaptivetrackingPPCCcontrollerisdesignedtoachieveindividualvehicle stabilityandstringstabilityinthesensethatallthesignalsinthesystemareuniformlyultimately bounded.

Chapter9 revisitstheprescribedperformanceplatooncontrolprobleminthepresenceof actuatorsaturation,uncertainparameters,andunknowndisturbances.Twoadaptivesliding-mode controlschemesbasedonleader-predecessorandleader-bidirectionalinformationflows,respectively,arepresentedtoensurestringstabilityandstrongstringstabilitywithprescribedtracking performance.Theactuatorsaturationnonlinearityisapproximatedwithasmoothhyperbolic tangentfunction.Theeffectsofuncertainparametersandexogenousdisturbancesaredealtwith byintroducingasetofadaptationlaws.

Chapter10 studiesthespeedoptimizationandtrackingcontrolproblemforheavy-dutytruck platoons.Thespeedplanningalgorithmisderivedwithregardtoanaveragevehiclebasedona combinedfuel-timecostandrecedingdynamicprogramming.Theideaofusinganaveragevehicle insteadoftheleaderforspeedplanningmakesthespeedprofilemorefuel-efficientforplatooningof vehiclesdifferentinweightandsize.Thevehiclecontroller,adiscrete-timeback-steppingcontrol law,isdesignedonthebasisofanonlinearvehiclemodelconsideringroadslopeandheterogeneity ofvehicles.Thecontrolalgorithmisstrengthenedbyanovelstringstabilitycriterion.

Chapter11 isconcernedwithspeedoptimizationandtrackingcontrolproblemsforplatooning ofconnectedvehicles.Atwo-layeredcontrolarchitectureispresented:aset-pointoptimization layerandavehicletrackingcontrollayer.Inthefirstlayer,aspeed-planningalgorithmisderived tocalculatethespeedset-pointfortheconnectedvehiclesbyaveragingtheoptimalspeedofeach vehicle,whichisobtainedbysolvingafuel-timeoptimizationproblembasedonPontryagin’sminimumprinciple.Thesecondlayercontainsasetofdistributedsliding-modecontrollersforvehicle trackingcontrol,whichcanguaranteestringstabilityoftheconnectedvehicleswiththedesired inter-vehiclespacing.

Chapter12 investigatesdistributedtrajectoryoptimizationandadaptiveplatooncontrolofconnectedvehicles.Adistributedhierarchicalframeworkisproposedfortrajectoryoptimizationand trackingcontrol.Theupperlayerprovidesanoptimaltrajectoryforeachvehicle,whichisrealized byminimizingtheinter-vehiclespacingwithregardtothedesiredvaluesusingconvexoptimization.Thelowerlayercontainsanadaptivesliding-modecontrollertotracktheoptimaltrajectory. Tocompensateforuncertainvehicledynamics,aparameteradaptationlawbasedonthetracking errordynamicsisinvolvedinthecontroller,whichguaranteesbothindividualvehiclestabilityand stringstability.

Chapter13 studiesdistributedtrajectoryoptimizationandplatooncontrolproblemsforconnectedvehicleswithaquadraticspacingpolicy.Thequadraticspacingpolicybasedontheexpected teamspeedisintroducedtoimprovetheflexibilityofspeedplanningandregulation.Thetrajectory optimizationproblemissolvedusingdistributedconvexoptimizationbasedonspacingerrorminimization,resultinginanalgorithmtoprovidetheoptimaltrajectoryforallfollowingvehicles. Then,aPID-typesliding-modecontrollerwithadoublehigh-powerreachinglawispresented forspeed-trackingcontrolofeachfollower.Themethodologycanguaranteeindividualvehiclestability,stringstability,andtrafficflowstabilitywithignorableturbulenceofspacingandspeed.

Chapter14 extendsthedistributedtrajectoryoptimizationandplatooningmethodtoachieve fixed-timetracking.Theoptimaltrajectoryforallfollowingvehiclesisobtainedbyminimizing

thespacingerrorsviadistributedconvexoptimization.Thetrajectorytrackingcontrollerisderived basedonthetrackingerrordynamicsinthecontextoffixed-timestabilityandterminalslidingmodecontrol.Themethodcanrobustlyguaranteezerosteady-statespacingerrorsandindividual vehiclestabilityandstringstabilitysimultaneously.

Inthisbook,specialattentionisgiventoaclearpresentationoftheformulations,algorithms,and theirimplementationinnumericalsimulationsandexperimentalstudies.Relatedworksandreferencesaregivenattheendofeachchaptertoguidethereaderstowardfurtherknowledgeinthis area.Thebookcanbeusedincoursesforgraduatestudentsinmodelingandcontrolofconnected automatedvehiclesandtransportationsystems.Researchersandengineerscanalsodrawuponthe bookindevelopingmathematicalmodelsandalgorithmsfortheoreticalstudyandapplication purposes.

GeGuo,NortheasternUniversity,Shenyang,China ShixiWen,DalianUniversity,Dalian,China

2March2023

Acknowledgments

OurresearchworkhasbeenfundedbytheNationalNaturalScienceFoundationofChinaunder Grants60974013,61273107,61573077,U1808205,61803062,and62173079,and,inpart,bytheNaturalScienceFoundationofLiaoningProvinceunderGrant2022-MS-406.Wearegratefultothe fundersfortheirsupportinthepastdecade.TheauthorsacknowledgethecontributionsofDandan Li,QiongWang,PingLi,HongboLei,ZiweiZhao,DongqiYang,JianKang,Ren-Yong-Kang Zhang,andmanyothersfortheirhardworkandcommitmentthatmadethismonographcome tofruition.Withouttheireffortandtimeindevelopingqualitycontributionsinoneortwoof thechapters,thisbookwouldnothavebeenpossible.

VehicularPlatoonCommunicationandControl

Communicationissuesduetobandwidthshortageareinevitableinvehicularadhocnetworks (VANET),whichmayinducetimedelay,packetdropouts,andmediumaccessconstraintsthat canleadtoperformancedegradationoreveninstabilityinconnectedvehicularcontrolsystems. Moreover,inter-vehiclecommunicationandcontrolaretwoaspectsthatarestronglycoupled.This partconsistsoffivechapters. Chapter1 studiestheplatooncontrolproblemsubjecttovarying communicationrange.Basedontheconnectivitystatusbetweentheleaderandothervehicles, theplatooncontrolsystemismodeledasaswitchingsystem.Thenasetofsufficientconditions forstabilityanalysisandcontrolsynthesisaregiven,yieldingaplatooncontrolalgorithmthatguaranteesstringstabilityandzerosteady-statespacingerrors. Chapter2 revisitstheproblemsubjectto communicationinterruptionandlatency.Basedonahybridreferencemodelofcooperativeadaptivecruisecontrol(CACC)andadaptivecruisecontrol(ACC),aCACC-ACCswitchingcontrol methodissuggested.Toensurestringstabilityandzerosteady-statespacingerrorswithafinite time,afinite-timesliding-modecontrolalgorithmisderived. Chapter3 studiestheco-designproblemofplatooncontrollerandinter-vehiclecommunicationtopology.Aunifiedco-designframeworkispresentedtojointlydeterminetheoptimalcommunicationtopologyandthesampleddatacontrollergainsinassociationwiththetopology.Theco-designalgorithmisderivedbased onthestabilityrequirementandminimizationofthecostfunctionviadynamicprogramming. Chapter4 studiestheplatooncontrolproblemwithaswitchingcommunicationtopologyand transmissiondelays.TheswitchingcommunicationtopologyisdescribedasaMarkovchain, andtheconnectedvehicularcontrolsystemismodeledasaMarkovianjumpingsystemwithdelay. Theresultingcontrolmethodcanguaranteeexponentialconvergenceofthetrackingerrorsinthe mean-squaresense. Chapter5 revisitstheco-designproblemoftheCACCcontrollerandeventtriggeredcommunicationmechanism.Sufficientconditionsforthesampled-datacontrollerandthe event-triggeredcommunicationmechanismareobtainedtoguaranteesystemstability.

ControlwithVaryingCommunicationRange

1.1Introduction

Connectedvehiclescanshareinformation(position,speed,etc.)withneighboringvehiclesandthe infrastructureviavehicularadhocnetworks(VANETs),whichmakesplatooningorcooperative adaptivecruisecontrol(CACC)ofvehiclesanimportanttechnologytoalleviatetrafficcongestion andreducetrafficaccidents[1].Inaplatooningsystem,vehiclescantravelatasmallintervehicle spacingandhencelowerairdragtoreducefuelconsumptionandimprovethethroughputofroad traffic.Therefore,vehicularplatooninghasattractedmuchattentioninrecentyears[2,3].Asan extensionoftheACCtechnologyonboardmostcars,CACCisapromisingtechniqueinintelligent transportationsystems[4,5]enablingcooperativecontrolandplatooningofvehiclesviaintervehiclecommunicationsinadditiontoonboardsensors.WhenacarisfollowinganotherintheACC mode,amplificationsofacceleration/decelerationareinevitableduetotheunavailabilityofinformationfromtheprecedingvehicles.Thelongertheplatoon,themoresignificanttheshockwave effectintheplatoonofvehicles[6],whichisknownasstringinstability.CACCreliesoncommunicationnetworkstoexchangeinformationbetweenvehicles,allowingvehiclestoadapttothose aheadand,hence,caneffectivelymitigatetheshockwaveeffect.Inaddition,thetimeheadwayin CACCissmallerthanACC,leadingtoimprovedroadcapacityandtrafficthroughput[7],and reducedaerodynamicdragandfuelconsumption[8].

Generally,typicalspacingpoliciesusedforconnectedvehiclesaretheconstant-spacing(CS)policyandtheconstant-time-headway-spacing(CTHS)policy,dependingonwhethertherequired spacingofthevehicleisdependentonitsspeed[9,10].CSpolicyhastheadvantagetoimprove roadcapacity,whileCTHSpolicycanhelpimproveroadsafety.Fromtheviewpointofstringstability,connectedvehicleswithCSpolicyarehardertobeguaranteed.

Withtherapiddevelopmentofintervehiclecommunicationtechnologies,thevarioustypesof interactiontopologies(seeFigure1.1)[11]areavailableforplatoonsnow.Nevertheless,stringstabilityisnotalwayssatisfiedunderinteractiontopologieswhenaCSpolicyisinvolved.Forexample, [12]provedthatstringstabilitycannotbesatisfiedforhomogeneousplatoonswithpredecessorfollowing(PF)topologyandCSpolicyowningtoacomplementarysensitivityintegralconstraint.Reference[13]showedthatplatoonswithbidirectionaltopologyalsosufferedfundamentallimitations onstringstability.AstheleaderPF(LPF)topology,theleadercanperiodicallybroadcastitsinformationtoeachfollower,whichhasbeenproventoyieldbetterstringstabilityperformance[12,14] withaCSpolicy.

Todate,considerableresearchhascontributedtosolvingthestringstabilityproblemforLPFplatoonswithCSpolicy.Theimportanttechnicalissuesincludecommunicationconstraints,optimal

ConnectedVehicularSystems:Communication,Control,andOptimization,FirstEdition.GeGuoandShixiWen. ©2024JohnWiley&Sons,Inc.Published2024byJohnWiley&Sons,Inc.

Figure1.1 Communicationtopologyinvehicleplatooncontrol:(a)leaderpredecessorfollowing; (b)predecessorfollowing;(c)bidirectionaltopology.

control,nonlineardynamics,range-limitedsensors,uncertainvehiclemodels,anddisturbances.To nameafewstudies,[15]analyzedthestringstabilityinthepresenceofcertaintimedelaysinthe leaderstatereception.Reference[16]investigatedtheeffectofcommunicationdelaysonstringstability.TheeffectsofcommunicationlimitationsonLPFplatooncontrolwerestudiedin[17,18]to includecommunicationdelays,packetdropouts,andquantization.Reference[19]proposeda decentralizedoverlappingcontrollawbyusingtheinclusionprinciple,whichcanpreservethe stringstabilityandsteady-statebehaviorfortheplatooncontroller.Reference[20]establisheddistributedrecedinghorizoncontrolalgorithmsforplatoonstodealwithnonlinearvehicledynamics. Inthesealgorithms,theaccelerationinformationoftheleadingcarisnotneededinthecontroller. ThealgebraicgraphtheoryandRouth-Hurwitzstabilitycriterionwereusedin[11]toanalyzethe stabilityandscalabilityofaplatoon.Reference[21]proposedaguaranteed-costcontrollerforvehicleplatoonstodealwithactuatordelays(e.g.fuelingandbrakingdelays)andtheeffectsofsensing rangelimitations.

Inthischapter,weareinterestedinstabilityanalysisandcontrollersynthesisforLPFplatoon withaconstantspacingpolicy,wheretheconnectivitystatusbetweentheleaderandeachfollowerinVANETsvarieswithtime.Undersuchcircumstances,none,part,orallofthefollowing vehiclescanreceivethestateinformationbroadc astbytheleaderatanytime.Consequently,the platoonismodeledasaswitchedcontrolsystem[22,23],whereacompactformoftheplatoon controllerswitchesaccordingtotheconnectiv itystatusofeachfollower.Usingtheaverage dwelltimetechniqueandpiecewiseLyapunov-Krasovskiifunctional,thecriteriaforstability analysisandcontrollersynthesisarepropose dforplatoons.Accordingtotheobtainedconditions,ausefulLPFplatooncontrolalgorithmisproposed.Thecontributionsofthischapter aresummarizedasfollows:

1)Anovel-switchedcontrolmodelisestablishedtodescribetheeffectsofvaryingcommunication rangesonLPFplatoonswithaCSpolicy.

2)Anefficientplatooncontrolstructureisproposedinwhichthecontrollergainoftheplatoonis dependentontheconnectivitystatusbetweentheleaderandeachfollower.

1.2ProblemFormulation

3)Aseriesofnewconditionsareobtainedasthecriteriaforstabilityanalysisandcontrollersynthesisfortheswitchedtime-delayplatooncontrolsystem.

4)Ausefulplatooncontrolalgorithmisproposedtodeterminetheconnectivity-status-matrixdependentfeedbackcontroller,whichsimultaneouslyguaranteestherequirementofstringstabilityandazerosteady-statespaceerrorforeachobtainedcontrollergain.

Theremainderofthischapterisorganizedasfollows.Section1.2analyzestheeffectsofvarying communicationrangesandestablishesaswitchedplatooncontrolsystemmodel.Section1.3gives themainresultonthestabilityandcontrollersynthesisforplatoonsinordertosatisfythestring stabilityrequirementforeachobtainedcontrollergain.Numericalsimulationsandexperiments withlaboratory-scaleArduinocarsaregiveninSection1.4.Theconcludingremarksandfuture researchtopicsaregiveninSection1.5.

Notation Throughoutthistechnicalnote, AT denotesthetransposeofamatrix A and I isthe identitymatrixwithappropriatedimensions. A ≥ 0(A >0)meansthat A isapositivesemidefinite (positive-definite)matrix,and A ≥ B (A > B)meansthat A B ≥ 0(A B >0). Rn and Rn × m denote the n-dimensionalrealEuclideanspaceandthesetofall n × m realmatrices,respectively. representstheEuclideannormforavector.diag{ }denotesablockdiagonalmatrix.

1.2ProblemFormulation

Consideraplatoonof N +1vehiclesinafreewayscenario.Weassumethatthisplatoonisrunning withinahorizontalstraightlineundertheconstantspacingpolicy(seeFigure1.2).Denoteby zr, vr, and ar the r-th(r =0,1, …, N)vehicle’sposition,velocityandacceleration,with r =0standingfor theleaderandtheothersasthefollowers.Eachfollowerisequippedwithanonboardsensorto measurethedistancebetweenitandtheprecedingvehicle.Theleaderperiodicallybroadcasts itsstateinformation(velocityandacceleration)toallfollowersviaVANETs.Itisassumedthat thecommunicationrangeoftheleaderislongenoughtocoverallfollowersinaplatoon.Toavoid theinstabilityoftheplatooncausedbysaturationonthevelocity,themaximumvelocityofeach followerisdefinedas vmax suchthat v0 ≤ vmax.Moreover,itisassumedthattheleadermovesata constantspeed,i.e. z 0 t = v0 t and v0 t =0astime t ∞

Definethespacingerrorofthe r-thfollowingvehicleas

Platoonofvehicles.

Figure1.2

where δd isthedesiredintervehiclespacingand L isthelengthofthevehicle.Thedynamicsof vehicle r, r =1,2, …, N,aredescribedbythefollowingdifferentialequations:

where ς denotestheenginetimeconstant,and ur(t)isthecontrolinputforthe r-thvehicle. Inordertoensuresafebrakingduringdeployment,thedesiredintervehiclespacingisrequiredto nosmallerthanthebrakingdistance.AccordingtothePATHalgorithmproposedby[24],braking distance dbrk isadoptedbythefollowingkinematicapproach

where Δvr = vr vr 1 istherelativevelocitybetweenthesuccessivevehicles. κ 1 isthemaximum decelerationofvehicle i and κ 2 isthemaximumdecelerationofitsprecedingvehicle i 1. τ isthe delaytimeofthebrakingsystemand d0 istheminimumdistance. Considertheexistingactuatortimedelay τ (e.g.thefuelingdelayandbrakingdelay)whenavehicleexecutesthecontrolcommand.Thenamorerealisticdynamicmodelfor(1.4)isrepresentedas

Define xt =Col x r t N r =1 and ut =Col ur t N r =1 torespectivelydenotethestateandthecontrolvectors,where ‘Col’ representsthecolumnvector,and x r t =

r δr v0 vr a0 ar T . Accordingto(1.2),(1.3),and(1.6),thestatespaceequationoftheentirevehicleplatoonisrepresentedas

r

Inthischapter,thelong-termevolution(LTE)V2VnetworkisutilizedtosupportreliableV2V communication.Asspecifiedinthestandard,tensubframesof1mseachmakeanLTEframe.Normally,thesizeofthestateinformationoftheleadervariesbetween50bytesand500bytes.Ina commonLTEcelldeployment(i.e.bandwidthis10MHZ),onesubframeissufficientforavehicle

1.2ProblemFormulation

totransmititsstateinformationundersuitablemodulationandcodingscheme.Here,thesignal-tointerference-plus-noise(SINR)isusedtocharacterizethereliabilityofV2Vcommunication.Tobe specific,theSINRattheintendedreceiverside(the r-thfollower)inasubframeisrepresented as[25]

where pv2v isthetransmissionpowerfromtheleadertofollower i. h r isthechannelgain,which containspathloss,shadowingeffectfromtheleadertofollower i Ir istheinterferencefromcell user. H0 isthepowerofadditivenoiseineachsubframe.WhentheSINRisaboveatargetedSINR threshold γ V2 V,thedatatransmissionrateintheV2Vcommunicationisreliable.Duetohigh mobility,theconditionofthewirelesschannel(e.g. h r )variesdynamically.However,unreliable datatransmissionratesmaycausecommunicati onconstraintssuchascommunicationdelay, packetdropoutsandmediumaccessconstraints .Therefore,weassumethatthevelocityofthe platooncanguaranteethattheSINRoftheV2Vchannelsatisfies γ r > γ V2 V.Namely,thedata transmissionrateinV2Vcommunicationisreliablewhenfollower i iscommunicatingwith theleader.

ThevaryingcommunicationrangeinaVANETinfluencesontheconnectivitystatusbetweenthe leaderandeachfollower.Defineabinaryvariable γ r(t) {0,1}thatdenotestheconnectivitystatus betweenthe r-thfollowerandtheleader.Specifically,ifthedistancebetweenthe r-thfollowerand theleaderiswithinthecurrentcommunicationrange,then γ r(t)=1;otherwise γ r(t)=0.Thisisthe distancebetweenthe r-thfollowingvehicleandtheleadingonebeyondthecurrentcommunication range.Definematrix Mσ (t) =diag{Δ1(t), Δ2(t), , ΔN(t)}where Δr(t)=diag{1,1,1, γ r(t), γ r(t)}representsthefollowers’ connectivitystatuswiththeleader,and σ (t) {0,1,2, …N}denotestheswitching signal.Allpossiblevaluesoftheconnectivitystatusmatrix Mσ (t) aretakeninafiniteset{M0, M1, M2, MN},where Mσ , σ {0,1,2, N}isgivenas

M 0 =diag Π 12 , Π 22 , , Π N 2 ,

M 1 =diag Π 11 , Π 22 , , Π N 2 ,

M 2 =diag Π 11 , Π 21 , Π 32 , …, Π N 2 ,

M 3 =diag Π 11 , Π 21 , Π 31 , Π 42 , …, Π N 2 ,

M N =diag Π 11 , Π 21 , , Π N 1 where Π r1 =diag{1,1,1,1,1}and Π r2 =diag{1,1,1,0,0}.Anillustrativeexampleoftheconnectivitystatusmatrix Mσ (t) isshowninFigure1.3. Foreachfollower,the r-thfollowercanusethereceivedvalues v0 and a0 fromtheleadertocomputethevelocityerror v0r = v0 vr andaccelerationerror a0r = a0 ar when γ r(t)=1;otherwise,the velocityerrorandaccelerationerroraresetto v0r =0and a0r =0bythezerostrategy.Asaresult,the controllerofthe r-thfollowerhasthefollowingswitchedform

ur t =

1ControlwithVaryingCommunicationRange

Figure1.3 Connectivitystatusmatrixfor(a)

where k p σ , k v σ , k a σ , k ve σ ,and k ae σ aretheconnectivitystatusmatrix Mσ dependentcontrollergainstobe designed.Accordingto(1.9),thecompactformofafeedbackcontroller(asshowninFigure1.4)for aplatooncanberepresentedas

where

istheconnectivity-status-matrixdependentfeedbackcontrollergainwith K r σ =diag k p

, k ae σ .Let ασ (t)denotethetotal timewhentheconnectivitystatusmatrixofthefollowingvehiclesisequalto Mσ inthetimeinterval [0, t).Then ασ = ασ t N σ =0 ασ t iscalledthemoderate. Takingthefeedbackcontroller(1.10)into(1.7)andassumingtheinitialcondition x(t)= ϕ(t)= ϕ(t

for t [ τ ,0),theplatoonstatespaceequationcanberewrittenas

Figure1.4 Controllerstructureofvehicleplatoon.

1.3SwitchingControlofConnectedVehicles 9

Thecontrolobjectiveoftheplatooncontrolsystemistodesigntheconnectivity-status-dependent feedbackcontrollerof(1.10)foraplatoontoensurethateachfollowermovesatthesamespeed withtheleaderwhilemaintainingaconstantdesiredintervehiclespacing.Namely,theplatoon controlsystem(1.11)isneededtomeetthefollowingcriteriawithvaryingcommunication rangesandactuatordelays:

1)Individualvehiclestability:Theentireclosed-loopplatooncontrolsystem(1.11)ismean-square exponentialstable.

2)Steady-stateperformance:Thespacingerror δr(t)approachestozeroforallvehicles.

3)Stringstability:Thetransienterrorsarenotamplifiedwiththevehicleindexunderanymaneuveroftheleadingvehicleforeachobtainedfeedbackcontrollergain, Gr(s) ≤ 1,where Gr(s)= δr(s)/δr 1(s)with δr(s)istheLaplacetransformofthespacingerror δr(t).

Toproceed,weneedthefollowingdefinitionandlemma.

Definition1.1[26] System(1.11)issaidtobeexponentiallystabilizedifthereexistpositive scalar c and ρ <0suchthatforanyinitialcondition ϕ(t0) Rn,thesolution x(t)satisfies

xt ≤ ceρ t t 0 ϕ t 0 , t ≥ t

1 12 where ρ issaidtobethedecayrate.

Definition1.2[27] Foranyswitchingsignal σ (t)and t ≥ t0,let N(k)denotethenumberofswitchingtimesof σ (t)overthetimeinterval[t0, t).If N(t) ≤ N0 +(t t0)/Ta holdsfor N0 >0and Ta >0, then Ta iscalledtheaveragedwelltimeand N0 thechatterbound.Forsimplicity,butwithoutlossof generality,wechoose N0 =0.

Lemma1.1[28,29] Forascalar λ (0,1),definethepositive-definitematrix R Rn × n andtwo realvectors W1 Rn and W2 Rn.Definethefollowingfunction f(λ)asareciprocallyconvexcombinationon f λ = 1 λ W T 1 RW 1 + 1 1 λ W T 2 RW 2

Ifthereexistsamatrix S Rn × n suchthat RS SR ≥ 0,thenthefollowinginequalityholds: f λ ≥ W 1 W 2 T RS SR W 1 W 2

Proof: Accordingtothelower-boundstheoremandreciprocallyconvexinequalitygivenintheorem1of[28],itisstraightforwardtoobtainLemma1.1.

1.3SwitchingControlofConnectedVehicles

Inthissection,wefirstgiveastabilityanalysisandcontrollerdesigncriteriafortheswitchedtimedelayvehicleplatooncontrolsystem(1.11).Then,weaddtheconstraintsfortheobtainedcontroller toguaranteethestringstabilityrequirementandthezerosteady-statespacingerrorforeach obtainedconnectivity-status-matrix-dependentcontrollergain.

Fortheswitchedsystem(1.11),introduceapiecewisequadraticLyapunov-Krasovskiifunctional inthefollowingform

with λσ >0, Pσ >0, Qσ >0,and Rσ >0.ThepropertyofthedefinedLyapunov-Krasovskiifunctional Vσ (t)isshowninthefollowinglemma.Forsimplicityofpresentation,let ℓr, r =1,2,3,4beablock entrymatrixwith ℓ rg = ℓ r ℓ g.Tomakethisclear,wegiveanexample, ℓ 1 =[In,0,0,0]T and ℓ 12 =[In, In,0,0]T .

Lemma1.2 Givenscalars λσ >0,ifthereexistrealmatrices Pσ >0, Qσ >0, Rσ >0,andrealmatrix Sσ ofappropriatedimensionssuchthatthefollowinginequalitieshold

and Gσ = Aℓ 1 + B

M

(t)definedin(1.13)has thefollowingproperties

Proof: By V

Define

Notethat

ApplyingLemma1.1to ξσ (t),onecanobtain

1.3SwitchingControlofConnectedVehicles

Itisstraightforwardtoknowthat xt = Gσ ϕ t .Combining(1.15)–(1.17),onecanobtain

If ψ σ + τ 2 GT σ Ri Gσ <0,then V σ t + λσ V σ t ≤ 0canbeguaranteed.UsingtheSchurcomplementwithmatrixinequality Ωσ canyieldtheinequality V σ t + λσ V σ t ≤ 0.Hence,theproof ofthelemmaiscompleted.

Wearenowinapositiontogivethemainresultsofthischapter.

Theorem1.1 Consideraleader-followingvehicularplatooncontrolarchitecturewithavarying communicationrange.Forthescalars λσ >0, κ >0,and μ ≥ 1,iftheaveragedwelltimeofthe platoonsystems(1.11)satisfies

19 andifthereexistrealmatrices P σ >0, Qσ >0,and Rσ >0,andrealmatrix K σ ,and Sσ isofappropriatedimensionssuchthatthefollowinginequalitieshold

theneachfollowingvehiclecanbeexponentiallystabilizedwiththedecayrate ρ/2,where ρ =1 T a ln μ N

,andthestatedecayestimationisgivenby xt < b a

1 22 where

and

Moreover,theconnectivitystatus-dependentplatooncontrollercanbesolvedby

Proof: First,wewillprovethatthecontrollergainobtainedin(1.23)canguaranteeproperty(1.15)fortheLyapunov-Krasovskiifunctional Vσ (t)definedin(1.13)ifcondition(1.20)of Theorem1.1issatisfied.Let P σ = P σ ininequality(1.14)ofLemma1.1.Definevariables

K

σ = P σ K σ and S =diag I n , R 1 σ P σ .Bypre-andpost-multiplyingbothsidesof(1.14)by S,one canobtain(1.20),wheretheterm P σ R 1 σ P σ dealswithinequality P

P σ .Since theconditionsinLemma1.1aresatisfied,theinequality(1.15)holds.

Next,weprovethattheswitchedplatooncontrolsystem(1.11)isexponentiallystable.Let0< t1 < t2, ,< tk < t denotethetimeswitchinginstantoftheswitchingsignal σ (t).Accordingto(1.15), wecanobtain

Combinedwithconditions(1.21)ofTheorem1.1andtheLyapunov-Krasovskiifunctional Vσ (t)(t) definedin(1.13),onecanobtain V i t ≤ μV j t , i, j 0,1,2,

forany xi(t).

Accordingto(1.25),wehave

where t k denotesthetimeinstantisimmediatelybeforethetimeinstant tk. Itiseasytoknowthat

Applying(1.26)recursively,oneobtains

where ρ =1 T

.Thecondition(1.19)ofTheorem1.1guaranteesthat ρ ≤ 0. IfaquadraticpiecewiseLyapunov-Krasovskiifunctional Vσ (t)(t)isconsidered,thenthereexist a >0and b >0suchthat

where a x(t) 2 ≤ Vσ (

Byinequality(1.28),wefurtherobtain

xt <

whichmeansthateachvehiclecanbemean-squareexponentiallystabilizedwithadecayrate of ρ/2.

Thecontrollerobtainedintheprevioussectioncanensuretheintervehiclestabilityofeachfollowingvehicle.However,theintervehiclestabilitydoesnotguaranteethestringstabilityforthe dynamicallycoupledplatooncontrolsystem.Therefore,additionalconditionsareneededto

1.3SwitchingControlofConnectedVehicles

complementtheobtainedcontrollerinordertosatisfythestringstabilityandzerosteady-stateerror requirements.Sincestringstabilityishighlydependentontheinteractiontopologyofplatoon,how toanalyzestringstabilityforaswitchedplatooncontrolsystemstillremainsanopenandchallengingproblem[12,30].Consequently,thediscussionsonstringstabilityandtheproblemofzero steadyspacingerrorhavemainlyfocusedoneachobtainedconnectivity-status-matrix-dependent controllergain.

Accordingto(1.3),wehave

r t = ar 1 t ar t 1 30

TakingLaplacetransformsto(1.30),thetransformfunction δr(s)/δr 1(s)canbeobtained.Forthe varyingcommunicationrange,weconsiderthefollowingcaseforobtainingtransformfunction δr(s)/δr 1(s).

Case1.1

Bothfollower i anditsprecedingvehicle(follower i 1)arewithinthecommunicationrangeof theleader.Then,wehave

Case1.2

Neitherfollower i noritsprecedingvehicle(follower i 1)arewithinthecommunicationrange oftheleader.Undersuchcircumstance,

=0and

=0,thenonecanderive

Case1.3

Follower i 1arewithinthecommunicationrangeoftheleader,butfollower i isout,thenone canobtain

j t isusedin(1.31c).

Inthenext,wewanttoillustratethat(1.31c)canbeseenasaspecialcaseof(1.31b).Consideringtheterm r 1 j =1 sδj s inthedenominatoroftransformfunction G3(s),onecanobtainthat

1 j =1

G1 s 1 , where(δj(s))/( δj 1(s))= G1(s)isused.Accordingtothefinaltheorem,wecanderivethat lim s 0 sG 1 s δr 1 s =0,whichmeanslim s 0 r 1 j =1 sδj s =0.Similarly,itiseasytoknowthat lim s 0 r 1 j =1 s2 δj s =0.Therefore,transformfunction(1.31c)isequalto(1.31b).

Aspreviouslymentioned,wehavethefollowingsufficientconditionsaboutstringstability condition|δr(jw)/δr 1(jw)| ≤ 1.

Theorem1.2 Forthespacingerrortransformfunction(1.31),iftheconnectivity-statusdependentfeedbackcontrollersatisfiesthefollowingconditions:

a k p σ >0

b 1+ k a σ + d

c k a σ + d∗ k ae σ <0 d

thencondition|δr(jw)/δr 1(jw)| ≤ 1alwaysholdstrueforeachobtainedfeedbackcontrollergain, where d∗ =1if γ i(t)=1;otherwise d∗ =0.

Proof: |δr(jw)/δr 1(jw)| ≤ 1isrewrittenas:

Itcanbeclearlyseenthat a >0.Inordertoguarantee|G(jw)|holdstrue,weneedtoprovethatthe conditioninTheorem1.2canmake b ≥ 0holdtrue.Accordingtocondition(a)of(1.32)andusing cos(wτ ) ≤ 1andsin(wτ ) ≤ wτ ≤ 1,for w >0,wehave

Turn static files into dynamic content formats.

Create a flipbook
Issuu converts static files into: digital portfolios, online yearbooks, online catalogs, digital photo albums and more. Sign up and create your flipbook.